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Decentralizing loT Management Systems Using
Blockchain for Censorship Resistance

Songlin He
Chase Qishi Wu

Abstract—Blockchain technology has been increasingly
used for decentralizing cloud-based Internet of Things (loT)
architectures to address limitations faced by centralized
systems. While many existing efforts are successful in
decentralization with multiple servers (i.e., full nodes) to
handle faulty nodes, an important issue has arisen that
external clients have to rely on a relay node to communicate
with the full nodes in the blockchain. Compromization of
such relay nodes may result in a security breach and even
a blockage of loT sensors from the network. In this article,
we propose blockchain-based decentralized loT manage-
ment systems for censorship resistance, which include a
“diffusion” function to deliver all messages from sensors
to all full nodes and an augmented consensus protocol
to check data losses, replicate processing outcome, and
facilitate opportunistic outcome delivery. We also leverage
public key aggregation to reduce communication complex-
ity and signature verification. The experimental results from
proof-of-concept implementation and deployment in a real
distributed environment show the feasibility and effective-
ness in achieving censorship resistance.

Index Terms—Blockchain, censorship
cryptography, Internet of Things (loT).
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I. INTRODUCTION

PAWNED from machine-to-machine technology [2], Inter-
S net of Things (IoT) is becoming a dynamic global network
infrastructure with self-configuring capabilities where physical
and virtual “things” with identities, physical attributes, and vir-
tual personalities are seamlessly integrated into the information
network [3]. According to Gartner, the number of IoT devices
worldwide is increasing by 30%—40% per year and will reach
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Fig. 1. Centralized loT system architecture.

20.8 million by 2020 [4]. IoT is recognized as one of the most
important areas of future technology and is gaining vast attention
from a wide range of industries [5].

As a subset and natural evolution of IoT, industrial IoT (IloT)
shares common technologies (sensors and cloud platforms)
with IoT but has higher requirements on security, scalability,
reliability, and resilience. One example of the IloT vision is
the Industrial Internet of Things Services and People (IoTSP)
platform [6]. The rapid development of IIoT is facilitated by
the capability of data generation, collection, aggregation, and
analysis over the Internet to maximize the efficiency of machines
and the throughput of operations. This brings about significant
challenges since data may flow across various network and
administrative boundaries at the risk of attacks or failures.

Specifically, existing IoT systems (including IIoT) mainly
rely on centralized clouds, where sensors collect and send data
directly to a central server on the cloud for analysis, as shown
in Fig. 1. This model has several drawbacks. For example,
the cloud server may present a single point of failure; clouds
are typically vendor specific and may not be compatible with
each other, thus adversely affecting data sharing between them.
Also, existing centralized 10T solutions are expensive due to
a high cost in infrastructure and maintenance. Among these
shortcomings, security is of primary concern. According to Van
Der Meulen [4], by 2022, half of the security budgets for IoT
will be allocated to fault remediation, recalls, and safety failures
rather than protection. Therefore, a distributed trust technology
ensuring security is regarded as a cornerstone for the continual
growth of such IoT solutions. The blockchain technology is
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under rapid development and has proved to be an effective
solution to realizing such goals due to its intrinsic security [7].

Blockchain is typically viewed as an immutable ledger for
recording fransactions, maintained in a distributed network
of mutually untrusting peers [8]. Any participating peer can
submit data (sometimes also referred to as a transaction), which
is eventually broadcasted and replicated at all participating
peers executing some consensus protocols. As an abstract layer,
blockchain technology provides a reliable delivery of messages
to ensure that all participating peers have a consistent copy
of the ledger. This is referred to as “transparency,” a property
frequently mentioned about blockchain; on the other hand,
once a message is written to the ledger and replicated at all
peers, each peer can only modify its local ledger and the data
would remain intact in other peers’ ledgers. This is referred to
as “immutability,” another important property of blockchain.
A more unique function of blockchain is to support “smart
contract,”! which is a piece of program code that implements a
predefined application logic and deterministically? runs on all
participating peers.

The aforementioned properties of blockchain technology
have facilitated its widespread applications to the IoT domain.
For example, the “immutability” property of blockchain brings
resistance to unauthorized modification. Since the entire history
of device configuration is stored in the blockchain, recovery
from incidents is straightforward. Depending on whether or not
peers need to be authorized, blockchain technology is divided
into two main categories: permissioned and permissionless.
In this article, we focus on permissioned blockchain where
participating nodes are all certified and known to others. In
a more visionary level, IBM laid out a blueprint for “device
democracy” [10], which employs blockchain to distributively
manage transaction processing and coordination among hun-
dreds of billions of interacting devices. Such an ambitious goal
might take time to come to life, but on the other hand, decentral-
izing local management systems via permissioned blockchain
to improve robustness and availability is much more viable [11].

A. Problems

Although blockchain technology offers a promising way to
decentralize IoT management systems, such decentralizations
cannot be realized completely based on existing blockchain
platforms, such as the popular permissioned blockchain and
hyperledger fabric (fabric for short) [8]. Note that blockchain
technology (in particular, the consensus protocol) itself only
concerns how to replicate data across peers consistently. Many
practical issues, such as data input from external sources and
data output from the ledger are not considered by the consensus
protocol. These problems are currently subject to ad hoc designs
and could potentially become a bottleneck in revealing the full
power of a decentralized system.

"The “scripts” in Bitcoin is a predecessor of smart contract, whereas in
Ethereum [9], it is a collection of code (functions) and data (state) that reside at
a specific address.

Here, “deterministically” means that the program code always produces the
same output with the same input.

@ Nen-validating peer
O Validating peer {Consensus)

Fig. 2. Data flow in a hyperledger-fabric-based loT management
system [12]. Internet of things platform (loTP) is the IBM Watson loT
platform, Monitor APP is for querying the ledger, which runs in read-only
mode and can only see the committed world state with no ability to
change it. VP (also referred to as “full node”) is a validating peer in the
blockchain network. NVP is a nonvalidating peer, which is responsible
for forwarding or providing an interface for querying the ledger. The
combination of permissioned blockchain hyperledger fabric with loT
presents a censorship problem with a single entry or exit point.

Normally, multiple sensors are connected to one server (re-
ferred to as gateway node, which is one of the nonvalidating
nodes and whose goal is to settle with the heterogeneity between
different sensor networks and the cloud [13] and effectively
retrieve data from sensor networks [14]), and the server is
responsible for forwarding on behalf of the sensors and par-
ticipating in the consensus protocol to post the collected data
to the distributed ledger. Obviously, if this gateway node is
corrupted, sensor messages cannot be even transmitted to any
of the blockchain’s full nodes, thus the sensor simply loses
the ability of “writing” to the ledger. In fact, such kind of
architecture is common in existing systems, for example, Fig. 2
shows the data low when building IoT application on top of
hyperledger fabric [12].

Problem 1: The gateway node, i.e., the nonvalidating peer
(NVP) node in fabric, could be censored. Consider a (poten-
tially decentralized) IoT management system for environmental
monitoring, where interested departments control the gateway
node. The notorious Flinf water crisis is a practical example
and lesson. Flint authorities insisted for months that the city
water was safe to drink, but finally it was reported that the
Michigan Department of Environment Quality and the city
of Flint discarded two of the collected samples containing a
dangerous level of lead to avoid high cost and lawsuit.

Problem 2: The query result from the blockchain network
could be censored. As an IoT management system, besides writ-
ing data into the ledger, sometimes actuators/devices may also
need to read or receive instructions from the ledger. Similarly,
at present, such message passing out of the blockchain is still
carried out via an external nonvalidating node, which connects
to one or several full nodes® in the blockchain network. If this
external node or its connected full nodes are hacked/censored
to be malicious, e.g., critical control commands are dropped,
SEerious consequences may OCCur.

Consider the application of decentralized energy IoT man-
agement, the sensors continuously send real-time environmen-
tal measurements to the ledger, and the management servers
analyze these measurements and send instructions back to the
actuators. For example, if the temperature or pressure reaches

3Full nodes execute, validate, and commit transactions to the ledger in a
blockchain network. Each of them maintains a copy of the ledger state.
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a threshold, the servers need to instruct the actuators to shut
the valve or reduce the amount of oxygen pumped into the
combustion facility. If the forwarding node is compromised,
such instructions may be dropped or modified on purpose to
create a disaster.

These problems motivate us to consider how to build a
censorship resistant decentralized IoT management system.

B. Contributions of This Article

We design a protocol that decentralizes the message passing
module for sending and receiving data from a distributed ledger,
thus avoid the single point of failure at the gateway node;
moreover, this is done in a way that is compatible with existing
consensus protocols so that our method can be plugged into
existing platforms, as detailed in the following.

1) First, we propose to replace the traditional gateway node
in IoT scenarios with several seed nodes, which perform
the same function as gateway node but also participate
in blockchain network as full nodes. Then, we introduce
a message “diffusion” mechanism to realize censorship
resistance considering the single entry point problem and
propose an augmented consensus protocol to achieve
reliable data delivery.

2) Furthermore, we propose the protocol to deal with the
single exit point problem and the case that data on at
most one-third of all full nodes are maliciously modified.

3) Finally, we propose to leverage the cryptographic tool
of public key aggregation to reduce communication
overhead and complexity of verification.

The rest of this article is organized as follows. Section II
conducts a survey of related work. Section III provides a
formal definition of the problem with the corresponding security
requirements. Section IV presents an overview of the protocol.
Section V provides the protocol details. Section VI conducts
performance evaluation through proof-of-concept implementa-
tion. Finally, Section VII concludes this article.

[I. RELATED WORK
A. Integration of loT and Blockchain

Billions of connected devices in future IoT networks face
significant technical challenges in security, privacy, and in-
teroperability, which are not taken into consideration during
the design phase of IoT products [7]. The blockchain technol-
ogy under rapid development emerges as a viable solution to
addressing these challenges in decentralizing IoT systems.

Many challenges confronted by current IoT architectures
may be addressed by blockchain. In [15], Kshetri presented a
positive attitude toward strengthening IoT with blockchain and
provided insights into how blockchain enhances 10T security,
such as leveraging blockchain-based identity and access man-
agement systems or improving the overall security in supply
chain networks. Cha ef al. investigated data confidentiality and
authentication based on blockchain [16]. Novo proposed to
utilize blockchain as the access control layer for better security
and privacy [17]. Panarello ef al. conducted a survey of the

integration of blockchain and 10T, where different application
domains are categorized, including smart home, smart city, and
smart energy [T].

B. Gossip Protocol

A gossip protocol [18] is a procedure where a data item
is routed to all members in a distributed network similar to
epidemics spreading. Gossiping has been traditionally used for
reliable information dissemination, but its applicability goes far
beyond in distributed systems. Uber implemented a gossip pro-
tocol variation called SWIM [19] to allow independent workers
to discover each other. Cassandra [20] used a gossip protocol for
peer discovery and metadata propagation. Docker’s multihost
networking [21] employed a gossip protocol to exchange overlay
network information. Hyperledger fabric [8] implemented a
gossip data dissemination protocol to ensure data integrity and
consistency among different roles of nodes.

Kermarrec and Van Steen [22] provided the general orga-
nization of a gossip protocol and discussed one of its most
successful applications for dissemination, which is achieved by
letting peers forward messages to each other. Eugster ef al. [23]
elaborated the gossiping dissemination process with three pa-
rameters: the number of messages stored in a node’s local cache,
the number of selected peers for message forwarding, and the
upper bound of times that a message is forwarded. The shuffle
protocol in [24] is designed to disseminate information among
a collection of wireless devices in a mesh network, but it only
considers a synchronous model where the transmission duration
among peers is constant. Andrew and Antonios [25] improved
this model by taking into account the dynamics of a real network
and employed exponential distribution and hyperexponential to
simulate various transmission durations among peer nodes. In
this article, we use gossip to realize robust message dissemina-
tion from sensor networks to blockchain networks and conduct
experiments in real distributed environments.

C. Censorship Resistance

Censorship resistance in IoT data communication is made
possible by the decentralization and immutability nature of
blockchain network. The study in [26] and [7] pointed out that
the decentralization of IoT on top of blockchain is censorship
resistant because inside the blockchain network, there is no
controller and entities only trust the quality of the cryptographic
algorithms that govern the operations. Obviously, the censorship
problem still exists in the components of the blockchain network
that communicate with external devices. Hence, we provide a
formal definition of “censorship resistance™ in blockchain-based
10T and propose an effective solution.

[ll. PROBLEM FORMULATION

In this section, we formulate the problem and describe
security requirements. The notations are provided in Table I
for the convenience of reference.

Fig. 3 illustrates the current blockchain-based IoT manage-
ment model. Typically, in a blockchain-based IoT management
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TABLE |
KEY NOTATIONS RELATED TO THE PROTOCOL
Notation Represent for
Lative the list maintaining live nodes in blockchain network
sensorrp | the unique ID of a sensor
Stsensor the time period when a sensor sends data
Otyeed the time period when seed nodes process data
Staip the time period when data diffusion is completed in a
synchronous network
et a physical zone including sensors and gateway nodes
Zrp the unique ID of a zone Z
d the data collected by a sensor
) the number of sensors in a certain zone Z
k the number of selected neighbor nodes in gossip protocol
n the number of data items collected during dtsensor
n’ the number of data items during Beeq
s the number of seed nodes
c command/instruction sent to actuators from blockchain network
o signature from the message sender
¥ the local cache size for gossip protocol
N the number of full nodes in blockchain network
C the local cache on a peer node for gossiping
BUF the buffer that a full node uses to receive data from sensors
ts time stamp
SEED message from sensors to seed nodes
Bieed a constructed batch of SEFE Ds maintained on seed nodes
noderp the unique I[D of a full node in blockchain network
GM gossip message from seed nodes to all full nodes

O Zone . Sensar O Routing layer

@ cGatewayNode [[] Block in blodkchain

E Server In doud

1
A Wireless access point

Fig. 3. Blockchain-based loT management system model.

system, multiple sensors are deployed in a certain area (e.g.,
a power plant) for data collection (e.g., temperature measure-
ments). The collected data are sent to the nearest gateway
node and forwarded by routers through a wireless network to
a server in the blockchain network, which starts to execute the
consensus protocol and replicate the data across all participating
servers (also known as “peers” or “replicas”). Such consistent
data items stored in blocks are appended to the blockchain as
“transactions.”
To investigate the security issues in blockchain-based IoT, we
first provide the following definitions.
Definition I (Consensus): A consensus protocol has the
following properties.
1) Termination: Each participating peer outputs something
locally within a limited amount of time.
2) Agreement: All honest peers in the network agree on the
same value.
3) Validity: If all honest peers receive the same value v, then
the agreed result should be equal to v.

From this definition, we know that consensus only considers
ledger replication while disregarding how inputs are received
from and outcomes are delivered to external clients. External
clients are not full nodes of the distributed ledger and, thus, have
to rely on some servers to relay. As such, existing architectures
assume “trusted” relay, which is vulnerable in practice as the
relay server could either be hacked or simply be malicious.
To realize the properties of “reliable message delivery” and
“transparency” of a distributed ledger, we provide the following
definition.

Definition 2 (Censorship Resistance): Consider a sequence
of data items (d,,dy, ...,d,) sent from an IoT network to a
blockchain network. The system is censorship resistant if it
meets the following two conditions.

1) The ledger records a permutation of the vector without
any data loss.

2) The corresponding actuator in the IoT network is
guaranteed to eventually receive the value of y =
F(dy,...,dy), which is also stored in the ledger, where
F is a predefined processing function.

We now introduce the security issues in the current
blockchain-based IoT model.

A. Security Against Entry Point Censorship

A malicious or hacked node* relaying messages from the
sensor network to the blockchain network may act arbitrarily,
e.g., drop messages, infinitely delay messages, or modify mes-
sage contents. Meanwhile, even correct data are disseminated
to the blockchain network, it may get lost during the process of
reaching a consensus among all peers. We define the security in
these two cases as follows.

1) An adversary A corrupts the gateway node g in a zone
Z including sensory, . .. , sensor;. The message sent from
the sensor network to g is denoted as m = (dy, ..., dy,).
‘We consider a bad event B; as follows.

a) The number of data forwarding from g to blockchain
network is less than n.

b) There is no data forwarding from g to blockchain
network since g blocks all the messages.

c) Some data items in message m are modified before
sending to blockchain network.

2) An adversary A corrupts f nodes in the blockchain
network to execute a consensus protocol. The message
sent to the blockchain network from the sensor network
is denoted as m = (dy, . .., d, ). We consider a bad event
B, as follows.

a) Not all nodes in the blockchain network update m to
their ledgers.

b) All nodes update m to their ledgers but on some
nodes, the number of data items in m is less than n,
ie., |m| < n.

4Gener:-)]lj,r, a cluster with a master—slave architecture is constructed for the
gateway node to tolerate crash fault, but it still acts as a single node since only
the master node is responsible for providing services. Our proposed solution
tolerates both crash fault and Byzantine fault.
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Fig. 4. Data flow in the improved architecture to resist censorship.

c) All nodes update m to their ledgers and on all nodes
|| = n, but the data items in m are out of order.
The security of our proposed protocol requires that for ev-
ery polynomial time adversary .4, the probability Pr[B;]

and Pr[B,] is negligibly small.

B. Security Against Exit Point Censorship

When querying from the blockchain network, a corrupted
node may perform malicious actions to actuators to cause a
disaster. We define the security in this case as follows: an
adversary A corrupts f nodes in the blockchain network. We
consider a bad event Bj as follows: when querying from the
ledger, the instruction y is modified to 3’ and sent to actuators.
Again, the security of our proposed protocol requires that for
every polynomial time adversary .4, the probability Pr[Bs] is
negligibly small.

IV. SYSTEM OVERVIEW

To defend against potential threats of censorship, we augment
the current blockchain network architecture and the consen-
sus protocol. Fig. 4 illustrates the data flow in the improved
architecture.

A. Censorship Resistant Message Delivery

Our protocol carries out messages delivery as follows.

1) The sensors disseminate data to f 4 1 gateway nodes
(referred to as “seed nodes”), which are full nodes, not
just forwarding messages from the sensor network to the
blockchain network.

2) The seed nodes disseminate data to all other peer nodes
in blockchain network through gossip-based diffusion
mechanism.

3) A leader node starts the Byzantine consensus protocol to
replicate the data.

4) Each replica performs filtering validation (FV) to check
if there is any data loss after consensus.

Specifically, to defend against censorship at the data entry
point, we need to make sure that each sensor is connected to
multiple servers instead of just one single gateway node. In
the proposed scheme, the conventional single gateway node is
replaced with multiple full nodes in the blockchain network
(i.e., seed nodes), which perform not only the same function

as the original gateway node but also a set of blockchain
operations, such as reaching consensus and updating ledger,
hence eliminating the crash fault of the original gateway node.
Furthermore, the number of seed nodes is at least f + 1 to
tolerate the Byzantine fault as discussed later. We propose
to use a gossip-based protocol to achieve message diffusion
among all peers for better robustness. Moreover, we enhance the
underlying consensus protocol (e.g., BFT-SMART [27]) such
that each honest participating peer further checks whether the
block being replicated has dropped some data before updating
the local ledger. If a sufficient number of peers observe data
missing, the consensus process is restarted (e.g., a view change
type of subprotocol is triggered). We would like to point out that
this enhancement is generic and could be applied to any BFT
protocols.

After this round, the data are appended to the local ledger of
each full node. To further enhance the protocol to support basic
data analysis and instruction delivery, we propose the following.

B. Data Processing and Censorship Resistant
Instruction Delivery

Our protocol carries out data processing and instruction
delivery as follows.

1) For a predefined processing function , another round of
consensus is initiated using the outcome of JF(-) as the
data to be replicated. Such agreement is the same as the
third step in the aforementioned message delivery round,
the consensus content is instruction instead of message.

2) Once the value of J(-) is written in each local ledger,
the leader forward the value of F(-) with the peer nodes’
signatures to the corresponding actuators/devices.

3) Actuators receive an instruction and send feedback
containing an acknowledgement to all full nodes.

4) All replicas maintain a timer and wait for the acknowl-
edgment for each sent instruction; if the acknowledgment
is not received within a predefined time period, they all
resend the instruction to actuators, details are elaborated
in Section V.

After the data are written to the ledger, the nodes run the
analysis program J that is predefined and deployed in a smart
contract (an example about J is provided in Section V), and use
the output y of F as input to run another consensus protocol.
At the end of this consensus protocol, there are a sufficient
number of signatures on the same y, and an honest leader
node forward the output y together with the signatures to the
actuator. The actuator simply broadcasts an acknowledgment
to all servers if it receives instructions from the leader server
and successfully verifies their signatures. The peer nodes wait
for a predefined period of time, and if there is no feedback
from the corresponding actuator, they all send value y to the
actuator. This feedback mechanism achieves an opportunistic
efficiency: when the leader is honest, only one single message
is sent to the actuator and this single message contains the
signatures of most peers (specifically 2f + 1, where f is the
largest number of malicious nodes) in the blockchain network;
only when the leader node drops the outgoing instruction, the
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other peers jointly inform the actuator. Although we assume
that the diffusion from the sensor network to the blockchain
network (and vice versa) be completed in a fixed amount of
time (i.e., as a synchronous network), the network that connects
the peers (i.e., the blockchain network itself) could be partially
asynchronous and we are still able to deploy such consensus
protocols as PBFT [28].

V. PRrRoT1ocoL DESIGN

In this section, we provide a detailed description of protocol
design to realize censorship resistance on top of blockchain-
based IoT. The main idea is to further decentralized data entry
and exit point. For simplicity, we denote the number of all
replicas (full nodes) as N, |[N|=3f+ 1°, where f is the
maximum number of faulty nodes. In addition, BFT-SMART,
which implements a modular state machine replication protocol
atop a Byzantine consensus algorithm [29], is used as an
example for the underlying consensus protocol to explain our
protocol process.

A. Dealing With the Single Entry

The data are sent from the sensor network to the blockchain
network, which is referred to as “inbound flow.” Fig. 5 illustrates
the normal operation on inbound flow in our protocol, as detailed
in the following three phases.

1) Phase | for Message Diffusion: The goal in this phase is
to ensure that data from each sensor be quickly diffused to every
full node in a more robust way instead of relying on the single
gateway node, so that when the consensus protocol is invoked,
all full nodes have a copy of the sensor data in place.

Blockchain network is essentially a decentralized point-to-
point network. To broadcast data from each sensor to the
blockchain network in an efficient and robust way, we propose
a gossip-based diffusion protocol, as detailed in the following.

1) Initialization. Initially, all peers in the blockchain network

execute the discovery service and message exchange to

maintain a dynamic list L)% of live peers they can
connect to. Such a list contains IP address, port, and
public key of peer nodes.

2) Data multicasts to seed nodes. We call those
nodes that participate in blockchain network and
also initially being connected by sensors to re-
ceive data as seed nodes. Sensors periodically send

3Castro and Liskov [28] proved that a minimum of 3f 4 1 replicas/peers are
needed to tolerate at most f faulty/Byzantine replicas/peers.

collected data d,™" ;... dn 7,5 =1,...,1t0 s seed
nodes, the message is in the form of SEED =
(ZD, senSorm, d, £8) ¢ peer, -

3) Processing on seed nodes. Each seed node maintains a lo-
cal buffer BUF for received data from sensors and always
check the signature validity before caching sensor data to
BUF. Every dtsecq, each seed node accumulates SEEDs
in BUF as a batch B..q, and counts the number of data
items in Byeeq as 72, which is used to check data loss later.
SEED; in this batch is sorted sequentially according to ts.
It is practical to ensure that §tseeq < Otsensor- Therefore,
the unpredictable network impact is eliminated and all
these s seed nodes have the same state of Byeeq ready.

4) Gossip diffusion. We consider a synchronous network
where message diffusion can be completed in 8.
In order to reduce the complexity incurred by mes-
sage mixing and ensure the same number of data
items on each seed node, we set dtgir < Otseeq. The
seed nodes then disseminate the gossip message GM =
(noderp, Bseea, 1, ts) S to all peers in the blockchain

network through gossip-based diffusion algorithm, as
shown in Algorithm 1. Note that as the system tolerates
up to f malicious nodes, the number of seed nodes
k = f + 1 ensures that malicious actions can be detected
and, hence, not updated to the ledger.
The gossip-based diffusion algorithm in Algorithm 1 is
divided into three steps as follows.

1) Topology construction: Practically, each peer node in
the blockchain network maintains a list of its direct and
indirect neighbor nodes whose information is stored in
L™ An overlay network is formed with virtual links
from each peer node to its corresponding neighbor nodes.
It is worth mentioning that the gossip-based algorithm
can also be utilized to maintain the gossip network itself:
peer nodes periodically exchange and update L*52°™ with
each other so the network topology can be dynamically
maintained when some nodes leave or join.

2) Peer selection: Each peer node in the blockchain network
is initialized with a number of gossip parameters during
the topology construction step, including: a local cache
Crodew with size ~; the maximum number ¢ of times a
message can be forwarded; and the number % of neighbor
nodes a peer node selects to forward messages each
time. Among these parameters, k plays a critical role in
diffusion efficiency since the value of k and the selected
nodes affect the dissemination speed. Previous study
shows that constructing a gossip-based topology on top
of a peer sampling service [30] can ensure a uniform and
random selection of peers.

3) Data dissemination: Those k uniformly and randomly
selected nodes are called passive nodes and the node
starting to send messages is an active node. Their
interaction is described as follows.

a) Each seed node acts as an active node, and uniformly
and randomly selects & nodes as passive nodes from
its local cache C™°dew. A gossip message GM is
retrieved from BUF.
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Algorithm 1: Gossip-based Message Diffusion.

Input: GM =

<nOdBID s Bseed s ﬁ': fS)

T nodeyy,

Output: true or false

1:

g

AN AN

o

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:

Initialization: the number s of seed nodes; the number
k of selected neighbor nodes; the maximum number ¢
of times a message can be forwarded; the information
about neighbor nodes stored in Lg‘ﬁf:m'mdef " the
local cache C™°9¢10 [] of size + as a buffer for received
messages;
M, Onode;, — parse(GM), where m = (noderp,
Bseea \ T, tS).',
T +— veri fy(Onode; p , NOdepy +— L
if r == true then

if C1°4¢10 does not contain m then

forward m with ¢s and ocyrrent, 4, t0 k neighbor

currentyqd
nodes selected from L, ., medern .

add quadruple (key = m, counter = 1,
flag = false, integrity = false) to C™°%°17 ;
while C"°9¢10 gize > ~ do
remove those items whose counter > t and
integrity is true;

current_nodeyp

alive 1 m);

else
if (counter for m) < t then

forward m with ¢s and ocyrrent, 4, t0 Kk

1 current, .4
neighbor nodes selected from Lalive medern .

counter + + for the item whose key == m;
else
if flag for m == false then
update flag for m as true;
return true;
else
return false;

b) Each active node sends message GM to all of its
corresponding passive nodes.

c) All passive nodes act as active nodes to repeat this
process by randomly and uniformly choosing k nodes
from their local cache and forwarding message GM.

d) Each node (including seed nodes) maintains a set
of quadruples (key, counter, flag, integrity) in the
local cache C"°®®  where the key is the gossip
message GM, and counfer is to count how many times
GM is forwarded by the node. For efficiency, the
hash value of GM is computed to quickly determine
if the current node has already forwarded such a
message. If the received message is already in its
cache, we increase the counter; otherwise, the new
item is added to the cache. If counter > t, we stop
forwarding this message and consider it as stable by
setting flag to be true. In a synchronous network,
all nodes are able to reach a stable status within a
reasonable time period dtg;r- The integrity is set to
be false by default, indicating whether or not this
message is checked in the later dafa loss phase. If the
total number of messages exceeds the cache size y on

the node, we remove those items whose counter > t
and integrity is true.

In a gossip network with A" nodes, a message sent from a seed
node is relayed by a set of randomly selected k£ nodes in every
round and is expected to reach all other nodes after # rounds,
ie., > k' = \,and hence, § = [logi(1 — N'(1 — k)) —1].
Especially when k£ = 2, the process turns to be a binary tree and
the complexity of rounds becomes O(log\").

2) Phase Il for Byzantine Consensus: We augment the
consensus protocol to support censorship checking during the
consensus process. Note that all full nodes have the input data
in place after the message diffusion phase.

The consensus’ leader node first sends a PROPOSE message
containing Bgecq to other replicas. All other replicas receive the
PROPOSE message and then check the validity of the proposed
batch and the sender’s leadership: if both are true, then register
Bseea and send a WRITE message containing a cryptographic
hash of the batch, denoted as H (Bscea ), to all other replicas. If
areplica receives [M] WRITE messages with an identical
hash, it sends an ACCEPT message containing this hash to all
other replicas.

3) Phase lll for Data Loss Check: If a replica receives
|'|R|+"r 11 ACCEPT messages for the same hash, it performs
FV to detect data loss by comparing the number 72 of messages
in PROPOSE with the number of messages received from the
sensors, i.e., n. If FV passes, it appends the new data Bgeeq to
the ledger; otherwise, a view change® may take place to elect a
new leader and all replicas are required to converge to the same
consensus execution. More details can be found in [29].

We would like to point out that it might be more efficient to
perform FVright after PROPOSE to avoid WRITE and ACCEPT
if filtering was noticed. However, this would require modifying
the original consensus, e.g., the BFI-SMART protocol. Our
design only involves adding a few phases after the proto-
col finishes and, hence, facilitates quick implementation and
convenient deployment.

B. Dealing With the Single Exit

In many blockchain-based IoT scenarios, sensors collect
and send data to the ledger and meanwhile actuators receive
instructions for further actions. These instructions could be
the outcomes of some data analysis procedures applied to the
collected data. Thus, we also need to ensure that the instruction
from the blockchain network to the sensor network (referred to
as “outbound flow”) is “legitimate,” i.e., the instruction is the
consensus of the participants rather than a single node, and the
instruction is successfully delivered to the intended actuator.
Fig. 6 shows the normal operation on the outbound flow, as
detailed in the following two phases.

1) Phase | for Decision Consensus: After the data batch is
written to the ledger, each honest node executes a data analysis

61f all nodes executing the consensus protocol have the same leader, they are
in the same view. Views are numbered consecutively, and the leader of a view is
areplica p such that p = v mod AV, where v is the view number. Hence, when
the leader is considered to fail, a view change is carried out by setting the new
leader to be p = (v + 1) mod AV to continue consensus execution.
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Fig. 6. Message pattern for dealing with the single exit.

program in the form of y = F(GM). Program F is typically
known a priori as it is application-specific and may vary in
different scenarios. Algorithm 2 gives a simple example of how
function F works: the input is the data batch that updated to
ledger, which contains sensor data from different zones, by
calculating the average value of sensors from the same zone and
comparing with the threshold 7, corresponding instruction from
a predefined set ) is returned, otherwise no action is needed by
returning . The decision consensus phase executes the same
steps as the aforementioned Byzantine consensus phase. The
only difference is the content to be agreed on, which is the
output y instead of data batch Bgeeq. We split it into two rounds
for different consensus contents, because in some cases, such as
the data collection system, only the data needs to be recorded
in the ledger, whereas in other cases, it may need both. At the
end of the decision consensus phase, the output based on the
sensor data is updated to the ledger as well. Then, the execution
of RESPONSE phase is triggered.

2) Phase Il for Response: The response phase includes
prepare, confirmation, and occasional reconfirmation. In
RESPONSE PREPARE, the honest consensus’ leader forward
command/instruction y to the actuator if itis the agreed outcome,
which means that it has collected sufficient’ signatures from peer
nodes on the same y. Once the actuator receives an instruction
and verifies all signatures, it enters into the RESPONSE CON-
FIRMATION phase, in which the actuator simply broadcasts the
signed acknowledgment ack,, to all servers: this is done the same
way as in the DIFFUSION phase via gossip. Other nonleader
replicas wait for ack, after updating y to the ledger. If they do
not receive an acknowledgment within a predefined time period,
they all resend y to the actuator by themselves, also via gossip.

C. Security Discussion

1) Security Against Entry Point Censorship: We firstanalyze
the security against entry point censorship, i.e., data flow
from the sensor network to the blockchain network. Existing
blockchain-based IoT management systems rely on a single
gateway node to relay messages. We propose to replace the
single gateway server with f + 1 full nodes (i.e., “seed nodes™)
in the blockchain network, which not only participate in the
blockchain operations but also act as conventional gateway
nodes for message forwarding. As defined in our security

TFor crash fault tolerance, sufficient refers to at least f+ 1 peer nodes,
whereas for Byzantine fault tolerance, sufficient refers to at least 2f + 1 peer
nodes, proof can be found in [28].

Algorithm 2: An Example of Analysis Program F.

Input: Bseea
Output: y/ L
1: Initialization: the instruction set }; a temperature
threshold: 7 € Z; the sum of temperatures collected by
all sensors in a specific zone: Sz, , + 0; the counter
that keeps track of the number of times the sensor data
is counted: tz,,, «— 0
SEED;,i € [n] «— parse(Bseed);
for SEED; do
(Z1p,d) «— parse(SEED;);
if Z;p exists then
Szip — Sz1p +4;
tz;p + 13
else
new((Z1p, Sz, 1z, ));
10: Szp — d;
11: tz;p — L;
12: for all Z;p do
13:  (Zip,AVGgz,,) — (Zip, f—;’fﬁ-);
14: if AVGz,, > T then
15: returny — YV;
16: return 1;

AR

b

model, the security against entry point censorship requires that
the probability of bad events B; and B; is negligibly small.
Specifically, B includes following three cases.
i) The malicious gateway node may drop some messages.
ii) The malicious gateway node may infinitely delay
messages without relaying to the blockchain network.
iii) The malicious gateway node may modify message con-
tents and send modified messages to a subset of peer
nodes.
B, also includes following three cases.
i) Some peer nodes cannot receive messages from the
sensor network, therefore failing to update the ledger.
ii) All nodes update messages to the ledger successfully,
but the number of messages on some nodes is less than
what have been sent from the sensor network.
iii) All nodes successfully update a correct number of
messages in their ledger, but in a different order.

We now discuss how our protocol prevents the aforemen-
tioned cases in a synchronous network between sensors and full
nodes. For consensus, we can still handle a partially synchronous
network among the full nodes. To tolerate Byzantine fault, the
total number of peer nodes in the blockchain network is expected
to be at least 3f + 1, where f is the maximum number of faulty
nodes. For Case i) in By, having f + 1 seed nodes instead of
one single gateway node ensures that at least one honest node be
selected. With a more robust gossip-based diffusion mechanism,
the honest node relays a correct number of messages to all peer
nodes in the blockchain network. For Case ii) in B,, since at
most f nodes can infinitely delay the messages, having f + 1
seed nodes ensures that at least one honest node be selected
and then gossip messages to all other peer nodes. For Case iii)
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in By, even though malicious nodes may modify messages, the
signature verification ensures that the modified data be rejected
and never updated to the ledger. For Cases i) and ii) in B;, we
propose an augmented consensus protocol, where an FV phase,
which is added to the regular BFT consensus protocol, checks
data loss before updating the ledger by comparing the number
of data messages after consensus with the number of data items
received in the gossip-based diffusion process. If equal, they are
updated to the ledger; otherwise, a view change is triggered
to reach consensus again. After at most f rounds, data are
correctly updated to the ledger since an honest node is selected
to be the leader. Case iii) in B, is addressed by the Byzantine
consensus with proved security. In sum, our proposed protocol
satisfies the security requirements on entry point censorship
resistance.

2) Security Against Exit Point Censorship: We now analyze
the security against exit point censorship, i.e., data flow from
the blockchain network to the sensor network. Unlike permis-
sionless blockchain, such as Ethereum, where all participants
maintain one public chain, in permissioned blockchain, such
as hyperledger fabric, each peer node maintains a copy of the
ledger, which can be modified locally. The blockchain-based
IoT management system not only stores data in the ledger, but
also is expected to make proper decisions and communicate
with corresponding actuators. Generally, only one “leader”
node is responsible for sending instructions to actuators for
efficiency since actuators are typically equipped with limited
computing power. If the “leader” node is compromised, it may
send modified instructions to actuators; and infinitely delay the
instructions.

Our protocol solves the first problem by verifying the ag-
gregated signatures from most (specifically, at least 2f + 1) of
the peer nodes: if failed, no action is taken by the actuator;
otherwise, a correct instruction is executed. In the second
problem, the actuator does not receive any instruction from the
malicious leader. In both of these cases, if the actuator takes no
action, no acknowledgment is sent back to the peer nodes, and
then an occasional reconfirmation is triggered, where all peer
nodes jointly inform the actuator.

An alternative solution is to initiate a view change to select a
new leader. Since there are at most f malicious nodes, eventually
an honest node is selected to send instructions to the actuator.
However, this process may be repeated for f times in the worst
case and is not suitable for time-critical IoT scenarios. In our
protocol, the leader is honest in most cases, so reconfirmation
is rare. Even if it happens, all nodes just need to send once
and the actuator is guaranteed to receive the instruction even
though it may need to communicate with more peer nodes
instead of only the “leader” as in the alternative solution. Hence,
our protocol satisfies the security requirement on exif point
censorship resistance.

D. Reducing Verification Complexity via
Public-Key Aggregation

In blockchain-based IoT systems, some processes have simi-
lar properties, e.g., sensors send collected data to the blockchain

network, and peer nodes send instruction back to actuators.
More specifically, in the former, sensory,...,sensory pos-
sessing their public keys pk,,,pKs,,...,pks, send messages
my, My, ..., My and corresponding signatures o, 05, ..., 0,
to nodes in the blockchain network and get verified. Similarly,
in the latter, all nonleader replicas ry,72,...,7, Who owns
public keys pk;,,pkr,,...,pk,, send instructions/commands
¢y, e, ..., ¢, together with signatures o, ,0r,,...,0., to the
leader for forwarding. In these cases, it is important to exploit a
more efficient and secure way to verify signatures. By leveraging
the work in [31], we propose to leverage the modified BLS
multisignature aggregation scheme (referred to as public key
aggregation) to reduce the communication and verification
complexity, based on the following considerations.

1) Multiple sensors of the same type are typically de-
ployed in a region for improved fault tolerance and
sensing accuracy, and some of them may very likely
collect identical measurements. Using a signature aggre-
gation mechanism is efficient but may suffer from rouge
public-key attack [31].

2) Prepending the sensor’s public key to the collected data
before signing defends against the aforementioned attack,
but would not be able to make full use of the advantages
brought by aggregating identical messages.

The adoption of public-key aggregation defends against rouge
public-key attack while achieving efficiency. We take the second
scenario as an example to explain the application of this scheme,
which contains the following components.

1) A bilinear pairing e : Gy x G| — Gr. The pairing is
efficiently computable and nondegenerated. All three
groups have prime order g. Let gp and g; be the generator
of Gy and G|, respectively.

2) Two hash functions H,: M — Gy; H, : G} — R"
where R:=1,2,...,2'8 and 1 < n < N. These two
hash functions are treated as random oracle in the security
analysis.

With these components, the scheme works as follows.

1) KenGen(): Choose a random o £ Z, and set
h «— g € Gy, output pk := (h) and sk := (a).

2) Sign(sk,c;): Sign command ¢ and output
o; — Hy(c;)® € Gy, where i ={1,2,...,n} denotes
different replicas in the blockchain network.

3) Aggregate((pky,,01), ..., (Pkr, ,o0)).

a) compute: (t1,...,tn)— Hi(pky,,...,pk,, )ER".
b) output : o — U:' .- oln € Gy.
4) Verify(pk,,,...,pkr, ,ci,0:):  To  verify  the
multisignature o; on ¢;, we do
1) compute: (ti,...,t,)—Hi(pky,,...,pk, )ER™.
2) compute : apk «— pki' - - - pklp € Gi.
3) if e(g1,0i) = e(apk, Ho(c;)), output “accept;”

otherwise, output “reject.”

The aforementioned scheme is for verifying multiple signa-
tures on one message. If messages keep flowing, it is more
efficient to verify as a batch. Specifically, consider a triple
(mi,0:,apk;) for i =1,2,...,b, where b is the number of
messages in one batch. If m; are all distinct, then

1) compute : 6 — oy - - - 03 € Gy.
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TABLE I
TIME COST (uS) FOR GOSSIPING 10 DATA ITEMS AMONG 20 NODES WHEN
THE NUMBER OF RANDOMLY SELECTED NODES ISk =2 (f = 1)

TABLE Il
TIME COST (2S) FOR GOSSIPING 10 DATA ITEMS AMONG 20 NODES WHEN
THE NUMBER OF RANDOMLY SELECTED NODES ISk =3 (f = 2)

node; nodex nodes nodey neodes nodeg noder node; nodes nodes nodey nodes nodeg noder
data item | nodeg mnodey mnodein nodeyy nodeis nodeis modeis data item | nodeg nodes mnodeip nodeirr nodeiz nodeis nodepy

nodeys nodeg nodeir noderg nodejg nodeap nodeys nodeig nodeir nodeig noderg nodegg

60.50 117.07 5171 14450 9826 134.14 80.63 7216 8120 5068 101.66 5862 N/A  76.00
data, 13693 N/A 40986 5139 10174 134476 63.62 data, 73.03 4534 4127 NJA 7108 4692 5228

80.00 13398 9662 6979 6838 12841 46.54 4720 6830 4510 87.00  47.00

8441 8053 10159 7435 10651 6705 20039 7963 69.18 8513 9027 6996 N/A  148.03
datas 139.02 N/A 4371 18552 69.14 21343 3930 datas 5224 6642 4530 N/A 3501 6202 5951

147.82 5928 14248 8353 7302 11998 5460 3134 10154 3941 4114 3003

8243 7303 6187 12623 0382 0011 8226 15347 5583  71.87 4858 21483 N/A  60.77
datas 7590 N/A 4869 6080 10611 15898 10195 datag 67.15 9818 27419 N/A 9382 7851 4799

150.59 7974 8501 9348 5963 5175 17758  79.86  160.13 11008 11905 80.61

7271 69.62  61.69 5074 0080 5472 8653 10029 9214 11221 8330 4952 NJA 10298
datay 9334 N/JA 7644 27856 7621 7567  51.99 datay 93.59 7976 4942 NJA 16690 7464  188.76

6469 9354 5640 6361 9647 7070 6152 5232 5136  59.81 13562 93.50

9355  51.58 6291 13872 8208 5758 7137 16731 8871  102.54 9404 6250 N/A 133169
datas 5545 N/A 5257 69.84 20422 10244 108.16 datas 7594 17455 6322 N/A 13631 10163 113.70

12575 9641 8915 5300 9921 7290 6740 6396 127538 69.11 4955  57.92

6889 13812 13525 10757 119.76 8759  125.79 9342 7339 B0O1 8655 128128 N/A  229.66
datag 8482 NJA 7165 16325 14101 9353  90.69 datag 15327 6094 18291 N/A 135423 20338 11679

7295 12646 13750 7212 5461 19235 5151 10160 7996 26272 11156 8346

8170 22480 14363 10291 21864 4181 6695 21323 130.07 58.76 3035 14479 N/A 9839
datar 9763 N/A 9169 50361 12175 13632 30145 datar 167.77 107.18 7049 N/A 13313 6566  147.38

91.89 12923 9473 18851 70.89  149.41 13581 302.83 15699 7632 7353 17572

14803 6249 6533 9226 6411 16,71  97.23 10383 123754 12500 7134 8156 NJ/A 15784
datag 11607 N/A 5975 12975 117.55 99.19  46.46 datag 188.89  1366.60 257.06 N/A 5404 18603 85.08

7655 7704 5952 9074 12295 98.50 183.37 5098 12624 10072 25526 74.88

121.29 13356 57.62 8809 7090 199.61 151.89 8383 11179 1260.80 211.28 7246 N/A  106.79
datag 13141 N/A 10772 32755 11538 8892  68.05 datag 11610 130669 8861 N/A 7756 15164 306.70

10510 6921 14550 15808 70.53  100.76 1409.63 107.64 1279.95 17580 130.17 12847

10290 141.17 54.24 9974 10474 4635 7401 8749 17090 121.01 229.18 10843 N/A 9508
dataig | 6127 N/A 12800 34811 7843 14739 9211 data;p | 26433 10863 16398 N/A 10071 1252.64 18587

13491 7156 13173 7440 12671 167.69 23098 21901 14566 117.19 12327 190.19
2) Accept all b tuples as valid iff e(g1,5)= is equipped with 3.75 GB memory and 1 vCPU and has

e(apky, Ho(m)) - - - e(apks, Ho(my)). JRE 1.8.0_181 installed on Ubuntu 16.04.

If there are identical mess;ges in m;, then 2) The bandwidth between nodes in the same zone is
1) obtain : py,...,pp < 1,2,...,2%. 1.96 Gb/s, whereas across different zones, it is at least
2) compute : G «— o' --- o}’ € G. 700 Mb/s. Since the message size is relatively small,
3) Accept all b tuples as valid iff e(g,0)= these bandwidths make the data transfer time negligible

e(apki', Ho(m1)) - - - e(apky” , Ho(my)).
Thus, verifying b messages requires only b + 1 instead of 2b
pairings if verifying one at a time. Therefore, such a batch-based
mechanism can further improve verification efficiency.

VI. IMPLEMENTATION AND EVALUATION

To shed some light on the behavior of how the gossip-based
diffusion mechanism resist the censorship of the single entry
point (for the single exit problem, it also relies on gossip-based
message dissemination to send instructions to actuators/devices,
we do not repeat the redundant evaluation of such process), we
implement the gossip-based message dissemination process®
with following settings.

1) We create a gossip network testbed using 21 Google
Cloud virtual machine (VM) instances,” each of which

8The implementation source code of the gossip-based message dissemina-
tion can be found online. [Online]. Available: https:/#/github.com/Blockchain-
World/gossip-based-diffusion.git

In our gossip testbed, one VM acts as a client, whereas the other 20 VMs act
as peer nodes. These VMs are located in different zones: node; to nodeg reside
in the same zone (us-eastI-b), nodeg to nodes reside in u-east4-c, and node,4
to nodeyp reside in us — centrall — e.

compared with the protocol execution time.

3) We gossip 10 data items from one client to the other 20
peer nodes. Each data item is a short string of about 6 B,
and each peer node has a local cache large enough to
buffer 10 data items.

Tables II-VII tabulate the time cost for gossiping all ten data
items to 20 peer nodes with different numbers of randomly
selected peer nodes in each round of the gossip protocol.
Fig. 7(a)—(f) plots the number of received data items on each peer
node during a certain period of time, where a red line represents
the maximum number of tolerated malicious nodes, whereas a
blue line represents the behavior of honest nodes. These results
illustrate censorship resistance where the gossip-based diffusion
mechanism guarantees that all data items sent from the client be
delivered to all honest peer nodes in the blockchain network.

We calculate the average time cost and standard deviation for
gossiping one data item from the “sensor network” (client node)
to all other peer nodes in the blockchain network, as shown in
Fig. 8 and Table VIII. We have the following observations and
explanations.

1) The variation in the average time cost with differ-
ent selected neighbor nodes in each gossip round is
caused by the nonuniformity when randomly selecting
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Fig. 7. Diffusion time of gossiping ten data items among 20 peer nodes when the number of selected nodes is (a) k = 2 (i.e., at most one faulty
node), (b) k = 3 (i.e., at most two faulty nodes), (c) k = 4 (i.e., at most three faulty nodes), (d) k = 5 (i.e., at most four faulty nodes), (e) k = 6 (i.e,,
at most five faulty nodes), and (f) k = 7 (i.e., at most six faulty nodes).

TABLE IV TABLE V
TIME COST (uS) FOR GOSSIPING TEN DATA ITEMS AMONG 20 NODES WHEN ~ TIME COST (11S) FOR GOSSIPING TEN DATA ITEMS AMONG 20 NODES WHEN

THE NUMBER OF RANDOMLY SELECTED NODES IS k=4 (f = 3) THE NUMBER OF RANDOMLY SELECTED NODES ISk =5 (f = 4)

node,; nodez nodes nodey nodes nodeg nodes node; mnodes neodes nodey nodes nodeg nodey
data item | nodeg nodes nodeig node;r nodeiz nodeis nodeis data item | nodeg nodes nodeig nodeiy nodeiz nodeis nodeiy

node s nodejg nodeir nodeig nodeis nodegg node s mnodeyg nodeyy nodeig nodes nodezg

49.61 5429 4959 4205 46,90 N/A 103,73 55.87 36.39 50.92 N/A 4722 4131 40,93
data, 46.95 73.14 42.19 N/A 3562 4454 7465 data, N/A 5276 38.34 36.71 N/A 6565 73.09

N/A 2900 4811 49.16 58.21 49.56 N/A 58.79 4093 4226 9279 4445

70.92 39.75 63.78 34.51 54.41 NjA 221.73 45.27 51.13 11717 N/A 22454 6623 51.51
datag 71.91 55.97 53.46 N/A 4060 7532 56.94 datay N/A 7197 4651 31.61 N/A 5910 4658

N/A 33.20 58.19 75.02 41.98 60.33 N/A 76.26 71.72 55.37 73.22 58.32

125.02 86,54 91.96 11319 61.11 N/A 171.00 80,84 15970 71.77 N/A 8553 4787 6050
datag 17321 4586 14943 N/A 51.58 80.06 195.30 datagz N/A 12923 5510 T77.80 N/A 13885 11745

N/A 108.79 83.75 8372 6693 77.13 N/A 6415 11620 78.34 84.52 4897

360.22  150.84 28861 123596 135585 N/A 8325 10593 98.34 131575 N/JA 20046 13091 242.06
datay 258.82 12993 81.25 N/A 8756  T1.44 88.11 datay N/A 9835 205.84 10234 N/A 126.82 178.52

N/A 1209.44 156.07 68.27 49.62 108.74 N/A 99.85 94.33 17546 10843  170.60

561.57 228.60 13252 124768 303.08 N/A 1436.17 601.42  1438.03 136596 N/A 9077 49521 298.85
datag 10432 10626 125260 N/A 200,62  60.51 138.66 datag N/A 21595 69.87 58.29 N/A 94.83 309.71

NjA 87.84 74.76 28495 12578 114.32 N/A 34868 11216 16490 16564 89.70

34475 166.68 22424 1239.37 134734 NJA 109.89 298.15  1347.24 133927 N/A 49282 26278 264.83
datag 459.40 15935 10245 N/A 4814 17936  250.17 datag N/A 23960 11943 14851 N/A 30359 266.85

N/A 1231.11 104.85 61.08 20651 53.74 N/A 21826 80.72  259.66 1312.92 135029

660.45 54041 251.05 122438 25090 N/A 186.79 38564  1266.17 149872 N/A 31904 19740 563.89
datay 76.27 1269.52 124657 N/A 17192 129889 22385 datay N/A 465.00 11075 42842 N/JA 131.63 24392

N/A 132.07 1231.56 184.51 23751 87.30 N/A 18548 133429 138.77 1300.00 69.35

6475 45297 31785 14946 19993 N/A 1596.44 1083.20 139576 143080 N/A 97497 20728 203426
datag 110,13 11102 11219 N/A 126.10  82.48 81.83 datag N/A 1752.41 24607 22154 N/A 42338 41310

N/A 9590 127223 14735 1364.31 182.67 N/A 417.54 124626 12929 123345 1313.09

32857 18445 1634.37 13530 27491 N/A 15808 1176.60 1386.14 1644.60 N/A  8/8.08 70689 1951.65
datag 384.93 14861 97.04 N/A 11540  1253.69 149.83 datag N/A 39267 33996 42537 N/A 32468 19375

N/A 69.68 173.44 35246 136.82 280.59 N/A 470,53  1319.52 26523 147177 1244.40

TI0.07 29696 1476.63 82.42 153296 N/A 1636.20 1123.53 143225 120690 N/A 1087.05 74734 19038
dataig 47278 12394 139996 N/A 138301 1247.79 13583 dataig N/A 376.03 61453 17525 N/A 21843 15491

N/A 1223.67 121.18 43011 168.66 139.13 N/A 35640 135553 484.60 129850 1320.61

neighbor nodes. In our implementation, we use Java

Math.random() with pseudorandomness to generate k but we do not focus on gossip optimization in this
random numbers as the selected indices of neighbor article.

nodes. In some rounds, it is possible that the same target 2) The standard deviation is relatively large. The measured
nodes are selected by different peer nodes and some nodes time cost includes message transmission, neighbor se-
are not covered until after a few rounds and eventually lection, and consecutive writing (I/O) operations for
receive messages. This process could be optimized us- recording timestamp. The network condition and the
ing peer sampling service as mentioned in Section V, randomness in peer selection affect the time cost of
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TABLE VI
TIME COST (uS) FOR GOSSIPING TEN DATA ITEMS AMONG 20 NODES VWHEN
THE NUMBER OF RANDOMLY SELECTED NODES IS k& = 6 (f = 5)

node; nodes nodegy nodey nodes nodeg node
data item | nodeg mnodeg mnodeg nodey; nodeiz nodery nodepyg

noders noders nodeyr nodeis noderg nodeag

72.90 N/A 4840 11191  59.63 N/A 7831
data,y N/A 8B40 7564 4943 37.31 53.01 N/A

38.95 52.37 N/A 6163 48.80 4142

39.99 N/A 12283 5882 17498 N/A 54.71
datas N/A 6292 5210 3920 10501 6889 N/A

63.66  64.75 N/A 9614 87.35 50.09

14665 N/A 1238.31 204.31 13186 N/A 171.87
datag N/A 135.06 64.73 95.74 73.38 133.15 N/A

4606  84.14 N/A 141.97 1249.26 80.16

27348 N/A 1328.33 32570 31729 N/jA 619.28
datay N/A 08.62 44427 15034 38290 11364 N/A

92.50 1200.88 N/A 127.94 12634 128.25

26295 NJA 88.81 87524 35108 N/jA 543,84
datag N/A 44603 20289 23057 17673 1276.05 N/A

12193 16545 N/A 84.82 1277.71 1403.73

12192 N/JA 1455.44 633.24 41215 N/JA 685.17
datag N/A 51321 28991 221.19 168.03 150537 N/A

144569 1269.85 N/A 1491.26 1287.82 70.76

466.80 N/A 132230 86275 20544 N/A 778.32
datary N/A 467.96 33199 13922 96.24 1477.77 N/A

120649 1337.19 N/A 1290.92 1477.27 1236.83

73775 N/JA 1445.36 67837 24830 N/A 421.39
datag N/A 20855 25665 10552 8690 16505 N/A

15474 123712 N/A 1351.64 12978 121945

32422 N/jA 143301 39686 46532 N/A 29346
datayg N/A 27217  460.72 35883 39182 140755 N/A

1497.40 1577.14 N/A 1371.77 170.80 178.70

958.87 N/A 140470 748.53 62936 N/JA 699.68
dataig N/A 50440 24448 50599 47185 162726 N/A

121422 124675 N/A 1405.41 1244.37 148271

TABLE VIl

TIME COST (uS) FOR GOSSIPING TEN DATA ITEMS AMONG 20 NODES VWHEN
THE NUMBER OF RANDOMLY SELECTED NODES ISk =7 (f = 6)

node; nodep nodegz nodeg nodes nodeg noder
data item | nodeg mnodeg nodeig nodeyy nodeyz node;y nodey

node s node1g nodeiy nodeig nodeig nodesg

N/A 5269 33.85 37.09 N/A 4230 50.19
datay N/A 45.66 59.25 N/A 37.69 52.24 TO.85

4300  51.20 29.90 N/A N/A 3630

NfA 166.74 12615 52.04 NjA 55.86 90.42
datag N/A 9068 11843 N/A 4645 102.84 49.16

105.94 10765 12037 N/A N/A 109.78

N/A 102.84  1422.05 11560 N/A 153.74  82.62
datag N/A 1326.52 88.76 N/A 12837 13639 B1.18

74.88 11459 122692 N/A N/A  87.00

N/A 25460 7263 124416 N/A 34483 152774
datay N/A 1261.40 7597 N/A 11440  110.87 57.96

1221.59 121346 12518 N/A N/A 1303.74

N/A  367.17 127781 129356 N/A  377.69 1261.73
datag N/A 111.56 123087 N/A 141593 379.12 120191

120399 2454.67 241035 N/A N/A 1174.64

NJA 264.14 128527 131937 N/A 17847 1396.43
datag N/A 137235 118978 N/A 125264 19250 1408.86

120044 17172 14890 N/A N/A 1427.69

NJA 46612 149656 155938 N/A 45895 138126
datay N/A 1249.34 136133 N/A 151.86  189.12 1196.91

1209.80 232499 122054 N/A N/A 1332.62

N/jA 39574 126471 147102 N/A  606.01 1336.43
datag N/A 1292.83 118283 N/A 144196 34894 127997

121636 231428 2359.55 N/A N/A 1254.99

NfA 411.55  1199.05 1526.10 N/A 44934 133048
datag N/A 1432.40 124037 N/A 12043 40028 1180.35

127742 1270.88 14094 N/A N/A 1206.55

N/A 45934 133047 139647 N/A 14430 1258.29
data;g | N/A 122821 118625 N/A 120461 256.10 14664

1213.28 2344.26 2375.10 N/A Nj/A 1309.11

message delivery, i.e., some nodes may receive messages
sooner than others.

3) There exists a slowly increasing trend in the average time
cost, as more selected neighbor nodes result in more
traffic in the network. In some rounds, the randomly
selected neighbor nodes may have already been selected
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k (k=f+1): the number of selected neighbor nodes
Fig. 8. Average time cost and standard deviation for gossiping one

data item among 20 peer nodes with different numbers of selected
neighbor nodes in each round of the gossip protocol.

TABLE VIII
AVERAGE TIME COST (1S) FOR GOSSIPING ONE DATA ITEMS AMONG 20
NODES WITH DIFFERENT NUMBERS OF RANDOMLY SELECTED
NEIGHBOR NODES IN EACH ROUND

k (k=f+1) | The Average Time Cost (us) | Standard Deviation
k=2 (f=1) 11.43 10.86
k=3 (f=2) 18.21 29.33
k=4 (=3) 33.32 44.79
k=5 (f=4) 44.16 51.24
k=6 (f=3) 53.13 51.54
k=7 (f=6) 76.73 67.58

in previous rounds, also contributing to the increase in
the average time cost.

VII. CoNCLUSION

In this article, we proposed a protocol to tackle the censorship
problem, which is important but remains largely unexplored in
blockchain (hyperledger fabric) based IoT systems. For data
flows from a sensor network to a blockchain network, we
overcame potential censorship on a gateway node by employing
gossip-based diffusion protocol to achieve guaranteed message
delivery. Moreover, we improved the consensus protocol by
checking data loss before writing to the ledger and replicating
process outcome to facilitate opportunistic outcome delivery.
Finally, we leveraged the cryptographic tool of public key ag-
gregation to reduce communication and verification complexity,
and analyzed the security of our protocol. We implemented
the proposed gossip-based diffusion algorithm and illustrated
message delivery with censorship resistance in the presence of
faulty nodes. The proposed protocol has potential to improve
the security of blockchain-based IoT management systems.
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