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Abstract
In this paper, we propose a discontinuous finite volume element method to solve
a phase field model for two immiscible incompressible fluids. In this finite vol-
ume element scheme, discontinuous linear finite element basis functions are used
to approximate the velocity, phase function, and chemical potential while piecewise
constants are used to approximate the pressure. This numerical method is efficient,
optimally convergent, conserving the mass, convenient to implement, flexible for
mesh refinement, and easy to handle complex geometries with different types of
boundary conditions. We rigorously prove the mass conservation property and the
discrete energy dissipation for the proposed fully discrete discontinuous finite vol-
ume element scheme. Using numerical tests, we verify the accuracy, confirm the
mass conservation and the energy law, test the influence of surface tension and small
density variations, and simulate the driven cavity, the Rayleigh-Taylor instability.

Keywords Phase field model · Navier-Stokes-Cahn-Hilliard equation ·
Discontinuous finite volume element methods · Discrete energy dissipation
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1 Introduction

The phase field method, whose basic idea dates back to the pioneering work of [82,
90], has been widely utilized as one of the major tools to study a variety of interfacial
phenomena. This method uses an auxiliary variable ϕ( x, t) to localize the phases
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and describe the interface by a layer of small thickness. This phase function takes
two different values (such as +1 and −1) in the two phases and varies smoothly
across the interface, i.e., in the phase field model, the interface is considered as a
transition layer over which a continuous, but steep change of some physical quantities
occur. The phase field models can be naturally derived from variational principle, i.e.,
via minimizing the free energy of the total system. As a result, the derived system
satisfies an energy dissipation law, which justifies its thermodynamic consistency and
leads to a mathematically well-posed model [4, 27, 64].

Moreover, the presence of the energy law serves as a guide line for the design of
energy stable numerical schemes. Various numerical methods have been developed
and analyzed for different phase field models, such as the finite element method [3,
30, 35, 40, 45, 52, 54, 100], finite difference method [14, 16, 99], spectral method [46,
67, 87, 91, 102], extended finite element method [18, 32], discontinuous Galerkin
finite element method [31, 66, 84], finite volume method [7, 106], penalty-projection
method [83], lattice Boltzmann method [26, 107], and many others [13, 50, 53, 63,
71, 77, 79, 80, 98, 105].

Practitioners often prefer to utilize low-order finite elements, such as P0 and P1
elements, since they are simple to implement and can provide enough accuracy for
many applications. However, the regular Galerkin method with P1 − P0 and P1 − P1
finite element pairs is not stable for the Navier-Stokes equations since they do not
satisfy the inf-sup condition [36, 38, 89]. On the other hand, for velocity and pressure
approximation, the discontinuous Galerkin formulation with P1 − P0 space is stable
[85]. Because of its flexibility for mesh/polynomial refinement, localizability, and
stability, the discontinuous Galerkin method has been widely extended and applied
to solve many partial differential equations, such as the local discontinuous Galerkin
(LDG) method [17, 22, 51, 97], the interior penalty discontinuous Galerkin (IPDG)
method [1, 24, 25, 78, 86, 96, 101], the hybridizable DG method [10, 20, 43, 48,
76], reduced order DG method [58–60], and many others [15, 49, 61, 68, 72–74, 81,
92, 95, 108]. One important feature of the IPDG method is its capability to easily
incorporate hp local refinement. Therefore, it is natural to apply them to phase field
problems since local refinement is usually needed around an interface.

To the author’s best knowledge, this article is the first work to develop and analyze
the discontinuous finite volume element (DFVE) method for the coupled Cahn-
Hilliard and Navier-Stokes equations. DFVE method has the flexibility in mesh
refinement, the optimal order of accuracy, the conservative property, the capability
to handle complex geometries, and the advantage of convenient implementation, due
to the combination of the advantages of the finite volume element method and inte-
rior penalty discontinuous Galerkin method. The fascinating nature of DFVE method
reflects on the smaller conservation control volume which is less than half the size
of control volume applied in the existing FVE methods. Another attractive feature is
the block diagonal mass matrices in the context of the time-dependent problems. The
localizability of the discontinuous element and its dual partition in DFVE method
also benefit parallel computation. Therefore, the DFVE method has attracted scien-
tists and engineers for different equations, such as the second-order elliptic problems
[9, 19, 56, 70, 103], Stokes equation [23, 94, 104], some non-linear problems [8, 55,
57], and several multi-physics coupled problems [62, 93]. DFVE method has also
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been used to solve elliptic problem with adaptive technique and other applications
[69, 75].

The paper is organized as follows: in Section 2, we briefly introduce the Navier-
Stokes-Cahn-Hilliard model and its weak formulation; in Section 3, the fully discrete
discontinuous finite volume element methods are presented and analyzed for mass
conservation and energy dissipation properties; in Section 4, a series of numerical
experiments are provided; finally, conclusions are presented in Section 5.

Throughout the paper, the letter C denotes a generic positive constant, which is
different in different lines but independent of the mesh size.

2 Navier-Stokes-Cahn-Hilliard model

We consider a model describing the motion of a mixture of two viscous fluids with
matching density (or almost matching density), and same dynamic viscosity in a
bounded domain. The fluids are assumed to be immiscible and incompressible. A
phase function ϕ( x, t) is used to identify the two Newtonian fluids, namely

ϕ( x, t) =
{
1 fluid 1,
−1 fluid 2,

(1)

with a thin, smooth transition region of width between the two fluids. Hence, the
interface between the two phases is described by the zero level set Γt = { x :
ϕ( x, t) = 0}.

Here, we consider the following coupled Navier-Stokes-Cahn-Hilliard equation in
two-dimensional domains

R(ut + (u · ∇)u) − Δu + ∇p − Bw∇ϕ = f in Ω, (2)

∇ · u = 0 in Ω, (3)

ϕt + u · ∇ϕ − LdΔw = 0 in Ω, (4)

w + εΔϕ − 1

ε
f (ϕ) = 0 in Ω, (5)

where u is the velocity, p is the pressure,w is the chemical potential, f is an additional
gravitational force, and f (ϕ) is the first derivative of a double well potential F(ϕ).
That is, f (ϕ) = F ′(ϕ) and F(ϕ) is the truncated double well potential

F(ϕ) =
⎧⎨
⎩

(ϕ + 1)2 ifϕ ∈ (−∞, −1],
1
4 (ϕ

2 − 1)2 ifϕ ∈ [−1, 1],
(ϕ − 1)2 ifϕ ∈ [1, +∞).

(6)

There are four non-dimensional parameters in this system.R is the Reynolds num-
ber, B denotes the strength of the capillary force comparing with the Newtonian fluid
stress, Ld is the (constant) mobility, and ε is the ratio between interface thickness and
domain size. We note that the equations (4)–(5) differ from the original Cahn-Hilliard
equation [28], the chemical potential w = −εΔϕ + 1

ε
f (ϕ) is used by Feng [29]

and Han [39, 41]. Similar parameters are used by He [42], Chen [11], and Gao [33,
34], with ε and Ld here denoted by the Cahn number Ca and the inverse of a Péclet
nmuber 1

Pe
in [79, 80], correspondingly. In this case, M = 1 holds for the mobility.
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We close the system with the following initial and boundary conditions:

u(·, 0) = u0, ϕ(·, 0) = ϕ0 in Ω, (7)

u = 0,
∂ϕ

∂n
= ∂w

∂n
= 0 on Γ × (0, T ]. (8)

Next, we present the weak formulation for this model. Let B∗ denote the dual
space of a Banach space B and (·, ·) denote the standardL2(Ω) inner product. Define
the Hilbert spaces

V(Ω) = {v ∈ H1
0(Ω); ∇ · v = 0 in Ω},

H(Ω) = {v ∈ L2(Ω); ∇ · v = 0 in Ω and v · n = 0 on Γ },
L2
0(Ω) = {q ∈ L2(Ω); (q, 1) = 0}.

In particular, we use the notation for the norm and the seminorm hereafter:

‖ · ‖ := ‖ · ‖L2(Ω), ‖ · ‖1 := ‖∇ · ‖L2(Ω).

The mixed weak formulation of (2)–(8) is defined as follows [30]: find
(u, p, ϕ, w) with

u ∈ L∞((0, T ),L2(Ω)) ∩ L2((0, T ),H1
0(Ω)) ∩ H 1((0, T ),V∗(Ω)),

p ∈ L∞((0, T ), L2
0(Ω)),

ϕ ∈ L∞((0, T ), H 1(Ω)) ∩ H 1((0, T ),H−1(Ω)),

w ∈ L2((0, T ), H 1(Ω)),

such that for all (v, q, ψ, χ) ∈ V(Ω) × L2
0(Ω) × H 1(Ω) × H 1(Ω) there hold

R(ut , v) + (∇u, ∇v) + R((u · ∇)u, v) − (p, ∇ · v) − B(w∇ϕ, v) = (f, v), (9)

(∇ · u, q) = 0, (10)

(ϕt , ψ) + (u · ∇ϕ, ψ) + Ld(∇w, ∇ψ) = 0, (11)

(w, χ) − ε(∇ϕ, ∇χ) −
(
1

ε
f (ϕ), χ

)
= 0, (12)

with the initial conditions u(·, 0) = u0 and ϕ(·, 0) = ϕ0.
An important feature of the above weak formulation is that it obeys a dissipative

energy law. We denote the total energy of the coupled system as:

E(t;u, ϕ) =
∫

Ω

R
2
u2 dx + B

∫
Ω

(
ε

2
∇ϕ · ∇ϕ + 1

ε
F (ϕ)

)
dx. (13)

We recall the following lemma about the basic energy law from [30, 47].

Lemma 2.1 Let (u, p, ϕ, w) be a smooth solution to the initial boundary value prob-
lem (2)–(8). Assume that f = 0, then this system has the following basic energy
law:

d
dt

E(t;u, ϕ) = −D(t;u, w), (14)

where the energy dissipation D(t;u, w) is given by

D(t;u, w) =
∫

Ω

[∇u : ∇u + BLd‖∇w‖2] dx. (15)
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3 Discontinuous finite volume element method

Let Rh be a regular triangular partition of Ω and hK be the diameter of the triangle
K ∈ Rh. The triangles K ∈ Rh are divided into three subtriangles T by connecting
the barycenter of the triangle K to its corner nodes, then we define the dual partition
Th of the primal partition Rh to be the union of the triangles T as shown in Fig. 1.
Define the mesh parameter h = max

K∈Th

hK . The length of edge e in element K is

denoted by he, the set of all interior edges e in Rh is denoted by Eo, the set of all
boundary edges belong to Dirichlet boundary in Rh is denoted by ED , and the set of
all boundary edges belonging to Neumann boundary inRh is denoted by EN . Hence,
we have Eu = Eo ∪ ED , Eϕ = Eo ∪ EN , and Ew = Eo ∪ EN .

Let Pk(T ) consist of all the polynomials with degree less than or equal to k defined
on T . Define the finite dimensional trial function space for velocity on triangular
partition:

Xh =
{
v ∈ (L2(Ω))2 : v|K ∈ (P1(K))2, ∀K ∈ Rh

}
.

Define the finite dimensional test function space X∗
h for velocity associated with the

dual partition Th:

X∗
h =

{
v ∈ (L2(Ω))2 : v|T ∈ (P0(T ))2, ∀T ∈ Th

}
.

Let Mh be the finite dimensional space for pressure:

Mh =
{
q ∈ L2

0(Ω) : q|K ∈ P0(K), ∀K ∈ Rh

}
.

Fig. 1 Left: An example of primal mesh (solid lines) and its dual mesh (dashed lines); Right: An element
K and its dual element Tj , Pj is the midpoint of every edge, j = 1, 2, 3
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Define trial function space Yh and test function space Y ∗
h for phase field variable ϕ:

Yh =
{
ψ ∈ L2(Ω) : ψ |K ∈ P1(K), ∀K ∈ Rh

}
,

Y ∗
h =

{
ψ ∈ L2(Ω) : ψ |T ∈ P0(T ), ∀T ∈ Th

}
.

Define trial function space Gh and test function space G∗
h for chemical potential

variable w:

Gh =
{
χ ∈ L2(Ω) : χ |K ∈ P1(K), ∀K ∈ Rh

}
,

G∗
h =

{
χ ∈ L2(Ω) : χ |T ∈ P0(T ), ∀T ∈ Th

}
.

It is well known [8, 37, 85, 104] that the discontinuous finite element space
(Xh, Mh) is a stable pair for the Navier-Stokes equations since it satisfies the inf-sup
condition. That is, there exists a constant β1 > 0 such that

inf
0�=qh∈Mh

sup
0�=vh∈Xh

(qh, ∇ · vh)

‖qh‖0‖vh‖1 ≥ β1. (16)

It is also well known [29, 65] that (Yh, Gh) is a stable pair for the biharmonic
operator and there holds the inf-sup condition, that is, there exists a constant β2 > 0
such that

inf
0�=χh∈Gh

sup
0�=ψh∈Yh

(∇ψh, ∇χh)

‖χh‖1‖ψh‖1 ≥ β2. (17)

For vectors v and n, let v ⊗ n be the matrix whose ij th component is vinj as in
[21]. For two matrix valued variables σ and δ, we define σ : δ = ∑2

i,j=1 σij δij .
An interior edge shared by two elements K1 and K2 in Th is denoted by e, and the
unit normal vectors on e pointing exterior to K1 and K2 are denoted by n1 and n2,
respectively. We define the average {·} and jump [·] on e for a function ϕ, and ϕ can
be scalar q, vector v and matrix δ.

{ϕ} = 1

2
(ϕ|∂K1 + ϕ|∂K2), [ϕ] = ϕ|∂K1n1 + ϕ|∂K2n2.

If e is an edge on the boundary of Ω , define: {q} = q, [v] = v · nΩ, {τ } = τ .
Let E denote the union of the boundaries of the triangles K of Rh and E0 :=

E\∂Ω . A straightforward computation implies
∑

K∈Rh

∫
∂K

qv · nK ds =
∑
e∈E0

∫
e

[q] · {v} ds +
∑
e∈E

∫
e

{q} [v] ds, (18)

∑
K∈Rh

∫
∂K

v · τnK ds =
∑
e∈E0

∫
e

[τ ] · {v} ds +
∑
e∈E

∫
e

{τ } : [v] ds, (19)

where nK is the unit outward normal vector on ∂K .
LetX(h) = Xh+(H 2(Ω))2∩V(Ω), Y (h) = Yh+H 2(Ω), G(h) = Gh+H 2(Ω).

In order to connect Xh to X∗
h, Yh to Y ∗

h and Gh to G∗
h, respectively, we define the

projection maps γ : X(h) → X∗
h, γ : Y (h) → Y ∗

h and γ : G(h) → G∗
h as follows:

γ v|T = 1

he

∫
e

v|T ds, γ ϕ|T = 1

he

∫
e

ϕ|T ds, γw|T = 1

he

∫
e

w|T ds, T ∈ Th.



Adv Comput Math           (2020) 46:25 Page 7 of 35   25 

where e is defined as ∂K
⋂

∂T .
We recall the following lemma about projection operator γ from [6, 19].

Lemma 3.1 If vh ∈ Xh, K ∈ Rh, then

∫
K

(vh − γ vh) dx = 0,
∫

e

(vh − γ vh) ds = 0, ∀e ∈ ∂K,

‖‖γ vh − vh‖K ≤ ChK |vh|1,T , [γ vh] = 1

he

∫
e

[vh] ds,
‖‖[γ vh]||e ≤ ||[vh]||e, ‖γ vh‖0 = ‖vh‖0.

And these conclusions are also true for the variables ϕ ∈ Yh and w ∈ Yh.

Note that the operator γ is self-adjoint with respect to the L2 inner product, i.e.,

(vh, γuh) = (uh, γ vh), ∀uh, vh ∈ Xh, (ϕh, γψh) = (ψh, γ ϕh), ∀ϕh, ψh ∈ Yh.
(20)

A proof of the scalar version of (20) is given in [5]. We define |‖vh‖|0 =
(vh, γ vh), then ‖ · ‖0 and |‖ · ‖|0 are equivalent, i.e., there exists positive constants
C1 and C2 independent of mesh size such that

C1|‖vh‖|0 ≤ ‖vh‖0 ≤ C2|‖vh‖|0, ∀vh ∈ Xh. (21)

Define the following discrete norms on X(h), Y (h), G(h), andMh to be
employed in the analysis:

|‖v‖|2h =
∑

K∈Rh

|v|21,K +
∑

e∈Eo∪ED

h−β
e ||[v]||2e,

|‖ψ‖|2h =
∑

K∈Rh

|ψ |21,K +
∑

e∈Eo∪EN

h−β
e ||[ψ]||2e,

|‖w‖|2h =
∑

K∈Rh

|w|21,K +
∑

e∈Eo∪EN

h−β
e ||[w]||2e,

‖q‖20 =
∑

K∈Rh

‖q‖20,K .

The following trace inequality and inverse inequality to be used in later analysis
can be found in [2, 5, 103, 104]. For the trace inequality, ∀e ∈ ∂K ,

‖v‖20,e ≤ C(h−1
K ‖v‖20,K + hK |v|21,K), ∀v ∈ H 1(K), (22)

‖ ∂v
∂n

‖20,e ≤ C(h−1
K |v|21,K + hK |v|22,K), ∀v ∈ H 2(K), (23)
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and the inverse inequality, ∀vh ∈ Xh

h|‖vh‖|h ≤ C‖vh‖0, (24)

where C depends only on the minimum angle of K ∈ Rh. The similar results are
hold for variables ψ , ψh and w, wh.

We proceed to multiply the momentum (2) by γ vh ∈ X∗
h, and present the Gauss

divergence theorem on each dual element T ∈ Th, then

R
(

∂u
∂t

, γ vh

)
+ R

∑
T ∈Th

∫
T

(u · ∇)u · γ vh dx −
∑
T ∈Th

∫
∂T

(∇u · n) · γ vh ds

+
∑
T ∈Th

∫
∂T

pn · γ vh ds − B
∑
T ∈Th

∫
T

w∇ϕ · γ vh dx =
∑
T ∈Th

∫
T

f · γ vh dx, (25)

where n is the unit outward normal vector on ∂T . And to multiply the mass con-
servation (3) by qh ∈ Mh and integrating by parts the result over K ∈ Rh, we
obtain

∑
K∈Rh

∫
K

∇ · uqh dx = 0, (26)

Multiplying the Cahn-Hilliard (4)–(5) by γψh ∈ Y ∗
h and γχh ∈ G∗

h, respectively,
integrating on each dual element T ∈ Th, and taking the integration by parts, we
obtain

(
∂ϕ

∂t
, γψh

)
+

∑
T ∈Th

∫
T

u · ∇ϕγψh dx − Ld

∑
T ∈Th

∫
∂T

∇w · nγψh ds = 0, (27)

−ε
∑
T ∈Th

∫
∂T

∇ϕ · nγχh ds + 1

ε

∑
T ∈Th

∫
T

f (ϕ)γ χh dx =
∑
T ∈Th

∫
T

w · γχh dx.(28)

Let Tj ∈ Th(j = 1, 2, 3) be the triangles in K ∈ Rh, as shown in Fig. 1. Then we
get

−
∑
T ∈Th

∫
∂T

(∇u · n) · γ vh ds = −
∑

K∈Rh

3∑
j=1

∫
∂Tj

(∇u · n) · γ vh ds

= −
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

(∇u · n) · γ vh ds −
∑

K∈Rh

∫
∂K

(∇u · n) · γ vh ds, (29)
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using the identity (19) and the fact that [∇u] = 0 for u ∈ (H 2(Ω))2 ∩X on Eo ∪ED ,
we have

−
∑

K∈Rh

∫
∂K

(∇u · n) · γ vh ds = −
∑

e∈Eo∪ED

∫
e

(∇u · n) · γ vh ds

= −
∑

e∈Eo∪ED

∫
e

{∇u} : [γ vh] ds. (30)

Using (18) and note that [p] = 0 for p ∈ H 1(Ω) ∩ L2
0(Ω) on Eo ∪ ED , we obtain

∑
T ∈Th

∫
∂T

pn · γ vh ds =
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

pn · γ vh ds +
∑

e∈Eo∪ED

∫
e

{p} · [γ vh] ds.
(31)

Using (18) and note that [∇ϕ] = 0 for ϕ ∈ H 2(Ω) ∩ Y on Eo, we obtain

−
∑
T ∈Th

∫
∂T

ε∇ϕ · nγχh ds = −
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

ε∇ϕ · nγχh ds

−
∑
e∈Eo

∫
e

ε {∇ϕ} · [γχh] ds. (32)

Using (18) and note that [∇w] = 0 for ϕ ∈ H 2(Ω) ∩ G on Eo, we obtain

−
∑
T ∈Th

∫
∂T

∇w · nγψh ds = −
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

∇w · nγψh ds

−
∑
e∈Eo

∫
e

{∇w} · [γψh] ds. (33)

Owing to (25)–(33), the weak formulation for (2)–(5) is: find (u, p, ϕ, w) ∈ (Xh×
Mh × Yh × Gh), such that ∀(vh, qh, ψh, χh) ∈ (Xh × Mh × Yh × Gh)

R
(

∂u
∂t

, γ vh

)
+ RD1(u;u, γ vh) + A∗

1(u, γ vh)

+B(γ vh, p) − BD2(w; ϕ, γ vh) = (f, γ vh), (34)

b(u, qh) = 0, (35)(
∂ϕ

∂t
, γψh

)
+ D3(u; ϕ, γψh) + LdA∗

2(w, γψh) = 0, (36)

εA∗
3(ϕ, γ χh) + 1

ε
(f (ϕ), γ χh) = (w, γ χh), (37)
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where

A∗
1(u, γ vh) = −

∑
K∈Rh

3∑
j=1

∫
Aj+1CAj

(∇u · n) · γ vh ds −
∑

e∈Eo∪ED

∫
e

{∇u} : [γ vh] ds,

A∗
2(w, γψh) = −

∑
K∈Rh

3∑
j=1

∫
Aj+1CAj

∇w · nγψh ds −
∑
e∈Eo

∫
e

{∇w} · [γψh] ds,

A∗
3(ϕ, γ χh) = −

∑
K∈Rh

3∑
j=1

∫
Aj+1CAj

∇ϕ · nγχh ds −
∑
e∈Eo

∫
e

{∇ϕ} · [γχh] ds,

B(γ vh, p) =
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

pn · γ vh ds +
∑

e∈Eo∪ED

∫
e

{p} · [γ vh] ds,

b(u, qh) =
∑

K∈Rh

∫
K

∇ · uqh dx,

D1(u;w, γ vh) =
∑
T ∈Th

∫
T

(u · ∇)w · γ vh dx,

D2(w;ϕ, γ vh) =
∑
T ∈Th

∫
T

w∇ϕ · γ vh dx,

D3(u; ϕ, γψh) =
∑
T ∈Th

∫
T

u · ∇ϕγψh dx,

(f, γ vh) =
∑
T ∈Th

∫
T

f · γ vh dx,

(w, γ χh) =
∑
T ∈Th

∫
T

w · γχh dx.

Now, with the help of (34)–(37), we can derive the semi-discrete discontinu-
ous finite volume element formulation for the problem (2)–(5) as follows: find
(uh, ph, ϕh, wh) ∈ (Xh ×Mh ×Yh ×Gh), such that ∀(vh, qh, ψh, χh) ∈ (Xh ×Mh ×
Yh × Gh)

R
(

∂uh

∂t
, γ vh

)
+ RD1(uh;uh, γ vh) + A1(uh, γ vh)

+B(γ vh, ph) − BD2(wh; ϕh, γ vh) = (f, γ vh), (38)

C(uh, qh) = 0, (39)(
∂ϕh

∂t
, γψh

)
+ D3(uh; ϕh, γψh) + LdA2(wh, γψh) = 0, (40)

εA3(ϕh, γ χh) + 1

ε
(f (ϕh), γ χh) = (wh, γ χh), (41)
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and

A1(uh, γ vh) = A∗
1(uh, γ vh) + θ

∑
e∈Eo∪ED

∫
e

{∇vh} : [γuh] ds

+
∑

e∈Eo∪ED

α

h
β
e

∫
e

[uh] : [vh] ds,

A2(wh, γψh) = A∗
2(wh, γψh) + θ

∑
e∈Eo

∫
e

{∇ψh} · [γwh] ds

+
∑
e∈Eo

α

h
β
e

∫
e

[wh] · [ψh] ds,

A3(ϕh, γ χh) = A∗
3(ϕh, γ χh) + θ

∑
e∈Eo

∫
e

{∇χh} · [γ ϕh] ds

+
∑
e∈Eo

α

h
β
e

∫
e

[ϕh] · [χh] ds,

C(uh, qh) =
∑

K∈Rh

∫
K

∇ · uhqh dx −
∑

e∈Eo∪ED

∫
e

{qh} · [γuh] ds,

where θ = −1, 0 and 1 lead to the symmetric, incomplete, and non-symmetric inte-
rior penalty formulations (SIPG, IIPG, and NIPG, respectively) in the context of
interior penalty discontinuous Galerkin finite element methods. α > 0 and β > 0 are
penalty parameters [2].

Next, we present the fully discrete discontinuous finite volume element method.
Let tj = jΔt, j = 0, 1, . . . , N , Δt = T

N
,uj

h = uh(t
j ), ϕ

j
h = ϕh(t

j ). Combined
with the backward Euler scheme in time discretization, the fully discrete discon-
tinuous finite volume element formulation for the problem (2)–(5) is proposed as

follows: find
{(

uj+1
h , p

j+1
h , ϕ

j+1
h , w

j+1
h

)}N−1

j=0
∈ (Xh × Mh × Yh × Gh), such that

∀(vh, qh, ψh, χh) ∈ (Xh × Mh × Yh × Gh)

R
(
uj+1

h − uj
h

Δt
, γ vh

)
+ RD1(u

j+1
h ;uj+1

h , γ vh) + A1(u
j+1
h , γ vh)

+B(γ vh, p
j+1
h ) − BD2(w

j+1
h ; ϕ

j+1
h , γ vh) = (f(tj+1), γ vh), (42)

C(uj+1
h , qh) = 0, (43)(

ϕ
j+1
h − ϕ

j
h

Δt
, γψh

)
+ D3(u

j+1
h ; ϕ

j+1
h , γψh) + LdA2(w

j+1
h , γψh)=0, (44)

εA3(ϕ
j+1
h , γ χh) + 1

ε
(f (ϕ

j+1
h ), γ χh) = (w

j+1
h , γ χh), (45)

with the initial conditions u0h = u0h and ϕ0
h = ϕ0h. Here

f
j+1
h =

(
ϕ

j+1
h

)3 − ϕ
j
h . (46)
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In order to derive the basic energy law of the discrete problem, we first provide
the following equivalence relations. The proof can be obtained easily by using Gauss
divergence theorem on the control volumes, readers can find more details in [5, 6,
56, 57, 103, 104].

Lemma 3.2 ∀u, v ∈ X(h), ∀ϕ, ψ ∈ Y (h), ∀p, q ∈ L2
0(Ω), ∀w, χ ∈ G(h), we

have

−
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

∇u · nγ v ds −
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

∇w · nγψ ds

−
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

∇ϕ · nγχ ds +
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

pn · γ v ds

= (∇u, ∇v) +
∑

K∈Rh

∫
∂K

∇u · n(γ v − v) ds −
∑

K∈Rh

(∇ · ∇u, γ v − v)K

+(∇w, ∇ψ) +
∑

K∈Rh

∫
∂K

∇w · n(γψ − ψ) ds −
∑

K∈Rh

(∇ · ∇w, γψ − ψ)K

+(∇ϕ, ∇χ) +
∑

K∈Rh

∫
∂K

∇ϕ · n(γ χ − χ) ds −
∑

K∈Rh

(∇ · ∇ϕ, γ χ − χ)K

+
∑

K∈Rh

∫
K

∇p · (γ v − v) dx − (∇ · v, p) −
∑

K∈Rh

∫
∂K

pn · (γ v − v) ds, (47)

if uh, vh ∈ Xh, φh, ψh ∈ Yh, ph, qh ∈ Mh, wh, χh ∈ Gh, we get

−
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

∇uh · nγ vh ds −
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

∇wh · nγψh ds

−
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

∇ϕh · nγχh ds +
∑

K∈Rh

3∑
j=1

∫
Aj+1CAj

phn · γ vh ds

= (∇uh, ∇vh) + (∇wh, ∇ψh) + (∇ϕh, ∇χh) − (∇ · vh, ph), (48)

and

B(γ vh, qh) = −C(vh, qh). (49)

Now, the mass conservation property of the Navier-Stokes-Cahn-Hilliard system
reads as follows.

Theorem 3.1 (Temporally discrete mass conservation) Let{(
uj+1

h , p
j+1
h , ϕ

j+1
h , w

j+1
h

)}N−1

j=0
be a solution of the spatially discrete system

(42)–(46). Assume that f = 0, then this system has the following mass conservation
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law: ∫
Ω

ϕ
j+1
h dx =

∫
Ω

ϕ0 dx, j ≥ 0. (50)

Proof Setting ψh = 1 in (44) and using Lemma 3.1 and Lemma 3.2, we have∫
Ω

ϕ
j+1
h dx =

∫
Ω

ϕ
j
h dx, j ≥ 0, (51)

we complete the proof of Theorem 3.1.

In the following, we prove an energy dissipation property for the Navier-Stokes-
Cahn-Hilliard system.

Theorem 3.2 (Temporally discrete energy dissipation equality) Let{(
uj+1

h , p
j+1
h , ϕ

j+1
h , w

j+1
h

)}N−1

j=0
be the solution of the spatially discrete system

(42)-(46). Assume that f = 0, then this system has the following basic energy law:

E
(
tj+1;uj+1, ϕj+1

)
− E

(
tj ;uj , ϕj

)
= R

2
|‖uj+1

h ‖|20 + Bε

2
|‖ϕj+1

h ‖|2h
+B

ε
F

(
ϕ

j+1
h

)
− R

2
|‖uj

h‖|20
−Bε

2
|‖ϕj

h‖|2h − B
ε

F (ϕ
j
h) ≤ 0. (52)

Proof Set the test function in (42) by vh = Δtuj+1
h , we get

R
(
uj+1

h − uj
h

Δt
, Δtγuj+1

h

)
+ RD1

(
uj+1

h ; uj+1
h , Δtγuj+1

h

)
+ A1

(
uj+1

h , Δtγuj+1
h

)

+B
(
Δtγuj+1

h , p
j+1
h

)
− BD2

(
w

j+1
h ; ϕ

j+1
h , Δtγuj+1

h

)
= 0. (53)

By the algebraic identity a(a − b) = 1
2 (a

2 − b2) + 1
2 (a − b)2, we have

R
(
uj+1

h − uj
h, γu

j+1
h

)
= R

2

(
|‖uj+1

h ‖|20−|‖uj
h‖|20

)
+ R

2

(
|‖uj+1

h ‖|0 − |‖uj
h‖|0

)2

≥ R
2

(
|‖uj+1

h ‖|20 − |‖uj
h‖|20

)
. (54)

For uj+1
h ∈ Xh, ∇uj+1

h is a constant on each dual element T , then

RD1

(
uj+1

h ;uj+1
h , Δtγuj+1

h

)
=ΔtRD1

(
uj+1

h ;uj+1
h , γuj+1

h

)
= ΔtCR|‖uj+1

h ‖|20.

Using lemma 3.1, the equivalence of the norms |‖ · ‖|0 and ‖ · ‖0, there exists C̃ > 0
such that

ΔtCR|‖uj+1
h ‖|20 = ΔtC̃R‖uj+1

h ‖20 = RD1

(
uj+1

h ;uj+1
h , Δtuj+1

h

)
= 0. (55)
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Using Cauchy-Schwarz and trace inequality (3.8), the well-known coercivity prop-
erty of the bilinear form A1(·, ·) satisfies

A1

(
uj+1

h , Δtγuj+1
h

)
≥ ΔtC|‖uj+1

h ‖|2h. (56)

Set the test function in (43) by qh = Δtp
j+1
h , we get

C
(
uj+1

h , Δtp
j+1
h

)
= 0. (57)

Set the test function in (44) by ψh = BΔtw
j+1
h , we get(

ϕ
j+1
h − ϕ

j
h

Δt
,BΔtγw

j+1
h

)
+ D3

(
uj+1

h ; ϕ
j+1
h ,BΔtγw

j+1
h

)

+ LdA2

(
w

j+1
h ,BΔtγw

j+1
h

)
= 0. (58)

Similar to A1(·, ·), we obtain
LdA2

(
w

j+1
h ,BΔtγw

j+1
h

)
≥ BLdΔtC|‖wj+1

h ‖|2h. (59)

x Set the test function in (45) by χ = Bγ (ϕ
j+1
h − ϕ

j
h), we get

εA3

(
ϕ

j+1
h ,Bγ

(
ϕ

j+1
h − ϕ

j
h

))
+ 1

ε

(
f

j+1
h ,Bγ

(
ϕ

j+1
h − ϕ

j
h

))
=

(
w

j+1
h ,Bγ

(
ϕ

j+1
h − ϕ

j
h

))
. (60)

Define the backward difference operator

dt := ϕ
j+1
h − ϕ

j
h

Δt
, j = 0, 1, 2, · · · , N − 1.

Define the auxiliary bilinear forms As
3(·, ·) as follows:

As
3(ϕ, χ) = (∇ϕ, ∇χ) −

∑
e∈Eo

∫
e

{∇ϕ} · [χ] ds

+θ
∑
e∈Eo

∫
e

{∇χ} · [ϕ] ds +
∑
e∈Eo

α

h
β
e

∫
e

[ϕ] · [χ] ds.

Using lemma 3.1 and lemma 3.2, we have

A3(ϕ, γ χ) − As
3(ϕ, χ) = −

∑
e∈Eo

∫
e

{∇ϕ} · [γχ − χ] ds

+θ
∑
e∈Eo

∫
e

{∇χ} · [γ ϕ − ϕ] ds = 0.

Then we can get

εA3

(
ϕ

j+1
h ,Bγ

(
ϕ

j+1
h − ϕ

j
h

))
= BεAs

3

(
ϕ

j+1
h , ϕ

j+1
h − ϕ

j
h

)

= ΔtBεAs
3

(
ϕ

j+1
h , dtϕ

j+1
h

)
. (61)
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By the algebraic identity a(a −b) = 1
2

(
a2 − b2

)+ 1
2 (a −b)2 ≥ 1

2a
2 − 1

2b
2, we have

ΔtBεAs
3

(
ϕ

j+1
h , dtϕ

j+1
h

)
≥ Bε

2
|‖ϕj+1

h ‖|2h − Bε

2
|‖ϕj

h‖|2h. (62)

Note that |f (ϕ)| ≤ C, we have

1

ε

(
f

j+1
h ,Bγ

(
ϕ

j+1
h − ϕ

j
h

))
= B

ε

(
f

j+1
h , γ

(
ϕ

j+1
h − ϕ

j
h

))

= B
ε

(
f

j+1
h , ϕ

j+1
h − ϕ

j
h

)

+B
ε

(
f

j+1
h , γ ϕ

j+1
h − ϕ

j+1
h −

(
γ ϕ

j
h − ϕ

j
h

))

≥ Δt
B
ε

(
f

j+1
h , dtϕ

j+1
h

)
. (63)

Since

f
j+1
h =

(
ϕ

j+1
h

)3 − ϕ
j
h

= ϕ
j+1
h

(
|ϕj+1

h |2 − 1
)

+ Δtdtϕ
j+1
h

= 1

2

((
ϕ

j+1
h + ϕ

j
h

)
+ Δtdtϕ

j+1
h

) (
|ϕj+1

h |2 − 1
)

+ Δtdtϕ
j+1
h , (64)

then

Δt
B
ε

(
f

j+1
h , dtϕ

j+1
h

)
≥ BΔt

4ε
dt‖

(
|ϕj+1

h |2 − 1
)

‖2 + BΔt2

4ε
‖dt

(
|ϕj+1

h |2 − 1
)

‖2

+BΔt2

2ε
‖dtϕ

j+1
h ‖2

= B
ε

(
F

(
ϕ

j+1
h

)
− F

(
ϕ

j
h

))
+ BΔt2

4ε
‖dt

(
|ϕj+1

h |2 − 1
)

‖2

+BΔt2

2ε
‖dtϕ

j+1
h ‖2

≥ B
ε

(
F

(
ϕ

j+1
h

)
− F

(
ϕ

j
h

))
. (65)

Using (21), we have

− BD2

(
w

j+1
h ; ϕ

j+1
h , Δtγuj+1

h

)
+ D3

(
uj+1

h ; ϕ
j+1
h ,BΔtγw

j+1
h

)
= 0, (66)(

ϕ
j+1
h − ϕ

j
h

Δt
,BΔtγw

j+1
h

)
=

(
w

j+1
h ,Bγ

(
ϕ

j+1
h − ϕ

j
h

))
. (67)

Together with (53)–(67), we obtain

R
2

‖uj+1
h ‖20 − R

2
‖uj

h‖20 + Bε

2
|‖ϕj+1

h ‖|2h − Bε

2
|‖ϕj

h‖|2h + B
ε

(
F

(
ϕ

j+1
h

)
− F

(
ϕ

j
h

))

≤ −ΔtC|‖uj+1
h ‖|2h − BLdΔtC|‖wj+1

h ‖|2h ≤ 0. (68)
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Then we complete the proof of Theorem 3.2.

The following a priori bounds for the phase function, chemical potential, and
velocity are a direct result of the discrete energy dissipation law.

Theorem 3.3 Let
{(

uj
h, p

j
h, ϕ

j
h, w

j
h

)}N

j=1
be the solution of the spatially discrete

system (42)–(46). Assume that f = 0, then for any 1 ≤ l ≤ N , we have

R
2

|‖ul
h‖|20+

Bε

2
|‖ϕl

h‖|2h+B
ε

F (ϕl
h)+ΔtC

l∑
j=1

|‖uj
h‖|2h + BLdΔtC

l∑
j=1

|‖wj
h‖|2h

≤ R
2

|‖u0h‖|20 + Bε

2
|‖ϕ0

h‖|2h + B
ε

F (ϕ0
h). (69)

In addition, the double well potential F(ϕ) is bounded from below by a constant,
then there is a positive constant C independent of h and Δt such that

max
1≤j≤l

|‖ϕj
h‖|20 + max

1≤j≤l
|‖uj

h‖|20 < C, (70)

Δt
∑

1≤j≤l

|‖wj
h‖|20 + Δt

∑
1≤j≤l

|‖uj
h‖|2h < C. (71)

Proof From the proof of Theorem 3.2, we know that

R
2

‖uj
h‖20 − R

2
‖uj−1

h ‖20 + Bε

2
|‖ϕj

h‖|2h − Bε

2
|‖ϕj−1

h ‖|2h + B
ε

(
F

(
ϕ

j
h

)
− F

(
ϕ

j−1
h

))

≤ −ΔtC|‖uj
h‖|2h − BLdΔtC|‖wj

h‖|2h. (72)

For any 1 ≤ l ≤ N , take the summation of j from 1 to l, then

R
2

|‖ul
h‖|20+

Bε

2
|‖ϕl

h‖|2h+B
ε

F (ϕl
h)+ΔtC

l∑
j=1

|‖uj
h‖|2h + BLdΔtC

l∑
j=1

|‖wj
h‖|2h

≤ R
2

|‖u0h‖|20 + Bε

2
|‖ϕ0

h‖|2h + B
ε

F (ϕ0
h). (73)

In case the double well potential F(ϕ) is bounded from below by a constant, since
the parameters are all positive, it is straightforward to show (70)–(71) holds.

4 Numerical examples

In this section, we present a series of numerical examples to investigate the efficiency
and applicability of the presented method for the phase field model in the two-
dimensional space. The fully discrete counterpart of Navier-Stokes-Cahn-Hilliard
system is solved via the Newton-Raphson method with a tolerance of 10−6. The
iterative solver achieves convergence after at most 3 Newton steps for solving this
coupled non-linear system at a given time. The first example is provided to show the
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convergence and accuracy. The second and third examples test the surface tension
effects of phase-field model by using the evolution of a square-shaped fluid bubble
and perturbed surface of the droplet. The fourth and fifth examples test the surface
tension effect and the elastic effect of the phase field model by using evolution of
the two kissing bubbles and three kissing-non-kissing bubbles coalescence. The sixth
example is provided to simulate the lid-driven cavity flow. In the seventh example,
we use the Boussinesq approximation for phase field model to test the influence of
different densities. The simulation of the viscous Rayleigh-Taylor instability was also
investigated in the last example. In all of the numerical examples, we take penalty
parameters α = 1000, β = 1.

Example 1 (Convergence and accuracy). We first investigate on the numerical errors
and convergence rates of the proposed method with SIPG, IIPG, and NIPG. Let the
computational domain be Ω = [0, 1] × [0, 1], choose R = B = Ld = ε = 1. The
boundary condition functions and the source terms are chosen such that the following
functions are the exact solutions:⎧⎪⎨

⎪⎩
u = [sin(πx) cos(πy), − cos(πx) sin(πy)]T sin(t),

p =
(
x2 + y2 − 2

3

)
cos(t),

ϕ = sin(πx) sin(πy) sin(t).

(74)

We apply the proposed DFVE methods on meshes obtained by successive subdi-
vision of Ω into uniform triangulations Rh of mesh sizes h = 2−l , with 2 ≤ l ≤ 5.
Define the error by

eu = u − uh, ep = p − ph, eϕ = ϕ − ϕh, ew = w − wh.

In Table 1, we list the numerical errors and error of convergence (Eoc) rates with
θ = −1, 0, 1, and Δt = 4h2, evolving the system until T = 1. It is clearly seen from
Table 1 that the error estimates of u, ϕ, w in L2 norm are O(h2), the error estimates
of u, ϕ, w in broken H 1 norm and the error estimates of pressure p in L2 norm
are O(h). The numerical results clearly show the optimal convergence rates of the
present method in all of the L2 and broken H 1 norms. From Table 1, the numerical
experiments indicate that optimal error estimates in L2 and broken H 1 norms are
obtained for θ = 0, 1 even with β = 1. Similar results were also observed in [56].

To achieve high numerical accuracy of phase field model at an acceptable compu-
tational cost, it is crucial to resolve the transition layer; numerical simulations [33,
88] suggest that in order to accurately capture the interfacial dynamics, at least 2–4
elements are needed across the interfacial region of thickness. Even in the context of
two-dimensional simulations, using for instance ε = 0.01, and resolving the transi-
tion layer of thickness by means of uniform meshes can turn out to be very expensive
and slow. Therefore, we utilized adaptive meshes for resolve this issue. The imple-
mentation is done in Matlab based on iFEM [12]. Regarding error indicators, we
resort to the simplest element indicator ηK :

η2K = hK

∫
∂K

|[∇ϕ]|2 ds, ∀K ∈ Rh. (75)
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This entails using graded meshes and coarsening. At each time step, local error
indicators were calculated heuristically and used to decide the refinement and coars-
ening process of the grid. The heuristic strategy is to refine the transition zones while
coarsening the phases, for which we refer the readers to [69, 75].

In the following experiments, we only consider the SIPG method in the fully
discreze scheme, namely θ = −1 in (42)–(46) . For all boundaries, no-slip bound-
ary condition for velocities and homogeneous Neumann boundary conditions for the
phase parameter and the chemical potential are applied.

Example 2 (The dynamics of a square shape fluid). We simulate the evolution of a
square-shaped fluid bubble in the square domain of Ω = [0, 1]×[0, 1]. ChooseR =
1, B = 12, Ld = 10−5, ε = 0.01, Δt = 0.005, ϕ0 = −tanh

( |x+y−1|+|x−y|−0.5√
2ε

)
.

Figure 2 shows the dynamic evolution of the bubble which turns to a circle under
the effect of surface tension. Figure 3 shows the corresponding meshes. To illustrate
that our numerical scheme (42)–(46) indeed obeys the mass conservation property
and the discrete energy dissipation, the evolution of the discrete relative mass and
total energy are plotted in Fig. 4a. We notice that the square bubble quickly deforms

into a circular bubble while the relative mass

(
| ∫Ω ϕm

h dx−∫
Ω ϕ0

h dx|∫
Ω ϕ0

h dx

)
remains zero in

time. We also observe that the total energy is decreasing monotonically as predicted
by Theorem 3.2 and tends to a constant value corresponding to a single larger drop
near the equilibrium. From Fig. 4b, we observe that the volume of the drop in the
entire domain is preserved well. Next, we demonstrate the effect of ε on the mass
of each phase. Figures 5 and 6 show the dynamic evolution of the bubble which
turns to a circle and the corresponding meshes with ε = 0.1. Figure 7 shows the
simulation results for ε = 0.01 and ε = 0.1, respectively. We can see that the total
mass (the integral of ϕm

h over Ω) remains constant and the relative mass remains zero
during the evolution in Fig. 7a, which verifies that our method is conservative with
ε = 0.01. In addition, we plot the mass errors

∫
Ω

ϕm
h dx − ∫

Ω
ϕ0

h dx of each phase
with ε = 0.1 in Fig. 8, which shows that the mass diffusion does occur with big ε

during the evolution.

Example 3 (Relaxation to a disk). We simulate the evolution of perturbed surface of
the droplet in the square domain of Ω = [0, 1] × [0, 1]. Choose R = 1, B = 12,
Ld = 10−5, ε = 0.01, Δt = 0.005, the initial ϕ0 is given in polar coordinates (r, �),

x = (x, y) = (0.5 + r cos(�), 0.5 + r sin(�)) 0 ≤ � < 2π,

(a) t = 0 (b) t = 0 .05 (c) t = 0 .1 (d) t = 0 .15 (e) t = 0 .2 (f) t = 1

Fig. 2 The dynamics of a square shape bubble. Snapshots are shown at t = 0, 0.05, 0.1, 0.15, 0.2, 1



   25 Page 20 of 35 Adv Comput Math           (2020) 46:25 

(a) t = 0 (b) t = 0 .05 (c) t = 0 .1 (d) t = 0 .15 (e) t = 0 .2 (f) t = 1

Fig. 3 Corresponding adaptively meshes at different t
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(a) Mass conservation and energy law
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(b) Snapshots of the zero-level set of

Fig. 4 The numerical mass, energy, snapshots of the zero-level set of ϕ with Δt = 0.005

(a) t = 0 (b) t = 0 .05 (c) t = 0 .1 (d) t = 0 .15 (e) t = 0 .2 (f) t = 1

Fig. 5 The dynamics of a square shape bubble. Snapshots are shown at t = 0, 0.05, 0.1, 0.15, 0.2, 1 with
ε = 0.1

(a) t = 0 (b) t = 0 .05 (c) t = 0 .1 (d) t = 0 .15 (e) t = 0 .2 (f) t = 1

Fig. 6 Corresponding adaptively meshes at different t with ε = 0.1
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(b) = 0 .1

Fig. 7 The mass, relative mass, and mass of each phase with ε = 0.01 and ε = 0.1

where r = 0.25+0.1 cos(n�) and n is the oscillation mode. The computations are
carried out for three different modes of n = 3, 5, and 8 (see the first picture of Figs. 9,
12, and 15, respectively). Figures 9, 10, and 11 show the dynamic evolution of the
bubble which turns to a circle under the effect of surface tension, the corresponding
meshes, the evolution of the discrete relative mass and total energy at different time
steps, and zero-level set plots of the computed phase function for n = 3, respectively.
For the modes of n = 5 and 8, the similar results are listed in Figs. 12, 13, 14, 15,
16, and 17. As we expected, all three modes of the interfaces relaxed to a circle with
the same area. We also see that the larger the mode is, the more quickly the interface
relaxes to a circle because of the effect of the higher curvature of the interface. In
addition, through the experimental data fitting, one can obtain the rate of decrease of
the total energy, which is an exponential change with respect to n.

0 0.2 0.4 0.6 0.8 1
−0.03
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mass error for phih=1
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Fig. 8 The mass errors (
∫
Ω

ϕm
h dx − ∫

Ω
ϕ0

h dx) of each phase with ε = 0.1
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(a) t = 0 (b) t = 0 .025 (c) t = 0 .05 (d) t = 0 .15 (e) t = 0 .25 (f) t = 1 .5

Fig. 9 Phase evolution at t = 0, 0.025, 0.05, 0.15, 0.25, 1.5

(a) t = 0 (b) t = 0 .025 (c) t = 0 .05 (d) t = 0 .15 (e) t = 0 .25 (f) t = 1 .5

Fig. 10 Corresponding adaptively meshes at different t
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Fig. 11 The numerical mass, energy, snapshots of the zero-level set of ϕ with Δt = 0.005

(a) t = 0 (b) t = 0 .025 (c) t = 0 .05 (d) t = 0 .15 (e) t = 0 .25 (f) t = 1 .5

Fig. 12 Phase evolution at t = 0, 0.025, 0.05, 0.15, 0.25, 1.5

(a) t = 0 (b) t = 0 .025 (c) t = 0 .05 (d) t = 0 .15 (e) t = 0 .25 (f) t = 1 .5

Fig. 13 Corresponding adaptively meshes at different t
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Fig. 14 The numerical mass, energy, snapshots of the zero-level set of ϕ with Δt = 0.005

(a) t = 0 (b) t = 0 .025 (c) t = 0 .05 (d) t = 0 .15 (e) t = 0 .25 (f) t = 1 .5

Fig. 15 Phase evolution at t = 0, 0.025, 0.05, 0.15, 0.25, 1.5

(a) t = 0 (b) t = 0 .025 (c) t = 0 .05 (d) t = 0 .15 (e) t = 0 .25 (f) t = 1 .5

Fig. 16 Corresponding adaptively meshes at different t
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(b) Snapshots of the zero-level set of

Fig. 17 The numerical mass, energy, snapshots of the zero-level set of ϕ with Δt = 0.005
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Example 4 (Coalescence of two kissing bubbles). Two bubbles are initially laid
around the center of the square domainΩ = [0, 0.8]×[0, 0.8], close to each other but
their interfaces are not overlapped. Choose R = 1, B = 12, Ld = 10−5, ε = 0.01,
Δt = 0.005, the initial phase parameter around two bubbles is given as

ϕ0 =

⎧⎪⎪⎨
⎪⎪⎩

−tanh

(√
(x−0.25)2+(y−0.4)2−0.15√

2ε

)
for 0 < x < 0.4, 0 < y < 0.8,

−tanh

(√
(x−0.55)2+(y−0.4)2−0.15√

2ε

)
else.

(76)

Due to the diffusion of two bubbles, they coalesce into a bigger circular bub-
ble with time, the evolution of the bubbles is visually shown in Fig. 18. Located
closely, but completely separated two bubbles start to share their interfaces, form a
dumbbell and ellipse shape, and eventually become a circle, located at the center of
domain. Figure 19 shows the corresponding meshes. Mass conservation, total energy,
and zero-level set plots of the computed phase function during the coalescence are
presented in Fig. 20.

Example 5 (Two kissing bubbles and one non-kissing bubble coalescence). Two kiss-
ing bubbles are close to each other but their interfaces are not overlapped, and with
a non-kissing bubble of the same size. In a square domain Ω = [0, 0.8] × [0, 0.8],
choose R = 1, B = 12, Ld = 10−5, ε = 0.01, Δt = 0.005, the initial phase
parameter around two bubbles is given as

ϕ0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−tanh

(√
(x−0.3)2+(y−0.5)2−0.1√

2ε

)
for 0.0 < x < 0.4, 0.38 < y < 0.8,

−tanh

(√
(x−0.5)2+(y−0.5)2−0.1√

2ε

)
for 0.4 < x < 0.8, 0.38 < y < 0.8,

−tanh

(√
(x−0.4)2+(y−0.25)2−0.1√

2ε

)
else.

(77)

The two located closely bubbles first deform into a circular bubble with the invari-
able volume as presented in Fig. 21 d and e, then this circle and the third bubble merge
into a more bigger bubble as presented in Fig. 21 as a result of the surface tension
effect. Figure 22 shows the corresponding meshes. Mass conservation, total energy,
and zero-level set plots of the computed phase function during the coalescence are
presented in Fig. 23.

(a) t = 0 (b) t = 0 .5 (c) t = 0 .25 (d) t = 0 .35 (e) t = 0 .5 (f) t = 1 .5

Fig. 18 Phase evolution at t = 0, 0.5, 0.25, 0.35, 0.5, 1.5
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(a) t = 0 (b) t = 0 .5 (c) t = 0 .25 (d) t = 0 .35 (e) t = 0 .5 (f) t = 1 .5

Fig. 19 Corresponding adaptively meshes at different t
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Fig. 20 The numerical mass, energy, snapshots of the zero-level set of ϕ with Δt = 0.005

(a) t = 0 (b) t = 0 .025 (c) t = 0 .05 (d) t = 0 .1 (e) t = 0 .25 (f) t = 0 .45

(g) t = 0 .5 (h) t = 0 .55 (i) t = 0 .6 (j) t = 0 .65 (k) t = 1 .0 (l) t = 3 .2

Fig. 21 Phase evolution at t = 0, 0.025, 0.05, 0.1, 0.25, 0.45, 0.5, 0.55, 0.6, 0.65, 1.0, 3.2
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(a) t = 0 (b) t = 0 .025 (c) t = 0 .05 (d) t = 0 .1 (e) t = 0 .25 (f) t = 0 .45

(g) t = 0 .5 (h) t = 0 .55 (i) t = 0 .6 (j) t = 0 .65 (k) t = 1 .0 (l) t = 3 .2

Fig. 22 Corresponding adaptively meshes at different t
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Fig. 23 The numerical mass, energy, snapshots of the zero-level set of ϕ with Δt = 0.005

(a) t = 0 (b) t = 2 .5 (c) t = 5 (d) t = 6 (e) t = 6 .5 (f) t = 7

(g) t = 7 .5 (h) t = 8 (i) t = 8 .5 (j) t = 9 (k) t = 9 .5 (l) t = 10

Fig. 24 Phase evolution at t = 0, 2.5, 5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10
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(a) t = 0 (b) t = 2 .5 (c) t = 5 (d) t = 6 (e) t = 6 .5 (f) t = 7

(g) t = 7 .5 (h) t = 8 (i) t = 8 .5 (j) t = 9 (k) t = 9 .5 (l) t = 10

Fig. 25 Corresponding adaptively meshes at different t

(a) t = 0 (b) t = 0 .25 (c) t = 0 .5 (d) t = 0 .75 (e) t = 1 (f) t = 1 .25

(g) t = 1 .5 (h) t = 1 .75 (i) t = 2 (j) t = 2 .25 (k) t = 2 .5 (l) t = 2 .75

Fig. 26 Phase evolution at t = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75

Fig. 27 Phase evolution at t = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 with ν = 0.1
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Fig. 28 Phase evolution at t = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 with ν = 0.05

Example 6 (Lid driven cavity). This test case is based on the example proposed in
[44, 52, 79], with slight modifications. We rewrite the momentum (2) as

ut + (u · ∇)u − νΔu + ∇p − Bw∇ϕ = 0 in Ω, (78)

where constant ν is the dynamic viscosity. Let the computational domain be
Ω = [0, 1] × [0, 1]. Choose ν = 2 × 10−3, B = 2 × 10−4, Ld = 5 × 10−3,
ε = 1

120 , Δt = 0.05. The domain with a inflow profile u = [16x2(x − 1)2, 0]T on
the top boundary and no-slip boundary conditions u = [0, 0]T on the left, right and
bottom boundaries. The initial phase parameter is given as a smoothed out horizontal

line at y = 0.5: ϕ0 = −tanh
(
100(y−0.5)√

2ε

)
. The numerical results obtained from our

solution procedure are shown in Figs. 24 and 25 which present the evolution of the
phase function ϕ together with the locally refined meshes. Similar results were also
observed in [44, 52, 79].

Example 7 (Boussinesq approximation). In this example, we use the classical
Boussinesq approximation to phase field model where the two fluids with small
density ratio [54, 67, 106]. We rewrite the momentum (2) as

ρ0(ut + (u · ∇)u) − νΔu + ∇p − Bw∇ϕ = −(1 + ϕ)g(ρ1 − ρ0)

−(1 − ϕ)g(ρ2 − ρ0) in Ω, (79)

Fig. 29 Phase evolution at t = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 with ν = 0.01
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Fig. 30 Phase evolution at t = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 with ν = 0.005

where constant ρ0 is the “background” density contribute only to the buoyancy force,
ρ1 and ρ2 are two immiscible, incompressible fluids density, respectively, and ν is
the dynamic viscosity. We rewrite the right hand side of as

−(1 + ϕ)g(ρ1 − ρ0) − (1 − ϕ)g(ρ2 − ρ0) = −g(ρ1 + ρ2 − 2ρ0) − gϕ(ρ1 − ρ2).

Let the computational domain be Ω = [0, 1] × [0, 1.5]. Choose ν = 1, B = 12,
Ld = 10−5, ε = 0.01, Δt = 0.005, ρ1 = 1, ρ2 = 9, and ρ0 = (ρ1 + ρ2)/2 = 5. The
gravitational constant vector is taken to be g = [0, 10]T , in Fig. 26. We start with a
circular bubble near the bottom of the domain. The density of the bubble is lighter
than the density of the surrounding fluid, the bubble rises as expected.

Example 8 (Rayleigh-Taylor instability). In this example, we use the Boussinesq
approximation to phase field model for the Rayleigh-Taylor instability. The com-
putational domain consists of the upper high-density fluid region and the lower
low-density fluid region. We assume that the interface between the two regions is
smooth at the initial time and the interface evolves over time under the action of the
gravitational field. We take an initial state as ϕ0 = tanh

(
y−2−0.1 cos(2πx)√

2ε

)
on the

computational domain Ω = [0, 1] × [0, 4]. Choose B = 0, Ld = 0.1, ε = 0.01,
Δt = 0.001, ρ1 = 3, ρ2 = 1, and ρ0 = (ρ1 + ρ2)/2 = 2. The gravitational constant
vector is taken to be g = [0, 10]T . We test the effect of ν = 0.1, 0.05, 0.01, 0.005
on the solution. Figures 27, 28, 29, and 30 depict the evolution of the instability at
four different values of ν. For a larger ν, the spike of the heavy fluid, no vortices are
observed in the whole process, and the shear layer between the bubble and spike is
stabilized due to the larger viscosity effect. In contrast, for a smaller ν, the spike of
the heavy fluid first falls down and gradually rolls up, forming into two counterro-
tating vortices. Then these two vortices continue to grow, which results in a pair of
vortices at the tails of the roll-ups. Finally, the interface undergoes a chaotic breakup,
which induces the formation of an abundance of small droplets in the system.
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5 Conclusions

In this paper, a fully discrete scheme combining discontinuous finite volume ele-
ment methods for spatial discretization and backward Euler method for temporal
discretization is proposed to solve the Navier-Stokes-Cahn-Hilliard model. The dis-
crete energy stability is analyzed for the proposed numerical method. The features
of the proposed method, such as the accuracy, mass conservation property, energy
dissipation, and applicability, are demonstrated by the numerical experiments.
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