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Abstract. The mechanisms by which interfacial instabilities instigate the growth of solidification patterns is
a topic of longstanding interest. In columnar solidification of metallic melts, where the solid-liquid interfacial
energy is anisotropic, evolving dendritic patterns compete depending on their relative misorientation. By
contrast, organic “plastic crystals”, such as alloys based on succinonitrile, where the anisotropy in their
solid-liquid interfacial energy is extremely weak, solidify forming seaweed patterns that typically exhibit
little, if any, growth competition. We explore in this study mechanisms by which columnar solidification
microstructures of binary alloys with low crystalline anisotropy compete. We adopt toward this end a
validated Navier-Stokes multiphase-field approach to characterize the influence of grain misorientation,
seed morphology, and melt advection on the growth competition. Simulated seaweed patterns indicate
profound influences of all three factors, although characteristic solidification morphologies are observed to

evolve depending on the melt flow intensity.

1 Introduction

Theoretical criteria for the linear instability of a planar in-
terface were first derived by Mullins and Sekerka [1], who
proposed that the stability of monocrystalline solid/liquid
interfaces during solidification is governed by the interfa-
cial wavelength of the perturbation and the extent of con-
stitutional supercooling. However, when a polycrystal is in
contact with its melt, the solidification front is replete with
grain boundary grooves (GBGs) that can initiate instabil-
ities due to redistribution of solute near the solid-liquid
interface. Several experimental studies [2-7] on directional
solidification of weakly anisotropic organic crystals, such
as succinonitrile (SCN) and its derivative alloys reported
morphological instability at GBGs, characterized by am-
plification of adjacent humps projecting into the melt. If
the melt is supercooled, humps adjacent to GBGs amplify
and often compete to outgrow each other. In the presence
of anisotropy of the solid-liquid interfacial energy, ampli-
fying humps evolve into dendrites and the ensuing growth
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competition is governed by the relative misorientation of
grains. Therefore, it can be expected that when the sur-
face energy is isotropic, or weakly anisotropic, the solidi-
fying patterns which manifest as “seaweed” will not com-
pete with one another. Monocrystalline dendritic and sea-
weed patterns simulated using the phase-field technique
are shown in fig. 1. This study uses phase-field simulations
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Fig. 1. Evolution of columnar (a) dendrites and (b) seaweed
microstructures simulated using the phase-field model outlined
in sect. 3.
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to demonstrate, for the first time, that growth competition
can occur during columnar solidification of binary alloys
even when the corresponding surface energy is isotropic.
The following article provides an overview of the condi-
tions which favor growth competition during the solidifi-
cation of seaweed-like microstructures.

2 Background

The mechanism by which grain boundary groove insta-
bilities instigate pattern formation was first shown by
Schaefer and Glicksman [4]. Those investigators observed
that as the initial ridges adjacent to a GBG ampli-
fied, pairs of parallel secondary ridges appeared beside
them. The primary ridges then progressively broke their
two-dimensional symmetry into periodic rows of three-
dimensional hillocks and knobs, some of which eventually
evolved into dendrites. Similarly, in situ experiments by
Noél et al. [2] and Xing et al. [3] showed that the formation
of GBGs led to the nucleation of ridges and depressions
over the seed surface. This mechanism has recently been
verified in computational studies of surface rippling [8]. If
the surface energy is anisotropic, then the alignment of
evolving dendrites corresponds epitaxially to the orienta-
tion of their parent grains. Although the ensuing growth
competition is known to be governed by the relative mis-
orientation among the neighboring grains [9], melt con-
vection can inhibit the growth of seaweed patterns down-
stream, resulting in localized growth [5,7,6,10,11].

In weakly anisotropic crystals, a pattern’s extend-
ing tips —unlike the behavior observed in needle-like
dendrites— splits repeatedly, forming seaweed struc-
tures [12-17]. Evolution of such patterns in isotropic sys-
tems has been extensively studied in directional solidifica-
tion experiments [17,18] and by computation [19]. How-
ever, studies on growth competition involving columnar
solidification of seaweed microstructures have, heretofore,
not been reported. The following questions arise: If melt
convection can suppress growth of seaweed patterns down-
stream, can this interaction also induce growth compe-
tition? What are the characteristics of solidification mi-
crostructures that form when weakly anisotropic crystals
compete? Beyond melt convection, what other factors in-
duce growth competition in seaweed structures? In or-
der to address these questions, we employ a phase-field
method [20-26,9,8] that has been extensively applied to
the study of material and process parameters on the evo-
lution of solidification microstructures.

In sect. 3, we formulate the phase-field model, where
melt convection is introduced in a manner similar to Beck-
ermann’s model [27]. The phase-field and flow solver are
validated in sect. 4 with calculation of a drag coefficient,
Cy, for cross-flow at several Reynolds numbers, Re, around
an infinite cylinder. In sect. 5.1, we report simulations of
non-competing seaweed evolution in three dimensions. In
the following sections, we explore the influence of grain
morphology, misorientation, and flow intensity, that in-
duce anisotropic evolution and growth competition. Sec-
tion 6 concludes and summarizes our findings.
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3 Method

It is well known that the presence of convection in the
liquid phase can lead to the formation of diverse mi-
crostructures [21,28-30,20]. In the present work, we re-
formulate the grand-potential model [31] by incorporating
the convective term similar to a previous study of Becker-
mann [27]. The evolution of the phases is determined by
the minimization of the modified functional df2/dt < 0,
given by

AT 8) = [ |00+ (cal0.T0)+ Lu@) ) ac
(1)

Here, T is the temperature, g = (1;, ..., i —1) is a vector
consisting of K — 1 chemical potentials of the system at
a given temperature and ¢ = (dq, ..., ¢n) describes the
phase index vector with ¢, being the local volume frac-
tion of the o phase. € is a length scale related to the thick-
ness of the diffuse interface, while ea(¢, V) and %w(qb)
are the gradient- and obstacle-type energy densities taking
into account the thermodynamics of the interface, respec-
tively [32]. The grand-potential density, ¥ (T, u, ¢), is the
Legendre transform of the free energy density of the sys-
tem f (T, c, ¢), expressed as the interpolation of individual
grand-potential densities ¥,

ZW Pa).

(T, u, o (2)

with

Wa(Tv H) = fa( w, T Z ,Ufz w, T (3)

For a multiphase-field representation, h(¢,,) is an interpo-
lation function of the form

h(go)
Z [é] h(¢ﬁ)
which ensures that the condition }_; h(¢g) = 1 is always
fulfilled [33].

h(¢a) = (4)

h(¢s) is expressed as

hba) = O2(3 — 204). (5)

The free energy of an isothermal binary alloy system
is described by the following polynomial:

= A“C4 + B%¢% + D% + E%p + F*. (6)

Here, ¢4 and cp are the mole concentrations of A and B
components, respectively. A%, B* D E® F represent
the fitted coefficients. Because of the local constraint c4 +
cg = 1, we rewrite the above equation in terms of c4 as

fa (CA) =
which is formulated as

fa (CA)

falca,cp)

(A*+B*)c4+(D*—E“—2B*)cat+E“+F*+ B,
(7)

=0%% + N%ca + P°, (8)
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Table 1. Parameters used in our phase-field simulations.

Description Parameter Value
Free energy coefficients o“ 1.00
N“ —0.40
P 0.04
o’ 2.00
NP -3.20
PP 1.28
Discretized grid space Axr = Az 1.00
Melt supersaturation s = (%) 0.50
‘B ~¢B
Diffusion coefficients DS =D} 1.00
Third-order term (eq. (11)) Yaps 10.00
Interface width € 4.00
Relaxation constant T 1.28
Fluid density p 1.00
Dynamic viscosity n 1.00
Kinematic viscosity v 1.00
Ratio ro = (Z—:Ib) To 0.5, 0.7
Safety factor (eq. (26)) ¢ 0.20

where, O¢ = A® + B* N¢ = D® — E* — 2B and
P* = E* 4+ B + F. From p = 0., f* = u(ca) and
ca(p) = (u—N%)/20%, the corresponding grand-potential
densities were calculated in a method described by Choud-
hury [25]. The coefficients O%, N* and P® are deter-
mined using the free energy densities, chemical potential
as well as the equilibrium mole fractions for a model sys-
tem. Moreover, the present work can be extended to ana-
lyze solidification of any binary alloy [34,23,19,35]. Here,
the mole fractions of component B in the solid a and
the liquid 8 are set as ¢3! = 0.2 and c%cq = 0.8, re-
spectively. We emphasize that the instabilities originat-
ing at grain boundaries, which we simulate using this
model, are not affected by the selected mole fractions
and the parabolic free energies. Rather, the evolution of
a non-planar structure depends on the melt supersatura-
tion s = (5% — %) /(5°0 — ¢,°%), where ¢, is the initial
concentration in liquid phase. Furthermore, the free en-
ergy coefficients, equilibrium concentrations and the melt
supersaturation in table 1 are alloy-specific. All the nu-
merical parameters used in our simulations are given in
table 1. The simulation time is normalized by /2 /D', where
lo = 0/(RT /vy is the capillary length, R is the gas con-
stant, o represents interfacial energy and v, is the molar
volume.

The gradient- and the obstacle-type energy densities
in eq. (1) are expressed as

N,N

ca(¢, V) =c Y ouplac(dap)’lldasl’,  (9)

a,f=1
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where gog models the surface energy anisotropy of the
evolving phase boundary, 0,4 is the interfacial free energy
per unit area of the /3 phase boundary. The physics of
each phase is distinguished via the generalized antisym-
metric gradient vector gog of the form gog = ¢ Vo —
#3V . The isotropic surface energy is postulated in our
model via a.(gag) =1 for a typical seaweed growth. The
multiobstacle-type potential is of the form

l’w(d)) = %g Z Uaﬁqj)oc(bﬁ + Z ’7aﬁ§¢a¢ﬁ¢5- (10)

€
a<f a<f<d

In order to avoid third-phase contributions in a two-
phase interface, additional third-order terms ~ ¢,¢o 05
are added to the multiobstacle potential [32]. The presence
of spurious and artificial phases increases the potential in
the two-phase region and thereby becomes unfavorable.
The analytics and numerical handling of this term has
been discussed previously by Hétzer [36]. The parameter
Yags in the above equation is chosen such that it satisfies
the condition

9?-‘-0-2” ’ (7’7J) € {(Oé,,@)7 (575)a (5,&)} .

(11)

The evolution equation for N phase-field variables is writ-
ten as

YaBs =

0P da(¢p, Vo) 0da(p, Vo)
T ot _€<V' Noa  Oda )
Low(e) 0V (T,p, )
R (12)

where I is a Lagrange multiplier so that the local con-
straint Zgzl ¢o = 1 is fulfilled. The relaxation constant
7 is chosen according to the expression in [31], such that
the kinetics at the interface vanishes. The evolution equa-
tion for the concentration fields can be written as

de; =
ot =V < ]2:; Mw(¢)Vu]> .

The term M;;(¢) represents mobilities of the interface,
which are interpolated by the individual phases as

(13)

N—1
Mij(¢) = > Miih(¢a), (14)
a=1
where phase mobilities M} are expressed as
Icit(m, T)
MY = Dy —"""2~, 15
5= D5, (15)

In order to incorporate melt convection in our phase-
field model, the convective term is coupled with the evolu-
tion equation for the chemical potentials. Henceforth, let
us first begin with the following constraint [31]:

(16)
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Now, rewriting the above equation through the time
derivative of the concentration fields gives us

8CZ 3¢

W (@a) 5 (A7)

Therefore, the evolution equation for K — 1 independent
chemical potentials can be obtained by substituting the
above equation in eq. (13)

>

a=1

99

w) o
P50+ 5 =

= (l"’)hl((ba)

3#]

V . ( 2 Mw(d))vp,j — (’U,CZ) — Jat — q) . (18)
j=1
Rearranging the terms we get
K- N -1
D P 1,,
K- K
{ Z VILL] C; — Jat - q)
(W (60) ¢}. (19)

The mass flux on the right-hand side has contributions
from diffusion as a result of gradients in the chemical po-
tential, the interface mobility M;;(¢) is defined in eq. (15)
and w is the liquid velocity. J,; represents the anti-
trapping current that produces a mass flux along the nor-
mal direction, and thereby counterbalances the trapping
current due to the presence of non-equilibrium artifacts
such as the solute trapping [31], expressed as

g = T g(6o)1 — h(6n)]
a 4 (ba(l _ (ba)
< T) (T eI (20)

W

The noise term “g” in eq. (19) is introduced to account
for thermal fluctuations in our simulations. Through the
fluctuation-dissipation theorem [37,38], g follows a Gaus-
sian distribution with a variance (g (x,t)g,(x’,t)) =
2DgFu5mn6(m — x')§(t — t'). Here § is the Dirac func-
tion, d,,, is the Kronecker delta, g, , is the random vari-
able along the normal direction, while g,,, with m = z, z,
are the generated random variables in space and time,
respectively, through the conventional Polar Marsaglia
method [39]. The imposed noise amplitude F,, = 0.06 is
calculated according to Karma and Rappel [38].

In the present two-phase study, we introduce the non-
conserved quantity ¢g for the liquid phase and ¢, for
solid, o = 1 — ¢g, on the basis of the local constraint

Eiv:1 ¢o = 1. The derivation of the Navier-Stokes equa-
tion as a function of the phase-field vector ¢ is similar
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to Beckermann [27]. Such a formulation is usually done
for simulations under the influence of melt convection [40,
41]. The velocity of the rigid and stationary solid phase
®o 1s assumed to be zero (¢p,uq = 0). Hence, the velocity
vector u is denoted as ¢gug, since u = ¢ouq +Pgug and
date = 0. Thereby, the convective term in eq. (19) reads
(21)

V- (ppugei) = iV - (ppug) + dpug - Vi,

where
V- (¢pug) =0, (22)
is the incompressibility condition. Therefore, eq. (19) for
a binary variant can be rewritten as
K-1[ N
o oct (p)
I h )
i,7=1 La=1 ij
X {V (MY ;) — ¢gug - Ve
¢
V) - e b @)

Furthermore, the Navier-Stokes equation is given as

p(0:(dpug) + ppug - Vug) =

~Vp+ V- [1(Végup + Vogug)] — MY, (24)
where p, ¢gug, p, n denote the density, velocity vector,
pressure and the dynamic viscosity of the liquid, respec-
tively. The last term, Mld, on the right-hand side encap-
sulates the dissipative viscous stress [27], expressed as
d u

M = yhg ™[V ey, (25)
where, h is the dimensionless parameter which provides a
distributed momentum sink in the diffuse interface region,
thus forcing the liquid velocity to zero as ¢ — 1. The dis-
continuity of the flow velocity across the solid-liquid inter-
face is addressed via performing an asymptotic analysis,
i.e., matching the inner and outer solution of the velocity
profile across the diffuse interface. A no-slip condition is
applied at the solid-liquid interface ¢ = 0.5 and thereby,
the velocity vector w varies linearly across the diffuse in-
terface. Independent of the imposed pressure gradient, the
dissipative term plays a fundamental role in smoothing the
velocity profile regardless of the diffuse interface thickness
€. In the present model, h has the value 7.989 for the
obstacle-type potential eq. (10) [42].

To summarize, eqs. (22), (23), and (24) incorporate
the liquid phase convection in our grand-potential formu-
lation [31]. The above equations are solved using a finite
discretization on a staggered mesh. The time derivative
follows an explicit Euler scheme. In order to perform a
numerically stable algorithm while avoiding oscillations,
the time step is restricted via the following condition [43]:

At < (min Re( v + v\ A —
2 AQ?Q AZ2 ’ |7f’/7nowv|7 |w7na1’| ’

(26)
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where, Re = pul Here, L represents the dimensionless
characteristic length, and u is the absolute value of the
velocity vector and v is the kinematic viscosity of the fluid.
( is a safety factor, Ax, Az are the discretized spatial steps
in  and z dimensions, respectively and ;g and Wpaqe
are the maximal values of the velocities in the z and z
directions, respectively. The current numerical algorithm
is implemented through a C program which is parallelized
via message passing interface (MPI).

4 Validation
4.1 Dihedral angle

To validate Young’s law using the phase-field model de-
scribed above, we chose an initial system condition com-
prised, respectively, of two grains, each of width and thick-
ness, 2000Az and 100Az. No-flux boundary conditions are
assigned on the left- and right-hand edges of the numerical
domain. The GBG’s dihedral angle, wg, which corresponds
to local equilibrium at the point where interfacial tensions
balance, is given by

_ Ogb
wg = 2cos ! g ,
20'52

where the grain boundary energy, o4, and the solid-liquid
interfacial energy, os¢, can be analytically derived [44,45].
For simplicity, we assume that all energies are isotropic,
and, specifically, that the solid-liquid interfacial energies
along both grains remains constant and equal. In accor-
dance with eq. (27), figs. 2(a), (b), (c¢) show progressively
that the simulated equilibrium dihedral angle decreases
with increasing grain boundary energy.

(27)

4.2 Grooving kinetics: Mullins theory

Mullins showed [46] that the groove depth, dg, relates to

time, ¢, as
dy _ (t\"
dy  \to)

where, dyp and ty are parameters used for non-
dimensionalization of length and time scales while the
power-law exponent n equals % for volume-diffusion—
controlled grooving. In order to validate our phase-field
model, we chose the same initial conditions as specified
in sect. 4.1. A representative snapshot corresponding to a
dihedral angle of wq = 120°, where o4 = 04, is shown
in the upper-left inset in fig. 2(d). The temporal variation
of groove depth, dg4, is found to obey a power-law scaling
exponent of n = 0.332, which is in good agreement with
the prediction of Mullins theory.

(28)

4.3 Drag coefficient

We validate our solution of the Navier-Stokes equa-
tion (24) through the calculation of the drag coefficient
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Fig. 2. Simulations of isotropic grain boundary grooves:
(a) Os1 = O.50'gb, (b) Os1 = 0.60gb, and (C) Os1 = 0.70'95.
The illustrated snapshots of the groove region correspond to a
numerical domain size of 2000 Ax x 200 Az, with no-flux bound-
ary conditions on the left and right edges. (d) Comparison
of Mullins theory with numerically simulated grain bound-
ary grooving kinetics for volume-diffusion—controlled regime.
Data points represent the normalized groove depth whereas the
curved line is a power-law fit (growth exponent, n = 0.332).
Temporal grooving is shown in the inset.

for a circular cylinder for a range of Reynolds numbers
(Re), as shown in fig. 3. The drag coefficient (Cy) is a di-
mensionless quantity which quantifies the amount of drag
force experienced by a body submerged in a fluid. It is
expressed as

F

Co=+——,
¢ Lu2pA

(29)

where F' is the magnitude of the drag force experienced
by a body due to the combined influence of frictional ef-
fects and pressure gradients acting parallel to the flow di-
rection, and A represents the projected area of the body
in the direction of the flow. The schematic diagram in
the inset of fig. 3 shows a two-dimensional domain box
considered for the flow simulations. The square domain
contains 500 x 500 cells in x and z dimensions, where
Ax = Az = 1.0 is the size of each grid. The position of
a 20Az diameter cylinder is chosen such that the axis is
at the center of the z-z plane. For influx, a uniform fluid
velocity is introduced at x = 0 while outflow occurs at
x = 500 where the gradient of velocity in the z-direction
is zero. The slip boundary conditions are chosen for the
top and bottom boundaries, i.e., at z = 0 and z = 500,
respectively, so that the frictional losses are negated. The
plot shown in fig. 3 depicts the drag coefficient at various
Re. In accordance with eq. (29), the drag coefficient de-
creases with an increase in Re. The present validation is
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Fig. 3. The inset shows a simulation box with a domain size
of 500 x 500 cells selected for the calculation of the drag co-
efficient, Cy. At the center of the z-z plane a two-dimensional
cylinder with a diameter of 20Ax is chosen. For inflow, a uni-
form velocity is imposed at z = 0. In order to avoid frictional
loss at the boundaries, a slip boundary condition is applied at
z = 0 and z = 500. The drag coefficient plotted as a function of
the Reynolds number (Re) in two and three dimensions for a
circular cylinder agrees favorably with previous studies [47,48].

in favorable agreement with previous studies, where the
drag coefficient was calculated for a circular [47] and for
an infinite cylinder [48]. A detailed study on the appli-
cation of this model on the convection-mediated growth
competition in seaweed microstructures has recently been
reported by one of the authors [42].

5 Results
5.1 Isotropic patterns

The surface of a polycrystalline pure material in contact
with its melt is composed of grain boundary groove roots
and pits that can instigate morphological instabilities dur-
ing solidification. If the melt is supersaturated, such insta-
bilities are characterized by rippling of the surface adja-
cent to the grooves, followed by their temporal amplifica-
tion, as shown in previous experimental [4,2,5,3] and sim-
ulation [8] studies. As a step towards understanding how
GBGs impact the ensuing pattern formation, we studied
the evolution of seaweed-like structures to explore the in-
fluences of surface energy, grain misorientation, and melt
convection.

To test the accuracy of this model, we simulated the
two- and the three-dimensional evolution of seaweed pat-
terns, starting from a polycrystalline seed. To rule out
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modeling artifacts that might influence the simulated mor-
phological evolution, the solid-melt interfacial energy is
assumed to be isotropic. This assumption idealizes grain
boundaries observed in organic plastic polycrystals of
SCN-based alloys, the interfacial energies of which are ac-
tually weakly anisotropic. The two-dimensional evolution
of the solid-liquid interface simulated using the multicom-
ponent multiphase-field model outlined in sect. 3 is shown
in fig. 4(a). Here, the isolines that are plotted at intermit-
tent timesteps correspond to where the phase indicator
¢ = 0.5. Initial stages of evolution depict an advance-
ment of the solid-liquid interface followed by formation of
a GBG. As the surface evolves, morphological instability
sets in with increasing rapidity, which is indicated by the
formation of bumps on either side of the GBG that bulge
and extend into the melt. Both bumps amplify with time,
and invaginate, forming an initial seaweed-like pattern.
Given that the interfacial energy has been assumed to be
isotropic, the pattern formation is mirror symmetric, in-
dicating, as expected, a lack of any growth competition
between the right and left patterns.

Isotropic pattern evolution simulated in 2-D was also
observed in 3-D, where protuberances formed adjacent to
grain boundaries and triple points were observed to am-
plify, as shown in fig. 4(b). The primary advantage of 3-D
simulations over 2-D is that the former allows us to distin-
guish between the morphological evolution occurring ad-
jacent to the triple points with respect to the grain bound-
aries. Our phase-field simulations corroborate the propo-
sition of Schaefer and Glicksman [4], who observed that
protuberances first appear near triple points and extend
outwards, subsequently forming grain boundary ridges.
3-D bumps bulge further out into the melt more rapidly
when compared to the morphological evolution rate of
the 2-D ridges. As both structures amplify, weak parallel
secondary ridges were developed, reminiscent of the sur-
face rippling observed in our prior study [8]. Finally, the
bumps and ridges that extend out into the melt invagi-
nate, forming a forked hexagonal array of a seaweed-like
microstructure.

The pattern continues to evolve into the melt without
any signs of growth competition occurring among the in-
stabilities arising from distinct seed grains. Overlapping
trends in fig. 5(a) that show the temporal evolution of
grain volume fractions corroborate isotropic characteris-
tics of the simulated seaweed microstructure.

5.2 Influence of seed topology

Here, we examined the influence of seed topology on the
pattern growth competition by altering the structural
symmetry of the seed that was considered in sect. 5.1.
To do so, contact angles between grains were chosen to
be distinct, as shown in fig. 5(a). The resulting heights of
grains 1-4 that ensured equal grain volume fractions were
15Az, 30Ax, 23Ax, and 15Ax, respectively. Such an un-
dulation of seed topology which is in contact with the su-
percooled melt was observed to induce a growth competi-
tion amongst the evolving seaweed patterns that amplified



Eur. Phys. J. E (2020) 43: 14 Page 7 of 11

t=400

t =460

Fig. 4. (a) Contour plots (¢ = 0.5) showing the temporal evolution of seaweed patterns during columnar solidification solved
over a 2-D computational domain. During the initial stages, the grooves formed at the grain triple-junction assist the autogenous
interface fields to overcome the energy barrier required to drive the growth of perturbations. (b) Dynamic frames illustrating
the evolving finger patterns starting from a 3-D polycrystalline setting (4 grains). The surface energy is assumed to be isotropic
in both cases.

Grain4 /
Grain 1
Grain 4 |

t=0

- Grain4

Grain 4 .

© x s
t =460

22,5

(d) o3

Fig. 5. (a) Magnified view of the polycrystalline setting with prescribed contact angles (70° between grains 1 and 2 and 56°
between grains 1 and 4). The legend refers to the local curvature gradients. (b) Dynamic frames showing growth competition
and asymmetric pattern formation due to the choice of contact angles illustrated in fig. 4(a). The surface energy is assumed to
be isotropic. (c¢) Schematic diagram to illustrate pattern misorientation with respect to the most-preferred-orientation (along
z-axis). (d) Dynamic frames showing growth competition and asymmetric pattern formation due to prescribed weak four-fold
anisotropy in the surface energy (of the form ag{1+ ¢ cos(40)}, where § = 0.001). The contact angles between the grains are all
assumed to be equal to 0°. The color-map illustrated underneath indexes the misorientation with respect to the z-axis.

45.0

from every grain, as shown in fig. 5(a). Grains 2 and 3 com- 5.3 Influence of misorientation

peted strongly with each other, whereas 1 and 4 were out-

grown. The growth competition is evident from the plot
in fig. 6(b), where the temporal volume fraction is found
to be directly dependent on the initial height of the grain
surface. Grains with equal initial heights did not compete
with each other while the taller ones outgrew them.

The anisotropy of the surface energy, even if weak,
can have a significant influence on the morphological
evolution of solidification patterns. Here, we simulated
the anisotropic growth of seaweed patterns starting from
the same 3D arrangement that corresponds to ¢t = 0 in
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Fig. 6. Volume fractions plotted as a function of time for
(a) symmetric (fig. 4) and (b) asymmetric pattern formation
(fig. 5(b)) assuming surface energies to be isotropic. For the
latter case, the pattern symmetry is broken due to non-equal
contact angles in the initial polycrystalline setting shown in
fig. 5(a). (c¢) On assuming weakly anisotropic surface energies
and repeating the 3-D simulations, it is found that the growth
competition during intermittent stages of evolution (due to rel-
ative misorientation) breaks the pattern symmetry (fig. 4(d)).
The right inlet picture shows an instance where growth com-
petition resulted in composite patterns.
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fig. 4 by selecting a fourfold crystalline anisotropy (see
fig. 5(c)). Relative misorientation is defined as the axial
tilt with respect to the surface normal of the initial flat
seed that points into the melt. To understand the influence
of relative misorientation on the growth competition, the
anisotropy strength 0 is chosen to be 0.001. The polycrys-
talline seed that comprises grains 1, 2, 3 and 4 is assigned
axial tilts of 19.40°, 4.74°, 28.36° and 28.31°, respectively,
while the crystalline rotation about the tilted axes is as-
signed randomly with prior knowledge from our previous
findings that it does not impact the growth competition.

A significant growth competition is observed in the
evolving seaweed pattern as shown in fig. 5(d). We ob-
serve that the most favorably oriented, i.e. grain 2 out-
grows misoriented neighbors. This overgrowth is analyzed
in fig. 6(c) where the volume fraction of grains 1 and 2
is seen to temporally diverge with respect to that of 3
and 4. However, temporal volume fractions of grains 3
and 4 nearly overlap as their relative misorientation is
small. Growth competition of faceted crystals modeled in
our earlier work is characterized by overgrowths where
the misoriented crystal ceases to grow in a direction nor-
mal to the seed surface. However, an additional mode of
growth competition is observed in the present simulations;
where fingers emerging from the morphological instabil-
ity of grain 1, colored red in fig. 6(c), infiltrate into pore
spaces belonging to neighboring grains as seen in the inset.
It is worth noting that this alternate mode of growth com-
petition fingers of favorably oriented grains which compete
along a lateral direction via intertwining has never been
reported in the context of columnar solidification earlier.

5.4 Influence of fluid convection

Phase-field simulations described in the previous sections
clearly show that seaweed patterns of materials with
isotropic surface energies do not compete while any growth
competition can be attributed to the anisotropy of sur-
face energy or the non-uniformity of seed topology. In
the present section, we investigate the influence of fluid
convection on the evolution of seaweed patterns emerg-
ing from the initial bi-crystalline configuration shown in
fig. 4(a). The presence of 3-D fluid flow pathways can in-
fluence the alignment of surface ripples during the early
stages of columnar solidification, as shown in fig. 7. This
provides a strong basis for analyzing late stage growth
competition of such microstructures. For this study, we
choose a shifting computational domain [49] comprised of
1000 x 1000 grid-points. The simulated seaweed patterns
corresponding to different flow intensities ranging from
Re =1 to 300 are compared in fig. 8. While the seaweed
pattern emerging in upstream, i.e. the left region closer to
the inflow, is seen to predominate at Re = 1, this trend is
reversed as the value of Re is increased. For Re € (10, 100),
the seaweed pattern emerging from the right crystal in
downstream dominates the growth process. Irrespective
of the observed growth competition, the initial instabili-
ties that evolve in the melt can be best described as de-
generate seaweeds. At larger flow intensities (Re > 300),
the growth competition ceases and a characteristic tilt in
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Fig. 7. Formation of surface ripples [4] at grain boundaries
of an impure SCN-based alloy embedded in its supersaturate
melt, simulated using the model outlined in sect. 3. Extending
the previous work of the authors [8], which was limited to the
diffusion-limited regime, including the effects of melt convec-
tion shows its strong influence on ripple alignment. The three-
dimensional nature of the flow field allows it to curl around the
solid-liquid interface.

Direction of flow
_’

Fig. 8. Phase-field simulations of the seaweed patterns corre-
sponding at different flow intensities. The surface energy has
been assumed to be isotropic while the initial arrangement of
grains corresponds to fig. 4(a). Simulations were performed
in a moving frame of reference as described in our previous
work [49], where the sliding occurred at z = 1000. The Neu-
mann boundary condition is applied for g at z = 1000. An
initialized and a fully developed flow with a velocity w is in-
troduced in the z-direction, along with the periodic boundary
conditions at x = 0 and =z = 1000.
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Fig. 9. Phase-field simulations of the columnar solidification
microstructures corresponding to (a) Re = 100, o3 = 0.1 and
(¢) Re = 400, dap = 0.06. Panels (b) and (d) represent the
magnified view of (a) and (c), respectively, where phase-field
contours are plotted along with flow vectors. Pronounced ex-
tension of sidebranches towards upstream is observed in both
the cases i.e. (a) and (c), that is reminiscent of earlier nu-
merical findings [50]. In (d), vortices are more pronounced as
compared to (b) for a stronger convective flow. Tilting of pri-
mary stems towards downstream is also observed in (c) while
upstream sidebranches appear to be isotropic.

the seaweed pattern, opposite to the flow direction, is ob-
served. It is worth mentioning at this point that seaweed
patterns are typically known to evolve isotropically, how-
ever, for the first time, our simulation results show that
growth competition in crystals with low surface energies
can be induced via fluid convection. A detailed analysis of
the observed convection-mediated growth competition in
seaweed patterns has recently been reported [42].

As opposed to the influence of convection on isotropi-
cally evolving seaweed patterns, there have been a number
of studies on the convection-mediated tilting of dendrites.
In fig. 9, we illustrate the competition arising between
the surface tension and flow intensity that manifests as
tilting of the primary stem. At a moderate flow intensity
(Re = 100) and anisotropy strength, § = 0.1 (fig. 9(a)),
the primary stem stays aligned with the growth direction
while sidebranches evolve opposite to the flow direction.
The simulated flow vectors plotted in fig. 9(b) are found
to glide over the surface as they sweep the domain. On
the contrary, when Re = 400 and ¢ = 0.06 (fig. 9(c)),
a significant tilt in the primary stem is observed. In the
latter, the simulated flow vectors plotted in fig. 9(d) are
found to curl as they impact the sidebranches. It is to
be noted that tilting of the primary stem results in mis-
orientation of the dendrites with respect to the assigned
four-fold anisotropy of the surface energy. As an outcome
of this tilt, the misoriented sidebranches evolve isotropi-
cally with a seaweed-like morphology.
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6 Conclusions

In the present study, we have analyzed the various fac-
tors that can induce growth competition in columnar so-
lidification of weakly anisotropic microstructures using
multiphase-field simulations. The convective term, which
is incorporated in the grand chemical potential of Choud-
hury and Nestler [31] by adopting the approach of Becker-
mann et al. [27], was validated by computing and compar-
ing drag coefficients at different Reynolds numbers with
theory. The triple-point angles corresponding to static
grain boundary grooves simulated using the numerical ap-
proach are found to be in agreement with Young’s law.
In one of our earlier works [8], the morphological insta-
bility adjacent to the grain boundary groove and surface
break down was investigated for conditions pertaining to
columnar solidification. Here, we have extended our nu-
merical studies to investigate the growth competition and
the ensuing pattern formation for crystals with low cap-
illary anisotropy strengths. The adopted multiphase-field
approach, where every grain is assigned a unique phase-
field order parameter, facilitates the analysis of growth
competition as any temporal changes in grain volume frac-
tion can easily be tracked.

In the absence of melt convection and capillary
anisotropy, seaweed patterns arising due to morphological
instability of symmetric GBGs, evolve isotropically with
mirror symmetry, or in other words, the final microstruc-
ture shows no imprints of growth competition. However,
if the seed topology is undulated, grain contact angles
change leading to the formation of asymmetric grooves.
The seaweed patterns that evolve compete with one an-
other as indicated by temporally diverging volume fraction
plotted for different grains (fig. 6(b)). Therefore, our sim-
ulations suggest that initial conditions, particularly the
seed morphology, can significantly influence the growth
competition in isotropic solidification patterns. Similarly,
if the surface energy is assumed to be anisotropic, it is
observed that relative misorientation among grains can
induce growth competition in the seaweed patterns that
originate from the breakdown of polycrystalline seed sur-
face. Since the evolving seaweed pattern shows strong ten-
dencies to inter-penetrate neighboring ones, overgrowth
occurs along the growth axis in addition to the lateral
directions.

Starting from a uniform seed morphology which is free
of any undulations, convective flow is shown to induce
growth competition in seaweed patterns even if surface
energy is isotropic. Whether or not, the evolving seaweed
patterns compete is found to be strongly dependent on
flow intensity quantified by Reynolds number (Re). At a
small flow intensity (Re = 1), the grain in the upstream
outgrows its neighbor. However, at moderate flow inten-
sities (10 < Re < 100), the trend is found to be reversed.
At a large flow intensity, the growth competition ceases
and seaweed patterns are characterized by a unique tilt
angle. To the best of our knowledge, our simulations for
the first time show the mechanism of convection-mediated
growth competition in seaweed patterns. The dependence
of the observed growth competition in solidification mi-
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crostructures on flow intensity is of fundamental interest;
the growth competition ceases at larger Re and the pat-
tern is characterized by a tilt.

Although the present work provides basic insights into
the instabilities originating at GBGs and exposes the
mechanisms by which weakly anisotropic solidifying pat-
terns can compete, it needs to be extended to explore how
a three-dimensional characteristic of melt convection in-
fluences this behavior. Moreover, our studies are limited
to laminar flow as the influence of melt turbulence (i.e.
Re > 5000) on the morphological evolution of seaweed
structures has not been considered. Finally, it remains
interesting to analyze the interaction of melt convection
on capillary-mediated bias-fields, now known to reside on
solid-liquid interfaces [51-53].
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