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ABSTRACT
A new deep learning-based electroencephalography (EEG)
signal analysis framework is proposed. While deep neu-
ral networks, specifically convolutional neural networks
(CNNs), have gained remarkable attention recently, they
still suffer from high dimensionality of the training data.
Two-dimensional input images of CNNs are more vulnerable
to be redundant versus one-dimensional input time-series of
conventional neural networks. In this study, we propose a
new dimensionality reduction framework for reducing the
dimension of CNN inputs based on the tensor decomposition
of the time-frequency representation of EEG signals. The
proposed tensor decomposition-based dimensionality reduc-
tion algorithm transforms a large set of slices of the input
tensor to a concise set of slices which are called super-slices.
Employing super-slices not only handles the artifacts and
redundancies of the EEG data but also reduces the dimension
of the CNNs training inputs. We also consider different time-
frequency representation methods for EEG image generation
and provide a comprehensive comparison among them. We
test our proposed framework on HCB-MIT data and as results
show our approach outperforms other previous studies.

Index Terms— EEG, Convolutional Neural Networks,
Time-frequency, Tensor Data Analysis, Dimensionality Re-
duction.

1. INTRODUCTION

Electroencephalography (EEG) as a diagnostic tool has been
widely used in a wide variety of applications [1, 2]. Ac-
quiring and analyzing EEG signals are challenging. Various
algorithms have been developed to efficiently process the
EEG data, such as frequency analysis [3], wavelet transform
[4], filter banks [5], hidden Markov models [6], support vec-
tor machines [7], and artificial neural networks [8].

All the stated methods involve extraction of hand-crafted
features from EEG signals. Such hand-crafted feature ex-
traction techniques are ad hoc, time-consuming and may not
give the optimal representation of signals. Moreover, for
feature extraction one requires a deep domain knowledge
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to extract effective features. Moreover, the impact of noise
interference and particularly artifacts (e.g, eye blink) on data
makes the task of extracting relevant and robust features
very challenging [9]. Recently, deep learning approaches,
especially CNNs, have gained significant attention in the
field of EEG signal analysis due to their remarkable perfor-
mances [10, 11]. CNNs handle the ad-hoc feature extraction
process. They also combine the feature extraction and clas-
sification steps together. Although CNNs outperform other
EEG signal processing methods, they still suffer from the
curse of dimensionality of the input training data. Converting
each one-dimensional (1D) EEG vector to a two-dimensional
(2D) time-frequency (TF) image increases the dimension of
the training data, which in turn, increases the required storage
space significantly. The challenge of high dimensionality of
the CNN model’s training data is still open and has to be
addressed to improve CNNs’ efficiency in terms of storage
space and running time.

Tensor decomposition is a powerful tool for analysis of
high-dimensional data. The collection of TF representations
of EEG channels generates a three-way tensor over time, fre-
quency, and channel. This tensor is able to capture temporal
and spectral correlations in addition to dependencies of dif-
ferent channels over its third way [12]. EEG signals are very
sensitive to noise. However, sensing long time series from
a large number of channels facilitates utilization of dimen-
sionality reduction techniques in which the impact of noise is
diminished in the low-dimensional representation [13].

In this paper, we propose an algorithm based on low-rank
decomposition of tensors to reduce the size of TF represen-
tations of EEG data. Low-rank assumption is a realistic side
information for many scenarios in signal processing and com-
munication systems [14, 15, 16]. Firstly, a set of super-slices,
which are robust superposition of all slices, is computed.
Each slice of the input tensor corresponds to one channel.
Then, the reduced-dimension super-slices are fed to a CNN
in order to find the most efficient features and perform classi-
fication automatically. Our contributions in this study cab be
summarized as following:

• Proposing a new framework for reducing the dimen-
sionality of TF representation of EEG data based on the
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tensor decomposition, and feeding the reduced data to
a CNN to increase the model’s efficiency and decrease
its training complexity.
• Handling noise, artifacts, and redundancies of EEG sig-

nals by tensor decomposition-based dimensionality re-
duction.
• Providing a comprehensive comparison and evaluation

of different TF representation approaches for CNN-
based EEG signal analysis.

Notations: Hereafter, vectors, matrices, and tensors are
denoted by bold lowercase, bold uppercase, and bold under-
lined uppercase letters, respectively. A fiber is defined by fix-
ing every index of a tensor but one. For example, for T ∈
RN×M×K , T :,j,k is a vector of length N , also known as the
mode-1 fiber of T . T 1, T 2, and T 3 are unfolded matrices
whose columns are fibers of the first, second and third dimen-
sions of T , respectively. Slices are two-dimensional sections
of a tensor, defined by fixing all but two indices. Moreover, ◦
denotes the outer product. The n-mode product of a tensor X
with a proper sized transformation matrix U is a tensor and
denoted by X ×n U . It transfers each fiber of the nth mode
of tensor to the corresponding fiber in the final tensor. Mathe-
matically, Y = X ×n U ↔ Y n = UXn, in which Xn and
Y n are unfolded replicas of tensor X and Y w.r.t. different
dimensions. If the vector, u is used instead of the transfer ma-
trix, the result of the n-mode product will be a matrix which
is called cotradication of tensor X w.r.t. vector u.

2. TENSOR-BASED TIME-FREQUENCY
DIMENSIONALITY REDUCTION OF EEG SIGNALS

In this section, we explain the steps of our proposed frame-
work, as depicted in Fig. 1. Popularity of CNN has recently
increased due to the fact that they outperform classic machine
learning approaches. CNN requires 2D images as its input.
For this purpose, EEG signals are segmented to equal chunks
to then be converted to images using TF representation meth-
ods. Each TF method affects the overall performance of the
system differently. Therefore, we consider different state-of-
the-art TF algorithms to not only optimize performance of our
system, but also provide a comprehensive comparison on TF
representations of EEG signals. On one hand, more training
TF images improve the performance of the CNN models, but
on the other hand, it adversely adds to the complexity of the
computation. Hence, to reduce the dimensionality of the gen-
erated TF images, we employ the tensor decomposition tech-
nique. Collecting TF representation of EEG segments overK
channels, we generate a 3-way tensor over time, frequency,
and channel. Tensor decomposition is capable of alleviating
artifacts’ effects and additionally is able to capture spectro-
temporal correlations and dependencies of different channels
of EEG signals on its third way. Therefore, as tensor is able to
handle artifacts and redundancies of EEG data, we reduce the
dimension of the decomposed tensor in its third way which

is associated with EEG channels. After reducing the third di-
mension of the tensor to R (R << K), we feed it to CNN
to train the model for further predictions. Each step of our
proposed algorithm is elaborated in the following.

2.1. Time-frequency representation

Time-frequency (TF) analysis of an EEG signal is calculating
the spectrum at regular time intervals to identify the time at
which different frequency components present. TF is a suit-
able representation for non-stationary and multi-component
EEG signals because of its ability to describe the energy
distribution of the signals over time and frequency simul-
taneously. Previous studies have applied a large number
of TF approaches to select a proper methodology for their
application, helping to improve the resolution, robustness,
precision, or performance. Based on the previous studies, the
suitability of a TF approach is data- and application-oriented
[17]. A review of the recent methods for TF representation
reveals that they can be categorized in six groups as follows:
Gaussian kernel (GK), Wigner–Ville (WV), spectrogram
(SPEC), modified-B (MB), smoothed-WV (SWV), and sepa-
rable kernel (SPEK). Reduced interference approaches such
as Smoothed-WV are capable of improving the quality of the
representation. This is because decreasing the interference re-
sults in a reduction in the effect of cross-terms [18]. Our aim
is to assess the mentioned state-of-the-art approaches to de-
termine their performance regarding our specific application
in this study (i.e., CNN-based EEG classification).

2.2. Tensor-based Dimensionality Reduction

As shown in Fig. 1, the time series of each EEG channel
is transformed to a TF representation. An efficient dimen-
sionality reduction framework is necessary for processing a
large set of 2D images generated from 1D EEG data using
TF representation. Let the matrix X ∈ RT×K denote the
collection of all time series from K channels and the ten-
sor X ∈ RT×F×K denote the collection of TF representa-
tions of the channels. Since time series of different chan-
nels are highly correlated, this matrix and the correspond-
ing tensor can be approximated by their low-rank represen-
tations. In the matrix format, temporal correlation and cor-
relation between channels can be captured via dimensional-
ity reduction techniques such as principle component analy-
sis (PCA). However, for the tensor representation there ex-
ist three types of correlation. Efficient dimensionality reduc-
tion of tensors implies employing tensor rank decomposition.
It should be noted that, performing PCA on data structured
in tensors requires matricization of tensors. After matriciza-
tion of a tensor, correlation over the unfolded way of the
tensor will be neglected. A dimensionality reduction frame-
work that preserves the intrinsic structure of tensors and ex-
ploits low-rank tensor decomposition provides a more con-
cise and robust low-dimensional representation. The CAN-
DECOMP/PARAFAC (CP) decomposition of the tensor X
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Fig. 1. Flow chart of the proposed framework. First step visualizes the data acquisition and preprocessing of EEG. In the next step, each
segment of the EEG is represented in time-frequency domain as the slices of a 3-way tensor. Finally, tensor decomposition-based technique
reduces the tensor to a set of super-slices which is fed to a CNN to train the model and make the decision.

into R rank-one tensors is given by

X =
R∑

r=1

ar ◦ br ◦ cr, (1)

in which, ar, br and cr are called CP factors. Collection of
all ar’s in columns of a matrix results in the matrix A and
similarly we define B and C matrices. Mode-1 fibers are
linear combination of columns of A and similarly mode-2
and mode-3 fibers are linear combination of columns of B
and C, respectively. The minimum integer R for which (1)
holds is called the rank of X . Fig. 2 shows the decomposi-
tion of a rank-R tensor into a summation of R rank-1 tensors.
Definition of rank for tensors is similar to its definition for
matrices, however, there are several fundamental differences
between matrix rank decomposition (SVD) and tensor rank
decomposition (CP) [20]. These fundamental differences en-
courage us to keep the multi-way structure of the underlying
tensor and perform dimensionality reduction utilizing tensor
CP decomposition. Let z denote a mode-3 fiber of X . Lin-
ear combination of columns of matrix C is able to generate
z. The representation of any fiber in the third way of X in
terms of columns of C can be found by solving the problem
of z̃ = argmin

z̃
‖z − Cz̃‖22. The closed-form solution w.r.t.

z̃ is equal to (CTC)−1CTz. Transformation matrix from
the originalK-dimensional space to the reducedR-dimension
representation is defined by P = (CTC)−1CT . Accord-
ing to this transformation matrix, the original tensor can be
reduced as X̃ = X ×3 P . Here, X̃ is the low-dimensional
representation of X which is a set of super-slices. Mathemat-
ically speaking
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Fig. 2. Schematic of decomposition of a rank-R tensor to a summa-
tion of R rank-1 tensors.

X̃ :,:,r︸ ︷︷ ︸
rth super-slice

= X ×3 P r,:.

Here, P r,: indicates the rth row of P . Each super-slice is the
contradiction of the original tensor w.r.t. the corresponding
row of P . Fig. 3 shows the relation between super-slices
and the slices of the given tensor. Each row of matrix P in-
dicates the weights for generating the corresponding super-
slice. Please note that we only reduced the dimension of the
third way and the first and second dimensions are preserved in
order to extract spectro-temporal patterns using CNN. Using
this framework, number of EEG channels is reduced from K
to only R super slices (K >> R).
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Fig. 3. The input tensor as a collection of slices is transformed
to a set of super-slices. Each super-slice is a superposition of all
slices and weights are driven from Matrix P = (CTC)−1CT . For
example, the first super-slice is summation of all slices weighted by
the first row of P .

2.3. Deep Convolutional Neural Networks (DCNN)

With CNNs we seek a general-purpose tool for brain-signal
decoding capable of extracting a comprehensive set of fea-
tures without the need for expert knowledge. Therefore, we
developed a fully supervised CNN model for EEG data anal-
ysis. The model takes a super-slice of X̃ (an image) and
generates a prediction probability of belonging to different
classes (seizure or non-seizure). We train the model using
labeled super-slices to minimize a SoftMax loss function
with respect to network parameters such as weights and biases
using a gradient descent method and network parameters are
updated using back propagation. We used four main building
blocks in the CNN model including convolution, pooling,
rectified linear unit (ReLU), and fully connected layer.

The primary purpose of convolution layer is to extract
features from the input image. Convolution layer preserves



the spatial relationship between pixels by learning image fea-
tures using small squares of input data. The convolution layer
performs convolution of input with a set of predefined filters.

Spatial pooling reduces the dimensionality of each fea-
ture map but retains the most important information. It can
be of different types such as maximum and average. In case
of Max pooling, we define a spatial neighborhood (for exam-
ple, a 2 × 2 window) and take the largest element from the
rectified feature map within that window. In practice, Max
Pooling has been shown to work better [26].

The ReLU is a non-linear activation function that in-
troduces the non-linearity when applied to the feature map.
ReLU leaves the size of its input unchanged and it only maps
the non-negative values to zero. An additional ReLU has
been used after every convolution layer. In fully connected
layer each neuron in one layer is connected to all neurons in
the next layer. As the output from the convolutional and pool-
ing layers represent high-level features of the input image,
we utlize the fully connected layer to use these features for
classifying the input image into various classes based on the
training dataset [26].

3. FRAMEWORK EVALUATION AND RESULT
ANALYSIS

We evaluate our proposed method on the CHB-MIT dataset
[27]. Different types of epileptic seizures and the diversity of
patients contained in this dataset make it ideal for assessing
the performance of our framework in realistic settings. In this
study, for cross-patient detection, the goal is to detect whether
a 30 second segment of signal contains a seizure or not, as
annotated in the dataset.

Different TF methods, as discussed in Section 2.1, have
been considered to generate TF images from EEG segments.
Parameters for GKD and MBD have been chosen as α = 0.8
and β = 0.02, respectively. These values have been selected
based on the previous research studies and investigations on
theoretical and practical applications of TF representation of
EEG signal using GKD and MBD approaches [23] (Sections
7.4 and 15.5). A Hanning window is chosen for SPEC and
SWVD, with length Fs/4 samples, where Fs = 256. Fig. 4
illustrates TF representations of a one second interval of EEG
signal from one channel using different methods and above-
mentioned parameters.
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Fig. 4. TF representations of a 1 second EEG signal using:
A) SWV, B) GK, C) WV, D) SPEC, E) MB, and F) SPEK
approaches.

Next, Tensor composition has been generated by collect-
ing TF representation of the previous step across all channels.
The normalized error of CP decomposition is defined by

normalized error =
‖X −

∑
r ar ◦ br ◦ cr‖F
‖X‖F

, (2)

where, ‖.‖F is the Frobenius norm. Fig. 5 presents the nor-
malized error of CP decomposition for EEG tensor data. As
Fig. 5 demonstrates, increasing the rank of CP decomposition
(number of super-slices) results in a lower normalized error.
As Fig. 5 shows, the rank around 15 falls into the interval
of normalized error of [0.2, 0.3], which is acceptable for our
application.

For the DCNN model, the architecture guidelines as men-
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Fig. 5. Normalized error of CP decomposition versus assumed rank
of decomposition.

tioned in [24] were followed. The designed model consists of
several layers including (CONV, ReLU, POOL) and one fully
connected layer as shown in Fig. 6. Two filter sizes including
2 × 2 and 3 × 3 were tested. ReLU activation layers were
used across the CNN after each convolution and pooling pair
to bring in element-wise non-linearity. In order to estimate
the generalization accuracy of the predictive models on the
unseen data, 10-fold cross validation (10-CV) was used. 10-
CV divides the total input data of n samples into ten equal
parts. There is no overlap between the test sample set (10%
of data) with the validation and training sample set (90% of
data). The latter set is further divided into 4:1 ratio of training
and validation data samples. The sets were permuted over 10
iterations to generate an overall estimate of the generalization
accuracy. The CNN model was trained using the training set
and validation set and tested independently with the testing
set. Table 1 reports the selected parameters to train the CNN
model.

Then, after defining the parameters of TF representation
and CNN model we tested the performance of the designed
framework. Fig. 7 depicts the classification accuracy of the
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Fig. 6. The CNN architecture proposed in this study. This structure
has 10 layers and input image size is 256*256.



Table 1. CNN predefined parameters
Parameter Values

Learning Rate 0.001
Momentum Coefficient 0.9

No. of Feature Maps 32, 64
No. of Neurons in Fully Connected Layer 64

Batch Size 40
Epoch Number 19
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Fig. 7. Accuracy of EEG signal classification for different TF meth-
ods and different CNN parameters. Parameters are different number
of layers, and filter sizes are 2 × 2 (FS 2) and 3 × 3 (FS 3). SPEK,
SWV, GK, MB, SPEC, and WV indicate different TF representation
methods.

proposed framework associated with different CNN parame-
ters and TF approaches. FS indicates filter size and SPEK,
GK, SWV, WV, MB, and SPEC are TF methods. Seven ar-
chitectures with different number of layers from 6 to 12, and
two filter sizes of 2 × 2 and 3 × 3 are considered. As results
present, 10 layers of CNN, filter size of 3 × 3, and SWV TF
method outperform other sizes and methods. We use these
hereafter.

3.1. Comparison with Other State-of-the-art and base-
line algorithms

In this section we compare our proposed framework with
other 1D and 2D baselines. First we consider 1D wavelet
transformation as a 1D baseline and then we compare our
framework with PCA as a 2D dimensionality reduction base-
line.

3.1.1. Wavelet Transformation
We extract a set of features from the sub-bands of discrete
wavelet transform (DWT). Low- and high-pass filters are re-
peatedly applied to the signal, followed by decimation by 2,
to produce the sub-band tree decomposition to some desired
level. DWT of 5 levels was applied to the EEG to reach the
approximate frequency ranges of the α, β, δ, and θ sub-bands
[25]. After decomposing the signal in each window, features
including average power, mean, and standard deviation
of the coefficients were extracted from the sub-bands. Then
we feed extracted features to 3 predictive models including
complex decision tree (CDT), support vector machine (SVM),
and K-nearest neighborhood (KNN). The choice of predic-
tive methods was made based on different and complementary
properties among them [30].

3.1.2. Principal component analysis
We applied PCA to 2D TF data to reduce the dimension and
provide the results to compare with our proposed approach.
We employed PCA to the TF data and analyzed the result-
ing principal components (PCs) in order to detect the most
descriptive bases of artifacts data. Since the PC space is or-
thonormal, we can simply remove the dimensions without af-
fecting others. Based on the results of PCA component con-
tributions, we realized that most of the contribution to the
variance of the data (> 85%) was summarized in the first 15
principal components (PCs). Therefore, we kept the first 15
components of the data for the subsequent predictive model
training.

Fig. 8 summarizes the results of the comparison between
1D and 2D methods considered in this study. It illustrates box
plots of 10 iterations of 10-CV algorithm. For 1D analysis, as
results show, wavelet transform using SVM outperforms oth-
ers including KNN and CDT. The figure also provides com-
parison between PCA and the Tensor-based dimensionality
reduction schemes and confirms that the tensor-based outper-
forms the PCA-based dimensionality reduction (callsification
accuracy of 89.63% vs. 86.17%). Tensor considers all of
the channels together and is capable of capturing temporal
and spectral correlations in addition to dependencies of dif-
ferent channels over its third way. While PCA works on each
TF image separately and it is prone to ignoring the correla-
tions between different channels. Moreover, as Fig. 8 shows,
the tensor-based dimensionality reduction (TF-tenosr-CNN)
framework, due to its capability of reducing the redundancies
and handling artifacts, outperforms the TF-CNN framework
without dimensionality reduction.

Comparing our result (89% of accuracy) with previous
studies (less than 86% accuracy), our algorithm has improved
the results of cross-patient seizures detection in CHB-MIT
dataset [28, 29].

4. CONCLUSION

In this study, we proposed a new tensor-based framework
to enhance the classification accuracy and efficiency of
the deep learning models, specifically convolutional neural
networks (CNNs), for EEG signals. We proposed a ten-
sor decomposition-based dimentionality reduction of time-
frequency (TF) inputs of CNN model to improve its per-
formance in terms of storage space and running time. Our
proposed method transforms a large set of slices of the input
tensor to a concise set of super-slices, which is capable of not
only handling the artifacts and redundancies of the EEG data
but also reducing the dimension of the CNNs training inputs.
We also considered different TF approaches and evaluated
their performances to provide a comprehensive comparison
of different TF methods for this classification problem. We
implemented our proposed method on a publicly available
dataset (CHB-MIT). Our results showed the superiority of
our scheme compared to the state-of-the-art methods and
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recent studies.
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