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Abstract

Superconducting logic offers the potential to perform com-
putation at tremendous speeds and energy savings. How-
ever, a łsemantic gapž lies between the level-driven logic
that traditional hardware designs accept as a foundation
and the pulse-driven logic that is naturally supported by
the most compelling superconducting technologies. A pulse,
unlike a level signal, will fire through a channel for only an
instant. Arranging the network of superconducting compo-
nents so that input pulses always arrive simultaneously to
łlogic gatesž to maintain the illusion of Boolean-only evalu-
ation is a significant engineering hurdle. In this paper, we
explore computing in a new and more native tongue for
superconducting logic: time of arrival. Building on recent
work in delay-based computations we show that supercon-
ducting logic can naturally compute directly over temporal
relationships between pulse arrivals, that the computational
relationships between those pulse arrivals can be formalized
through a functional extension to a temporal predicate logic
used in the verification community, and that the resulting
architectures can operate asynchronously and describe real
and useful computations. We verify our hypothesis through
a combination of detailed analog circuit models, a formal
analysis of our abstractions, and an evaluation in the context
of several superconducting accelerators.
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1 Introduction

Superconductivity is the phenomenon wherein the electrical
resistance of a material disappears as it is cooled below a
critical temperature. Computing with such superconducting
materials offers the promise of orders of magnitude higher
speed and better energy efficiency than transistor-based sys-
tems [11]. Unfortunately, while there have been tremendous
advances in both the theory and practice of superconducting
logic over the years, significant engineering challenges con-
tinue to limit the computational potential of this approach.
In contrast to semiconductor logic, where logic cells are

combinational and their output is (to first order) a pure func-
tion of the levels of all the inputs present at any time, the
majority of Single Flux Quantum (SFQ) logic 1 gates are se-
quential and operate on pulses rather than levels. Because
pulses travel ballistically rather than diffusively through a
channel, once they have transited there is no łrecordž of
their value that can be used in downstream computations.

1SFQ technology and its variants have been dominant in superconductor

digital technology for more than three decades with verified speeds of

hundreds of GHz for simple digital circuits [4].
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Implementing a chain of Boolean operations thus requires
the very careful layout and synchronization of timing along
each and every path with picosecond-level precision [27].
While some of the challenges in adopting such a novel

technology are inherent to the nature of the exotic materials
and environment, others appear to be due to a mismatch
between our computational abstraction and what the de-
vices actually provide. Because most superconducting logic
designs rely on discrete voltage pulses driven by the trans-
fer of magnetic flux quanta, supporting the combinational
abstraction provided by traditional logic requires significant
design effort and results in unavoidable overheads. If we in-
stead think about these pulses as the natural representation
of data in a superconducting system, the natural language
for expressing computations over that data would be one
that could precisely and efficiently describe the temporal
relationships between these pulses. Here, we can draw upon
two distinct lines of research, both currently disconnected
from superconducting.
First, recent work has shown that delay-based encoding

has both impressive computational expression and practi-
cal utility in implementing important classes of accelera-
tors [19, 33] ś not to mention the interesting connections
to neurophysiology discovered by J. E. Smith [25]. The prin-
ciples of the delay-coded logic described in that prior work
apply directly to problems in superconducting. However,
the fact that its primitive operators have been so far imple-
mented only in CMOS under specific assumptions ś e.g.,
edges are used to denote event occurrences ś makes their re-
alization in the much different RSFQ technology potentially
challenging.

Second, we can leverage the long history of work in tem-
poral logic used for expressing temporal relationships in
reasoning and verification. While temporal logic systems
(e.g. Linear Temporal Logic) deal with the relationship of
events in time, they are fundamentally predicate logics that
allow one to evaluate truth expressions (True / False) over
some set of temporal relationships. We instead need a tem-
poral logic with computational capabilities that takes events
as inputs and creates new events as outputs based on the
input relationships.
To explore these issues we present a new computational

temporal logic (which in fact subsumes LTL) that gives clear,
precise, and useful semantics to delay-based computations
and relates them to existing temporal logics. This approach
allows us to trade implementation complexity for delay, re-
alize superconducting circuits that embody this new logic,
and create useful new architectures based on these building
blocks that encapsulate the potential of those circuits. To
the best of our knowledge, this is the first time that tempo-
ral logic is used to specify computations. Overall, the main
contributions of this paper are:

• We extend classical temporal predicate logic to a com-
putational temporal logic to formally express delay-
based computations. This extension provides the needed
abstractions to capture the capabilities of our new op-
erators and it sets the foundation for the construction,
analysis, and evaluation of large-scale temporal sys-
tems.

• We design circuits that implement these primitive tem-
poral operators in RSFQ and evaluate their functional-
ity and performance with SPICE-level simulations.

• We describe a way of combining these temporal opera-
tors into larger self-timed superconducting accelerator
architectures. Our data-driven self-timing approach
enables the operation of our RSFQ designs without the
need of clock trees even in the most general case.

• We validate our hypothesis through (a) a functional
verification of three RSFQ accelerators at the SPICE
level, (b) a performance comparison between our su-
perconducting designs and their CMOS counterparts
ś showing more than an order of magnitude perfor-
mance improvements ś and (c) a timing analysis neces-
sary to identify timing constraints that may affect the
design flow of superconducting temporal accelerators.

• We open-source 2 our temporal primitives and accel-
erator designs for quick use and reference.

2 Background

2.1 Computing with Superconductors

Superconductivity was discovered in 1911 by K. Onnes, who
observed that the resistance of solid mercury abruptly disap-
peared at the temperature of 4.2K [14]. Four decades later, D.
A. Buck demonstrated the first practical application of this
phenomenon ś the cryotron [2] ś and soon after, B. Joseph-
son established the theory behind the Josephson effect [24],
which led to the fabrication of the first Josephson junction
(JJ) in the subsequent years.

A JJ is made by sandwiching a thin layer of non supercon-
ducting material ś an electronic barrier ś between two layers
of superconducting material. JJs are capable of ultrafast (as
low as 1ps), low-energy (to the order of 10−19J) switching by
exploiting the Josephson effect: electron pairs tunnel through
the barrier without any resistance up to a critical current. At
the critical threshold, a JJ switches from its superconducting
state to a resistive one and exhibits an electronic łkickbackž
in the form of magnetic quantum flux transfer ś observable
as a voltage pulse on the output. To enable stateful circuit
operation the unit of flux can be temporarily stored in a
composite device known as the superconducting quantum
interference device (SQUID), which is built as a supercon-
ducting loop interrupted by two serial JJs and is common to
many superconducting circuits.

2https://github.com/UCSBarchlab/Superconducting-Temporal-Logic
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(Delay)4, and Inhibit5. Figure 1 shows the implementation
of these four primitives with off-the-shelf CMOS compo-
nents. Prior to the next computation, race logic-driven cir-
cuitry must be reset.
Regarding its applicability, race logic yields a complete

implementation of space-time algebra [25, 26], which pro-
vides a mathematical underpinning for temporal processing.
Any function that satisfies the properties of invariance and
causality complies with space-time algebra, and thus it is
implementable in race logic. In the past, A. Madhavan, et
al. [19] used race logic to implement Needleman and Wun-
sch’s popular DNA sequence algorithm. M. H. Najafi, et
al. [23] demonstrated a low-cost bitonic sorting network cir-
cuit using temporal processing. G. Tzimpragos, et al. [33]
applied race logic to accelerate ensembles of decision trees,
while J.E. Smith [25] explored the relationship between tem-
poral codes and spiking neural networks.
Besides its promises though, the implementation of this

new paradigm, where the order of events occurrence defines
computation, is currently tied to specific assumptions and
the properties of the underlying CMOS technology, which
in some cases may restrict innovation. For example, as dis-
cussed above, when edges are used for event representation,
Min andMax functions can be realized with plain OR and
AND gates. What happens though when edges are replaced
by pulses, as in the superconducting case? To answer this
question and establish a theoretical foundation that will al-
low us to better understand how processing in the temporal
domain can unlock the true potential of emerging technolo-
gies we proceed with this logic’s formalization.

3 Formalization

Computing based on temporal relationships departs from the
traditional binary encoding and Boolean logic, and provides
a promising pathway for unlocking the true potential of
emerging technologies. However, to make this computing
paradigm a viable solution the first question that we should
answer is łwhat abstractions do we need to establish in order
to capture its capabilities, verify the correctness of temporal
implementations independently of underlying assumptions
and technology properties, and build more complex temporal
circuits in a systematic way?ž.

To solve this problem and set the foundation for the design
and evaluation of large-scale temporal systems, in this sec-
tion, we provide formal definitions of its primitive operators

4We assume that smaller delays in rise time encode smaller magni-

tudes, while larger magnitudes are encoded as longer delays. In the

case where shorter delays represent larger magnitudes, FirstArrival

will stand for Max, LastArrival will serve as Min, and Delay as

Constant Subtraction.
5The Inhibit function has two inputs: an inhibiting signal and a data sig-

nal. If the data signal arrives first, it is allowed to pass through the gate

unchanged. Otherwise, the output is prevented from ever going high, which

corresponds to ∞ in the race logic world.

and constraints through an extended temporal logic capable
of concisely expressing delay-based computations.

3.1 Computational Temporal Logic

Space-time algebra [25, 26] defines the primitive operators
of generalized race logic over the set of Natural numbers,
and thus provides a high-level abstraction to the event-based
computation happening at the circuit-level. This abstraction
may in some cases be useful for functional interpretation
or synthesis; however, it cannot capture lower-level details
that may be critical for the hardware implementation and
reasoning of such systems. Our aim is to build a formalization
that covers this gap and safely decouples functional from
implementation specifications.
Temporal logic is a tool commonly used for represent-

ing and reasoning about propositions qualified in terms of
time; e.g., an event in a system S has happened or will hap-
pen some time in the past or future. A system S transitions
through a sequence of states in time, where each state St is
associated with a time step t belonging to a discrete time
domain. Properties are then expressed as formulas and are
evaluated along such sequences of states. Formulas are con-
structed recursively from propositional atoms by applying
usual propositional connectives ¬,∨,∧,→,↔ and the addi-
tional temporal logic operators discussed below.
In the well-established setting of Linear Temporal Logic

(LTL), the future-time temporal operators are used: ♢ some

time in the future, always in the future, gnext time (to-
morrow), U until, and R release. Past LTL (PLTL) extends
LTL with past-time operators, which are the temporal du-
als of the future-time operators, and allows one to express
statements on the past time instances, such as: ♦ sometime in

the past, ■ always in the past (historically), wprevious time

(yesterday), S since, and T trigger [5, 9, 15]. Even though the
past-time operators do not add expressive power in the sense
that any LTL formula with past operators can be rewritten by
only using the future-time temporal operators, the past-time
operators are particularly convenient in practice; they allow
us to keep specifications more intuitive and easy to com-
prehend, and they can provide significantly more compact
representations than their future-time counterparts.
Each operator operates on a sequence of states, which

defines a discrete interval of timesteps ś the scope of the
operator. We categorize these temporal operators based on
their scope at time step t as follows:

• remote past operators ♦, ■, S, T ś their scope is [0, t];
• immediate past operator wś its scope is {t − 1}, or
the empty interval if t = 0;

• present operator (all propositional connectives) ś its
scope is {t};

• immediate future operator gś its scope is {t + 1};
• remote future operators ♢, , U, R ś their scope is
[t,∞).
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The scope of an arbitrary formula ϕ is defined recursively
based on the scopes of the operators in ϕ and the given time
step t .

In LTL, the notation ⟨S, t⟩ is used to signify a system S at
time step t . We say that an event ϕ occurs at time step t in the
system S , if ϕ holds at time step t in S , denoted by ⟨S, t⟩ |= ϕ.
In this paper, we primarily rely on the formal semantics of
the ♦ operator (sometime in the past):

⟨S, t⟩ |= ♦ϕ iff ∃k . (0 ≤ k ≤ t ∧ ⟨S,k⟩ |= ϕ)

This definition reads as: the temporal formula ♦ϕ holds at
time step t in the system S if and only if there exists a time
step k prior or equal to t when the formula ϕ holds. However,
this operator is incapable of encapsulatingwhen ϕ held in the
past, which is essential for our case. To address this issue, we
introduce the earliest-occurrence function described below.

Let∞ be a special symbol that represents an unreachable

time step; in other words,∞ indicates the lack of an event
occurrence in a period of interest. The earliest-occurrence
function E ⟨S ,t ⟩(ϕ) receives as input a formula ϕ and returns
the earliest time step tmin ∈ [[ϕ]]⟨S ,t ⟩ , where [[ϕ]]⟨S ,t ⟩ is the
scope ofϕ at time step t in the system S , such that ⟨S, tmin⟩ |=

ϕ. Ifϕ does not hold at any time stepwithin [[ϕ]]⟨S ,t ⟩ , then the
earliest-occurrence function returns∞. The formal definition
of this function follows:

E ⟨S ,t ⟩(ϕ) =




tmin (tmin ∈ [[ϕ]]⟨S ,t ⟩) ∧ (⟨S, tmin⟩ |= ϕ) ∧
∧ (∀j .0 ≤ j < tmin : ⟨S, tmin⟩ ̸|= ϕ)

∞, otherwise.

The proposed function is paired with the existential prim-
itives of the classical temporal logic, extends the notions of
łsome time in the pastž and łsome time in the futurež with the
notion of łwhenž an event occurred, and it is fundamental
for the connection of our event-based formalization, which
we present next, with the existing space-time theory.

3.2 Race Logic Semantics

According to space-time algebra [25, 26], FirstArrival (FA),
Inhibit (IS), and Delay (D) operators are functionally com-
plete for the set of space-time functions. In prior work, the
functionality of these operators at the event-level has been
primarily described through their realization with off-the-
shelf CMOS components under the assumption of an edge-
based delay encoding. In this work, we decouple for the
first time their specification from their implementation and
provide a formal definition, presented in Table 1, using the
above-described computational temporal logic. Moreover, be-
sides these three basic operators, we provide definitions for
LastArrival (LA) and Coincidence (C) operators, which
have been widely used in a number of accelerators.

Table 1. PLTL-based semantics of the operators
FirstArrival (FA), StrictInhibit (IS), Delay (D),
LastArrival (LA), and Coincidence (C).

⟨S, t⟩ |= FAϕψ iff ⟨S, t⟩ |= ♦ϕ ∨ ♦ψ

⟨S, t⟩ |= ψISϕ iff ∃k . (0 ≤ k ≤ t ∧ ⟨S,k⟩ |= ϕ ∧ ¬♦ψ );
⟨S, t⟩ |= Dcϕ iff ∃k . (0 ≤ k + c ≤ t ∧ ⟨S,k + c⟩ |= ♦ϕ);
⟨S, t⟩ |= LAϕψ iff ⟨S, t⟩ |= ♦ϕ ∧ ♦ψ ;
⟨S, t⟩ |= Cϕψ iff ∃k . (0 ≤ k ≤ t∧ ⟨S,k⟩ |= ϕ ∧ψ ) ∧

∧∀j .(0 ≤ j < k ∧ ⟨S, j⟩ ̸|= ♦ϕ ∨ ♦ψ );

Informally, Table 1 reads as follows:

• FA: the formula FAϕψ holds at time step t in system S

if and only if either ϕ orψ hold at time step t or prior.
• IS: the formulaψISϕ holds at time step t in system S

if and only if there exists a time step k prior or equal
to t when ϕ holds andψ does not hold at this and any
prior time steps.

• D: the formulaDcϕ holds at time step t in system S if
and only if there exists a time step k + c prior or equal
to t when ϕ holds at this (c = 0) or any prior time steps
(c , 0).

• LA: the formula LAϕψ holds at time step t in system
S if and only if both ϕ and ψ hold independently at
time step t or prior.

• C: the formula Cϕψ holds at time step t in system S

if and only if there exists a time step k prior or equal
to t when both ϕ andψ hold simultaneously and there
are no prior time steps where either ϕ orψ hold.

These definitions provide a PLTL-based specification of
the basic race logic operators over temporal events; however,
they will always return a proposition: True or False. To ex-
tract the step at which these functions evaluate to True for
the first time in their scope the above-introduced earliest-
occurrence function E ⟨S ,t ⟩(ϕ) has to be used. For example,
E ⟨S ,t ⟩(FAϕψ ) will return the first time step that either ϕ or
ψ hold.

In a nutshell, the presented formalism, along with the
proposed extension to the classical temporal logic: (a) guar-
antees that the specification of our operators is independent
of any underlying assumptions; e.g., pulse- vs edge-based
encoding, (b) bridges the gap between the high-level defini-
tions provided by space-time algebra and the event-based
computing happening at the implementation level, and (c)
opens up the door to the use of model checking tools for
the formal analysis, validation, and optimization of more
complex temporal circuit designs.

4 Superconducting Temporal Architecture

The mathematical formalism raised in Section 3 lays the
foundation for building and verifying the desired temporal
operators. In this section, we first describe their implemen-
tation in RSFQ, then we present the corresponding circuit
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Table 2. Area and latency results for our temporal operators
implemented in the MIT-LL SFQ5ee 10 kA/cm2 process and
simulated with WRSPICE [13].

Function Area (#JJs) Latency (ps)

FA 10 13

Is 8 11

D 2/JTL 5/JTL

LA 6 8

C 11 9

4.2 Self-clocked Temporal RSFQ Circuits

Clocking and synchronization are two of the most critical
concerns and limitations in the design process of an RSFQ
design. The majority of RSFQ Boolean gates are sequential in
nature. Hence, each gate in a Boolean RSFQ circuit needs to
be synchronized with all other gates and the clock network.

The complexity and overhead introduced by the clock net-
work are far from negligible, primarily because an additional
Splitter is required for each latched gate for clock fan-out6.
These additional Splitters affect a design both in terms
of area (3 JJs per element) and speed (each Splitter intro-
duces a delay on the order of a single JTL), while they also
contribute to a higher static and dynamic current [10, 27].

Moreover, device variations can promote disproportionate
clock timing skews, which can critically affect the function-
ality of a Boolean RSFQ design; all pulses between a gate
and each of its fan-in gates must arrive in the same clock
cycle (as defined by the clock network). To mitigate these
issues, advanced path-balancing techniques and customized
RSFQ logic synthesis tools are needed.

In our superconducting temporal logic, many of these con-
cerns are naturally alleviated as FirstArrival, Inhibit, and
Delay, which form the minimal functionally complete opera-
tor set, are asynchronous ś the łclockž signal of the latching
building blocks used for their realization has been repur-
posed, as described in Section 4.1. However, in some cases,
such as Coincidence, the use of a synchronous gate/block
makes sense. To avoid costly clock trees and the clock skew
problems that come with them, we propose a data-driven

self-timing scheme.
In a data-driven self-timed (DDST) system, timing infor-

mation is carried by data. Z. J. Deng, et al. [6] explored for the
first time such an idea, targeting binary RSFQ circuits, more
than two decades ago. In their solution, data are carried by
complementary signals, generated by using complementary
D flip-flops; two parallel lines are required for each bit. The
clock signal is generated by a logical OR function between
these lines. Because each functional block is now locally
clocked, there is no need for a global clock network. There-
fore, the system becomes more robust to process variations

6RSFQ logic gates have by default only one fanout.

and has better control over clock timing 7. Besides its advan-
tages though, this idea never really took off due its high cost;
the method introduces a significant overhead for routing as
well as additional circuitry for generating complementary
signals for each logic gate.

Asynchronous system

Synchronous 

Logic

clk

din0

din1

time

din0

din1

clkAsync/Sync

Logic

Async/Sync

Logic

merge

Figure 4. Proposed data-driven self-timing (DDST) scheme.
The clock signal can be locally generated from input data at
each gate. If no input pulse arrives, it is safe to assume the
operator idle, and thus no clock pulse is required.

Our DDST method ś shown in Figure 4 ś targets temporal
rather than binary systems and is able to provide similar
benefits at a much lower łpricež. In contrast to Boolean logic,
where for example a Not gate has to be clocked even in
the absence of an incoming pulse, when processing in the
temporal domain, an operator can be safely considered idle
for the time steps that no input pulse arrives. Thus, comple-
mentary data are no longer required. This characteristic of
temporal codes significantly simplifies the implementation
of our DDST approach, reduces its area overhead, while still
allowing one to have the desired fine-grained timing control.

Resetting: Given the absence of an independent clock and
the stateful nature of RSFQ operators, resetting must also
be rethought. For example, an RSFQ Inverter, which im-
plements Inhibit, will not return to its initial state until a
pulse arrives to its clock port, while a C-element, used as a
LastArrival gate, will not reset until both its inputs arrive.

One possible solution is to add an additional reset signal to
Is and LA gates, merged with their input data signals; as can
be seen in Figure 3, the rest of our temporal operators return
to their initial state without the need for external signals.
This additional signal allows the immediate reset of such a
gate but it comes with additional circuitry too. For example,
the Merger that has to be used in the case of Inhibit will
cost us at least 5 JJs, while the overhead in the case of a
LastArrival gate will be much higher as the reset signal
must be forwarded to the input ports that have not received
a data pulse yet.
When such a reset signal is used, the target gate may

return to its initial state; however, in many cases an output
pulse is generated too. This output pulse propagates through

7Globally asynchronous, locally synchronous (GALS) clocking is a

commonly-used technique to mitigate timing variations across functional

blocks and reduce clock tree overhead in CMOS as well [8].
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LastArrival

S0 Init

a arrived S1

S3 a and b arrived 

a

b out

time

a

b

out

compute reset

state S0 S0S1

(ii)(i)

S3

b arrived S2

Figure 5. LastArrival can be in one of the four states
shown in Panel (i). To reset this component both input pulses
a and b must arrive. Panel (ii) shows how a spacer period
can be used to avoid the interference between data pulses
associated with the actual computation and pulses generated
due to a reset signal.

the circuit in a downstream fashion and may affect the state
of other subsequent gates. So, resetting a deep temporal
circuit may have to be done sequentially ś one stage of gates
at a time.

To avoid the interference of data pulses that relate to the
actual computation with the ones generated by resetting, a
spacer period will also be needed. Figure 5 illustrates this
scenario for a plain LastArrival gate. Once the łcomputež
period ends, a reset pulse is sent to its input port b. Any
output pulse observed until the next compute period starts
should be ignored. If the LastArrival gate is connected to
other gates, the generated output pulse may also affect their
state even if they have already been cleared. So, resetting in
that case must happen step-by-step and the duration of the
spacer period will have to be adjusted accordingly.

An alternative method that we can rely on for resetting is
to adjust the amount of applied bias current; setting the ap-
plied bias current to zero will release the stored flux quanta
and return the gates to their initial states. This solution does
not require additional hardware and comes without the con-
cerns related to the propagation of reset-generated pulse.
However, it is still not łfreež.

Choosing between these two options depends on the struc-
ture of the constructed circuit, possible resource constraints,
and the corresponding delay associated with each of these
methods.

5 Evaluation

In the previous sections, a framework for understanding the
proposed RSFQ-based temporal computing paradigm at the
logic, primitive gate, and device-levels has been presented.
We may now leverage this understanding to functionally
validate our design methodology through a number of accel-
erator designs. For the timing and functional validation of
the developed circuits, we first identify timing constraints
that affect the design flow and then provide corresponding

SPICE-level simulation results. Finally, we compare their per-
formance against their CMOS counterparts, showing more
than an order of magnitude improvements.

Experimental setup: We perform our analysis based on
the open-source WRSPICE circuit simulator [13] using the
MIT-LL SFQ5ee 10 kA/cm2 process. For our designs’ intercon-
nections, we use JTLs along with Splitters (s) andMergers
(m) where required.

5.1 Timing Analysis

Computing based on temporal relationships is in many cases
naturally immune to noise as the final outcome often depends
on the interval or the order in which events occur and not
precise arrival times. Under conventional binary encoding,
an early or late pulse translates to a bit-flip and its effect on
the computation’s accuracy depends on the bit’s position.
Under delay representation though, a time-skewed pulse
may or may not affect the encoded value ś in reality, an
interval rather than a specific time is used to represent a
value ś and that may not even change the rank order of the
occurring events.

To ensure the robustness of our designs though we cannot
rely solely on the properties of our encoding and temporal
logic. Understanding the various timing constraints is critical
for reasoning about our circuits’ behavior and developing a
systematic way for the design of temporal RSFQ accelerators.
To address this concern, in the following, we first introduce
the required terminology for our timing analysis and then
proceed with the description of the timing constraints of
temporal circuits and the quantification of our primitives’
robustness to the timing skew of pulses.
Figure 6 provides an illustration of the main timing rela-

tionships between pulses in our architecture. Data-to-data
(tD2D ) window represents the time difference between two
input data signals. Clock to Q (tC2Q ) denotes the delay be-
tween clock signal arrival and the occurrence of the output
event. The propagation delays of the Splitter and Merger

are shown as ts and tm , respectively. Finally, tsu represents
the setup time, which denotes the minimum amount of time
required between the arrival of data and clock signals, while
tc is the time window where input pulses are forbidden to
arrive [22].
To avoid setup time violations, tD2D has to be less than

tm − tsu if the two input pulses represent the same value. To
increase this time window, delay elements can be added after
the Merger. In the case where two input pulses represent
two consecutive values (e.g. din0 = 2 and din1 = 3), tD2D

has to be greater than tm + tc . If tD2D is smaller than tm + tc ,
either the second input pulse will get łlostž (timing violation)
or both pulses will be considered to represent the same value
(e.g. din0 = 2 and din1 = 2), which is incorrect.

Stretching the łvalidž data time window of a cycle is possi-
ble with the use of additional JTLs; e.g., if we want the łvalidž
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