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Abstract

Superconducting logic offers the potential to perform com-
putation at tremendous speeds and energy savings. How-
ever, a “semantic gap” lies between the level-driven logic
that traditional hardware designs accept as a foundation
and the pulse-driven logic that is naturally supported by
the most compelling superconducting technologies. A pulse,
unlike a level signal, will fire through a channel for only an
instant. Arranging the network of superconducting compo-
nents so that input pulses always arrive simultaneously to
“logic gates” to maintain the illusion of Boolean-only evalu-
ation is a significant engineering hurdle. In this paper, we
explore computing in a new and more native tongue for
superconducting logic: time of arrival. Building on recent
work in delay-based computations we show that supercon-
ducting logic can naturally compute directly over temporal
relationships between pulse arrivals, that the computational
relationships between those pulse arrivals can be formalized
through a functional extension to a temporal predicate logic
used in the verification community, and that the resulting
architectures can operate asynchronously and describe real
and useful computations. We verify our hypothesis through
a combination of detailed analog circuit models, a formal
analysis of our abstractions, and an evaluation in the context
of several superconducting accelerators.
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1 Introduction

Superconductivity is the phenomenon wherein the electrical
resistance of a material disappears as it is cooled below a
critical temperature. Computing with such superconducting
materials offers the promise of orders of magnitude higher
speed and better energy efficiency than transistor-based sys-
tems [11]. Unfortunately, while there have been tremendous
advances in both the theory and practice of superconducting
logic over the years, significant engineering challenges con-
tinue to limit the computational potential of this approach.

In contrast to semiconductor logic, where logic cells are
combinational and their output is (to first order) a pure func-
tion of the levels of all the inputs present at any time, the
majority of Single Flux Quantum (SFQ) logic ! gates are se-
quential and operate on pulses rather than levels. Because
pulses travel ballistically rather than diffusively through a
channel, once they have transited there is no “record” of
their value that can be used in downstream computations.

ISFQ technology and its variants have been dominant in superconductor
digital technology for more than three decades with verified speeds of
hundreds of GHz for simple digital circuits [4].
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Implementing a chain of Boolean operations thus requires
the very careful layout and synchronization of timing along
each and every path with picosecond-level precision [27].

While some of the challenges in adopting such a novel
technology are inherent to the nature of the exotic materials
and environment, others appear to be due to a mismatch
between our computational abstraction and what the de-
vices actually provide. Because most superconducting logic
designs rely on discrete voltage pulses driven by the trans-
fer of magnetic flux quanta, supporting the combinational
abstraction provided by traditional logic requires significant
design effort and results in unavoidable overheads. If we in-
stead think about these pulses as the natural representation
of data in a superconducting system, the natural language
for expressing computations over that data would be one
that could precisely and efficiently describe the temporal
relationships between these pulses. Here, we can draw upon
two distinct lines of research, both currently disconnected
from superconducting.

First, recent work has shown that delay-based encoding
has both impressive computational expression and practi-
cal utility in implementing important classes of accelera-
tors [19, 33] — not to mention the interesting connections
to neurophysiology discovered by J. E. Smith [25]. The prin-
ciples of the delay-coded logic described in that prior work
apply directly to problems in superconducting. However,
the fact that its primitive operators have been so far imple-
mented only in CMOS under specific assumptions - e.g.,
edges are used to denote event occurrences — makes their re-
alization in the much different RSFQ technology potentially
challenging.

Second, we can leverage the long history of work in tem-
poral logic used for expressing temporal relationships in
reasoning and verification. While temporal logic systems
(e.g. Linear Temporal Logic) deal with the relationship of
events in time, they are fundamentally predicate logics that
allow one to evaluate truth expressions (True / False) over
some set of temporal relationships. We instead need a tem-
poral logic with computational capabilities that takes events
as inputs and creates new events as outputs based on the
input relationships.

To explore these issues we present a new computational
temporal logic (which in fact subsumes LTL) that gives clear,
precise, and useful semantics to delay-based computations
and relates them to existing temporal logics. This approach
allows us to trade implementation complexity for delay, re-
alize superconducting circuits that embody this new logic,
and create useful new architectures based on these building
blocks that encapsulate the potential of those circuits. To
the best of our knowledge, this is the first time that tempo-
ral logic is used to specify computations. Overall, the main
contributions of this paper are:
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e We extend classical temporal predicate logic to a com-
putational temporal logic to formally express delay-
based computations. This extension provides the needed
abstractions to capture the capabilities of our new op-
erators and it sets the foundation for the construction,
analysis, and evaluation of large-scale temporal sys-
tems.
We design circuits that implement these primitive tem-
poral operators in RSFQ and evaluate their functional-
ity and performance with SPICE-level simulations.
We describe a way of combining these temporal opera-
tors into larger self-timed superconducting accelerator
architectures. Our data-driven self-timing approach
enables the operation of our RSFQ designs without the
need of clock trees even in the most general case.
We validate our hypothesis through (a) a functional
verification of three RSFQ accelerators at the SPICE
level, (b) a performance comparison between our su-
perconducting designs and their CMOS counterparts
— showing more than an order of magnitude perfor-
mance improvements — and (c) a timing analysis neces-
sary to identify timing constraints that may affect the
design flow of superconducting temporal accelerators.
e We open-source % our temporal primitives and accel-
erator designs for quick use and reference.

2 Background
2.1 Computing with Superconductors

Superconductivity was discovered in 1911 by K. Onnes, who
observed that the resistance of solid mercury abruptly disap-
peared at the temperature of 4.2K [14]. Four decades later, D.
A. Buck demonstrated the first practical application of this
phenomenon - the cryotron [2] — and soon after, B. Joseph-
son established the theory behind the Josephson effect [24],
which led to the fabrication of the first Josephson junction
(JJ) in the subsequent years.

A JJ is made by sandwiching a thin layer of non supercon-
ducting material — an electronic barrier — between two layers
of superconducting material. JJs are capable of ultrafast (as
low as 1ps), low-energy (to the order of 107'°]) switching by
exploiting the Josephson effect: electron pairs tunnel through
the barrier without any resistance up to a critical current. At
the critical threshold, a JJ switches from its superconducting
state to a resistive one and exhibits an electronic “kickback”
in the form of magnetic quantum flux transfer — observable
as a voltage pulse on the output. To enable stateful circuit
operation the unit of flux can be temporarily stored in a
composite device known as the superconducting quantum
interference device (SQUID), which is built as a supercon-
ducting loop interrupted by two serial JJs and is common to
many superconducting circuits.

Zhttps://github.com/UCSBarchlab/Superconducting-Temporal-Logic



Session 5B: Exotic architectures — Keep architecture weird!

Over the years, several ambitious designs of superconduct-
ing ALUs [29, 30] and microprocessors [1, 7, 34] have been
presented in an effort to capitalize on the promise of super-
conductors [12]. The majority of these implementations are
primarily based on simplified architectures, bit-serial pro-
cessing, and on-chip memories realized with shift-registers.
Bit-serial processing has been selected over bit-parallel ap-
proaches due to its lower hardware cost and complexity.
However, this design choice compromises the advantage
speed of SFQ technology [4] as the number of execution
cycles per instruction increases with the number of bit slices.
Moreover, the use of shift register-based memories - given
the lack of dense, fast, and robust cryogenic memory blocks
- seems to be the only reasonable choice at the moment; still
not a viable solution though for large-scale designs °.

More recently, interest has increased in the development
of superconducting computing accelerators. As stated by S.
S. Tanu, et al. [31], due to the lack of sophisticated design
tools and the limited device density and memory capacity in
superconducting technology, applications with tiny work-
ing set sizes and high computational intensity are ideally
suited for JJ-based accelerators. As a proof-of-concept, the
authors developed an RQL-based accelerator for SHA-256
engines, achieving 46X better energy-efficiency than CMOS.
To improve the critical path and the overall energy efficiency
of their implementation, the optimization focus was on the
two most critical components of the SHA engine: adders and
registers. However, no answers were given to questions of
more general interest.

Another promising effort is the stochastic computing-
based deep learning acceleration framework presented by R.
Cai, et al. [3]. The authors of this work took advantage of
stochastic computing’s time-independent bit sequence value
representation and the small hardware footprint of its oper-
ators to redesign the basic neural network components in
AQFP and were able to achieve orders of magnitude energy
improvements compared to CMOS. However, the known
drawbacks of stochastic computing [21] (e.g., the calcula-
tion accuracy, expressiveness, and performance of stochastic
computing circuits depend on the length and correlation of
the used bit-streams) raise a number of questions regarding
the suitability and efficiency of this method for more general
tasks or for precise computing applications.

While these implementations succeed at demonstrating
the potential of superconducting computing, the question of
“what a more general superconducting design methodology
would look like?” is still pending. To get a better understand-
ing of the reasons that make superconducting computing so
challenging a good idea may be to take a step back and look

3State-of-the-art RSFQ processor implementations assume 256-bit on-chip
memories [1]. However, even relatively small changes in their size can lead
to a significant increase in access delay and JJ count [28] making them
impractical for real-world applications.
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closer at the fundamentals of this technology as well as its
main differences from CMOS [16, 17].

In contrast with CMOS, where an “1” is represented by
a steady voltage level in hundreds of millivolts, in SFQ,
picosecond-duration, millivolt-amplitude pulses are used.
Moreover, SFQ comes with a different set of active (JJs) and
passive (inductors) components and interconnection struc-
tures (Josephson Transmission Lines and Passive Transmis-
sion Lines) than CMOS. Clock distribution and synchroniza-
tion are also major concerns [10] as each Boolean SFQ logic
gate has to be driven by a synchronous clock and all input
pulses need to be aligned.

Given the difficulties that existing approaches face and the
unique characteristics of superconducting technology, the
most promising way forward is to come up with innovative
computing paradigms and circuit architectures that (a) use
much fewer JJs than transistors for the same information
processing, (b) have low memory requirements, (c) allow for
easier clocking, and (d) can cover a wide range of applica-
tions [32]. Race logic provides exactly this opportunity.

2.2 Race Logic

The core idea behind race logic [19, 33] is to encode infor-
mation in the timing of events rather than the amplitude of
voltage levels. Events are represented by low to high edges
and computation emerges through the purposeful interac-
tion of these edges and their relative delays. The time it takes
for an event to appear on a wire is what encodes the value.
Thus, only a single wire is required per variable.

(i) (i) (iii) (iv)
X
D D
y clk
rst
(v)
t=0 1 2 3 4 5
x=2 | 1 1 1
y=3 |
mintoy) | | T
max(x,y) | ? | ? !
S 2) | i § ! | !
inh(y, x) |
inh(x, y) | ‘ |

Figure 1. Panels (i), (ii), (iii), and (iv) show the implemen-
tation of MIN, MAX, ADD-CONSTANT, and INHIBIT functions
in race logic with off-the-shelf CMOS components. Panel (v)
provides an example waveform for x = 2 and y = 3.

The operators forming the foundation of race logic are
MiN (FIRSTARRIVAL), MAX (LASTARRIVAL), ADD-CONSTANT
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(DELAY)*, and INHIBIT . Figure 1 shows the implementation
of these four primitives with off-the-shelf CMOS compo-
nents. Prior to the next computation, race logic-driven cir-
cuitry must be reset.

Regarding its applicability, race logic yields a complete
implementation of space-time algebra [25, 26], which pro-
vides a mathematical underpinning for temporal processing.
Any function that satisfies the properties of invariance and
causality complies with space-time algebra, and thus it is
implementable in race logic. In the past, A. Madhavan, et
al. [19] used race logic to implement Needleman and Wun-
sch’s popular DNA sequence algorithm. M. H. Najafi, et
al. [23] demonstrated a low-cost bitonic sorting network cir-
cuit using temporal processing. G. Tzimpragos, et al. [33]
applied race logic to accelerate ensembles of decision trees,
while J.E. Smith [25] explored the relationship between tem-
poral codes and spiking neural networks.

Besides its promises though, the implementation of this
new paradigm, where the order of events occurrence defines
computation, is currently tied to specific assumptions and
the properties of the underlying CMOS technology, which
in some cases may restrict innovation. For example, as dis-
cussed above, when edges are used for event representation,
Min and Max functions can be realized with plain OR and
AND gates. What happens though when edges are replaced
by pulses, as in the superconducting case? To answer this
question and establish a theoretical foundation that will al-
low us to better understand how processing in the temporal
domain can unlock the true potential of emerging technolo-
gies we proceed with this logic’s formalization.

3 Formalization

Computing based on temporal relationships departs from the
traditional binary encoding and Boolean logic, and provides
a promising pathway for unlocking the true potential of
emerging technologies. However, to make this computing
paradigm a viable solution the first question that we should
answer is “what abstractions do we need to establish in order
to capture its capabilities, verify the correctness of temporal
implementations independently of underlying assumptions
and technology properties, and build more complex temporal
circuits in a systematic way?”.

To solve this problem and set the foundation for the design
and evaluation of large-scale temporal systems, in this sec-
tion, we provide formal definitions of its primitive operators

4We assume that smaller delays in rise time encode smaller magni-
tudes, while larger magnitudes are encoded as longer delays. In the
case where shorter delays represent larger magnitudes, FIRSTARRIVAL
will stand for Max, LASTARRIVAL will serve as MIN, and DELAY as
CONSTANT SUBTRACTION.

5The INuIBIT function has two inputs: an inhibiting signal and a data sig-
nal. If the data signal arrives first, it is allowed to pass through the gate
unchanged. Otherwise, the output is prevented from ever going high, which
corresponds to oo in the race logic world.
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and constraints through an extended temporal logic capable
of concisely expressing delay-based computations.

3.1 Computational Temporal Logic

Space-time algebra [25, 26] defines the primitive operators
of generalized race logic over the set of Natural numbers,
and thus provides a high-level abstraction to the event-based
computation happening at the circuit-level. This abstraction
may in some cases be useful for functional interpretation
or synthesis; however, it cannot capture lower-level details
that may be critical for the hardware implementation and
reasoning of such systems. Our aim is to build a formalization
that covers this gap and safely decouples functional from
implementation specifications.

Temporal logic is a tool commonly used for represent-
ing and reasoning about propositions qualified in terms of
time; e.g., an event in a system S has happened or will hap-
pen some time in the past or future. A system S transitions
through a sequence of states in time, where each state S; is
associated with a time step ¢ belonging to a discrete time
domain. Properties are then expressed as formulas and are
evaluated along such sequences of states. Formulas are con-
structed recursively from propositional atoms by applying
usual propositional connectives =, V, A, —, <> and the addi-
tional temporal logic operators discussed below.

In the well-established setting of Linear Temporal Logic
(LTL), the future-time temporal operators are used: ¢ some
time in the future, [ | always in the future, O next time (to-
morrow), W until, and R release. Past LTL (PLTL) extends
LTL with past-time operators, which are the temporal du-
als of the future-time operators, and allows one to express
statements on the past time instances, such as:  sometime in
the past, B always in the past (historically), @ previous time
(yesterday), S since, and T trigger [5, 9, 15]. Even though the
past-time operators do not add expressive power in the sense
that any LTL formula with past operators can be rewritten by
only using the future-time temporal operators, the past-time
operators are particularly convenient in practice; they allow
us to keep specifications more intuitive and easy to com-
prehend, and they can provide significantly more compact
representations than their future-time counterparts.

Each operator operates on a sequence of states, which
defines a discrete interval of timesteps — the scope of the
operator. We categorize these temporal operators based on
their scope at time step t as follows:

e remote past operators ¢, B, S, T — their scope is [0, ];

o immediate past operator @ - its scope is {t — 1}, or
the empty interval if t = 0;

e present operator (all propositional connectives) — its
scope is {t};

o immediate future operator O - its scope is {t + 1};

o remote future operators ¢, [ |, U, R — their scope is
(£, c).
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The scope of an arbitrary formula ¢ is defined recursively
based on the scopes of the operators in ¢ and the given time
step t.

In LTL, the notation (S, t) is used to signify a system S at
time step ¢t. We say that an event ¢ occurs at time step t in the
system S, if ¢ holds at time step ¢ in S, denoted by (S, t) |= ¢.
In this paper, we primarily rely on the formal semantics of
the ¢ operator (sometime in the past):

Sty E ¢ if Fk.(0<k<tA(Sk)|EP
This definition reads as: the temporal formula ¢¢ holds at
time step ¢ in the system S if and only if there exists a time
step k prior or equal to t when the formula ¢ holds. However,
this operator is incapable of encapsulating when ¢ held in the
past, which is essential for our case. To address this issue, we
introduce the earliest-occurrence function described below.

Let oo be a special symbol that represents an unreachable
time step; in other words, oo indicates the lack of an event
occurrence in a period of interest. The earliest-occurrence
function & s )(¢) receives as input a formula ¢ and returns
the earliest time step tin € [¢]l(s,¢), Where [¢]](s,s) is the
scope of ¢ at time step ¢ in the system S, such that (S, t,,in) =
¢.1f ¢ does not hold at any time step within [¢] (s (), then the
earliest-occurrence function returns co. The formal definition
of this function follows:

tmin (tmin € [[QZS]] (S,t)) A (S, tmin) F ¢) A
Es,n(g) = A (Yj.0 < j < tmin : (S; tmin) [ ¢)
00, otherwise.

The proposed function is paired with the existential prim-
itives of the classical temporal logic, extends the notions of
“some time in the past” and “some time in the future” with the
notion of “when” an event occurred, and it is fundamental
for the connection of our event-based formalization, which
we present next, with the existing space-time theory.

3.2 Race Logic Semantics

According to space-time algebra [25, 26], FIRSTARRIVAL (FA),
InHIBIT (I5), and DELAY (D) operators are functionally com-
plete for the set of space-time functions. In prior work, the
functionality of these operators at the event-level has been
primarily described through their realization with off-the-
shelf CMOS components under the assumption of an edge-
based delay encoding. In this work, we decouple for the
first time their specification from their implementation and
provide a formal definition, presented in Table 1, using the
above-described computational temporal logic. Moreover, be-
sides these three basic operators, we provide definitions for
LasTARRIVAL (LA) and CoincipeNcE (C) operators, which
have been widely used in a number of accelerators.
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Table 1. PLTL-based semantics of the operators
FirsTARRIVAL (FA), StrictInHIBIT (Is), Deray (D),
LAsTARRIVAL (LA), and CoincipeNce (C).

(S, 1) |E FAQy iff (S,t) |=epV ¢y

(S,1) = ylsg iff Tk. (0 <k <tA(Sk)|E A
(S,t) |E De¢p iff Fk. (0 <k+c<tA(Sk+c)l ep);
(S,t) = LAg¢y iff (S,t) |= ¢4 A &Y;

(S,t) E Coy iff Fk.(0<k <tA(S k) EPAY)A

AVj(0 <j <k A(S,)) [E 4PV )

Informally, Table 1 reads as follows:

o FA: the formula FA¢y holds at time step ¢ in system S
if and only if either ¢ or ¢ hold at time step ¢ or prior.

o Ig: the formula yIs¢ holds at time step ¢ in system S
if and only if there exists a time step k prior or equal
to t when ¢ holds and i/ does not hold at this and any
prior time steps.

e D: the formula Dc¢ holds at time step ¢ in system S if
and only if there exists a time step k + ¢ prior or equal
to t when ¢ holds at this (¢ = 0) or any prior time steps
(c #0).

o LA: the formula LA¢y holds at time step ¢ in system
S if and only if both ¢ and ¢ hold independently at
time step t or prior.

e C: the formula C¢y holds at time step ¢ in system S
if and only if there exists a time step k prior or equal
to t when both ¢ and ¢ hold simultaneously and there
are no prior time steps where either ¢ or ¢ hold.

These definitions provide a PLTL-based specification of
the basic race logic operators over temporal events; however,
they will always return a proposition: True or False. To ex-
tract the step at which these functions evaluate to True for
the first time in their scope the above-introduced earliest-
occurrence function &g ;y(¢4) has to be used. For example,
&Es,1y(FA¢Y) will return the first time step that either ¢ or
¥ hold.

In a nutshell, the presented formalism, along with the
proposed extension to the classical temporal logic: (a) guar-
antees that the specification of our operators is independent
of any underlying assumptions; e.g., pulse- vs edge-based
encoding, (b) bridges the gap between the high-level defini-
tions provided by space-time algebra and the event-based
computing happening at the implementation level, and (c)
opens up the door to the use of model checking tools for
the formal analysis, validation, and optimization of more
complex temporal circuit designs.

4 Superconducting Temporal Architecture

The mathematical formalism raised in Section 3 lays the
foundation for building and verifying the desired temporal
operators. In this section, we first describe their implemen-
tation in RSFQ, then we present the corresponding circuit
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simulation results, and finally we propose a self-clocked
RSFQ architecture that alleviates the clock distribution and
skew problems met in traditional digital designs ported from
CMOS to the RSFQ world.

4.1 Temporal Primitives in RSFQ

The way in which events are encoded plays a critical role in
selecting the hardware that most efficiently implements logic
operators. For example, given the conventional rising edge-
based realization of events, FIRSTARRIVAL and LASTARRIVAL
functions can be implemented with a single OR and AND
gate, respectively. As shown in Figure 1, an OR gate fires
when its first high input arrives, while an AND gate fires
only when all its inputs are “1”. An important property of
edge-based event encoding is that it automatically keeps
track of the input state at all times - a signal that has made a
transition from a “low” to “high” state will not make a tran-
sition back to a “low” state in the same computation. This
feature breaks down when dealing with pulses. Pulses natu-
rally return back to their “low” state, preventing downstream
nodes from implicitly knowing the state of its predecessors.

To address this issue we propose embedding the state into
each gate, instead of relying on the input to “hold” state for
us. Interestingly, the majority of RSFQ elementary cells have
both logic and storage abilities [18], and thus they provide
several unique design opportunities. In Figure 3, we present
the schematics of our circuit designs, along with Mealy ma-
chines describing their operation, and WRSPICE [13] simu-
lations showing their functionality. A detailed description of
their implementation also follows.

According to its formal definition, the FIRSTARRIVAL gate
FA emits an output pulse when its first input arrives. For
its implementation in RSFQ, a MERGE element along with a
D rrIp-FLOP are used — Figure 2 (i) and Figure 3 (i). A MERGE
element can be thought of as a non-latching OR gate that
produces an output SFQ for each incoming pulse from any
of its input ports. However, in race logic, at most one event
is allowed to occur per “wire” across the entire computa-
tion. To ensure that all but the first arriving pulses will be
filtered out a D FLIP-FLOP has to be used. A D FLIP-FLOP is
built around a direct current (DC) SQUID and has two sta-
ble states: Init and Loaded, which correspond to the lack or
presence of a flux quantum, respectively. When a data signal
arrives at its input port the latch switches to/remains in the
Loaded state and returns to the Init state only when a clock
signal is received. When transitioning from Loaded to Init
the flux quantum stored in the quantizing SQUID loop is
released; thus, an output pulse is emitted and the quantizing
loop gets cleared. While in state Init, a clock pulse will not
cause any state change or output activity. So, to achieve the
desired functionality a reset signal rst is connected to the
D rLIp-FLOP’s data “in” port, while the output of the MERGE
element plays the role of the clock signal.
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(i) (ii)

rst

— FAGY
A ¢

¢ Jrene

Figure 2. Panel (i): FIRSTARRIVAL gate is built out of a
MERGE element and a D FLIP-FLOP; a reset signal rst is con-
nected to the D FLIP-FLOP’s data input, while the output of
the MERGER serves as its clock signal. Panel (ii): to implement
INHIBIT a latching INVERTER is used; the data signal ¢ serves
as the INVERTER’s clock signal and the inhibiting signal i as
its data signal.

eI

The INHIBIT operator I receives two input signals: one
for the inhibiting signal i and one for the data signal ¢. As
described in Section 2.2, an output pulse is emitted only if
¢ arrives before 1. To implement INHIBIT in RSFQ we use a
single INVERTER — Figure 2 (ii) and Figure 3 (ii). According
to the INVERTER’s specification, if a data pulse arrives, the
next clock pulse reads out “0”; otherwise, it reads out “1”.
Thus, if we route signal ¢ to the inverter’s clock port and ¢
to its data port, this component will act exactly as an INHIBIT
operator in our logic.

In traditional SFQ circuits, Josephson Transmission Lines
(JTLs) are commonly used for the interconnection of logic
cells over short distances. More specifically, a JTL is a se-
rial array of superconducting SQUIDs and operates in the
following way. Because magnetic flux cannot be absorbed
or dissipated by a superconducting circuit, an incident flux
quantum is only allowed to pass along the JTL, and does so by
switching each JJ in turn. In our case, these interconnection
structures are not used just for pulse transmission purposes
but also realize our DELAY operator D — Figure 3 (iii). As
described in Section 2.2, delaying a race logic event by a
fixed amount of time corresponds to CONSTANT ADDITION.

For the implementation of the LASTARRIVAL gate, a C-
element is used - Figure 3 (iv). A C-element has two input
ports and consists of two SQUIDs. In the circuit’s initial
state, no persistent superconducting current is present in the
quantizing loops. When an input arrives, the corresponding
junction gets triggered but the generated pulse is not suf-
ficient to trigger an output pulse. When the second input
pulse arrives, the total current exceeds the threshold of criti-
cality, an output pulse gets emitted, and the element returns
to its initial state. The order of input pulse arrivals does not
matter.

Finally, a COINCIDENCE gate is supposed to fire only if its
inputs arrive “simultaneously”. In edge-based implementa-
tions, a COINCIDENCE gate is composed of FA, LA, I ,and D
gates. In the pulse-based superconducting logic though, a sin-
gle RSFQ AND gate is all needed to implement COINCIDENCE
- Figure 3 (v). As known, an RSFQ AND gate produces an
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output pulse only if both its input pulses arrive within the Area and latency results for each of these operators are pro-

same cycle; thus, it performs in an easy way the desired vided in Table 2. The shown estimates are based on our WR-

functionality. SPICE [13] simulations using the MIT-LL SFQ5ee 10 kA/cm?
process.
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Table 2. Area and latency results for our temporal operators
implemented in the MIT-LL SFQ5ee 10 kA/cm? process and
simulated with WRSPICE [13].

Function | Area (#JJs) | Latency (ps)
FA 10 13
I, 8 11
D 2/JTL 5/JTL
LA 6 8
C 11 9

4.2 Self-clocked Temporal RSFQ Circuits

Clocking and synchronization are two of the most critical
concerns and limitations in the design process of an RSFQ
design. The majority of RSFQ Boolean gates are sequential in
nature. Hence, each gate in a Boolean RSFQ circuit needs to
be synchronized with all other gates and the clock network.

The complexity and overhead introduced by the clock net-
work are far from negligible, primarily because an additional
SPLITTER is required for each latched gate for clock fan-out®.
These additional SpLITTERs affect a design both in terms
of area (3 JJs per element) and speed (each SPLITTER intro-
duces a delay on the order of a single JTL), while they also
contribute to a higher static and dynamic current [10, 27].

Moreover, device variations can promote disproportionate
clock timing skews, which can critically affect the function-
ality of a Boolean RSFQ design; all pulses between a gate
and each of its fan-in gates must arrive in the same clock
cycle (as defined by the clock network). To mitigate these
issues, advanced path-balancing techniques and customized
RSFQ logic synthesis tools are needed.

In our superconducting temporal logic, many of these con-
cerns are naturally alleviated as FIRSTARRIVAL, INHIBIT, and
DE1rAY, which form the minimal functionally complete opera-
tor set, are asynchronous - the “clock” signal of the latching
building blocks used for their realization has been repur-
posed, as described in Section 4.1. However, in some cases,
such as COINCIDENCE, the use of a synchronous gate/block
makes sense. To avoid costly clock trees and the clock skew
problems that come with them, we propose a data-driven
self-timing scheme.

In a data-driven self-timed (DDST) system, timing infor-
mation is carried by data. Z.J. Deng, et al. [6] explored for the
first time such an idea, targeting binary RSFQ circuits, more
than two decades ago. In their solution, data are carried by
complementary signals, generated by using complementary
D flip-flops; two parallel lines are required for each bit. The
clock signal is generated by a logical OR function between
these lines. Because each functional block is now locally
clocked, there is no need for a global clock network. There-
fore, the system becomes more robust to process variations

®RSFQ logic gates have by default only one fanout.
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and has better control over clock timing 7. Besides its advan-
tages though, this idea never really took off due its high cost;
the method introduces a significant overhead for routing as
well as additional circuitry for generating complementary
signals for each logic gate.

Asynchronous system P

Async/Sync | din0
Logic ~
Async/Sync | din1
Logic N

Figure 4. Proposed data-driven self-timing (DDST) scheme.
The clock signal can be locally generated from input data at
each gate. If no input pulse arrives, it is safe to assume the
operator idle, and thus no clock pulse is required.

Synchronous A

N

-~ time

Our DDST method - shown in Figure 4 - targets temporal
rather than binary systems and is able to provide similar
benefits at a much lower “price”. In contrast to Boolean logic,
where for example a NoT gate has to be clocked even in
the absence of an incoming pulse, when processing in the
temporal domain, an operator can be safely considered idle
for the time steps that no input pulse arrives. Thus, comple-
mentary data are no longer required. This characteristic of
temporal codes significantly simplifies the implementation
of our DDST approach, reduces its area overhead, while still
allowing one to have the desired fine-grained timing control.

Resetting: Given the absence of an independent clock and
the stateful nature of RSFQ operators, resetting must also
be rethought. For example, an RSFQ INVERTER, which im-
plements INHIBIT, will not return to its initial state until a
pulse arrives to its clock port, while a C-element, used as a
LASTARRIVAL gate, will not reset until both its inputs arrive.

One possible solution is to add an additional reset signal to
Is and LA gates, merged with their input data signals; as can
be seen in Figure 3, the rest of our temporal operators return
to their initial state without the need for external signals.
This additional signal allows the immediate reset of such a
gate but it comes with additional circuitry too. For example,
the MERGER that has to be used in the case of INHIBIT Will
cost us at least 5 JJs, while the overhead in the case of a
LAsTARRIVAL gate will be much higher as the reset signal
must be forwarded to the input ports that have not received
a data pulse yet.

When such a reset signal is used, the target gate may
return to its initial state; however, in many cases an output
pulse is generated too. This output pulse propagates through

"Globally asynchronous, locally synchronous (GALS) clocking is a
commonly-used technique to mitigate timing variations across functional
blocks and reduce clock tree overhead in CMOS as well [8].
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Figure 5. LASTARRIVAL can be in one of the four states
shown in Panel (i). To reset this component both input pulses
a and b must arrive. Panel (ii) shows how a spacer period
can be used to avoid the interference between data pulses
associated with the actual computation and pulses generated
due to a reset signal.

the circuit in a downstream fashion and may affect the state
of other subsequent gates. So, resetting a deep temporal
circuit may have to be done sequentially — one stage of gates
at a time.

To avoid the interference of data pulses that relate to the
actual computation with the ones generated by resetting, a
spacer period will also be needed. Figure 5 illustrates this
scenario for a plain LASTARRIVAL gate. Once the “compute”
period ends, a reset pulse is sent to its input port b. Any
output pulse observed until the next compute period starts
should be ignored. If the LASTARRIVAL gate is connected to
other gates, the generated output pulse may also affect their
state even if they have already been cleared. So, resetting in
that case must happen step-by-step and the duration of the
spacer period will have to be adjusted accordingly.

An alternative method that we can rely on for resetting is
to adjust the amount of applied bias current; setting the ap-
plied bias current to zero will release the stored flux quanta
and return the gates to their initial states. This solution does
not require additional hardware and comes without the con-
cerns related to the propagation of reset-generated pulse.
However, it is still not “free”.

Choosing between these two options depends on the struc-
ture of the constructed circuit, possible resource constraints,
and the corresponding delay associated with each of these
methods.

5 Evaluation

In the previous sections, a framework for understanding the
proposed RSFQ-based temporal computing paradigm at the
logic, primitive gate, and device-levels has been presented.
We may now leverage this understanding to functionally
validate our design methodology through a number of accel-
erator designs. For the timing and functional validation of
the developed circuits, we first identify timing constraints
that affect the design flow and then provide corresponding
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SPICE-level simulation results. Finally, we compare their per-
formance against their CMOS counterparts, showing more
than an order of magnitude improvements.

Experimental setup: We perform our analysis based on
the open-source WRSPICE circuit simulator [13] using the
MIT-LL SFQ5ee 10 kA/cm? process. For our designs’ intercon-
nections, we use JTLs along with SPLITTERs (S) and MERGERs
(m) where required.

5.1 Timing Analysis

Computing based on temporal relationships is in many cases
naturally immune to noise as the final outcome often depends
on the interval or the order in which events occur and not
precise arrival times. Under conventional binary encoding,
an early or late pulse translates to a bit-flip and its effect on
the computation’s accuracy depends on the bit’s position.
Under delay representation though, a time-skewed pulse
may or may not affect the encoded value - in reality, an
interval rather than a specific time is used to represent a
value — and that may not even change the rank order of the
occurring events.

To ensure the robustness of our designs though we cannot
rely solely on the properties of our encoding and temporal
logic. Understanding the various timing constraints is critical
for reasoning about our circuits’ behavior and developing a
systematic way for the design of temporal RSFQ accelerators.
To address this concern, in the following, we first introduce
the required terminology for our timing analysis and then
proceed with the description of the timing constraints of
temporal circuits and the quantification of our primitives’
robustness to the timing skew of pulses.

Figure 6 provides an illustration of the main timing rela-
tionships between pulses in our architecture. Data-to-data
(tpzp) window represents the time difference between two
input data signals. Clock to Q (tc2p) denotes the delay be-
tween clock signal arrival and the occurrence of the output
event. The propagation delays of the SPLITTER and MERGER
are shown as f; and t,,, respectively. Finally, t;, represents
the setup time, which denotes the minimum amount of time
required between the arrival of data and clock signals, while
t. is the time window where input pulses are forbidden to
arrive [22].

To avoid setup time violations, tp,p has to be less than
tm — tsy if the two input pulses represent the same value. To
increase this time window, delay elements can be added after
the MERGER. In the case where two input pulses represent
two consecutive values (e.g. din0 = 2 and dinl = 3), tpap
has to be greater than t,, + t.. If tpyp is smaller than t,, + ¢,
either the second input pulse will get “lost” (timing violation)
or both pulses will be considered to represent the same value
(e.g. din0 = 2 and din1 = 2), which is incorrect.

Stretching the “valid” data time window of a cycle is possi-
ble with the use of additional JTLs; e.g., if we want the “valid”
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Figure 6. Illustration of the various timing constraints in
the case of synchronous temporal RSFQ blocks.

data time window of a cycle to go from 10 ps to 20 ps, four
rather than two JTLs have to be used for the realization of
D1¢. Obviously, this change comes at the cost of area (more
JTLs mean more JJs) and performance (each cycle will last
longer); but, it results in a much smaller chance of a pulse
getting lost in a synchronous component due to imprecision
associated with variability or noise. To better understand
and quantify the tolerance of our designs to time skew, we
perform a number of detailed SPICE-level simulations. These
simulations allow us to analyze the sensitivity of temporal
gates to pulses under various ¢paps.

As expected, imprecise pulses do not affect the correct
operation of FA, D, and LA, which are implemented with
MERGE, JTL, and C-element components; all of these circuits
are by nature clockless. The case of INHIBIT is of particular
interest though as although its clock signal has been repur-
posed, still the timing constraints described earlier apply.

Figure 7 provides simulation results of this case — Is¢
— for various tpzps: -5, 0, and 2 ps. As can be seen, if i
arrives 5 ps before ¢, the output of the INHIBIT gate remains
“0” (the correct value), while an output spike gets produced
for tpyp > -5 ps. So, if two input pulses representing two
different values are always more than 5ps apart, INHIBIT is
guaranteed to work as expected. However, if two variables
have the same value, D1x has to be greater than 5 ps and
the data input pulse ¢ may need to be delayed - so it will
appear towards the end of the assigned interval — in order
to avoid the occurrence of an undesired output pulse.

For the verification of more complex designs under timing
uncertainty, the formalism introduced in Section 3.2 can be
used. Besides model checking, with the help of the proposed
function &g ;)() events occurrences can be translated to
numbers and incorporated into an interval analysis. Such
an analysis is beyond the scope of this paper; however, we
foresee its potential for the reasoning of superconducting
temporal designs in noisy settings, where understanding
(and quantifying) how timing skews add up may be critical
for the correct behavior and efficiency of the system.
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Figure 7. Timing analysis for the INHIBIT gate.

5.2 Proof-of-Concept

As a proof-of-concept, we design and simulate temporal
RSFQ accelerators for (a) DNA sequencing, (b) decision trees,
and (c) arbitrary function tables. The temporal DNA se-
quencing algorithm was presented in the original race logic
paper [19]. Both synchronous [19] and asynchronous [20]
CMOS implementations have been demonstrated since then.
“Race” decision trees [33] are another interesting application.
Race trees demonstrate the utility of temporal logic to classifi-
cation problems. For the realization of their decoders the use
of a NOT gate is required; NOT is not one of temporal logic’s
primitives and its functionality in the temporal domain is
different than in Boolean logic. Finally, in contrast to these
two designs that are purely asynchronous, for the implemen-
tation of the circuit realizing an arbitrary function table [25]
the use of both synchronous and asynchronous components
is needed, providing a great opportunity to showcase the
effectiveness of our data-driven self-timing scheme.

5.2.1 Needleman-Wunsch Sequence Alignment

Needleman and Wunsch’s algorithm was one of the first
applications of dynamic programming to compare biological
sequences. The algorithm assigns a score to every possible
alignment and its purpose is to find all possible alignments
having the highest score. In more detail, the main idea behind
this algorithm is that initially a 2D grid will be constructed
out of two arbitrary strings P and Q - Figure 8 (i) — and then,
for each individual pair of letters a score will be chosen; each
operation — deletion, insertion, match — is associated with a
different directed edge, where each edge can have its own
score/weight.

In the algorithm’s temporal realization, each score asso-
ciates to a delay. Hence, the total time required for a single
“pulse” to propagate from the array’s input to the output
reveals the desired similarity score. The architecture of this
circuit can be generally thought of as a systolic array, where
each cell is implemented in RSFQ, as shown in Figure 8 (iii);
Figure 8 (ii) shows its CMOS implementation, as proposed by
A. Madhavan, et al. [19]. The penalties for deletion, insertion,
and match are in the shown example set to 1.
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Figure 8. Panel (i): 2D grid constructed following Needleman
and Wunsch’s algorithm. Panel (ii): schematic of CMOS unit
cell for the implementation of a DNA sequence alignment
temporal accelerator. Panel (iii): RSFQ equivalent circuit. P
and Q represent the two DNA strings to be aligned. If there
is a “match” the match circuit returns True; otherwise, it
returns False. The penalties/delays for deletion, insertion,
and match are set to 1.

In contrast to the synchronous CMOS case, where the
similarity score is incremented by one as the first arriving
pulse goes through a flip-flop, in our asynchronous RSFQ
implementation, D1x matches the propagation delay of each
unit cell. Thus, every time a pulse goes through a unit cell
the score will increment by one. To control the propagation
of a pulse across the diagonal, which should happen only
when a match occurs, a JJ is used. The switching operation is
performed by changing the value of the bias current applied
to the JJ; if the current is too low, an incoming RSFQ pulse
cannot cause the JJ to fire, which allows for the CMOS control
of the circuit.

(i)

olelo | -
c ) : |
c 3 Z\. 3 (2,2) i I .
T haN i x
ojrojea (3.3) . i,
(4,4) : 153 ps
(ii) ;
P —» in i : .
A C T
Q T (1,1)
G \‘? N e :
oleloloe 2.1) I,
A i e
o °
T N (32)
opejea |
(33) b,
| e
(44) | 192 ps

Figure 9. Shortest path and simulation results for a 3x3
DNA sequence alignment problem. Panel (i): P = ACT and Q
= ACT. Panel (ii): P = ACT and Q = GAT.
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Figure 9 shows WRSPICE simulation results for a 3x3
DNA sequence alignment problem. In Panel (i), P = ACT and
Q = ACT are compared. Considering that the two strings
perfectly match, the shortest path from the grid’s input to
output cell will be across its diagonal — consisting of four
unit cells — and results in a delay of 153 ps. In Panel (ii),
where the strings P = ACT and Q = GAT are compared, the
propagation delay of a pulse across the grid is 192 ps; the
shortest path now consists of five rather than four unit cells.
These results match our expectations; in our experiments,
the penalties for deletion, insertion, and match are set to 1
and correspond to a 38 ps delay - equal to the propagation
delay of each unit cell.
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Figure 10. Panel (i): schematic of an RSFQ MERGE element
realizing a stateless FIRSTARRIVAL gate. Panel (ii): WRSPICE
simulation results.

In some cases, where race logic constraints can be safely
relaxed, superconducting hardware can also provide a trade-
off space that enables optimization for select parameters,
such as area, latency, power consumption, and complexity
(which can play a role in the susceptibility of the circuit
to variability). One example of this can be employed in the
sequencing accelerator, in which a stateless FIRSTARRIVAL
gate — composed of just a MERGER, as depicted in Figure
10 — may be used as an alternative to the stateful version
presented above. The outcome is an accelerator with fewer
JJs (28 rather than 36 JJs are now required per unit cell) and
a ~14% lower latency. Corresponding simulation results for
the two example cases discussed above are shown in Figure
11.

More performance results and a comparison between our
RSFQ sequencing accelerators and their CMOS counterparts
can be found in Table 3.

Table 3. Estimated (best and worst) latency results for DNA
sequencing accelerator in both CMOS (0.5um) [19] and RSFQ.

Strings CMOS RSFQ Latency | Improv. w/ | RSFQ Latency Improv. w/
Length Latency w/ stateful FAs | stateful FAs | w/ stateless FAs | stateless FAs
40 50 ns - 100 ns 1.6 ns-3.1ns ~32X 14ns-27ns ~37X
60 75 ns - 150 ns 2.3ns-4.6ns ~32X 2ns-4ns ~37X
80 100 ns -200ns | 3.1ns-6.2ns ~32X 2.7ns-5.4ns ~37X

It should be noted that while replacing one or more of our
basic temporal RSFQ primitives with simpler ones may in
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Figure 11. Simulation results for a stateless implementation
of the sequencing accelerator depicted in Figures 8 and 9.
Panel (i): P = ACT and Q = ACT. Panel (ii): P = ACT and Q =
GAT.

some cases be appealing, it is not always safe. For example,
when using a plain MERGER as a FIRSTARRIVAL gate, more
than one output pulses may be generated, which violates
race logic’s constraint for the existence of at most one pulse
per “wire”. In the case of the sequencing accelerator, this
“relaxation” does not cause any malfunction. However, if, for
example, COINCIDENCE or INHIBIT gates followed a MERGE-
based FIRSTARRIVAL gate then the possibility of an error
exists; the first spike coming out of a FIRSTARRIVAL or a
DELAY gate is always valid, this is not the case though for all
gates. To verify whether such a replacement is safe or not
the formalism introduced in Section 3.2 can be used.

5.2.2 Race Trees

An ensemble of decision trees can be implemented in race
logic, as described by Tzimpragos, et al. [33]. In the case of
Race Trees, each tree node can be considered an independent
temporal threshold function and be realized with a single
INHIBIT operator.

Label [ Label ‘ Label |( Label
A JLse JL ¢ D

(i)

Figure 12. Panel (i): a decision tree with three nodes. Panel
(ii): temporal RSFQ implementation of that tree.

Figure 12 (ii) shows the RSFQ equivalent of the CMOS
implementation provided in the original paper - realizing
the decision tree shown in Figure 12 (i). For the design of
the “label” decoder, the use of a NOT gate is required. In
contrast to Boolean logic though, NOT is not a primitive
temporal operator. For its construction, we use INHIBIT and
an upper bound reference signal t,;,, which denotes the end
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of a specific time interval of interest (directly related to the
inputs resolution in this case). Hence, NOT will fire at t = t,,3,
if and only if the gate has received no input spikes from time
reference 0 until that moment.

(i) (i)

of A | ol A

x=2 4./‘ e | x=4 | .

i
y=3 A y=1 N\
tup=5 1N tup=>5 N

A A
B A B
c c A
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Figure 13. Panel (i): WRSPICE simulation results for x = 2,
y = 3, and t,; = 5. Panel (ii): WRSPICE simulation results
forx =4,y =1,and t, = 5.

WRSPICE simulation results are provided in Figure 13.
In the first case, inputs x and y are equal to 2 and 3, while
in the second one, x and y are set to 4 and 1. Moreover,
the upper bound reference signal t,;, is set to 5 and D1x
corresponds to a 25 ps delay. Associating a smaller delay with
D1x may be possible; however, our main goal in this paper
is to demonstrate the correct functionality of the design
rather than optimizing its performance. As expected, the
final outcome is Label B for the former and Label C for the
latter. The total latency is 150 ps and the design consists of
166 JJs.

More performance results and a comparison with its CMOS
counterpart can be found in Table 4.

Table 4. Estimated latency results for hardwired Race Trees
in both CMOS (f = 1 GHz) [33] and RSFQ (D1x = 25 ps).

# Trees | Depth | Inp. res. | CMOS RSFQ | Improvement
Latency | Latency
1 6 4 bits 17ns | 0.464 ns 37x
1 6 8 bits 257 ns | 6.464 ns 40%
1 8 4 bits 17ns | 0.490 ns 35%
1 8 8 bits 257ns | 6.490 ns 40x

5.2.3 Arbitrary Function Table

Finally, we implement in RSFQ the feedforward temporal
network previously presented by J. E. Smith [25].

Figure 14 (i) provides the specification of our example
feedforward temporal network. Considering that our func-
tion has three input variables and given the limited fan-in of
our basic operators, the main building block Cs (shown in
Figure 14 (ii)) of our architecture (shown in Figure 14 (iii))
will consist of two 2-ary COINCIDENCE gates; in contrast to
the original design, where COINCIDENCE consists of LASTAR-
RIVAL, FIRSTARRIVAL, INHIBIT, and DELAY gates, we opt for
the AND gate-based implementation described in Section 4.1.
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Figure 14. Panel (i): specification of an example function
table. Panel (ii): Block diagram of a self-timed 3-input Co-
INCIDENCE gate . Panel (iii): Block diagram showing our
accelerator’s architecture. Panel (iv): WRSPICE simulation
resultsfora=0,b=1,and c = 2.

For its clocking, we apply the data-driven self-timing scheme
proposed in Section 4.2. To successfully handle time-skewed
inputs a delay § = 10 ps is introduced after each MERGER.
A delay element &’ is also used to balance the delays of the
two parallel paths that feed the second COINCIDENCE gate.

Simulation results can be found in Figure 14 (iv). In our
simulation, D1x is set to 50 ps and the inputs provided are
a=0,b=1,and c = 2. As expected, a spike will appear at
the output of the upper block my, colored in red, at t = 209
ps and will go through the succeeding 3-input FIRSTARRIVAL
gate (stateless rather than stateful FIRSTARRIVAL gates are
used again); the propagation delay of Cs is 60 ps, so if we
subtract that from the total delay we will end up with 149 ps
of delay which corresponds to the desired value 3. No spikes
will come out of the other two “blocks”, colored in blue and
green, corresponding to two bottom entries of the function
table. Our circuit design consists of 565 JJs and its latency is
219 ps.

6 Conclusion

Superconducting SFQ technologies are a promising candidate
for high-speed and ultralow-energy operation for certain
classes of computation. Though both the underlying physics
and basic circuit technologies are well understood, many
hurdles remain before larger computations can enjoy the
benefits of superconducting materials.

While some of the challenges ahead are fundamental to
the device physics of superconducting, it is also important
to realize that the traditional logic abstractions and digital
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design patterns we understand so well have co-evolved with
the hardware technology that has embodied them. As we
look past CMOS, there is no reason to think that those same
abstractions best serve to encapsulate the computational
potential inherent to emerging devices. Computational ef-
ficiency is always lost through abstraction, yet successful
abstractions will keep the most useful aspects of a system
while simultaneously enabling composition, scale, optimiza-
tion, and verification.

In this paper, we demonstrate a new foundation that bridges
the gap between the level-driven logic traditional hardware
designs accept as a foundation and the pulse-driven logic nat-
urally supported by the most compelling superconducting
technologies. The key to this new foundation is the harmo-
nious interaction between three different areas of work -
superconducting logic, temporal predicate logic, and delay-
based codes. We show that superconducting logic can nat-
urally compute over temporal relationship between pulse
arrivals, we formalize and provide implementation circuits
for fundamental operators in temporal logic, we propose
an asynchronous data-driven self-timing scheme, and we
perform a timing analysis to identify timing constraints that
affect the design flow of superconducting temporal accel-
erators. Finally, to validate our hypothesis we implement
three temporal accelerators in RSFQ and compare their per-
formance against their CMOS counterparts, showing more
than an order of magnitude improvements.
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