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Abstract: Aerial imagery has the potential to advance high-throughput phenotyping for agricultural
field experiments. This potential is currently limited by the difficulties of identifying pixels of
interest (POI) and performing plot segmentation due to the required intensive manual operations.
We developed a Python package, GRID (GReenfield Image Decoder), to overcome this limitation.
With pixel-wise K-means cluster analysis, users can specify the number of clusters and choose the
clusters representing POl The plot grid patterns are automatically recognized by the POI
distribution. The local optima of POI are initialized as the plot centers, which can also be manually
modified for deletion, addition, or relocation. The segmentation of POI around the plot centers is
initialized by automated, intelligent agents to define plot boundaries. A plot intelligent agent
negotiates with neighboring agents based on plot size and POI distributions. The negotiation can be
refined by weighting more on either plot size or POI density. All adjustments are operated in a
graphical user interface with real-time previews of outcomes so that users can refine segmentation
results based on their knowledge of the fields. The final results are saved in text and image files. The
text files include plot rows and columns, plot size, and total plot POI. The image files include
displays of clusters, POI, and segmented plots. With GRID, users are completely liberated from the
labor-intensive task of manually drawing plot lines or polygons. The supervised automation with
GRID is expected to enhance the efficiency of agricultural field experiments.

Keywords: segmentation; pixels of interest; field plots; UAV; satellite; high-throughput
phenotyping

1. Introduction

Agricultural field experiments have an advantage over greenhouse experiments because
environmental conditions in the field are closer to real-world situations. The disadvantages of open-
field experiments are the massive scale; unpredictable influence of natural forces; and expensive and
labor-intensive manual phenotyping, which often requires traveling long distances and enduring
harsh working conditions. Remote sensing technology, on the other hand, has the potential to
improve in-field phenotyping efficiency [1]. That is, remotely sensed images can partially substitute
for manual phenotyping in a high-throughput manner, or even include additional plant
characteristics not possible to collect through manual phenotyping.

To record and utilize such characteristics from field experiments, orthoimages can serve as the
digital media for transferring the information. This type of image is acquired from satellites or
unmanned aerial vehicles (UAV), having been adjusted for lens distortion and camera tilt. Practically,
orthoimages are saved in Geographic Tagged Image File Format (GeoTIFF). This file format can
record more than three imagery channels, allowing scientists to explore information beyond visible
wavelengths, such as near-infrared (NIR). GeoTIFF can also embed geographical information into
orthoimages. To use these images for field experiments, plot boundaries must be defined for
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segmentation, and the pixels of interest (POI) must be extracted. During the image process, several
roadblocks prevent the use of orthoimages for high-throughput phenotyping for agricultural
experiments.

The first roadblock is a lack of ground devices for geographical information in the majority of
orthoimage applications. Efforts have been made to ease this difficulty. One example is QGIS [2],
which has a graphical user interface (GUI) and comes with versatile toolsets, enabling users to dissect
terrain [3,4] or time-series variation [5], visualize raster data [6,7], and export the derived information
for further applications. For applications without geographical information, QGIS allows users to
either specify an area of interest (AOI) by manually drawing polygons or assign pixels as reference.
Then, the software can identify pixels that share a similar spectral pattern. However, implementing
segmentation in such a way can be time-consuming and laborious because one must manually draw
the polygons around plots being investigated.

To overcome the second roadblock of manually drawing polygons and assigning reference
pixels, image segmentation tools have been developed to eliminate the labor by utilizing the grid
layout of agricultural experimental fields. Field plots are commonly organized in grid layouts with
rectangular, rhombus, or parallelogram patterns. Hence, by having essential parameters (e.g., size of
plot, number of rows and columns) that define the field arrangement as guidance, plots can be
automatically segmented if plots are aligned properly. Progeny [8] and EasyMPE [9] implemented
this method to allow users to define plots without drawing polygons. The challenge is that plots are
often misaligned between one row and another.

To deal with the third roadblock of misaligned field plots, the Phenalysis program [10] was
developed to adjust plot centroids using particle swarm optimization [11]. The algorithm arbitrarily
initializes plot centroids and iteratively updates their locations based on the cost function, which is
defined by intra-plot and inter-plot vegetation indices. The centroid locations are optimized when
the function value converges or satisfies the criterion.

The fourth roadblock is the extraction of AOI within plot boundaries. Trainable Weka
Segmentation (TWS) [12] is a segmentation tool that comes with a supervised learning algorithm and
learns pixel-based features from a provided training dataset. TWS can classify any pixel from given
images. As the common disadvantage of supervised learning algorithms, the training process itself
is labor-intensive. Additionally, this type of algorithm experiences difficulty when images contain
objects that are outside the training range. Images of agricultural fields are extreme challenges for
training. For example, plants can grow across their neighboring plots so that leaf canopies connect
with or overlap each other. Irrelevant objects appear in a variety of forms, such as weeds and drip
irrigation pipes.

Among the existing methods and software packages, none of them simultaneously fixed these
roadblocks and satisfy all desirable features to efficiently analyze images for plot information,
including (1) independence from ground devices for geographical information, (2) freedom from
drawing lines or polygons, (3) tolerance to plot variation due to plant interaction within and between
plots, and (4) usability with minimal training. In this study, we developed automated methods and
a software package to achieve all of these features, requiring little user guidance and including an
easy-to-operate, interactive GUI. When users slide control bars on the GUI, results are instantly
displayed for adjustment so that users can integrate their knowledge about the experimental fields
into the final results. The package, named GReenfield Image Decoder (GRID), was designed by
PyQT5 [13] and managed by Python Package Index.

2. Methods

2.1. Workflow

GRID is initiated by prompting the user for an input image (Figure 1a) and an optional map file
(Figure 1b). The map file contains the identification of plots that are arranged in rows and columns.
The number of rows and columns also serves as the default to guide the segmentation. Without the
map file, GRID automatically infers the layout from the image. For the input image, users can either
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keep the original scope or assign four corners to crop a rectangular area for segmentation (Figure 1c).
To differentiate pixels of interest (POI) from the background, a pixel-wise clustering is carried out
(Figure 1d). POI and background pixels are labeled as 1 (highlighted in yellow) or 0 (black),
respectively, to form a binary image (Figure 1e). The binary image can be further refined by shade
removal (Figure 1f) and noise removal (Figure 1g). Based on the distribution of POI in the image,
GRID can infer the field layout and locate plot centers via signal analyses (Figure 1h). The determined
plot centers are used as starting points to initialize an intelligent agent. Agents will bargain with their
neighboring plots and expand the plot boundaries (Figure 1i). Detailed algorithms of all the above
steps are elaborated in the later sections. Each step in GRID comes with friendly graphical user
interface (GUI) components. Users are allowed to fine-tune parameters via simple actions, such as
dragging slider bars or clicking a mouse, and the final results are updated in real time. The
segmentation results are saved as text in comma-separated values (CSV) files with CSV extension
names (Figure 1j) and are visualized in Portable Network Graphics (PNG) images. The text files
include plot rows and columns, plot size, and total plot POIL The image files include displays of
clusters, POI, and segmentation results. Other than text and image files, a binary file is generated
along with the analysis. This file, with the extension name “.grid”, records all optimized parameters
from the segmentation, and users can load it into GRID to replicate the analysis on other images.
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Figure 1. Workflow of GReenfield Image Decoder (GRID). GRID takes an image (a) and an optional
field layout text file (b) as input data. Users can either use the original image or a cropped image (c).
The image is classified pixel-wise (d), and the clusters of interest can be selected to define pixels of
interest (POI) (e). The POI from the selected clusters are displayed as yellow, and all non-POI are
displayed as black. POI can be fine-tuned by removing shade (f) and noise (g). The plot centers (h)
and boundaries (i) are automatically created and displayed as the red crosses and boxes, respectively.
GRID output includes the text file (j) and images corresponding to (d), (e), and (i). GRID not only
processes grid patterns in rectangle shapes, but also other patterns, such as rhombus shapes (k).

2.2. Input Images and Field Layout

GRID supports most image formats, including GeoTIFF, PNG, and Joint Photographic Experts
Group (JPEG). All the channels from the image are loaded as a 3-D array (i.e., width by height by
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channels), which later serves as numeric features for pixel-wise clustering. By default, GRID assumes
the first three channels from the input image are red, green, and blue, respectively. If the image has
more than three channels, GRID considers the fourth channel as near-infrared (NIR), but it does not
make presumptions for any additional channels. To accelerate the computing speed, the input image
is encoded to Uint8 and is proportionally resized to a smaller copy. The longest side of this copy is
shorter than 4096 pixels and is used to represent the original image for the entire analysis. The image
loading function is implemented by Python Rasterio [14], and the 3D array is managed by a numpy
array [15].

A map file is an optional input into GRID and should be saved as a CSV file. Recorded in the file
are tabular data, which represent the field layout. For example, if the image contains five columns
and three rows of plots, the table should also have five columns and three rows of data cells. Values
in the data cells are the plot names given their positions in the field. The names are also shown in the
output file and allow users to track the specific plot. In general, providing the map file gives GRID a
better idea of how many plots exist in the image and results in a better segmentation with the default
configuration. However, if no map file is provided, GRID can still determine the field layout, but with
less accuracy.

2.3. Perspective Correction

An orthomosaic is the most common input image format in phenomics. An orthomosaic is
generated from merging several small orthoimages to cover a wide range of areas and has already
been corrected for lens distortion and camera tilt. However, the correction cannot ensure that the
selected AOI from an orthomosaic is in the shape of a rectangle; usually, an observable distortion
remains in the image. To alleviate this problem, GRID linearly transforms and maps the current AOI
into the shape of a rectangle. The four corner coordinates (xi y:) from the AQOI are defined as
corresponding points P. A homography H can be found in the following equation:

x 1 % oy 1
xl 71 1 xhi1  yhiz hysl r [xlr 1, 1]
PHT = xz Y2 1| xhyy  hy,, hysl| =177, yz, 1|~ P’ 1)
33 1 xhzy hys; hssl [xg,’ y3, J
x4— y4- .x4_ y4_ 1

where P’ equals the known four coordinates (x’; i) that correspond to the four corners of the new
projective rectangle. Therefore, the homography allows GRID to remove the distortion by applying
such a transformation to the original AOIL The equation solving is implemented by the function
getPerspectiveTransform () from OpenCV [16].

2.4. Pixels of Interest (POI)

GRID conducts a pixel-level segmentation for each plot. The red and NIR channels (or the red
and green channels if the image has only 3 channels) are considered as numeric features, which are
used in a pixel-wise clustering to identify POI (denoted as 1) and background (denoted as 0). Pixels
are grouped into clusters. Users can decide which clusters belong to POL The clustering is conducted
via a k-means clustering algorithm. The number of clusters is set to three by default, corresponding
to the three major types of objects existing in the field images: vegetation, soil, and the rest. The first-
ranked cluster (vegetation most of the time) is selected as POI by default. Depending on the
circumstance, users can freely tune the parameters, such as selecting imagery channels used for the
clustering, number of clusters k and clusters specified as POl The determination of POI turns the
input image into a binary 2D matrix B, which consists of 0s (background) and 1s (POI).

The binary image B can be refined via two approaches: de-shade and de-noise. Since every
orthophoto cannot be taken at noon—the time of day with the minimum amount of shadow—
removing dark, shaded areas observed beneath the leaf canopy is essential for accurate analysis. The
average of the first three channels (RGB) is used as a darkness (shade) indicator S for a pixel at the
coordinate (X, y). If we let Myyistand for the i channel value at the pixel, the darkness of the pixel can
be calculated as:
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The corresponding values of the binary image at the coordinate Bxy is determined by Sxy and a
threshold St

s {1, if Sy < S,
* 710, otherwise’

)

Users can then filter any pixel darker than a chosen threshold S:.

The other image-refinement approach is to smooth noise signals. In the field, many non-
vegetation and trivial objects can be observed. For instance, pipes used for drip irrigation are usually
placed under plant canopies and should not be considered part of the plant. Hence, GRID performs
a 2D convolution operation to alleviate such noises. A pre-defined 3 by 3 kernel, w, will span over
the binary image B to smooth noises (Figure 2). A K-means clustering algorithm is implemented by
OpenCV library, and the convolution operation is conducted via Python Numpy.

o1 (|1 (1]|0 0.31/0.62 0.660.59 0.17 o/1(1(1|0
11 0/1|0 1/29]4/29 1/29 0.66/0.83 0.69/0.66 0.21 1010110
111 1 10 & 4299029429 = |0.790.970.830.660.31 - 1010110
101 (1|01 1/29 4729 1/29 079/ 1 086066052 Rounded | 4 |1 1 ¢ 1
I | | ] Yo I |
11 1] 0.62(0.79/0.75 0.66 0.58 integers 11111

Noise-removed

Binary image (B) Kernel (w) binary image

Figure 2. Convolution operation for noise reduction. A binary image (B) is smoothed by the Gaussian
kernel (). The binary image contains two pixels of Os (open cells) that are surrounded by 1s (shaded
cells) and considered noise. The convolution operation generates a matrix with the two noise cells
filled by values above the Gaussian threshold (0.5). The transformed binary image displays the
removed noise.

2.5. Plot Centers and Layout

The binary image B defined from the previous step is used to determine plot centers and layouts.
Plot layouts refer to how the plots are arranged. For most cases, plots are arranged in a grid pattern,
where all rows and columns are perpendicular to each other. However, in some circumstances, the
angles between rows and columns are less than 90 degrees, and drawing a simple grid is unlikely to
accurately segment each plot from an orthoimage. To solve this problem, we must determine the
angle between rows and a vertical line, and the angle between columns and a vertical line. We define
these two angles as the “rows angle” and “columns angle”.

Fourier transformation, a math approach that finds constituent frequencies of given signals, is
introduced to find the angles. The signal f(x) is a function of x coordinates from the binary image B:

h
f&) =) By @
y=1

where h is the height of the image. We can learn the signal frequency domain /(¢) via Fourier
transformation:

&) = f f (e 2 dx )

where £ is the signal frequency, and w stands for the width of the image.

To search for the rows/columns angle, the binary image B is rotated clockwise from 0 to 90
degrees at 15-degree intervals. Each angle has a corresponding signal and f is defined in Equations
(4) and (5) above. We use the maximum value of f to represent the periodicity of the signal. Signals
having stronger periodicities have a higher chance that their corresponding angles match the
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rows/columns angle. The corresponding angles of the two signals with the highest periodicities are
compared. The angle closest to 0 degrees is assigned as the columns angle, and the other is assigned
as the rows angle. By knowing the field layout, we use the local optima of the signals defined in
Equation (4) to locate plot centers. Signal values are compared with their neighboring values. If the
location has a relatively higher value than those adjacent, the location is a local optimum and is
defined as plot center of the corresponding row/column (Figure 3). Finally, combining the
information of plot centers and field layout, GRID determines 2D coordinates of all the plots. Fourier
transformation is implemented by Python numpy, and the local optima searching algorithm is
realized via Python Scipy library [17].
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Figure 3. Automatic detection of plot layout through image rotation. The input image has a layout
arranged in a rhombus shape (a). The rotation of the POl image is demonstrated at 15-degree intervals
(b). Vertical-scan signal f(x) is an average value at the position x of the POI image, where x is the
horizontal position of the POI image (c). Frequency domains f(¢) are computed via Fourier
transformation, where ¢ is the signal frequency over f(x) (d). f(£) is used to determine the optimal
rotation of the field image. When the correct rotation matches Fourier transformation, the frequency
domain contains a single peak with a high POI density relative to other rotations. This example
demonstrates that valid rotations (45° and 90°) have repeating vertical POI density patterns that, when
Fourier transformed, result in a frequency domain that can determine the optimal rotation. Red stars
shown in the two optimal rotations represent the plot centroids in (c) and the single peaks of
frequency domain (d).

2.6. Plot Boundaries

Before determining all plot boundaries, the dimensions of each plot must be estimated. An
“intelligent agent” is initialized at the center point of each plot (defined in the previous step), and
then it starts to traverse toward the four different cardinal directions (i.e., north, east, south, and
west). Whenever the agent arrives at a new pixel position, it will examine whether this pixel is
assigned to the POI or not. If yes, the agent will continue its traverse in the same direction to the next
new pixel position. If no, the traversing will also continue in the same direction, but a 1+ increment
will be added to the counter. The searching process in one direction is terminated when the counter
becomes greater than the criterion. By default, the criterion is set to 5. With the information about
how far an agent traveled in each direction, GRID can roughly estimate the width and length of each
plot.
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Each agent will bargain with its neighboring agents to expand its territory (Figure 4). The idea
“bargaining bar” is introduced in this step. When the agent bargains with its horizontal (or vertical)
neighbor, the bargaining bar is initialized as a vertical (or horizontal) vector at its plot center. The
length of the vector is plot height (or plot length) estimated from the previous step. Two neighboring
bars will iteratively compare their “bargaining power” to decide which one can shift a pixel toward
the opposite plot. In the case of a tie, both bars can shift. This bargaining process will end when two
bars meet at the same position, which is the position where plot boundaries are finalized. Two factors
define the bargaining power. The first factor is the proportion of POI covered by the bargaining bar,
defined as V(bar):

@& = f f (et dy ©)
1

where nror and nvackground are the number of POI and background pixels in the bargaining bar. The
second factor is the ratio of the distance between the bar and its plot center (denoted as d) to the
distance between the centers of the two neighboring plots (denoted as D). We can formulate these
two factors as the bargaining power:

d
Bargaining power = V(bar) — y X (5) @)

where y is the grid coefficient. A higher y will result in boundaries that tend to follow a grid pattern,
which means plots from the same rows/columns are less likely to expand their boundaries into other
rows/columns. By default, y is set to 0.2. For those plots located on the image edge and without
neighbors, their boundaries are defined by the image borders.

Bargaining bar
o P i,
|

D

o

Figure 4. Boundary bargaining between adjacent plots. The bargaining between two plots starts at
their center points in either column or row directions (a, left). The final boundaries (a, right) are
determined by the movement of bargaining bars. A bargaining bar moves away from its center if it
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has more power than its opponent. The power of a bargaining bar is defined by its proportion of
pixels of interest (POL red area on the bar itself) over the total pixels (red + blue on the bar) adjusted
by a penalty. The penalty is a bargaining bar’s distance to its plot center (lower case red d) divided
by the distance between the centers of the two plots (upper case red D), multiplied by a weight
(default of 0.2). The right plot has more power than the left plot and reaches its left edge first (b).
When left and right plots do not have POI intersecting their bargaining bars, both bars move forward
(c). After the left plot finds its separated PO], it gains power and moves to the right edge (d). At the
end of the bargaining process, both plots run out of POI and the bars move simultaneously to
complete the connection and form the boundary (e).

2.7. Evaluation

Two images from our lab and several others from the internet were used to benchmark GRID’s
precision. The first orthomosaic from our lab covers an alfalfa field, which was taken at noon on 9
June 2019. This orthomosaic was used to validate GRID’s capability in dealing with shaded areas and
irrelevant objects such as drip irrigation pipes. The field layout is in a straight grid, but some of the
plots have connected leaf canopies, which usually poses a challenge for existing segmentation
methods. The second test used an orthomosaic generated by our lab at noon on 31 May 2019. The
biggest challenge of this image is its field layout; the plot columns tilt at an angle of 30 degrees from
a vertical line. Therefore, we used this orthomosaic to examine whether GRID can handle field plots
in arrangements other than a straight grid pattern. The images from the internet were used to exam
GRID’s performance with different plants in different settings, including drone versus satellite
images and rectangle versus rhombus field layouts.

We evaluated the computation time relative to image file size and number of plots. The file size
can significantly affect the image loading time. Furthermore, a large number of plots in an image can
also increase the computing time, particularly during the search for plot centers and the boundary
bargaining process. We modified the first orthomosaic into different circumstances to assess GRID’s
performance relative to speed. The image was resized to 0.1 GB, 0.5 GB, 1 GB, 1.5 GB, and 2 GB, and
the loading time was measured for each file size. We also cropped the image into smaller numbers of
plots—50, 100, 150, and 200— and then evaluated how fast GRID performed plot searching and
boundary bargaining. Each speed evaluation was conducted 100 times, reported as the mean and
standard deviation, and visualized with a boxplot. The test environments were implemented on an
Apple MacBook with Intel Core i9-8959HK CPU @ 2.9 GHz, 32 GB 2400 MHz DDR4 RAM, and
Radeon Pro Vega 20 4GB GPU.

3. Results

3.1. Segmentation on a Variety of Plot Layouts

We tested GRID on a variety of plot layouts (Figure 5 and Figure S1-3), including straight rows
and columns, zigzag, rhombus, and multiple rows in a zigzag layout. An alfalfa field with plots in
straight rows and columns was chosen to demonstrate the control of noise and shade (Figure 5a).
Plots in the same row were connected by a visible drip irrigation pipe. GRID removed most pipes
and replaced them with empty areas (white pixels), ensuring they would not be considered part of
the segmented plots. The alfalfa field image also included plots that appeared to have connected leaf
canopies, which present ambiguous areas for the segmentation. For instance, we observed that plots
grown in the 5% row from the top, 2 and 3 columns from the left, were connected by their leaf
canopies. With noise removal and clues from POI distribution, GRID recognized them as different
plots and found a proper boundary to separate them. Within the final results, many white areas can
be observed in each plot. Compared to adjacent pixels, these areas were mainly darker pixels, which
GRID recognized as shade areas. These dark pixels are replaced with white pixels to achieve shade
removal and prevent these non-vegetation pixels from causing information bias. GRID is also tolerant
of missing plots. For example, about one-fourth of the plots in the left column of the alfalfa field were
missing, but GRID still automatically recognized this column.
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Two satellite images were chosen to demonstrate the tolerance of GRID on low resolution —one
image of wheat with zigzag plots (Figure 5b) and one image of cherry trees arranged in a rhombus
shape (Figure 5¢). The wheat field is located on the Spillman Experimental Farm at Washington State
University in Pullman, Washington (WA), U.S.A. Testing germplasms were continuously planted
one after another in rows. Rows were separated by empty spaces. The individual plants adjacent to
two germplasms were treated with herbicide for removal to ensure that all plots were the same size.
Although the resolution was low, GRID clearly separated the plots. The cherry tree orchard is located
in Grandview, WA, U.S.A. These trees varied in both shape and size. The image was taken when the
sun cast a black shadow from each tree in the direction of the neighboring tree above and to the right.
In addition, the soil at the base of the trees was covered with white plastic for weed control. GRID
successfully removed both the shade and the background plastic.

Another wheat field image by drone (Figure 5d) was chosen to demonstrate the capability of
GRID to process the difference between the visual appearance and actual plots. In this field, each test
plot was arranged with four separate rows, which should be combined for analysis instead of
segmenting each row as a single plot. Another challenge in this image is that the rows and columns
of plots are not arranged in straight lines. By providing the number of plots in the field, GRID can
still detect the proper layout even when plots are not arranged perpendicularly. In addition, some
unusual objects existed within the plots. For example, one plot grown in the 1st row from the top and
2nd column from the right and one plot in the 34 row from the top and 24 column from the right have
stripe-patterned objects across all four sub-row plants. By comparing the spectral information from
the given image, GRID can recognize those objects as non-POI and remove them from the results.
However, in this case, the contrast between POI and background was weak, so that these irrelevant
objects were not completely removed. Similarly, in the alfalfa field example above, some drip
irrigation pipes can still be observed after the segmentation. However, overall, plots were well
segmented and are representative of their spectral variation.

Original

Segmentation

Plots arranged in rectangles

(a)

(b) Zigzag layout
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Figure 5. Segmentation of images with different plot layout patterns and resolutions. The patterns
include perpendicular layout of alfalfa (a), zigzag-like layout of wheat (b), rhombus shape of cherry
tree orchard (c), and multiple rows within plots of pea field (d). The alfalfa and pea field drone images
were provided by Zhou Tang and Samuel Revolinski. The other two are Google satellites images for
wheat on Spillman Agronomy Farm at Washington State University (46°41’50.8”N 117°07"29.1”W)
and for cherry trees in Grandview, Washington (46.230664, 119.904291). The left panel displays the
raw images and the right panel demonstrates the extracted pixels of interest with plots defined by the
red boxes.

3.2. Extraction of Plot Features

For all the POI of a plot, GRID calculates their average and standard deviation for all the
channels of the input image. Six vegetation indices are also calculated pixel-wise, with their average
and standard deviation as output for each plot. The six vegetation indices include the Normalized
Difference Vegetation Index (NDVI) [18], Green Normalized Difference Vegetation Index (GNDVI)
[19], Combination of Normalized Difference Vegetation Index (CNDVI) [20], Ratio Vegetation Index
(RVI) [21], Green Ratio Vegetation Index (GRVI) [22], and Normalized Difference Greenness
Vegetation Index (NDGVI) [23] (Table S1, Figure S4). For each segmented plot, GRID extracts both
plot area and vegetation area in units of the number of pixels. Plot area includes the vegetation area
and the areas of non-interest, such as soil background, shade, and weeds. The extracted information
can serve as imagery features associated with plant growth and potential indicators of plant vigor.

3.3. Intermediate Images for Diagnosis and Futher Studies

Multiple intermediate images record the major processes of image analyses by GRID. These
processes include pixel-wise cluster analysis, POI class selection, plot center location, and plot
segmentation (Figures 5 and 6). These images usually have much better resolution than the displays
on the GRID interface. These intermediate images can be compared to the original image and used to
evaluate whether the analysis was conducted appropriately. For example, users can verify if any
clusters were missed as POI or any clusters were incorrectly classified as POI. The centers and
boundaries on the original image provide a convenient way to assess the accuracy of the
segmentation.
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Figure 6. Multiple intermediate images of segmentation. GRID saves multiple intermediate images
for documentation, diagnosis, and further image analyses. These intermediate images demonstrate
the pixel-wise cluster analysis (a), the plot centers on selected pixels of interest (b), and the raw image
(c). The plot boundaries are displayed on both selected pixels of interest (d) and the raw image (e).
The pixels of interest are displayed for the raw image with pixels of non-interest displayed as white
background (f), which are also saved as HDF5 for each of segmented plots as numpy arrays. The raw
image was taken by drone on the alfalfa field in Figure 5.

In addition, the segmented images contain more and potentially highly valuable information
than what is reported by GRID as text files. For example, a single plot in a segmented image can
exhibit visible characteristics that are biologically important. The plot length may relate to plant
standing counts. The distribution of shade may be useful for evaluating canopy coverage, which is
critical for weed control and water-use efficiency. To accommodate such a need for extracting
additional image information, GRID outputs the segmented plots in numpy arrays and saves them
as HDF5 files. The numpy arrays are commonly used for matrix computations, which can then be
used for further image analyses, including their application as training and testing data for machine
learning.

3.4. Computing Time

In the step of loading images, we observed a linear relationship between the file size and the
median of the elapsed time from 100 iterations (Figure 7). For most cases, files smaller than 1 gigabyte
can be loaded within 5 seconds, and a 2 gigabytes file takes less than 10 seconds to load in our testing
environment. In terms of computing speed stability, which refers to the potential for differences in
elapsed time from one iteration to another, loading a larger file may result in a greater variation in
elapsed times. In addition, plot number is another factor that can limit computing speed. In the step
of plot searching, we found that every extra 50 plots takes another 0.2 seconds to compute. With 200
plots, only 1 out of 100 iterations may take more than 3 seconds to finish the search. The boundary
bargaining step takes a little more time than plot searching. On average, an image with 200 plots
takes 2.8 seconds to finish the bargaining process, and 4 out of 100 iterations may take more than 3.5
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seconds. Thus, we observed that the computation time for both crucial steps, plot searching and
boundary bargaining, also increases linearly with the number of segmented plots.
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Figure 7. Linear computing complexity over file size and the number of plots. The total running times
in seconds (s) were divided into times (s) for loading images (a), searching plot centers (b), and
defining boundaries (c). The image loading time is linear to the image size. The running times for both
searching plot centers and defining boundaries through bargaining between adjacent plots are linear
to number of plots.

4. Discussion

4.1. Advantages of Using GRID

GRID can be applied to a variety of plot layouts. These layouts include not only rows and
columns arranged perpendicularly, but also thombus patterns (i.e., rows and columns offset at 60-
degree angles) and zigzag patterns (i.e., rows and columns are offset at angles less than 60 degrees).
Two design features explain GRID’s wide adaptability relative to plot layout. First, GRID allows rows
to intersect with columns at any angle, which leads to the more accurate placement of plot centers
close to or at the actual center of the plots. Second, GRID’s segmentation process is tolerant of
estimated plot centers that are less accurate, as long as the actual plot centers are within the POI of
the plots. For example, the wheat plots in the satellite image were offset at a very narrow angle
between the rows and columns. When GRID applied straight rows and columns at 90 degrees, some
of the plots centers were placed at the center of plots, and some were placed at the end of plots. The
bargaining process proceeded all the way to the other side of plots. As a result, GRID performed
satisfactory segmentation for both types of plots, whether the plot center was located at the center or
at the end of the plots (Figure 5b).

4.2. Operation Parameter File and Batch Processing

GRID stores operation parameters in a file named GRID.grid, which was designed for batch
processing. However, conducting satisfactory analyses through batch segmentation remains
challenging. In practical scenarios, users may have a series of images taken across different seasons.
Parameters used in one image cannot be guaranteed to reproduce the same quality of outcomes when
applied to another image taken in a different season. One reason for the different outcomes is that
field management practices vary according to different crop growth stages. For example, herbicides
are rarely used in the early growing stage, so both weeds and seedlings will look similar in terms of
their color when observed in an image. This fact may cause difficulties for our algorithm when it
attempts to differentiate two objects based solely on imagery channels. The current workaround is
that instead of detecting POI via pixel-based clustering, GRID allows users to manually specify plot
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locations and sizes. Since we expect plots to remain in the same locations over time, anchoring their
coordinates and expected sizes ensures better plot segmentation compared with spectral signals,
which can change dramatically over time.

4.3. GRID-Based Vegetation Indices Output Versus User-Defined Output

GRID outputs the plot averages and standard deviations of six vegetation indices that are
calculated pixel-wise from the channels of the original images. However, other indices may be of
particular interest to specific researchers. Some researchers may even be interested in defining their
own indices. With the output of plot averages and standard deviations, GRID users can derive other
vegetation indices of interest. Calculations are slightly different for indices derived by the users
compared to the indices of GRID’s output. For GRID’s output, the indices are calculated pixel-wise
first, and then the averages and standard deviation are calculated. For the indices derived by users,
the averages of the image channels must be used to calculate plot averages, which can offer relatively
good approximations. However, the derivation of the standard deviation within a plot for user-
defined indices is not straight forward because pixel-wise data are unavailable.

4.4. Boundary Bargaining Between Adjacent Neighbors

Although each plot has eight potential adjacent neighbors, boundary bargaining is only
conducted with the neighbors in the same rows and columns, having no boundary overlap between
them. That is, no bargaining occurs between the neighbors on the diagonals and not in the same rows
or columns. As a result, a plot has the potential to share the same area with neighbors on the
diagonals, which means that the total plot area may exceed the total image area. For plots with layouts
in straight rows and columns, this problem is negligible. However, for other plot layouts, this
problem could be severe.

4.5. Limitations

Currently, GRID only provides two options, either 0 or 90 degrees, when choosing rows or
columns as the major axis of the field plot layout. When rows are chosen as the major axis, the
columns are defined as the minor axis, and vice versa. In contrast, the minor axis can be optimized
or adjusted to any angle degree that matches the layout. This approach works for images with either
rows or columns that align with either the vertical or horizontal direction of the image. For images
that do not have such properties, users can crop the images to satisfy the requirement. In such cases,
the area of interest will be partially removed if near image edges, especially if near the corners.

GRID assumes the first three channels are the visible channels (RGB) and uses their average to
control shade and noise. Thus, this assumption is invalidated for some multispectral images that
capture other wavelengths. This assumption can also cause problems for calculating vegetation
indices. GRID does not allow users the flexibility to define the channels and derive the vegetation
indices accordingly. Users must arrange the channels based on the assumption of GRID. Otherwise,
the adjustments on shade and noise should be conducted with caution. The output of vegetation
indices should be interpreted accordingly or calculated from the values of channels.

Certain situations make it difficult for GRID to select POI or to segment. One situation that
affects the selection of POl is a field filled with weeds that look very similar to the crop of interest. In
many cases, weeds are distinguishable from crops so that weeds can be assigned to a cluster different
from crops. Consequently, weeds are considered as background and will not affect layout detection
and boundary determination. However, if weeds are nearly identical to the vegetation of interest for
all channels, including RGB and other multispectral channels, GRID is unable to accurately select
POL Another situation that affects the segmentation is a field that contains a significant number of
missing plots or a field layout of plots that is barely visible to human eyes. In these cases, GRID will
have problems detecting the layouts automatically. Users must manually conduct the segmentation
by defining the number of rows and columns.
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GRID uses a pixel as the unit in its outputs, including the area of vegetation. Results from
different images are comparable only if they have the same resolution. To compare images with
different resolutions, users have to set reference objects in each image and transform the original
GRID outputs accordingly.

5. Conclusion

GRID is a user-friendly tool that automatically produces segmentation for images with minimal
human involvement. GRID is capable of detecting different types of field layouts, including plots
arranged in grid or rhombus patterns. As a result, GRID produces more precise outcomes compared
to other software programs that can only define AOI by drawing polygons. In terms of computing
speed, GRID can handle data larger than 1 gigabyte and more than 100 test plots within one minute.
The computing time is linear to the file size and plot number. This feature allows users to scale up
their analyses to larger areas of field plots. Moreover, GRID is implemented with an interactive GUIL
With a real-time preview panel in the interface, users are expected to experience a smooth learning
curve using GRID. Since any change made in the software options during the plot segmentation
process can be previewed before exporting the final results, users can compare the outcomes from
different configurations intuitively. GRID is expected to be an effective tool for extracting field plot
features, which can then be used directly for high-throughput phenotyping and further analyses in
agricultural research.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/12/11/1697/s1,
Figure S1: Segmentation of plots in perpendicular rows and columns distanced equally. Figure S2: Segmentation
of plots in perpendicular rows and columns with variations. Figure S3: Extraction of pixels of interest (POI) on
images orientated in perpendicular, diagonal, and rhombus shapes. Figure S4: Scatter plots of plot features
extracted from an alfalfa drone image. Table S1: Vegetation indices exported from GRID.

Availability and implementation: The GRID executable file, user manual, tutorials, and example datasets are
freely available at GRID website (http://zzlab.net/GRID). GRID is released as an open-source software on GitHub:
https://github.com/Poissonfish/photo_grid.
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