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Abstract—The post-Moore era casts a shadow of uncertainty
on many aspects of computer system design. Managing that
uncertainty requires new algorithmic tools to make quantitative
assessments. While prior uncertainty quantification methods,
such as generalized polynomial chaos (gPC), show how to work
precisely under the uncertainty inherent to physical devices, these
approaches focus solely on variables from a continuous domain.
However, as one moves up the system stack to the architecture
level many parameters are constrained to a discrete (integer) do-
main. This paper proposes an efficient and accurate uncertainty
modeling technique, named mixed generalized polynomial chaos
(M-gPC), for architectural uncertainty analysis. The M-gPC
technique extends the generalized polynomial chaos (gPC) theory
originally developed in the uncertainty quantification community,
such that it can efficiently handle the mixed-type (i.e., both
continuous and discrete) uncertainties in computer architecture
design. Specifically, we employ some stochastic basis functions
to capture the architecture-level impact caused by uncertain
parameters in a simulator. We also develop a novel mixed-integer
programming method to select a small number of uncertain
parameter samples for detailed simulations. With a few highly
informative simulation samples, an accurate surrogate model is
constructed in place of cycle-level simulators for various archi-
tectural uncertainty analysis. In the chip-multiprocessor (CMP)
model, we are able to estimate the propagated uncertainties with
only 95 samples whereas Monte Carlo requires 5×10

4 samples to
achieve the similar accuracy. We also demonstrate the efficiency
and effectiveness of our method on a detailed DRAM subsystem.

I. INTRODUCTION

Designing a computer system in an era of rapidly evolving

applications and technology nodes involves many uncertain-

ties. Computer system design have been known to be sus-

ceptible to all sorts of uncertainties from device-level process

variations [1] to variations in application characteristics inside

a datacenter [2]. Of course there is a deep library of work

on quantifying uncertainty in architecture and system design

that has been particularly focused on device and circuit level

uncertainty [3–8] for us to draw upon, but as one moves up

the system stack from the device to the architecture level and

above many variables (e.g., cycles to satisfy an L1 cache miss

or the number of bits of error correcting to use) are constrained

to a discrete (e.g., integer) domain.

Quantifying uncertainty at the system level has been demon-

strated via some high-level analytic models [9], yet doing so

with detailed simulation is extremely challenging. On one

hand, Monte Carlo (MC) methods require a large amount

of data samples of the performance outputs due to its slow

convergence rate. The time cost associated with acquiring such

samples renders these techniques unsuitable when detailed

simulator is used instead of analytic models, where one

simulation sample usually costs minutes or hours (or even

up to days in some large-scale system simulations). On the

other hand, many advanced uncertainty quantification methods

such as generalized polynomial chaos (gPC), although highly

efficient, cannot handle the unique challenge of such a mixed-

domain (continuous and discrete) problem.

We demonstrate a new algorithm for accurate uncertainty

analysis in the context of computer system design by using

only a small number of detailed simulations. To achieve

this goal, we extend the generalized polynomial chaos (gPC)

method [10], which is a powerful technique developed in

the uncertainty quantification community. Due to its superior

convergence rate and orders-of-magnitude speedup over MC

in many applications, the gPC technique has been successfully

applied to electronic design automation problems. Existing

work includes fast stochastic modeling, simulation and opti-

mization for electronic integrated circuits [11–13], integrated

photonic devices and circuits [14], micro-electromechanical

systems [15] and so forth. However, all these techniques can

only handle analog behaviors/performance and only consider

continuous uncertain parameters.

Paper Contributions. In this paper, we develop a new

surrogate modeling technique, named mixed-gPC (M-gPC),

for accurate uncertainty analysis of computer system de-

sign. Our algorithm employs a mixed integer programming

method to handle mixed continuous and discrete uncertain

parameters with a small number of simulations. To verify

this theory experimentally in the context of computer system

design, we examine its application to both a closed-form chip-

multiprocessor (CMP) model and a detailed simulation-driven

DRAM subsystem. Our specific contributions include:

• We present a CAD framework for architectural un-

certainty analysis. Based on the given continuous and

discrete distributions of input uncertain parameters, our

algorithm automatically chooses the basis functions and

simulation samples to build an accurate surrogate model.

• We present the numerical algorithms of building basis

functions and choosing simulation samples. The key chal-

lenge is to decide a small number of highly informative

simulation samples required in the stochastic collocation

framework [16]. We formulate this problem as a mixed-
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Fig. 1. All named DRAM timings here are considered under the influence
of uncertainty (process variation). Note that the timings are not proportional
to real number of cycles in this figure.

integer programming (MIP), and present a hierarchical

decomposition method to efficiently solve it.

• We validate the proposed M-gPC framework by an ana-

lytical CMP model and a realistic DRAM subsystem. Our

framework shows significant speedup and high accuracy

on these two architectural analysis benchmarks.

II. ARCHITECTURAL UNCERTAINTY ANALYSIS

FRAMEWORK

We propose a M-gPC modeling method for computer ar-

chitectural uncertainty analysis. The basic idea is to use a

mixed-integer optimization method to select a few important

samples for both continuous and discrete uncertain parameters.

Then, an accurate stochastic surrogate model is constructed for

architecture-level uncertainty analysis after a small number of

detailed cycle-level simulations.

A. Problem Formulation and Overall Workflow

Problem Formulation. Given a computer architecture de-

sign case (e.g., a DRAM subsystem, see Fig. 1), let y(ξ) be

some uncertain performance metrics of interest, such as the

bandwidth or power. We use vector ξ = [ξ1, ξ2, . . . , ξd]
T
∈ R

d

to denote some model uncertainty parameters, such as the time

of one tick of clock (tCK), time precharge/recovery period

(tRP), and so forth. We assume that these parameters are

mutually independent, and each parameter ξi admits a proba-

bility density function ρi(ξi). Please note that these uncertain

parameters can be either continuous or discrete. For instance,

tCK often obeys a truncated Gaussian distribution [17], and

tRP often follows a binomial distribution [18] due to the

process variations. Our goal is to quantify the uncertainty

of y(ξ) caused by ξ. Because each detailed cycle accurate

simulation is extremely expensive, we instead want to build

a surrogate model in the following form with only a small

number of simulations:

y(ξ) ≈

p
∑

|α|=0

cαΨα(ξ). (1)

Here, Ψα(ξ) is a stochastic basis function indexed by vector

α, and p upper bounds the total order of the basis functions.

Overall Workflow. Before proceeding to the technical

details, we first describe our high-level workflow in Fig. 2.

Fig. 2. Workflow of the architectural uncertainty analysis method.

• Step 1: pre-processing. Based on the given distribu-

tions of uncertain parameters ξ (which can be either

continuous or discrete), we need to specify a class of

basis functions {Ψα(ξ)}. We also decide a few highly

informative sample points and weights {ξi, wi}
M
i=1. Here

wi quantitatively describes the importance of sample ξi.

• Step 2: small-data simulations. Given the carefully

selected parameter samples, we call a high-fidelity cycle

accurate simulator (e.g., the DRAMSim2 [19] for a

DRAM) to simulate sample ξi for i = 1, 2 . . . ,M . The

repeated simulations produce a set of output performance

samples {y(ξi)}
M
i=1. Because M is very small, these

detailed simulations can be done in a relatively short time.

• Step 3: post-processing. With {y(ξi)}
M
i=1 and the im-

portance of each sample, we will decide the weight vector

cα for each basis function in Eq. (1).

B. The Proposed M-gPC Method

Three questions need to be answered in the above workflow:

• Q1: How shall we decide the basis functions?

• Q2: How shall we decide the parameter sample ξi and

weight wi, and the proper number of samples M?

• Q3: How shall we post-process the data to get the

surrogate model (1)?

The first and third questions are already addressed in the

standard gPC method [10]. Given the probability density

function of each parameter, the gPC method selects a set of

orthornormal polynomials as the basis functions:

E [Ψα (ξ)Ψβ (ξ)] =

{

1, if α = β;
0, otherwise.

(2)

Here the index vector α = [α1, . . . ,αd]
T denotes the polyno-

mial degree of each uncertain parameter in the basis function.

As a result, the expansion (1) employs Np =
(

d+p
p

)

basis

functions in total. This choice of basis functions allows the

stochastic collocation method [10] to compute each unknwon

cα by a projection procedure:

cα = E [y (ξ)Ψα (ξ)] ≈
M
∑

i=1

y (ξi)Ψα (ξi)wi. (3)

Here {ξi, wi}
M
i=1 are the quadrature samples and weights

that we need to determine. Once the surrogate model is



Fig. 3. Example of mixed-integer programming-based quadrature for a discrete variable with distribution Binomial(10, 0.2) and another continuous one with
a truncated Gaussian distribution in the range (−2, 2). The color bar of MIP quadrature represents the weights of all samples.

constructed, we can easily obtain the mean value and standard

deviation of the output performance via Eq. (4):

E[y(ξ)] ≈ c0, σ[y(ξ)] ≈

√

√

√

√

p
∑

|α|=1

c2α, (4)

where all calculations are performed component-wise. We can

also obtain the histogram or probability distribution of y(ξ)
without calling the detailed cycle accurate simulator again.

The details of basis functions are given in Appendix A.

Sample and weight selection in M-gPC. However, ad-

dressing the second question is difficult. According to (3),

we need to choose a small number of samples and weights

to accurately estimate the numerical integration. Numerous

numerical integration rules (e.g., Gauss quadrature rule and

sparse grids [10]) are available for continuous variables, but

they cannot handle discrete variables. A naive choice is to

use all possible samples of a discrete uncertain variable, but

this leads to a huge number of simulation samples. In order

to address this issue, we develop a novel mixed-integer pro-

gramming method to generate a few high-quality quadrature

samples and weights. We defer the details of this approach to

Section III, and we first demonstrate this approach by a simple

example. We consider a problem with two uncertain variables:

the continuous one is truncated Gaussian in the range of

(−2, 2), and the discrete one obeys a binomial distribution.

When choosing quadrature samples, the first variable can be

any value in the range of (−2, 2), but the second one can only

take some integer values below 10. The results of our mixed

integer programming are shown in Fig. 3: only 12 samples

with different weights are generated.

III. PROPOSED MIP-BASED QUADRATURE RULE

This section presents our mixed-integer programming solver

to determine the quadrature points and weights {ξi, wi}
M
i=1

required in Eq. (3). The quadrature samples are provided to a

cycle-level simulator for repeated simulations. Therefore, we

hope to make M as small as possible.

A. Optimization Formulation

Let I = {i | ξi ∈ Z} denote the index set of integer

parameters in ξ. We propose to compute the quadrature points

and weights by an optimization-based method. Our method

differs from [20, 21]: our proposed method can handle both

discrete and continuous uncertain parameters, whereas [20, 21]

can only handle continuous uncertain variables.

Eq. (3) requires the integration of polynomials up to order

2p if y(ξ) can be well approximated by an order-p expansion.

Therefore, our optimization problem is set up by matching the

integration of basis functions up to order 2p. If |α| ≤ 2p, then

there is a one-to-one correspondence between α and integer

k ∈ [1, N2p] where N2p = (d + 2p)!/(d!)(2p!). We use the

scalar index for simplicity, and seek for {ξi, wi}
M
i=1 such that

E[Ψk(ξ)] =

M
∑

i=1

Ψk (ξi)wi, ∀ k ∈ [N2p]

where wi ≥ 0 and ξi,I ∈ Z
|I|. (5)

Here, ξi,I = {ξi,l}l∈I denotes all integer elements in sample

ξi. Due to the orthonormal condition, we know E [Ψk (ξ)] =
E [Ψk (ξ)Ψ1 (ξ)] = δ1k.

As a result, we solve {ξi, wi}
M
i=1 via the following nonlinear

least squares

min
ξ̄,w

‖Φ(ξ̄)w − e1‖
2
2, s.t. w ≥ 0, ξ̄I ∈ Z

M |I|. (6)

where ξ̄ = [ξ1, ξ2, . . . , ξM ]
T

∈ R
M×d, ξ̄I = {ξi,I}

M
i=1,

w = [w1, w2, . . . , wM ]
T
∈ R

M , e1 = [1, 0, . . . , 0]
T
∈ R

N2p ,

Φ
(

ξ̄
)

∈ R
N2p×M with each elements

[

Φ
(

ξ̄
)]

ki
= Ψk (ξi).

There are M × (d+ 1) unknown variables in total, which can

be a large-scale optimization problem as d increases.

B. Hierarchical BCD for Solving Problem (6)

Eq. (6) is a large-scale mixed integer nonlinear program-

ming problem (MINLP) with M |I| integers. We solve this

hard problem by a hierarchical decomposition method. Our

key idea is to simplify the original large scale MINLP into

several easier sub-problems.

We intend to employ a block coordinate descent (BCD)

method to solve the quadrature points and weights separately.

However, directly applying it to our mixed-integer case is

inefficient since the complexity of mixed-integer programming

grows exponentially with the number of integer variables [22].

In order to further speed up the algorithm, we separate the



Algorithm 1: Hierarchical BCD for solving (6)

Input: Initial points and weights, maximal outer iteration

nmax, and solver error tolerance ε.

Output: Optimized points and weights {ξi, wi}
M

i=1;

for t = 1, 2, . . . , nmax do

for i = 1, 2, . . . ,M do
Solve ∆ξi via Eq. (7);

Update ith point via solving Eq. (8);

Update all weights via solving Eq. (9);

if

∥

∥

∥
Φ

(

ξ̄
t
)

w
t − e1

∥

∥

∥

2

2
≤ ε then

break; % converge

else

if
∥

∥∆ξ̄
∥

∥

F
≤ 10−8 then

break; % not converge

quadrature points into M blocks. Consequently, we only need

to solve a MINLP with |I| integer variables for each sub-

problem. Our detailed framework is shown in Alg. 1.

In Alg. 1, we have an outer iteration t and an inner iteration

i. In this case, only one sample is optimized in each inner

iteration, which only has d unknown variables. By applying

the Gauss Newton method, the original problem is converted to

a mixed-integer quadrature program (MIQP), which is much

easier to solve. Considering that the Jacobian matrix J can

be ill-conditioned, we adopt the Tikhonov regularization [23]

here to make the MIP solver more stable:

min
∆ξi

∥

∥

∥
Ĵt×i
i ∆ξi + rt×i

∥

∥

∥

2

2
+ λ ‖∆ξi‖

2
2

s.t. ∆ξi,I ∈ Z
|I|, (7)

where rt×i = Φ

(

ξ̄
t×i−1

)

w
t×i − e1 denotes the residual

given the ith points under the (t× i)th iteration and Jt×i
i

denotes the Jacobian matrix of rt×i, and λ is a regularization

parameter. Then we can update each quadrature point as

ξti = ξt−1
i +∆ξi. (8)

After one sample is optimized, we fix all the points and update

the weights via solving a linear least square problem:

w
t×i = argmin

w

∥

∥

∥
Φ

(

ξ̄
t×i

)

w − e1

∥

∥

∥

2

2
(9)

In summary, we decompose the original large-scale MINLP

problem [Eq. (6)] to many linear least square problems [Eq.

(9)] and small-scale MIQP problems [Eq. (7)], which are much

more efficient to solve. The comprehensive algorithm is sum-

marized in Alg. 1. With the proposed MIP-based quadrature,

we can select a small number of samples to calculate the M-

gPC coefficients via Eq. (3).

C. Initialization and Number of Quadrature Points

In practice, a global optimal solution to problem (6) is

unnecessary: any solution with a high accuracy and leading

Algorithm 2: MIP-based stochastic collocation.

Output: The M-gPC coefficients {cα}
p

|α|=0

1: Initialize the quadrature points and weights;

2: Increase Phase. Update points and weights via Alg. 1.

If algorithm fails to converge, increase the number of

points and go back to last line.

3: Decrease Phase. Update points and weights via Alg. 1.

If algorithm converges, decrease the number of points

until it fails.

4: Call the simulator to obtain {y(ξi)}
M

i=1

5: Calculate the M-gPC weight vectors via Eq. (3).

to a small number of quadrature points can be used to build

a M-gPC surrogate model with good performance. However,

choosing a good initial guess is important to ensure high

accuracy. We employ the weighted complete linkage cluster-

ing method [20] to generate the initial guess. Firstly, many

candidate samples with weights are randomly generated by

Monte Carlo. Then, they are clustered to a smaller number of

points. In this process, any two points with a minimal weighted

distance can be merged into one point sequentially until the

number of points achieves the initial setting. The weighted

distance between two sample points is defined as follows:

Dij = (wi + wj)

(

max
ξ1∈C1,ξ2∈C2

d (ξ1, ξ2)

)

. (10)

In order to properly determine the number of quadrature points

M , an increase-decrease module [21] is adopted. Firstly, we

increase M to ensure that (6) can be solved with a high

accuracy. Then, we decrease M and solve (6) to check if an

accurate quadrature rule can be found with fewer samples.

Integrating this module with our framework, the overall MIP-

based stochastic collocation method is summarized in Alg. 2.

We have the following remarks. Firstly, the CPU time of

the current hierarchical algorithm is negligible compared to

the CPU time cost by sample simulations, especially for low-

dimensional problems. Secondly, the theoretical guarantees

on the approximation error and on the number of quadrature

points in [21] still hold in our proposed MIP-based framework.

IV. CASE STUDIES

A. Analytical CMP Models

1) Uncertainties in Analytical CMP Models: Here, an

analytical CMP model in [9] is used to verify the proposed

architectural uncertainty analysis framework. A more general

heterogeneous core selection problem based on that of Hill

and Marty [24] is illustrated in Table I. In terms of uncertainty

description, the inputs parallelism of the application (f ), com-

munication overhead among cores (c) and designed number of

each core on chip (Ncorei ) are discrete, while performance of

each type of core (Pcorei ) and yieldcorei
are continuous. We use

the same uncertainty models described in previous work [9]

shown in Table II. Its parameter setting in a case of two cores

is shown in Table II.



TABLE I
CLOSED FORM OF CMP MODEL.

Speedup = 1/
(

Tsequential + Tparallel

)

Tsequential = (1− f + c×Ncore) /Pserial

Tparallel = f/Pparallel

Pserial = max {Pcorei |Ncorei > 0}
Pparallel =

∑

i∈core types

Ncorei

Pcorei =
√

Acorei

Atotal =
∑

i∈core types

Ncorei ×Acorei

TABLE II
UNCERTAIN PARAMETERS SETTING IN THE CMP MODEL.

Uncertainty model Parameter setting

f ∼
Binomial(M,p)

M
M = 60, p = 0.6

c ∼
Binomial(M,p)

M
M = 80, p = 0.7

Ncorei ∼ Binomial
(

M,yieldcorei

) M = 20, yieldcore0
= 0.7432

M = 20, yieldcore1
= 0.5739

Pcorei ∼ Truncated Gaussian (µ,σ, 0)
µ0 = 5.6569, σ0 = 1.1314

µ1 = 8, σ1 = 1.6

yieldcorei
=

(

1 +
d×Acorei

α

)−α

Acore0 = 32 Acore1 = 64

Under such uncertain parameters, our task is to approximate

the moments and distribution of Speedup as close as possible

to estimate the propagated uncertainty in the model.

2) Numerical Results: The results of a 2nd-order M-gPC

model under different thresholds ε are shown in Table III. A

higher order leads to more accurate approximation, but order

2 already works well in this case. We can find that ε can

control the number of M-gPC samples and accuracy of the

performance. The results show that the algorithm performance

may be limited by a too large or too small ε, but it performs

well with small samples in capturing the mean value and

standard deviation when ε ranges from 10−3 to 10−6. In

these cases, compared with the relative root mean square error

(RMSE) and relative mean absolute error (MAE) between the

M-gPC and MC are all around 0.03 and 0.02 respectively.

Especially, to achieve the same level of accuracy, the sample

number needed in a M-gPC model is much smaller than MC

methods. For example, if we take the results of 105 MC as the

ground truth, then 95 M-gPC simulation samples can already

achieve the same accuracy of 5×104 MC samples in capturing

the mean value The histograms of ε = 10−5 case under 105

MC samples are illustrated in Fig. 4.

B. Uncertainties in Detailed Memory Subsystems

1) Experiment Setup: To faithfully capture the uncertainties

in a DRAM subsystem, we use the detailed DRAM simulator

DRAMSim2 [19]. We model the uncertainty parameter after

previous works [17, 18] as shown in Table IV (also see

Fig. 1). We run a collection of memory traces from SPEC

2017 benchmark suit [25] shown in Table V.

We also simulate a memory system with 1 memory channel

under the JEDEC standards with a 32-entry command queue

and a 32-entry transaction queue. For the DRAM itself, we

TABLE III
SPEEDUP PERFORMANCE OF DIFFERENT MODELS.

Sample Mean Std RMSE MAE ε

M-gPC

84 0.4353 0.1021 0.0418 0.0311 1e-2
85 0.4382 0.0974 0.0338 0.0231 1e-3
87 0.4380 0.0992 0.0306 0.0208 1e-4
95 0.4376 0.0986 0.0306 0.0228 1e-5
123 0.4376 0.0987 0.0314 0.0233 1e-6
179 0.4386 0.0982 0.0289 0.0205 1e-7
182 0.4387 0.0975 0.0294 0.0214 1e-8

MC

1e3 0.4369 0.1011

N/A N/A N/A

5e3 0.4370 0.1002
1e4 0.4383 0.0995
5e4 0.4375 0.099
1e5 0.4377 0.0987

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000
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MC (105 simulations)

Fig. 4. Histograms of speedup performance with ε = 10−5.

TABLE IV
UNCERTAIN PARAMETERS SETTING IN THE DRAM SUBSYSTEM.

tCK ∼ Truncated Gaussian (µ,σ, 0)
tRCD ∼ Binomial (M,p)
tCL ∼ Binomial (M,p)
tRP ∼ Binomial (M,p)
tWR ∼ Binomial (M,p)

TABLE V
WORKLOADS AND SIMULATION TIME COMPARISON.

Workload Length of trace MC time M-gPC time

600.peribench 46.8M ∼15.1h ∼4.5h + 12.5m
602.gcc 35.7M ∼8.8h ∼2.6h + 12.5m
605.mcf 43.5M ∼14.7h ∼4.4h + 12.5m

623.xalancbmk 42.9M ∼12.6h ∼3.8h + 12.5m
625.x264 30.5M ∼9h ∼2.7h + 12.5m

631.deepsjeng 37.6M ∼12.3h ∼3.7h + 12.5m
641.leela 36.1M ∼11.6h ∼3.5h + 12.5m

998.specrand 32.9M ∼10.6h ∼3.2h + 12.5m

experiment on a collection of different DDR3 devices shown

in Table VI.



TABLE VI
DDR3 DEVICES USED IN THE DRAM SUBSYSTEM.

Label Width Capacity Internal frequency

1 4b 64MB 667MHz
2 8b 32MB 400MHz
3 8b 32MB 667MHz
4 4b 32MB 800MHz
5 4b 32MB 667MHz
6 8b 16MB 667MHz
7 16b 8MB 667MHz

2) Numerical Results: We use a 2nd-order M-gPC with

threshold ε = 10−3 to build a surrogate model for the DRAM

simulator. Due to the practical timing issue, we only run 200

MC samples to verify the effectiveness of the M-gPC model.

We solve (6) to get 60 quadrature samples and weights for

M-gPC in MATLAB with a 3.4GHz 8GB memory desktop,

which takes 12.5 min. The time comparison between M-gPC

modeling and MC for the first device configuration under 20%

uncertainty is shown in Table V. Clearly, the cost of solving

(6) is negligible compared with the total simulation time.

Performance under different uncertainty levels: in our

setting, the mean value is set as the configuration without

uncertainty, and the standard deviation σ is set as σ = α · µ,

where α is defined as the uncertainty level. For binomial distri-

butions, we can also use Gaussian parameters to approximate

it. The performance of aggregate average bandwidth, average

power, average latency and data bus (DBUS) utilization are

illustrated in Fig. 5. It is expected that the standard deviation

will increase when the uncertainty level increases, which can

be well captured by the M-gPC model with around only 60

samples. The sample number may vary since different input

distributions lead to different M-gPC samples. The histograms

of these four metrics are shown in Fig. 6. The M-gPC

model can capture the performance distributions well. For the

bandwidth, the approximating error may be more sensitive to

uncertainty levels. This is because the bandwidth performance

function appears to be an inverse curve, which is relatively

harder for a 2nd-order M-gPC to approximate. In this case,

we can increase the order to get better approximation. These

results verify that the M-gPC model is able to handle the cases

under different levels of uncertainty.

Performance under different device configurations: we

run different device configurations with 20% uncertainties on

the 602.gcc trace. The results are illustrated in Fig. 7, which

show that, for different DRAM devices, M-gPC model can

approximate the moments well with only around 60 samples.

The errors for approximating the distribution are also small:

RMSE varies in 1%-4%, MAE varies in 0.8%-2.4%.

Performance under different workloads: we run the first

device configuration with 20% uncertainty on different work-

loads. The results are illustrated in Table VII. The moments

and distribution are also approximated with a high accuracy,

which shows the M-gPC model with only 66 simulation

samples work well on different workloads too.
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Fig. 5. Performance under different uncertainty levels: M-gPC model (around
60 simulation samples) vs MC method (200 simulation samples).

V. CONCLUSION

Uncertainty analysis for system design is an increasingly

important concern especially when we navigate through the

vast design space with many emerging and immature technolo-

gies. The general MC method to analyze uncertainty is limited

due to the expensive simulations in a practical architecture,

while efficient modeling methods such as generalized polyno-

mial chaos (gPC) cannot handle the unique challenge when we

move from the analog device world to a discrete architecture

design. Many parameters and configurations are inherently

discrete/integers at the system level, hence the uncertainty

analysis becomes a mixed-domain problem. To address these

challenges, we propose a novel mixed-integer programming

method to find a quadrature, and an M-gPC model that can

handle both continuous and discrete inputs. The results of an

analytical CMP model have shown that our framework with 95

samples can approximate the results of a MC method with 5×
104 samples. We have also verified the proposed uncertainty

analysis framework on detailed DRAM subsystems. There are

still many open problems for architectural uncertainty analysis,

such as the high-dimensional cases and non-smooth output

performance. The proposed architectural uncertainty analysis

framework can be used in many application cases in the future.
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APPENDIX A

BASIS FUNCTION CONSTRUCTION

When the uncertain parameters are mutually independent,

a multivariate basis function can be constructed based on the
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Fig. 6. Histograms of different performances under different uncertainty levels.

TABLE VII
PERFORMANCE UNDER DIFFERENT WORKLOADS: M-GPC MODEL (66 SIMULATION SAMPLES) VS MC METHOD (200 SIMULATION SAMPLES).

Workloads peribench gcc mcf xalancbmk x264 deepsjeng leela specrand

Bandwidth
(GB/s)

Mean (M-gPC) 7.2847 8.9289 6.4874 7.8169 7.3144 7.1424 7.1413 7.2011
Mean (MC) 7.2834 8.9332 6.4868 7.8201 7.3146 7.1434 7.1422 7.2047
Std (M-gPC) 1.7545 2.0969 1.5718 1.8619 1.747 1.7194 1.7142 1.7318

Std (MC) 1.7875 2.1479 1.6026 1.9002 1.7794 1.7538 1.7503 1.772
RMSE 0.0318 0.0322 0.0319 0.0321 0.032 0.0319 0.0319 0.0319
MAE 0.0186 0.0185 0.0185 0.0185 0.0187 0.0185 0.0185 0.0187

Average
Power (watts)

Mean (M-gPC) 5.6782 6.0804 5.3127 5.7486 5.3717 5.5257 5.4308 5.5089
Mean (MC) 5.6796 6.0831 5.3149 5.7517 5.3731 5.5281 5.4333 5.5112
Std (M-gPC) 0.2159 0.1362 0.2168 0.1832 0.1871 0.2073 0.1934 0.2113

Std (MC) 0.18 0.0817 0.1858 0.1428 0.1486 0.1732 0.1605 0.1773
RMSE 0.0123 0.0124 0.0121 0.0122 0.0123 0.0121 0.0121 0.0125
MAE 0.0094 0.0096 0.0093 0.0093 0.0094 0.0093 0.0093 0.0096

Average
Latency (ns)

Mean (M-gPC) 423.5401 347.5645 462.5911 393.1547 431.4108 438.715 424.1744 428.8241
Mean (MC) 424.0171 348.0141 463.0697 393.5325 432.0178 439.1198 424.5305 429.1871
Std (M-gPC) 90.7912 71.9639 99.6712 82.6582 91.3793 93.9994 90.5722 91.6698

Std (MC) 89.3849 71.4477 97.9099 81.544 90.3919 92.4259 89.0638 90.7059
RMSE 0.0129 0.013 0.0129 0.013 0.0131 0.0129 0.013 0.0132
MAE 0.0101 0.0101 0.01 0.0103 0.0102 0.0101 0.0102 0.0103

DBUS
Utilization (%)

Mean (M-gPC) 70.0493 85.8639 62.3914 75.1677 70.3477 68.6842 68.6735 69.2553
Mean (MC) 70.0251 85.8725 62.3752 75.1851 70.333 68.6808 68.669 69.2661
Std (M-gPC) 4.0931 2.5388 4.1026 3.5501 3.7875 4.0072 3.8193 4.1252

Std (MC) 3.7132 1.9014 3.7994 3.0927 3.3418 3.6469 3.4791 3.7686
RMSE 0.0125 0.0128 0.0124 0.0123 0.0125 0.0122 0.0122 0.0128
MAE 0.0097 0.0098 0.0096 0.0094 0.0096 0.0094 0.0094 0.01
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Fig. 7. Performance under different device configurations: M-gPC model
(around 60 simulation samples) vs MC method (200 simulation samples).

product of some univariate ones:

Ψα (ξ) =
d
∏

i=1

φ(i)
αi

(ξi) . (11)

Here φ
(i)
αi

is a degree-αi polynomial basis function for pa-

rameter ξi. Given the marginal probability density function

ρi (ξi) for each variable ξi, a set of uni-variate orthornormal

polynomials
{

φ
(i)
m ,m ∈ N

}

can be constructed by the well-

known three-term recurrence relation [26], which satisfy:

E[φ(i)
m φ(i)

n ] = δm,n, ∀ i = 1, . . . , d. (12)

Here δm,n is a Delta function. The basis functions for discrete

variable are also defined in a discrete or integer domain.

The three term recurrence [26] is performed as follows:

πi+1 (x) = (x− αi)πi (x)− βi (x)πi−1 (x)
π−1 (x) = 0, π0 (x) = 1, i = 0, 1, . . . , n

(13)

where

αi =
E[xπ2

i (x)]
E[π2

i
(x)]

, βi+1 =
E[π2

i+1(x)]
E[π2

i
(x)]

, i = 0, 1, . . . , n

(14)

and βi = 1. Then the orthonormal polynomials are obtained

via normalizing the above obtained polynomials:

φi (x) =
πi(x)√
β0β1···βi

, i = 0, 1, . . . , n. (15)
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