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Abstract—The post-Moore era casts a shadow of uncertainty
on many aspects of computer system design. Managing that
uncertainty requires new algorithmic tools to make quantitative
assessments. While prior uncertainty quantification methods,
such as generalized polynomial chaos (gPC), show how to work
precisely under the uncertainty inherent to physical devices, these
approaches focus solely on variables from a continuous domain.
However, as one moves up the system stack to the architecture
level many parameters are constrained to a discrete (integer) do-
main. This paper proposes an efficient and accurate uncertainty
modeling technique, named mixed generalized polynomial chaos
(M-gPC), for architectural uncertainty analysis. The M-gPC
technique extends the generalized polynomial chaos (gPC) theory
originally developed in the uncertainty quantification community,
such that it can efficiently handle the mixed-type (i.e., both
continuous and discrete) uncertainties in computer architecture
design. Specifically, we employ some stochastic basis functions
to capture the architecture-level impact caused by uncertain
parameters in a simulator. We also develop a novel mixed-integer
programming method to select a small number of uncertain
parameter samples for detailed simulations. With a few highly
informative simulation samples, an accurate surrogate model is
constructed in place of cycle-level simulators for various archi-
tectural uncertainty analysis. In the chip-multiprocessor (CMP)
model, we are able to estimate the propagated uncertainties with
only 95 samples whereas Monte Carlo requires 5 x 10! samples to
achieve the similar accuracy. We also demonstrate the efficiency
and effectiveness of our method on a detailed DRAM subsystem.

I. INTRODUCTION

Designing a computer system in an era of rapidly evolving
applications and technology nodes involves many uncertain-
ties. Computer system design have been known to be sus-
ceptible to all sorts of uncertainties from device-level process
variations [1] to variations in application characteristics inside
a datacenter [2]. Of course there is a deep library of work
on quantifying uncertainty in architecture and system design
that has been particularly focused on device and circuit level
uncertainty [3—8] for us to draw upon, but as one moves up
the system stack from the device to the architecture level and
above many variables (e.g., cycles to satisfy an L1 cache miss
or the number of bits of error correcting to use) are constrained
to a discrete (e.g., integer) domain.

Quantifying uncertainty at the system level has been demon-
strated via some high-level analytic models [9], yet doing so
with detailed simulation is extremely challenging. On one
hand, Monte Carlo (MC) methods require a large amount
of data samples of the performance outputs due to its slow

convergence rate. The time cost associated with acquiring such
samples renders these techniques unsuitable when detailed
simulator is used instead of analytic models, where one
simulation sample usually costs minutes or hours (or even
up to days in some large-scale system simulations). On the
other hand, many advanced uncertainty quantification methods
such as generalized polynomial chaos (gPC), although highly
efficient, cannot handle the unique challenge of such a mixed-
domain (continuous and discrete) problem.

We demonstrate a new algorithm for accurate uncertainty
analysis in the context of computer system design by using
only a small number of detailed simulations. To achieve
this goal, we extend the generalized polynomial chaos (gPC)
method [10], which is a powerful technique developed in
the uncertainty quantification community. Due to its superior
convergence rate and orders-of-magnitude speedup over MC
in many applications, the gPC technique has been successfully
applied to electronic design automation problems. Existing
work includes fast stochastic modeling, simulation and opti-
mization for electronic integrated circuits [11-13], integrated
photonic devices and circuits [14], micro-electromechanical
systems [15] and so forth. However, all these techniques can
only handle analog behaviors/performance and only consider
continuous uncertain parameters.

Paper Contributions. In this paper, we develop a new
surrogate modeling technique, named mixed-gPC (M-gPC),
for accurate uncertainty analysis of computer system de-
sign. Our algorithm employs a mixed integer programming
method to handle mixed continuous and discrete uncertain
parameters with a small number of simulations. To verify
this theory experimentally in the context of computer system
design, we examine its application to both a closed-form chip-
multiprocessor (CMP) model and a detailed simulation-driven
DRAM subsystem. Our specific contributions include:

e We present a CAD framework for architectural un-
certainty analysis. Based on the given continuous and
discrete distributions of input uncertain parameters, our
algorithm automatically chooses the basis functions and
simulation samples to build an accurate surrogate model.

o We present the numerical algorithms of building basis
functions and choosing simulation samples. The key chal-
lenge is to decide a small number of highly informative
simulation samples required in the stochastic collocation
framework [16]. We formulate this problem as a mixed-
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Fig. 1. All named DRAM timings here are considered under the influence
of uncertainty (process variation). Note that the timings are not proportional
to real number of cycles in this figure.

integer programming (MIP), and present a hierarchical
decomposition method to efficiently solve it.

o We validate the proposed M-gPC framework by an ana-
Iytical CMP model and a realistic DRAM subsystem. Our
framework shows significant speedup and high accuracy
on these two architectural analysis benchmarks.

II. ARCHITECTURAL UNCERTAINTY ANALYSIS
FRAMEWORK

We propose a M-gPC modeling method for computer ar-
chitectural uncertainty analysis. The basic idea is to use a
mixed-integer optimization method to select a few important
samples for both continuous and discrete uncertain parameters.
Then, an accurate stochastic surrogate model is constructed for
architecture-level uncertainty analysis after a small number of
detailed cycle-level simulations.

A. Problem Formulation and Overall Workflow

Problem Formulation. Given a computer architecture de-
sign case (e.g., a DRAM subsystem, see Fig. 1), let y(&) be
some uncertain performance metrics of interest, such as the
bandwidth or power. We use vector € = [£1,&s, ... ,§d]T € R4
to denote some model uncertainty parameters, such as the time
of one tick of clock (tCK), time precharge/recovery period
(tRP), and so forth. We assume that these parameters are
mutually independent, and each parameter &; admits a proba-
bility density function p;(&;). Please note that these uncertain
parameters can be either continuous or discrete. For instance,
tCK often obeys a truncated Gaussian distribution [17], and
tRP often follows a binomial distribution [18] due to the
process variations. Our goal is to quantify the uncertainty
of y(&) caused by &. Because each detailed cycle accurate
simulation is extremely expensive, we instead want to build
a surrogate model in the following form with only a small
number of simulations:

Y&~ > ca¥alé) )
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Here, ¥, (&) is a stochastic basis function indexed by vector
a, and p upper bounds the total order of the basis functions.

Overall Workflow. Before proceeding to the technical
details, we first describe our high-level workflow in Fig. 2.
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Fig. 2. Workflow of the architectural uncertainty analysis method.
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o Step 1: pre-processing. Based on the given distribu-
tions of uncertain parameters £ (which can be either
continuous or discrete), we need to specify a class of
basis functions {¥(&)}. We also decide a few highly
informative sample points and weights {&,, w; }}£,. Here
w; quantitatively describes the importance of sample &,.

o Step 2: small-data simulations. Given the carefully
selected parameter samples, we call a high-fidelity cycle
accurate simulator (e.g., the DRAMSim2 [19] for a
DRAM) to simulate sample &; for ¢ = 1,2..., M. The
repeated simulations produce a set of output performance
samples {y(&;)},. Because M is very small, these
detailed simulations can be done in a relatively short time.

« Step 3: post-processing. With {y(&;)}*, and the im-
portance of each sample, we will decide the weight vector
cq for each basis function in Eq. (1).

B. The Proposed M-gPC Method

Three questions need to be answered in the above workflow:

e Q1: How shall we decide the basis functions?

¢ Q2: How shall we decide the parameter sample &, and

weight w;, and the proper number of samples M ?

e Q3: How shall we post-process the data to get the

surrogate model (1)?

The first and third questions are already addressed in the
standard gPC method [10]. Given the probability density
function of each parameter, the gPC method selects a set of
orthornormal polynomials as the basis functions:

S & 128

Here the index vector ¢ = [a, ..., ag]T denotes the polyno-
mial degree of each uncertain parameter in the basis function.
As a result, the expansion (1) employs N, = (d;p) basis
functions in total. This choice of basis functions allows the
stochastic collocation method [10] to compute each unknwon
cq by a projection procedure:

2
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Here {&,,w;}M, are the quadrature samples and weights
that we need to determine. Once the surrogate model is
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Fig. 3. Example of mixed-integer programming-based quadrature for a discrete variable with distribution Binomial(10, 0.2) and another continuous one with
a truncated Gaussian distribution in the range (—2,2). The color bar of MIP quadrature represents the weights of all samples.

constructed, we can easily obtain the mean value and standard
deviation of the output performance via Eq. (4):

“4)

where all calculations are performed component-wise. We can
also obtain the histogram or probability distribution of y(&)
without calling the detailed cycle accurate simulator again.
The details of basis functions are given in Appendix A.

Sample and weight selection in M-gPC. However, ad-
dressing the second question is difficult. According to (3),
we need to choose a small number of samples and weights
to accurately estimate the numerical integration. Numerous
numerical integration rules (e.g., Gauss quadrature rule and
sparse grids [10]) are available for continuous variables, but
they cannot handle discrete variables. A naive choice is to
use all possible samples of a discrete uncertain variable, but
this leads to a huge number of simulation samples. In order
to address this issue, we develop a novel mixed-integer pro-
gramming method to generate a few high-quality quadrature
samples and weights. We defer the details of this approach to
Section III, and we first demonstrate this approach by a simple
example. We consider a problem with two uncertain variables:
the continuous one is truncated Gaussian in the range of
(—2,2), and the discrete one obeys a binomial distribution.
When choosing quadrature samples, the first variable can be
any value in the range of (—2,2), but the second one can only
take some integer values below 10. The results of our mixed
integer programming are shown in Fig. 3: only 12 samples
with different weights are generated.

III. PROPOSED MIP-BASED QUADRATURE RULE

This section presents our mixed-integer programming solver
to determine the quadrature points and weights {&;,w;}
required in Eq. (3). The quadrature samples are provided to a
cycle-level simulator for repeated simulations. Therefore, we
hope to make M as small as possible.

A. Optimization Formulation

Let Z = {i|& € Z} denote the index set of integer
parameters in £&. We propose to compute the quadrature points

and weights by an optimization-based method. Our method
differs from [20, 21]: our proposed method can handle both
discrete and continuous uncertain parameters, whereas [20, 21]
can only handle continuous uncertain variables.

Eq. (3) requires the integration of polynomials up to order
2p if y(&) can be well approximated by an order-p expansion.
Therefore, our optimization problem is set up by matching the
integration of basis functions up to order 2p. If |a| < 2p, then
there is a one-to-one correspondence between o and integer
k € [1, Ngp] where Nop, = (d + 2p)!/(d!)(2p!). We use the
scalar index for simplicity, and seek for {£;,w; }; such that

M
E[W(§)] = Z\I’k (&) wi, Yk € [Noy)

where w; > 0 and §; 7 € z*. Q)

Here, §; 7 = {&, ;}1e7 denotes all integer elements in sample
&,. Due to the orthonormal condition, we know E [Uy, (€)] =
E [V (&) V1 (§)] = 1.

As aresult, we solve {€,,w; } | via the following nonlinear
least squares

Iénin |®(E)w —ei]3, st w>0, & cZME (6)

where € = [6.6,,... &y]" € RV &7 = (€7},
w = [wl,wg,...,wM]T ERM e = [1,0,...70]T € RVep,
® (£) € RN>»*M with each elements [® (€)],. = ¥y (&)
There are M X (d 4+ 1) unknown variables in total, which can
be a large-scale optimization problem as d increases.

B. Hierarchical BCD for Solving Problem (6)

Eq. (6) is a large-scale mixed integer nonlinear program-
ming problem (MINLP) with M |Z| integers. We solve this
hard problem by a hierarchical decomposition method. Our
key idea is to simplify the original large scale MINLP into
several easier sub-problems.

We intend to employ a block coordinate descent (BCD)
method to solve the quadrature points and weights separately.
However, directly applying it to our mixed-integer case is
inefficient since the complexity of mixed-integer programming
grows exponentially with the number of integer variables [22].
In order to further speed up the algorithm, we separate the



Algorithm 1: Hierarchical BCD for solving (6)

Algorithm 2: MIP-based stochastic collocation.

Input: Initial points and weights, maximal outer iteration
Nomaz, and solver error tolerance .
Output: Optimized points and weights {§,, wi}i]\il;
for t =1,2,... ,npax do
for:=1,2,...,M do
Solve Ag, via Eq. (7);
L Update ith point via solving Eq. (8);
Update all weights via solving Eq. (9);

o 2
if H<I> (5 ) w! — e1H < ¢ then
2
| break; % converge

else ~
if || A&]|,, < 107® then
| break; % not converge

quadrature points into M blocks. Consequently, we only need
to solve a MINLP with |Z| integer variables for each sub-
problem. Our detailed framework is shown in Alg. 1.

In Alg. 1, we have an outer iteration ¢ and an inner iteration
i. In this case, only one sample is optimized in each inner
iteration, which only has d unknown variables. By applying
the Gauss Newton method, the original problem is converted to
a mixed-integer quadrature program (MIQP), which is much
easier to solve. Considering that the Jacobian matrix J can
be ill-conditioned, we adopt the Tikhonov regularization [23]
here to make the MIP solver more stable:

~ X 112
TPOAL + x| N Ag

min ‘
AE;

st. Ag 7€z (7)

; Ztxi—1
where r’*? = & (5

given the ith points under the (¢ x 4)th iteration and J:**
denotes the Jacobian matrix of r®*?, and ) is a regularization
parameter. Then we can update each quadrature point as

& =¢""+A¢, (8)

After one sample is optimized, we fix all the points and update
the weights via solving a linear least square problem:

w'** — e; denotes the residual

tXi . =t X1 2
w :argmmH(I)(ﬁ )w—elH )
w 2

In summary, we decompose the original large-scale MINLP
problem [Eq. (6)] to many linear least square problems [Eq.
(9)] and small-scale MIQP problems [Eq. (7)], which are much
more efficient to solve. The comprehensive algorithm is sum-
marized in Alg. 1. With the proposed MIP-based quadrature,
we can select a small number of samples to calculate the M-
gPC coefficients via Eq. (3).

C. Initialization and Number of Quadrature Points

In practice, a global optimal solution to problem (6) is
unnecessary: any solution with a high accuracy and leading

Output: The M-gPC coefficients {ca}‘po“=0

1: Initialize the quadrature points and weights;

2: Increase Phase. Update points and weights via Alg. 1.
If algorithm fails to converge, increase the number of
points and go back to last line.

3: Decrease Phase. Update points and weights via Alg. 1.
If algorithm converges, decrease the number of points
until it fails.

4: Call the simulator to obtain {y(éz)}fﬁ1

5. Calculate the M-gPC weight vectors via Eq. (3).

to a small number of quadrature points can be used to build
a M-gPC surrogate model with good performance. However,
choosing a good initial guess is important to ensure high
accuracy. We employ the weighted complete linkage cluster-
ing method [20] to generate the initial guess. Firstly, many
candidate samples with weights are randomly generated by
Monte Carlo. Then, they are clustered to a smaller number of
points. In this process, any two points with a minimal weighted
distance can be merged into one point sequentially until the
number of points achieves the initial setting. The weighted
distance between two sample points is defined as follows:

max

Dy = (w; + w;
o=ty (g,

d(§1,§2)) - (10
In order to properly determine the number of quadrature points
M, an increase-decrease module [21] is adopted. Firstly, we
increase M to ensure that (6) can be solved with a high
accuracy. Then, we decrease M and solve (6) to check if an
accurate quadrature rule can be found with fewer samples.
Integrating this module with our framework, the overall MIP-
based stochastic collocation method is summarized in Alg. 2.

We have the following remarks. Firstly, the CPU time of
the current hierarchical algorithm is negligible compared to
the CPU time cost by sample simulations, especially for low-
dimensional problems. Secondly, the theoretical guarantees
on the approximation error and on the number of quadrature
points in [21] still hold in our proposed MIP-based framework.

IV. CASE STUDIES
A. Analytical CMP Models

1) Uncertainties in Analytical CMP Models: Here, an
analytical CMP model in [9] is used to verify the proposed
architectural uncertainty analysis framework. A more general
heterogeneous core selection problem based on that of Hill
and Marty [24] is illustrated in Table I. In terms of uncertainty
description, the inputs parallelism of the application (f), com-
munication overhead among cores (c) and designed number of
each core on chip (Nore;) are discrete, while performance of
each type of core (Peore;) and yield,,.. are continuous. We use
the same uncertainty models described in previous work [9]
shown in Table II. Its parameter setting in a case of two cores
is shown in Table II.



TABLE I
CLOSED FORM OF CMP MODEL.

Speedup = 1/ (Tsequemial + Tparallel)
Tsequemial = (1 —f+ecx Ncore) /Pserial
Tparallel = f/Pparallel
Pyeria) = max {Pcnrei ‘Ncorei > 0}
Pparallel - Z Ncorei

1Ecore types
Pcorei =V AC()rei

Z Neore; X Acorei

i E€core types

Alota] =

TABLE 11
UNCERTAIN PARAMETERS SETTING IN THE CMP MODEL.

Uncertainty model
f~ Binomial (M, p)

Parameter setting
M =60, p=0.6
M =80, p=0.7
M = 20, yield = 0.7432
M = 20, yield,,, = 0.5739
po = 5.6569, op = 1.1314
pu1=38,01 =16

Acoreo =32 Acorel =64

Bi 'AI/I(JM )
inomia .p
c~ M

Neore; ~ Binomial (M, yield

coreq

core; )

Peore; ~ Truncated Gaussian (1, o, 0)

«

dX Acore; \ T
yiEchorei = (1 + Q)

Under such uncertain parameters, our task is to approximate
the moments and distribution of Speedup as close as possible
to estimate the propagated uncertainty in the model.

2) Numerical Results: The results of a 2nd-order M-gPC
model under different thresholds ¢ are shown in Table III. A
higher order leads to more accurate approximation, but order
2 already works well in this case. We can find that £ can
control the number of M-gPC samples and accuracy of the
performance. The results show that the algorithm performance
may be limited by a too large or too small €, but it performs
well with small samples in capturing the mean value and
standard deviation when ¢ ranges from 1072 to 1076, In
these cases, compared with the relative root mean square error
(RMSE) and relative mean absolute error (MAE) between the
M-gPC and MC are all around 0.03 and 0.02 respectively.
Especially, to achieve the same level of accuracy, the sample
number needed in a M-gPC model is much smaller than MC
methods. For example, if we take the results of 10° MC as the
ground truth, then 95 M-gPC simulation samples can already
achieve the same accuracy of 5x 10* MC samples in capturing
the mean value The histograms of ¢ = 10~° case under 10°
MC samples are illustrated in Fig. 4.

B. Uncertainties in Detailed Memory Subsystems

1) Experiment Setup: To faithfully capture the uncertainties
in a DRAM subsystem, we use the detailed DRAM simulator
DRAMSim2 [19]. We model the uncertainty parameter after
previous works [17, 18] as shown in Table IV (also see
Fig. 1). We run a collection of memory traces from SPEC
2017 benchmark suit [25] shown in Table V.

We also simulate a memory system with 1 memory channel
under the JEDEC standards with a 32-entry command queue
and a 32-entry transaction queue. For the DRAM itself, we

TABLE III
SPEEDUP PERFORMANCE OF DIFFERENT MODELS.

Sample  Mean Std RMSE MAE €
84 0.4353 0.1021 0.0418 0.0311 1le-2
85 0.4382 0.0974 0.0338 0.0231 1e-3
87 0.4380 0.0992 0.0306 0.0208 le-4
M-oPC 95 0.4376 0.0986 0.0306 0.0228 1le-5
g 123 0.4376  0.0987 0.0314 0.0233 le-6
179 0.4386 0.0982 0.0289 0.0205 1le-7
182 0.4387 0.0975 0.0294 0.0214 1e-8
1e3 0.4369 0.1011
5e3 0.4370  0.1002
led 0.4383  0.0995
MC  se4 04375 0000 VA NA L NA
le5 0.4377  0.0987
3500
I \\-gPC (95 simulations)
3000 [ Imc (10 simulations) E
2500 8
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Fig. 4. Histograms of speedup performance with e = 1075,

TABLE IV
UNCERTAIN PARAMETERS SETTING IN THE DRAM SUBSYSTEM.

tCK ~ Truncated Gaussian (y, o, 0)
tRCD ~ Binomial (M, p)
tCL ~ Binomial (M, p)
tRP ~ Binomial (M, p)
tWR ~ Binomial (M, p)

TABLE V
WORKLOADS AND SIMULATION TIME COMPARISON.

Workload Length of trace ~ MC time M-gPC time
600.peribench 46.8M ~15.1h ~4.5h + 12.5m
602.gcc 35 M ~8.8h ~2.6h + 12.5m
605.mcf 43.5M ~14.7h ~4.4h + 12.5m
623.xalancbmk 42.9M ~12.6h ~3.8h + 12.5m
625.x264 30.5M ~%h ~2.7h + 12.5m
631.deepsjeng 37.6M ~12.3h ~3.7h + 12.5m
641.1eela 36.1M ~11.6h ~3.5h + 12.5m
998.specrand 32.9M ~10.6h ~3.2h + 12.5m

experiment on a collection of different DDR3 devices shown
in Table VL.



TABLE VI
DDR3 DEVICES USED IN THE DRAM SUBSYSTEM.

Label ~Width  Capacity Internal frequency
1 4b 64MB 667MHz
2 8b 32MB 400MHz
3 8b 32MB 667MHz
4 4b 32MB 800MHz
5 4b 32MB 667MHz
6 8b 16MB 667MHz
7 16b 8MB 667MHz

2) Numerical Results: We use a 2nd-order M-gPC with
threshold € = 1072 to build a surrogate model for the DRAM
simulator. Due to the practical timing issue, we only run 200
MC samples to verify the effectiveness of the M-gPC model.
We solve (6) to get 60 quadrature samples and weights for
M-gPC in MATLAB with a 3.4GHz 8GB memory desktop,
which takes 12.5 min. The time comparison between M-gPC
modeling and MC for the first device configuration under 20%
uncertainty is shown in Table V. Clearly, the cost of solving
(6) is negligible compared with the total simulation time.

Performance under different uncertainty levels: in our
setting, the mean value is set as the configuration without
uncertainty, and the standard deviation o is set as ¢ = a - p,
where « is defined as the uncertainty level. For binomial distri-
butions, we can also use Gaussian parameters to approximate
it. The performance of aggregate average bandwidth, average
power, average latency and data bus (DBUS) utilization are
illustrated in Fig. 5. It is expected that the standard deviation
will increase when the uncertainty level increases, which can
be well captured by the M-gPC model with around only 60
samples. The sample number may vary since different input
distributions lead to different M-gPC samples. The histograms
of these four metrics are shown in Fig. 6. The M-gPC
model can capture the performance distributions well. For the
bandwidth, the approximating error may be more sensitive to
uncertainty levels. This is because the bandwidth performance
function appears to be an inverse curve, which is relatively
harder for a 2nd-order M-gPC to approximate. In this case,
we can increase the order to get better approximation. These
results verify that the M-gPC model is able to handle the cases
under different levels of uncertainty.

Performance under different device configurations: we
run different device configurations with 20% uncertainties on
the 602.gcc trace. The results are illustrated in Fig. 7, which
show that, for different DRAM devices, M-gPC model can
approximate the moments well with only around 60 samples.
The errors for approximating the distribution are also small:
RMSE varies in 1%-4%, MAE varies in 0.8%-2.4%.

Performance under different workloads: we run the first
device configuration with 20% uncertainty on different work-
loads. The results are illustrated in Table VII. The moments
and distribution are also approximated with a high accuracy,
which shows the M-gPC model with only 66 simulation
samples work well on different workloads too.
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Fig. 5. Performance under different uncertainty levels: M-gPC model (around
60 simulation samples) vs MC method (200 simulation samples).

V. CONCLUSION

Uncertainty analysis for system design is an increasingly
important concern especially when we navigate through the
vast design space with many emerging and immature technolo-
gies. The general MC method to analyze uncertainty is limited
due to the expensive simulations in a practical architecture,
while efficient modeling methods such as generalized polyno-
mial chaos (gPC) cannot handle the unique challenge when we
move from the analog device world to a discrete architecture
design. Many parameters and configurations are inherently
discrete/integers at the system level, hence the uncertainty
analysis becomes a mixed-domain problem. To address these
challenges, we propose a novel mixed-integer programming
method to find a quadrature, and an M-gPC model that can
handle both continuous and discrete inputs. The results of an
analytical CMP model have shown that our framework with 95
samples can approximate the results of a MC method with 5 x
10* samples. We have also verified the proposed uncertainty
analysis framework on detailed DRAM subsystems. There are
still many open problems for architectural uncertainty analysis,
such as the high-dimensional cases and non-smooth output
performance. The proposed architectural uncertainty analysis
framework can be used in many application cases in the future.
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APPENDIX A

BAS1s FUNCTION CONSTRUCTION

When the uncertain parameters are mutually independent,
a multivariate basis function can be constructed based on the
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Fig. 6. Histograms of different performances under different uncertainty levels.

TABLE VII

75

85

25% Uncertainty

PERFORMANCE UNDER DIFFERENT WORKLOADS: M-GPC MODEL (66 SIMULATION SAMPLES) VS MC METHOD (200 SIMULATION SAMPLES).

Workloads peribench gce mcf xalancbmk x264 deepsjeng leela specrand
Mean (M-gPC) 7.2847 8.9289 6.4874 7.8169 7.3144 7.1424 7.1413 7.2011
Mean (MC) 7.2834 8.9332 6.4868 7.8201 7.3146 7.1434 7.1422 7.2047
Bandwidth Std (M-gPC) 1.7545 2.0969 1.5718 1.8619 1.747 1.7194 1.7142 1.7318
(GB/s) Std (MC) 1.7875 2.1479 1.6026 1.9002 1.7794 1.7538 1.7503 1.772
RMSE 0.0318 0.0322 0.0319 0.0321 0.032 0.0319 0.0319 0.0319
MAE 0.0186 0.0185 0.0185 0.0185 0.0187 0.0185 0.0185 0.0187
Mean (M-gPC) 5.6782 6.0804 5.3127 5.7486 5.3717 5.5257 5.4308 5.5089
Mean (MC) 5.6796 6.0831 5.3149 5.7517 5.3731 5.5281 5.4333 5.5112
Average Std (M-gPC) 0.2159 0.1362 0.2168 0.1832 0.1871 0.2073 0.1934 0.2113
Power (watts) Std (MC) 0.18 0.0817 0.1858 0.1428 0.1486 0.1732 0.1605 0.1773
RMSE 0.0123 0.0124 0.0121 0.0122 0.0123 0.0121 0.0121 0.0125
MAE 0.0094 0.0096 0.0093 0.0093 0.0094 0.0093 0.0093 0.0096
Mean (M-gPC)  423.5401  347.5645 462.5911  393.1547  431.4108  438.715  424.1744  428.8241
Mean (MC) 424.0171  348.0141 463.0697  393.5325  432.0178 439.1198 4245305 429.1871
Average Std (M-gPC) 90.7912 71.9639  99.6712 82.6582 91.3793 93.9994 90.5722  91.6698
Latency (ns) Std (MC) 89.3849 71.4477  97.9099 81.544 90.3919 92.4259 89.0638 90.7059
RMSE 0.0129 0.013 0.0129 0.013 0.0131 0.0129 0.013 0.0132
MAE 0.0101 0.0101 0.01 0.0103 0.0102 0.0101 0.0102 0.0103
Mean (M-gPC)  70.0493 85.8639 62.3914 75.1677 70.3477 68.6842 68.6735 69.2553
Mean (MC) 70.0251 85.8725 62.3752 75.1851 70.333 68.6808 68.669 69.2661
DBUS Std (M-gPC) 4.0931 2.5388 4.1026 3.5501 3.7875 4.0072 3.8193 4.1252
Utilization (%) Std (MC) 3.7132 1.9014 3.7994 3.0927 3.3418 3.6469 3.4791 3.7686
RMSE 0.0125 0.0128 0.0124 0.0123 0.0125 0.0122 0.0122 0.0128
MAE 0.0097 0.0098 0.0096 0.0094 0.0096 0.0094 0.0094 0.01
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Fig. 7. Performance under different device configurations: M-gPC model
(around 60 simulation samples) vs MC method (200 simulation samples).
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product of some univariate ones:
d

Uy (S) = H ((le) (52)

i=1

Y

Here qséf) is a degree-a; polynomial basis function for pa-
rameter &;. Given the marginal probability density function
pi (&) for each variable ;, a set of uni-variate orthornormal
polynomials 5,?, méeN
known three-term recurrence relation [26], which satisfy:

B[ ¢P] =6, Vi=1,...,d.

can be constructed by the well-

12)

Here 0,y is a Delta function. The basis functions for discrete
variable are also defined in a discrete or integer domain.
The three term recurrence [26] is performed as follows:

Tig1 (2) = (@ — aq) mi (x) — Bi () T (2)

71(x)=0, m(x)=1, i=0,1,...,n (13)
where
_ Epri@)] 5 E[ra@]
%= Fme] P T Eme (TObon
(14)

and 3; = 1. Then the orthonormal polynomials are obtained
via normalizing the above obtained polynomials:

i (x)
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