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Abstract

Our understanding of how chromosomes structurally organize and dynamically interact has

been revolutionized through the lens of long-chain polymer physics. Major protein contribu-

tors to chromosome structure and dynamics are condensin and cohesin that stochastically

generate loops within and between chains, and entrap proximal strands of sister chromatids.

In this paper, we explore the ability of transient, protein-mediated, gene-gene crosslinks to

induce clusters of genes, thereby dynamic architecture, within the highly repeated ribosomal

DNA that comprises the nucleolus of budding yeast. We implement three approaches: live

cell microscopy; computational modeling of the full genome during G1 in budding yeast,

exploring four decades of timescales for transient crosslinks between 5kbp domains

(genes) in the nucleolus on Chromosome XII; and, temporal network models with automated

community (cluster) detection algorithms applied to the full range of 4D modeling datasets.

The data analysis tools detect and track gene clusters, their size, number, persistence time,

and their plasticity (deformation). Of biological significance, our analysis reveals an optimal

mean crosslink lifetime that promotes pairwise and cluster gene interactions through “flexi-

ble” clustering. In this state, large gene clusters self-assemble yet frequently interact (merge

and separate), marked by gene exchanges between clusters, which in turn maximizes

global gene interactions in the nucleolus. This regime stands between two limiting cases

each with far less global gene interactions: with shorter crosslink lifetimes, “rigid” clustering

emerges with clusters that interact infrequently; with longer crosslink lifetimes, there is a dis-

solution of clusters. These observations are compared with imaging experiments on a nor-

mal yeast strain and two condensin-modified mutant cell strains. We apply the same image

analysis pipeline to the experimental and simulated datasets, providing support for the

modeling predictions.
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Author summary

The spatiotemporal organization of the genome plays an important role in cellular pro-

cesses involving DNA, but remains poorly understood, especially in the nucleolus, which

does not facilitate conventional techniques. Polymer chain models have shown ability in

recent years to make accurate predictions of the dynamics of the genome. We consider a

polymer bead-chain model of the full yeast genome during the interphase portion of the

cell cycle, featuring special dynamic crosslinking to model the effects of structural mainte-

nance proteins in the nucleolus, and investigate how the kinetic timescale on which the

crosslinks bind and unbind affects the resulting dynamics inside the nucleolus. It was pre-

viously known that when this timescale is sufficiently short, large, stable clusters appear,

but when it is long, there is no resulting structure. We find that there additionally exists

a range of timescales for which flexible clusters appear, in which beads frequently enter

and leave clusters. Furthermore, we demonstrate that these flexible clusters maximize the

cross-communication between beads in the nucleolus. Finally, we apply network temporal

community detection algorithms to identify what beads are in what communities at what

times, in a way that is more robust and objective than conventional visual-based methods.

Introduction

The 4D Nucleome Project [1] proposes the integration of diverse approaches: increasingly

powerful chromosome conformation capture techniques including high-throughput chromo-

some conformation capture (Hi-C); statistical and topological analyses of these massive Hi-C

datasets; 3-dimensional (3D) and 4D super-resolution imaging datasets; and computational

modeling approaches, both constrained by and independent of Hi-C datasets. The project

aims to gain mechanistic understanding of 3D structure and dynamics of the genome within

the nucleus, and to learn how the active chromosome architecture facilitates nuclear functions.

In this paper, we contribute to these aims by combining three approaches: (i) live cell micros-

copy for experiments studying the effect on gene clustering for normal and condensin-modi-

fied mutant cell strains; (ii) first-principles-based, computational modeling based on the

statistical physics of chromosome polymers coupled with transient gene-gene crosslinks

formed by condensin proteins; and (iii) analysis of the dynamic chromosome architecture

with temporal network community detection algorithms applied to 4D modeling datasets

across four decades of crosslinking timescales.

Our present understanding of basic principles that govern high-order genome organization

can be attributed to incorporation of the physical properties of long-chain polymers [2–7].

The fluctuations of long-chain polymers, numerically simulated with Rouse-like bead-spring

chain models of chromosomes confined to the nucleus, capture the tendency of chromosomes

to self-associate and occupy territories [8–11] In addition, these models make predictions with

regard to the spatial and dynamic timescales of inter-chromosomal interactions, a dynamic

analog of topologically associated domains. The convergence of robust physical models with

high-throughput biological data reveals the fractal nature of chromosome organization,

namely an apparently self-similar cascade of loops within loops, or structure within structure,

as one examines chromosomes at higher and higher resolution [12–14].

De novo stochastic bead-spring polymer models of the dynamics and conformation of

“live” chromosomes, plus the action on top of the genome by transient binding interactions of

structural maintenance of chromosome (SMC) proteins, e.g. condensin, provide complemen-

tary information to chromosome conformation capture (3C) techniques, genome-wide high-
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throughput (Hi-C) techniques, and restraint-based modeling [12, 15–20]. 3C and Hi-C experi-

ments rely on population averages of gene-gene proximity on all chromosomes over many

thousands of dead cells whose chromosomes have been permanently crosslinked by formalde-

hyde; the restraint-based modeling approach then explores 3D chromosome architecture that

optimizes agreement with the experimental data on gene-gene frequency and proximity across

the genome. Many powerful inferences have been drawn from both Hi-C and polymer model-

ing approaches, using analyses of empirical and synthetic datasets encoding maps related to

the pairwise distances between genes.

A common major limitation for existing polymer models and whole-genome contact maps

in mammalian cells is in mapping two essential regions of the chromosome, namely the cen-

tromere and the nucleolus. The centromere, essential for chromosome segregation, and the

nucleolus, the sub-nuclear domain of ribosomal DNA, are comprised of megabases of repeated

DNA (centromere satellites and nucleolus rDNA). Furthermore, these regions are not cap-

tured in methods used for generating contact maps. We have used single live cell imaging of

the nucleolus in budding yeast coupled with whole genome polymer modeling to explore the

minimal requirements for sub-compartmentalization. Implementation of protein-mediated

cross-linking within the nucleolus is sufficient to partition this region of the genome from the

remaining chromosomes. Furthermore, stochastic polymer models reveal that the relative

timescales of crosslinking kinetics and fluctuations of the chromosome chains have a profound

influence on nucleolar morphology [21].

In single cells, the positional fluctuations of tagged DNA sequences on specific chromo-

somes [22–24] through the lac operator/lac repressor reporter system validate the bead-spring

models. Chromosomes fluctuate as predicted for the conformational dynamics of idealized

Rouse chains [25].

Polymer simulations over the entire genome have revealed the ability of relatively fast bind-

ing and unbinding, and thereby short-lived (fraction of a second) protein crosslinks to concen-

trate the rDNA chain sequence in a smaller volume and increase the simulated fluorescent

signal intensity variance when the model datasets were convolved with a point spread function

to create two-dimensional, maximum intensity projections [21]. Visualizations of the mono-

mers in the simulations revealed that the fastest kinetics explored, or shortest-lived crosslinks

(� .09s), generated several clusters of high polymer density, and overall compaction of the

nucleolus. In contrast, much slower kinetics (decades longer-lived protein crosslinks (� 90s))

tended to homogenize the fluorescent signal intensity as evidenced in the decrease in simu-

lated fluorescent signal intensity variance. These model visualizations were consistent with

experimental results on live budding yeast.

There is a growing interest to analyze Hi-C datasets and model chromosome interactions

using network models [26–28], which has opened the door to study chromosomal datasets

using network-based algorithms including centrality analysis [29, 30] and community detec-

tion [31, 32]. In this context, a ‘gene cluster’ is a set of genes that are in close physical proxim-

ity, and it is represented in a network by a community of nodes (i.e., a set of nodes between

which there is a prevalence of edges). These detection algorithms perform an unbiased search

for robust structures (communities or clusters) at the scale they exist in an automated manner,

quantifying how chromosome conformational changes can precede changes to transcription

factors and gene expression [33, 34] and leading to new approaches for cellular reprogram-

ming [29, 35].

Here, we apply temporal community detection algorithms including multilayer modularity

[36, 37] to simulated 4D datasets over four decades of SMC-binding kinetic timescales. This

approach integrates both temporal and spatial information so that each community now rep-

resents a set of genes that are not only nearby one another, but they remain in close proximity
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for some duration. This approach allows us to detect, track and label transient gene communi-

ties (clusters) in the nucleolus. Simultaneously, we record summary statistics on the sizes and

numbers as well as persistence times of communities, and the frequencies of community inter-

actions leading to gene exchanges. We likewise record standard bead-bead summary statistics.

In doing so, we detect spatial and temporal organization at the scales they exist, beyond two-

point (gene-gene) spatial proximity statistics. We identify the timescales over which spatial

organization persists, linking the timescales to the cluster identification algorithm. Since clus-

ters can deform through the flux of genes into and out of clusters, we further are able to iden-

tify crosslink timescales for which spatial clustering persists over extended timescales, and

whether individual clusters are relatively permanent or experience frequent interactions and

gene exchanges. Perhaps the most striking prediction of our modeling and data analysis is that

specific gene organization tasks (amplified below) are optimized at a relatively short crosslink

timescale, on the order of. 19 sec.

With these network tools applied to physics-based 4D nucleome simulated datasets, we

explore the mechanistic basis for the experimentally observed variance in nucleolar morphol-

ogy. From a high-resolution sampling of the timescales for crosslinking of 5k base pair (bp)
domains, 4D model simulations of the yeast genome reveal the nucleolus on Chromosome XII
undergoes a stark transition in dynamics and structure, and does so within a narrow “mean on”
crosslink timescale range of .09 − 1.6 sec. A highly stable clustering regime exists with relatively

short-lived crosslinks (.09 sec), with relatively few cluster interactions and gene exchanges,

as reported previously in [21]. At slightly longer-lived (.19 sec) timescales, a novel “flexible”

behavior is revealed. Gene clusters continue to self-organize, yet clusters are more mobile, fre-

quently interact, and exchange genes. Indeed, there is a peak timescale, marked by highly mobile
gene clusters, at which both pairwise and community-scale gene interactions are maximized. As

the binding affinity of crosslinker proteins increases only slightly longer (1.6 sec), the commu-

nity-scale structure has dissolved, with no identifiable nucleolar sub-substructure. See Fig 1.

From a methods perspective, our analysis of the 4D simulated datasets is based on network

modeling and a temporal community-detection algorithm known as multilayer modularity

[37]. From a biological perspective, this tunable dynamic self-organization reflects a powerful

mechanism to coordinate gene regulation and the coalescence of non-contiguous genes into

identifiable clusters (substructures). The transition shown in Fig 1 occurs within such a narrow

crosslinker timescale regime (.09 − 1.6 sec), suggesting a relatively simple mechanism to con-

trol dynamic sub-organization of the genome; indeed we performed and report experiments

below to support this prediction. Finally, we emphasize the counter-intuitive nature of this

mechanism: clustering is most often associated with segregation, however we observe that the

dynamic element of flexible clusters facilitates an overall increase in global gene interactions in

the nucleolus.

Results

Our results are based on analysis of the model of the yeast genome originally presented in [21].

This model aims to have a sufficient resolution to be able to qualitatively reproduce behaviors

observed in the nucleolus (as is confirmed in [21]) while still being practical to computation-

ally evaluate.

An overview of the model is provided in the Model subsection in the Materials and meth-

ods section. We begin by extending results from [21] in context with the extensions presented

in this paper. In addition to simulated 4D datasets as in [21], here we compare wild-type and

SMC protein-altered mutant experimental data to explore how the SMC-protein crosslinking

timescale μ influences behavior of the nucleolus. In [21], three values of μ 2 {0.09, 0.9, 90} were
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studied. In this paper, we logarithmically sample across the full range of μ values between 0.09

and 90, providing a detailed investigation of consequences induced by the crosslinking time-

scale μ. We then construct simulated microscope images [21] for all 4D simulated datasets and

compare them to experimental images of yeast nucleoli, including wild-type (WT), hmo1Δ
and fob1Δ. We show that the mutations hmo1Δ and fob1Δ alter the nucleolus similarly to

changes induced by varying μ in our model.

In [21], 4D imaging of the simulated nucleolus beads investigated clusters, sets of beads

such that the distances between genes in the same cluster are smaller than those between genes

in different clusters, providing visual evidence of clusters at the shortest crosslinking timescale

(μ � .09 sec) and a lack of clusters at the longest timescales (μ � 90 sec). Herein, we simulated

across four decades of μ, revealing transitions in dynamic architecture that were not explored

in [21] since we did not have the tools to automate detection apart from obvious visual images

Fig 1. Interphase yeast genome (A-C: Full, D-I: Nucleolus) using the polymer bead-spring model of [21] (see Section: Model)

that implements transient SMC-protein-mediated crosslinking of 5k bp domains within the nucleolus on Chromosome XII.

The top, middle, and bottom rows depict chromosome conformations for three values of the kinetic timescale parameter μ: (top, μ =

0.09) induces rigid clusters; (center, μ = 0.19) induces flexible clusters; (bottom, μ = 1.6) induces no clusters. We identify the

timescales with the intra-nucleolar clustering behavior they induce. (A)–(C) 3D “snapshots” of all 16 yeast chromosomes during

interphase. Blue beads and edges highlight the nucleolus. (D)–(F) Visualization of nucleolar beads (5kbp chromosome domains) that

self-organize into clusters. The beads’ positions are identical to those in (A)–(C) and their colors indicate their cluster labels,

identified using modularity optimization [38] as described in Methods Section: Cluster identification via network community

detection. (G)–(I) Heatmaps of the pairwise distances between beads in the nucleolus from one snapshot of the 4D time series, which

provide an analogue of Hi-C bead-bead proximity data (see Methods Section: Pairwise-distance maps for high-throughput

chromosome conformation capture (Hi-C)). Note that it is difficult to predict the absence/presence of clusters from heat maps.

https://doi.org/10.1371/journal.pcbi.1007124.g001
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at polar extremes, robust clusters and no clusters. Depending on the crosslinking timescale μ,

the nucleolar beads can aggregate into self-organized clusters, which may or may not change

over time via merges/divisions of clusters with bead exchanges between clusters. The choice

μ � 1.6 gives rise to plasticity in the dynamic architecture of the nucleolus, whereby beads

aggregate into clusters, yet the clusters frequently come into contact, merge into a super clus-

ter, then rapidly divide with several exchanges of beads. This process of frequent cluster inter-

actions optimizes the traditional statistics of the frequency of pairwise bead-bead interactions

within the nucleolus, while furthermore generalizing pairwise interactions to gene cluster

interactions and the frequency of pairs of beads to share the same cluster. By a fine sampling of

the crosslinking timescales, coupled with the automated dynamic community detection algo-

rithms, we discover the novel non-monotone behavior in the interaction statistics, at both

gene-gene and gene cluster scales.

Motivated by the need to identify, label, and track clusters over time, we adapt a method

based on network modeling and the temporal community-detection algorithm known as

multilayer modularity [37]. We identify communities in temporal networks that represent

clusters of genes that remain in close proximity for a duration. The appropriate size and

duration of communities/clusters are revealed as part of the algorithm, rather than specified

a priori. Our methodology not only confirms the striking visual evidence of robust clustering

at μ = .09 in [21], but allows us to track and label whether clusters of genes exist, cluster inter-

actions (merger and division), their frequency, and gene exchanges per interaction. If there

are no clusters, the algorithm reports that all clusters are essentially single genes with dou-

blets and triplets that interact and deform. Our methods therefore reveal dynamic sub-orga-

nization features at the scales they exist, automatically and unbiased, as we scan 4D datasets

across 4 decades of crosslinking timescales. We show our algorithm efficiently identifies

robust as well as flexible communities using a cost function that factors in both physical

proximity and temporal coherence. Finally, we demonstrate that the identification and anal-

ysis of time-evolving communities reveals a larger scale explanation for the non-monotone

behavior in bead-bead interaction statistics versus crosslinking timescales. The explanation

lies precisely in the transition from robust, non-interacting clusters for μ = .09 sec, to flexible

clusters for μ = .19 sec, and then a slow dissolution of clusters as μ increases, with essentially

no clustering by μ = 1.6.

Transient crosslinking timescale influences nucleolus clustering

We first focus in the relatively short crosslink timescale regime, extending the simulations of

[21] at discrete values μ = 0.09, 0.9, 90. These will establish a basic understanding of how the

kinetic timescale μ for crosslinking sensitively affects the organization of the nucleolus and the

dynamics of the architecture. From our refined simulations across the above four decades, the

essence of the story can be told with results for three selected values μ 2 {0.09, 0.19, 1.6}. In Fig

1(A)–1(C), we present visualizations, i.e., “snapshots,” of the beads’ 3D positions during the

simulations. The nucleolus on Chromosome XII is highlighted in blue and all remaining chro-

mosome arms are colored gray. In Fig 1(D)–1(F), we show only the nucleolar beads, which are

colored according to the network community detection analyses that we describe in the follow-

ing sections. We also show videos of the time evolution of the beads, along with a simulated

microscope projection, for each timescale in S1, S2 and S3 Videos.

Based on Fig 1(A)–1(F) and the videos, we identify three qualitative regimes for nucleolus

clustering:

1. rigid clustering whereby strong, stable clusters arise, e.g., with μ = 0.09.

Transient crosslinking kinetics optimize gene cluster interactions
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2. flexible clustering, or cluster plasticity with slightly weaker clustering whereby communities

of genes form and persist, however the clusters frequently interact, merge, and divide, swap-

ping genes per interaction, e.g., with μ = 0.19.

3. non-clustering with a lack of robust communities in which the beads act as lone units, pairs

or triplets, e.g., with μ = 1.6.

We will continue to use this terminology when referring to these three clustering regimes.

We note that [21] discovered the two extreme regimes: robust clusters for μ = 0.09, and the

lack of clusters for μ = 90. As they did not finely sample the decades of timescales in between,

they did not discover that the transition from robust to no clustering is in fact non-monotone

with respect to gene-gene interactions, nor that the transition is essentially complete already at

μ = 1.6, and that the most biologically interesting and relevant regime occurs at μ = 0.19. Fur-

thermore, without automated structure detection algorithms, they would not have been able to

detect and dynamically track clusters of genes and their interactions that explain the peak in

gene-gene interactions at μ = 0.19. This transition behavior and the optimal properties that

arise will be the focus of several sections to follow.

In Fig 1(G)–1(I), we show heatmaps of the bead-bead distances associated with the bead

positions of the snapshots in (D)–(F), identical to those in (A)–(C); construction of heatmaps

is described in the Methods Section: Pairwise-distance maps for high-throughput chromo-

some conformation capture (Hi-C). Heatmaps are widely used in Hi-C to depict population

averages of pairwise gene-gene proximity data [16, 39–43] and in simulated data from polymer

bead-spring models, both from 3D snapshots and time averages [9, 11, 21]. Comparing the sec-

ond and third columns of Fig 1, we note the difficulty (false negatives and false positives) in

detecting the presence of structure and sub-organization in column 2 from visual examination

of heatmaps in column 3.

As shown in [21], the time average of 4D simulated datasets, even in the strong clustering

regime, wipes out the sub-structure of snapshots when averaging over the entire G1 phase. An

alternative approach has been to use polymer modeling to generate chromosome conforma-

tions, and to select those conformations that best match Hi-C data, so-called restraint-based

polymer modeling [1]. Simultaneously, there have been efforts to develop methodologies to

identify gene clusters in a rigorous and automated way from Hi-C data [26–28]. Our conclu-

sion is that there is a need for a more reliable and objective method to study the clustering of

chromosome domains in the nucleolus, especially spatio-temporal methods that take into

account how bead positions and sub-organization change with time, weighing both spatial

proximity and temporal coherence in the detection method. In the following sections, we pres-

ent a scalable and automated technique to identify and track the dynamics of clusters. First,

however, we will present new experiments that provide empirical evidence for clustering in

the nucleolus.

Evidence of nucleolus clustering in experimental and simulated microscopy

images

We conducted experiments to qualitatively compare image-based cluster analysis between

our model and empirical measurements obtained from live cell microscopy and demonstrate

the effect that SMC protein mutation can have on clustering in the nucleolus, extending the

results previously reported in [21]. Here, we study three yeast strains: wild-type (WT), fob1

and hmo1. Importantly, fob1Δ and hmo1Δ are mutations that lack key proteins reported to

crosslink or loop segments of rDNA within the nucleolus. Fob1Δ is required for maintenance

of the rDNA copy number and regulates the association of condensin with rDNA repeats

Transient crosslinking kinetics optimize gene cluster interactions
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[44, 45]. The replication fork barrier within the rDNA is a binding site for Fob1Δ that, together

with several other components (Tof1, Csm1 and Lrs4), are responsible for the concentration of

condensin within the nucleolus [44]. Hmo1 is an abundant high mobility group protein that

localizes to the nucleolus and has been proposed to share functions with UBF1, which is

involved in rDNA transcriptional regulation within the nucleolus [46, 47]. Fob1 and Hmo1

are non-essential genes and were deleted from the genome to allow us to study their effect on

nucleolus morphology due to functional modifications of crosslinking. See Methods Section:

Yeast strains for experiment for further details.

In Fig 2, we present images and analyses of nucleoli of these strains using fluorescent, live-

cell microscopy. To visualize nucleoli, we fused Cdc14 protein phosphatase to green fluores-

cent protein (GFP) [21]. Nucleolar protein fusions occupy a distinct region of the nucleus

that is adjacent to the nuclear envelope and (typically) opposed to the spindle pole body. We

describe the image acquisition and processing steps in Methods Section: Image acquisition

and baseline processing, and we highlight a few details here. Following image acquisition, we

construct maximum intensity projections (MIP) centered on the nucleolus. See top row of Fig

2(A). Due to potential variation in CDC14-GFP protein copy number and nucleolar/rDNA

size from cell to cell, we normalized the nucleolar CDC14-GFP signal after excluding all inten-

sity values below an intensity threshold. To this end, we first selected a threshold using Otsu’s

method [48], which we implemented using the MATLAB function multithresh. One can inter-

pret the threshold as a binary mask, as shown in the second row of Fig 2(A). After applying the

mask, we normalized the nucleolar signal by subtracting all intensities by the minimum value

and then dividing them by the new maximum intensity that is obtained after subtraction. The

third row of Fig 2(A) depicts normalized images. Mutations of Hmo1 and Fob1 were found to

alter the area and signal intensity of nucleoli labeled with CDC14-GFP across a range of inten-

sity thresholds, which we surmise is due to alterations in the architecture of, i.e., clustering

within, the nucleolus.

In Fig 2(B) and 2(C), we provide results for an analysis of nucleolar morphology: (B) the

area of nucleolar signal; and (C) the standard deviation of the normalized signal. This analysis

Fig 2. Experimental images of the nucleolus. Algorithmic thresholding of CDC14-GFP reveals alterations in nucleolar area and variance of signal

intensity. (A) Top row depicts images of maximum intensity projection of WT, fob1Δ, and hmo1Δ yeast cells containing CDC14-GFP to label the

nucleolus. Scale bar is 1 μm. The middle row are images of the binary mask generated by thresholding the projections using Otsu’s method. The bottom

row are images of the projections where the intensities of pixels below the threshold were set to zero. See Methods Section: Image acquisition and

baseline processing for more detail. (B) Bar chart of the nucleolar signal calculated by the area of the binary mask. (C) Bar chart of the standard

deviation of normalized nucleolar signal. In panels (B) and (C), the non-significant changes are labeled ‘NS’ (see text), the bars represent an average

value across n cells, and error bars indicate standard error.

https://doi.org/10.1371/journal.pcbi.1007124.g002
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was implemented using the numerical algorithms presented in [21], which we further describe

in Methods Section: Image analysis.

As shown in Fig 2(B), null mutations of hmo1Δ significantly altered the area of the nucle-

olar signal, whereas null mutations of fob1Δ did not. This was assessed by a Student’s two-

tailed T-test, which yielded p = 3 × 10−8 for the former and p = 0.07 for the latter. As shown

in Fig 2(C), the standard deviations of the normalized images were significantly lowered for

the fob1Δ null mutation, but this did not occur for the hmo1Δ null mutation p = 0.01 versus

p = 0.2). The non-significant changes are labeled ‘NS’ in the figure. The error bars indicate

standard errors across n cells, where n = 84, 70 and 77 for the WT, fob1Δ and hmo1Δ strains,

respectively.

We note that [21] also studied the area and variance of the nucleolus using experimental

and simulated images. They found, for example, that the distribution of areas occupied by

the nucleolus displays a lognormal distribution for WT cells in G1. Also, recall that we imple-

mented thresholding based on Otsu’s method; in contrast, [21] explored a range of threshold

values and found qualitatively similar results to be consistent across a range of threshold val-

ues. They did not, however, explore the area and variance for simulated images for a wide

range of μ, which is the focus of our next experiment.

To explore whether varying the kinetic timescale μ for our simulations yields similar

changes as those arising under the fob1Δ and hmo1Δ mutations, we applied the microscope

simulator of [21] to our 4D simulated data and analyzed the images using the same image anal-

yses as described in Fig 2. First, we converted our 4D simulated data into a timelapse sequence

with 22 time points, i.e., snapshots. Each nucleolus bead was convolved with a point spread

function and a maximum intensity projection was created for each timepoint. We depict 11

such images in Fig 3(A). In panel (B), we plot the area of the nucleolar signal (computed using

Otsu’s threshold) versus μ. Note that the nucleolus area increases as μ increases. In panel (C),

we plot the standard deviation of nucleolar signal versus μ, which has the opposite trend. In

Fig 3(D), we plot the standard deviation of images obtained after a normalization step that is

identical to that implemented for the experimental images (see discussion for Fig 2. Interest-

ingly, the dependence on μ of the signal’s standard deviation drastically changes depending on

whether or not it is normalized. Given that normalization is required to control for cell-to-cell

differences in CDC14-GFP and in nucleolar/rDNA size, we sought develop a metric to mea-

sure clustering in the CDC14-GFP signal that was independent of the absolute values of the

intensities.

Our final experiment studies cluster formation in the nucleolus and compares clustering

observed in the experimental and simulated microscopy images. We developed a cluster detec-

tion algorithm written with MATLAB (see Methods Section: Image analysis) and applied it to

both the experimental and simulated images. We have made the code available at [49]. In Fig

4(A), we depict images of maximum intensity projections for WT, fob1Δ and hmo1Δ strains

with (top row) and without (bottom row) visualizations of detected clusters, which are repre-

sented by green circles. In panel (B), we depict identical information as in panel (A) except

we show simulated images for three values of μ. In Fig 4(C) and 4(D), we show the number of

clusters for the experimental and simulated images, respectively. For the experimental images,

we give results for WT, fob1Δ and hmo1Δ, whereas for the simulated images we present results

for μ 2 [.09, 90]. We observe that the number of clusters was significantly decreased in the

hmo1Δ null mutation, but not the fob1Δ null mutation (p = 0.04 for hmo1Δ versus p = 0.3 for

fob1Δ). We also observe that increasing μ yielded a general trend in which there were fewer

clusters. Taken together, these data suggest that gene clustering can directly impact the size

and shape of the nucleolus. This underscores the need for robust and objective tools for identi-

fying gene clusters.
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Histograms of 2-point pairwise distances between nucleolar beads

A simple and previously used method for analyzing distances between beads is to create a his-

togram of all bead-bead pairwise distances. As explored in [21], this two-point statistic can

provide evidence of clustering and can be used to query simple properties such as whether

or not the clusters change over time. In this section, we repeat this analysis on our data and

extend it by showing what effects averaging over time and averaging over populations have on

the results. We show that averaging one cell over time prevents observing the flexible cluster-

ing through pairwise distances, and averaging over populations prevents observing any sort of

clustering. We provide further details on the computation of these distances in Methods Sec-

tion: Pairwise-distance maps for high-throughput chromosome conformation capture (Hi-C).

Fig 3. Simulated microscope images for polymer bead-spring model with transient crosslinking and varying kinetic timescale

μ. Varying μ alters the area and variance of the intensity for the nucleolar signal, which models the affect of the fob1Δ and hmo1Δ
mutations. (A) Timelapse montage of simulated microscope images for μ 2 {0.09, 0.9, 9} (seconds). Scale bar is μm. (B) Area of

nucleolus signal (μm2) as a function of μ 2 [10−1, 102]. Areas were calculated by measuring the area of the binary mask generated by

applying Otsu’s threshold to each image. (C) Standard deviation of the (non-normalized) nucleolus signal versus μ. (D) Standard

deviation of the normalized nucleolus signals versus μ; these we normalized identically to the normalization of the experimental

microscope images. In panels (B)-(D), error bars indicate standard errors observed using 22 time points for each value of μ.

https://doi.org/10.1371/journal.pcbi.1007124.g003
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In Fig 5(A), we plot the distribution of all pairwise distances fdðtÞ
ij g at a single time t for

three kinetic timescales, given by the same values μ = 0.09, 0.19, 1.6 as shown in Fig 1. For

μ = 0.09, the pairwise distance distribution is clearly a multimodal distribution [21]. The peak

near d � 50 represents a large number of very short pairwise distances between beads in the

same cluster. For slightly larger d, the density drops to zeros, indicating a separation distance

between clusters. Interestingly, we observe two more peaks near d � 300 and d � 600. The

clarity of these peaks suggests that the clusters themselves are regularly spaced from one

another, reminiscent of a lattice structure. This shows the three layers of the multiscale struc-

ture of the nucleolus for μ = 0.09: its existence as a dense, secluded section of the nucleus, the

self-organization of intra-nucleolar clusters, and the individual beads within each cluster. For

μ = 0.19, one can also observe in Fig 5(A) three peaks in the empirical probability density for

bead-bead distances, but these peaks are much less pronounced. This shows a gradual transi-

tion in the degree of clustering as we increase μ. There is also a smaller gap between peaks.

Together, these observations recapitulate our observations in Fig 1(E), wherein the clusters

can be observed to be less compact. Finally, for μ = 1.6, there is no multimodal structure in

the bead-bead distance plot. This is consistent with our expectation that there is no clustering

structure present for this range of μ.

The rigid and flexible clustering cases differ not only in how strong the clustering is at any

given time, but also in how stable the structure is in time. We investigate this by considering

how averaging pairwise-distances either across across time (Fig 5(B)) or over multiple simula-

tions (Fig 5(C)) influences pairwise-distance probability densities.

Fig 4. Comparison of experimental and simulated microscope images. Varying μ in the polymer bead-spring model captures the

effect on nucleolus clustering incurred by the crosslink-altering mutations. (A) Maximum intensity projections of CDC14-GFP in

WT, fob1Δ, and hmo1Δ cells with identified clusters marked by green circles. The lower row depicts the same images as the top row,

except the circles are removed. (Images are the same as Fig 2(A)). (B) Same information as panel (A), except the results depict

simulated images based on 4D simulation data for three values of μ. Scale bars in (A) and (B) are 1 μm. (C) Bar chart showing the

number of clusters for each strain. The bars and error bars indicate the average and standard error across n cells, where n = 84, 70,

and 77 for WT, fob1Δ, and hmo1Δ, respectively. Significance was assessed via a Student’s two-tailed T-test: p = 0.3 for WT versus

fob1Δ and p = 0.04 for WT versus hmo1Δ. (D) Average number of clusters for simulated images as a function of μ. The averages and

standard errors (see error bars) were calculated using 22 time points for each μ.

https://doi.org/10.1371/journal.pcbi.1007124.g004
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In Fig 5(B), we plot the empirical probability densities for pairwise distances averaged

across our 20 minute simulations. Note for μ = 0.19 that the density is no longer multimodal,

implying that aggregating the data across a large time range inhibits the detection of flexible

clusters, which by definition change with time. Note that the rigid clusters, which are very sta-

ble across time, remain discernable as the pairwise probability density remains multimodal.

Unsurprisingly, the slow crosslinking appears qualitatively very similar in the long time aver-

age, as there was no apparent structure in the first place.

In Fig 5(C), we plot the empirical probability densities for pairwise distances at a single

time but averaged across 10 simulations with different random initial conditions. Note for all

μ that there is no longer any multimodal structure for these densities, highlighting that averag-

ing across heterogeneous cell populations obscures the detection of clusters.

Flexible clustering regime maximizes bead mixing

Next, we study how the kinetic time scale μ (i.e., and thus the presence of clusters) affects the

properties of pairwise gene interactions. A pair of beads is said to be interacting if they are in

very close proximity and the distance between them drops below d�. As discussed in Fig 5, we

choose d� = 100nm unless otherwise noted. In the following experiment, we show that increas-

ing μ not only inhibits the formation of clusters, but that there exists a particular range of μ that

optimizes gene mixing, or the overall interaction frequency of all pairs of genes. These experi-

ments illustrate how clustering—which inherently describes multi-way relationships—can be

studied through pairwise distances—which inherently describe two-way relationships —, and

how there remain important open problems related to the time series signal processing of 4D

chromosome conformation datasets.

We study the following summary statistics for gene mixing:

(A). The interaction fraction indicates the fraction of possible unique bead pairs that interact

at least once during an interphase simulation.

Fig 5. (A) Instantaneous distances, (B) time-average distances, and (C) population-averaged distances. In each panel, we show results for the three

kinetic regimes illustrated in Fig 1: μ = 0.09, μ = 0.19, and μ = 1.6. As reported in [21], multimodal histograms are a “signal” for the presence of clusters.

This signal is strongest for μ = 0.09, is nonexistent for μ = 1.6, and we observe a new regime for μ = 0.19 (flexible clustering or cluster plasticity),

whereby ‘soft’ clusters form but deform over time through cluster interactions.

https://doi.org/10.1371/journal.pcbi.1007124.g005
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(B). The mean interaction number indicates the number of simultaneous interactions (i.e.,

beads within distance d�) for a nucleolus bead, averaged across time and across beads.

(C). The mean waiting time indicates for any two beads, selected at random, the average time

that passes between their i-th and (i + 1)-th interactions.

(D). The mean interaction duration indicates the amount of time beads enter and reside

within the interaction distance.

In Fig 6(A)–6(D), we plot these summary statistics across a wide range of μ. We identify

three regimes that optimize different attributes. μ � 0.1 yields a self-organized structure that

maximizes the number and the duration of gene-gene interactions (see panels (B) and (D)).

Recall from Video 1 that μ = 0.09 yields many large clusters that are stable (i.e., do not change)

over time. This is reflected in a high number of interactions with beads in the same cluster and

low number of interactions with beads not in the same cluster.

With 0.15 ≲ μ ≲ 1, we see flexible clustering behavior from Video 2. Notably, we find here

that this flexible clustering has interesting properties beyond simply being a weaker version of

the strong clustering from the rigid clustering regime. Namely, Fig 6(A) shows that these μ val-

ues maximize the fraction of pairs of beads that interact at least once over the simulation, and

Fig 6(C) shows that these values minimize the waiting times between subsequent interactions.

Thus, we can say that flexible clustering promotes the number of both simultaneous and overall
distinct pairwise gene interactions in the nucleolus. This behavior arises from a balance between

Fig 6. Mixing statistics for gene interactions: (A) mixing fraction; (B) mean interaction number; (C) mean waiting

time; and (D) mean interaction duration, which we plot as versus μ. The shaded regions indicate the regime of flexible

clustering, μ 2 (0.19, 1). The arrows in panels (A) and (C) highlight that the interaction fraction and mean waiting time

are both optimized for this range of μ. In contrast, this regime is associated with sharp transitions for the mean

interaction number and duration, which both monotonically decrease with μ.

https://doi.org/10.1371/journal.pcbi.1007124.g006
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the number of intra-cluster gene-gene interactions, which is still elevated due to the moderate

clustering as shown in (B), and the ability for genes to frequently switch between clusters dur-

ing cluster interactions, as indicated by the reduced waiting time in (C). SMC proteins with

such crosslinking timescales will thereby promote collective interactions among all active

genes. These circumstances could accelerate a homology search, for example, to facilitate DNA

repair, if the sister chromosomes were suddenly activated by a family of SMC proteins whose

binding affinity was near this “sweet spot”.

Finally, μ ≳ 1.5 is associated with a non-clustering regime, as shown in Video 3. The lack

of clustering is reflected by a low number of gene-gene interactions, and the freely diffusing

nature of the beads is reflected by short interaction duration and high interaction fraction.

Identifying cluster membership with network community detection

algorithms

Having found that flexible clustering maximizes interesting properties of gene interaction, we

seek to develop tools to identify and label the spatiotemporal clusters. In the rigid clustering

regime, the clusters are so well-defined that any reasonable algorithm will detect them, but this

is not the case for the flexible clustering. To detect and track flexible clustering, we utilize both

spatial and temporal information to identify and track clusters.

While we have access to 4D bead position time series data, we begin by transforming this

into a multilayer network problem as described in Methods Section: Gene-interaction net-

works from pairwise-distance data. This is motivated by the fact that the most similar data

available in biology, the Hi-C dataset, does not measure true distances between genome

regions, but rather a notion of similarity based on average proximity [12]. The result of this

transformation is a time sequence of weighted, undirected networks whose edge weights

represent how near two beads tend to be to each other at that point in time. We refer to this

sequence of networks as a temporal network.

Given a gene-interaction network, we identify communities using an approach based on

multilayer modularity [37]. See [31, 32] for examples where community detection was applied

to network models derived from Hi-C data. We present the algorithm in detail in Methods

Section: Spatiotemporal gene clusters revealed by community detection in temporal networks,

and we briefly describe it here.

The modularity measure was originally introduced [36] to detect communities in a single,

non-temporal network; it is a scalar that quantifies—as compared to a null-model lacking

communities—the extent to which a network’s nodes can be partitioned into disjoint sets (i.e.

communities) so that there is a prevalence of edges between nodes in the same community

and relatively few edges between nodes in different communities. By searching over different

possible ways to partition nodes into communities, one seeks to find an optimal partition that

maximizes the modularity score [38]. Because each community contains a prevalence of edges,

and edges only exist between pairs of genes that are in close proximity, a modularity-optimiz-

ing partition equivalently assigns genes into disjoint clusters so that each gene is nearer to

genes in its cluster than to genes in other clusters.

Our analysis is primarily based on an extended version of modularity that allows one to

detect time-varying communities in temporal networks and is called the multilayer modular-

ity measure [37]. In contrast to a community in a time-independent network (which is

defined by a set of nodes), to specify a time-varying community one must also identify for

each node the time-steps for which it is in the community. Using a variational technique

[38], we optimize the multilayer modularity measure to simultaneously assign every node to

a community at every time step. Each time-varying community in the network corresponds
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to a time-varying gene cluster, which is a set of genes that remain in close proximity for

some duration.

A key feature of the multilayer-modularity approach for community detection is that the

framework involves two parameters, γ and ω, which provide “tuning knobs” [37, 50] to iden-

tify, respectively, the appropriate sizes and temporal coherence of communities/clusters.

Parameter γ is a resolution parameter [38] and allows one to select whether modularity-opti-

mizing partitions involve many small communities or just a few, very large communities.

Similarly, ω is a coupling parameter and allows one to choose if the communities can change

drastically from one time step to the next or if they are restricted to changing slowly over

time. We explored a range of choices to select appropriate values. Finally, we highlight that

this approach significantly contrasts traditional clustering algorithms such as k-means clus-

tering [51], which specifies the number of clusters a priori (i.e., rather than allow the appro-

priate resolution to be dictated by the data) and which does not naturally extend to time-

varying data.

In S4, S5 and S6 Videos, we present equivalent videos to S1, S2 and S3 Videos, respectively,

except in the new videos we color the beads according to the community labels that we detect.

These new videos provided qualitative evidence supporting the ability of our algorithm to find

clusters that have appropriate spatial and temporal scales. Looking at the rigid clustering in S4

Video, we see the coloring strongly agrees with our visual perception in the clusters. A similar

but less decisive conclusion can be made from observing S5 Video.

These videos indicate good agreement between visual perception of clusters and the clusters

that are detected by the multilayer modularity algorithm—when beads visually appear to be

clumped together, they tend to also be the same color in the videos, which reaffirms the valid-

ity of our choice of clustering algorithm. However, especially when looking at S6 Video depict-

ing the non-clustering regime with slow crosslinking, we identify a key and common issue

with clustering algorithms—they typically identify the “best” clusters, even when no clusters

actually exist.

Gene mixing at the community level further supports flexible clustering as

the mechanism for optimality

In this section, we provide further evidence that flexible clustering is the mechanism that is

responsible for the optimality observed in Fig 6. To this end, we will revisit and modify our

definitions for gene interactions and gene mixing, which were defined at the “bead level” (i.e.,

for pairs of beads). We now define similar, but slightly different, concepts that are defined at

the “community-level” in that they reflect only community-membership information and

do not require the precise bead locations. We say that two beads are “communicating” if

they are in the same community. That is, all beads in the same cluster are communicating

with each other, and beads in different clusters are not communicating. With this modified

definition in hand, we define summary statistics for gene mixing at the community level that

are analogous to the 2-point summary statistics for pairwise gene interactions that we previ-

ously defined in Section: Flexible clustering regime maximizes bead mixing. Analogous to

gene mixing at the bead level, we now define “cross communication” at the community

level.

(A). The communicating fraction indicates the fraction of bead pairs that are in the same com-

munity at least once during a simulation.

(B). The average beads per community indicates, for a nucleolus bead, the average number of

beads in the same community at the same time, averaged across time and across beads.
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(C). The mean waiting time indicates for any two beads, selected at random, the average time

that passes between when they are no longer in the same community and when they are

next in the same community.

(D). The mean interaction duration indicates the amount of time between beads when they

are first in the same community and when they are no longer in the same community.

In Fig 7, we present summary statistics for cross communication that are analogous to our

results in Fig 6 for pairwise gene interactions. Note that the results in Fig 7 are qualitatively

identical to those in Fig 6, supporting our hypothesis that gene-level mixing is determined by

community-level cross communication. That is, the formation of gene clusters and exchanges

of genes between them governs the timescale at which nucleolar domains come in close prox-

imity of one another.

Temporal stability of clusters

Using temporal community detection, we are now finally able to quantitatively support our

first observations made in Section: Transient crosslinking timescale influences nucleolus

clustering that there are three distinct clustering regimes: rigid clustering; flexible clustering;

and no clustering. We support these observations by studying the properties of the detected

clusters.

Fig 7. Cross communication describes the dynamics of community memberships of beads through community-level

mixing. We study cross-communication for a large range of μ by plotting four summary statistics: (A) communicating

fraction; (B) mean interaction number; (C) mean waiting time; and (D) mean interaction duration (see text). The shaded

regions indicate the regime of flexible clustering, μ 2 (0.19, 1), and the arrows in panels (A) and (C) highlight that the

interaction fraction and mean waiting time are both optimized for this range of μ. These results are qualitatively identical

to the results in Fig 6 for gene mixing, illustrating that cluster formation and the exchanges of beads between clusters

determine the timescale of mixing.

https://doi.org/10.1371/journal.pcbi.1007124.g007
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In Fig 8(A)–8(C), we plot the average lifetime of clusters as a function of their average size

(averaged over time). Panels (A)–(C) indicate the three clustering regimes with μ 2 {0.09, 0.19,

1.6}, respectively.

For the rigid clustering regime, in Fig 8(A), we see that most of the clusters are large, with an

average size of 10 or more beads, and also have a long lifetime of over 100 seconds. This is con-

sistent with our prior observations (e.g. Video 1) that showed large clusters that appeared very

stable in time. We also see that the large clusters survive for much longer than the small clusters.

For the flexible clustering regime, in Fig 8(B), we can see the same general trend that larger

clusters tend to have a longer lifetime than smaller clusters, but there is a much wider spread

of cluster sizes, with only a moderate number of large clusters.

For the non-clustering regime, there appears to be little relationship between cluster size

and stability beyond an average size of approximately 3 beads. The clusters also tend to be

much smaller, with almost no clusters with an average size over 10 beads.

In Fig 8(D)–8(E), we plot the probability that a bead remains in the same community upon

the next timestep, again as a function of cluster size. Panels (D)–(E) indicate results for μ 2

{0.09, 0.19, 1.6}, respectively. In agreement with panels (A)–(C), one can observe that larger

clusters are more stable. Note also that the communities exhibit more plasticity for μ = 0.19

than for μ = 0.09 since beads have a higher average probability for changing the community to

which they belong.

Discussion

The dynamic self-organization of the eukaryote genome is fundamental to the understanding

of life at the cellular level. The last quarter century has witnessed remarkable technological

Fig 8. The birth and death of gene clusters identified using modularity-based community detection in temporal networks [37]. Panels (A), (B) and

(C) depict the lifetime (i.e., duration) of each gene cluster versus the average cluster size for μ = 0.09, 0.19, and 1.6, respectively. The points’ colors have

been chosen to highlight the density of points (with red indicating where there are many points close to one another). (D)–(F): The persistence (i.e.,

temporal coherence) of clusters is indicated by the probability that a randomly selected bead remains in the same cluster in the next time window, again

plotted versus the average number of beads in that cluster. Results reflect d� = 325, γ = 10, ω = 1.

https://doi.org/10.1371/journal.pcbi.1007124.g008
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advances that provide massive datasets of both the spatial conformation of chromosomal DNA

from cell populations (3C and Hi-C generalizations) and the dynamic motion of domains

in living cells (GFP tagging and tracking of specific DNA sequences), from the yeast to the

human genome. Data mining of this massive data has likewise witnessed remarkable advances

in understanding the hierarchical packaging mechanisms of DNA that act on top of the

genome, e.g., histones and structural maintenance of chromosome (SMC) proteins, the topol-

ogy of individual chromosome fibers, their topologically associated domains, and the territo-

ries they occupy in the nucleus. The third wave of advances has come from 4D modeling of

chromosomes based on stochastic models of entropic, confined polymers, and the coupling of

SMC proteins that either bind and crosslink genes on chromosomes or generate loops on indi-

vidual chromosomes. As these three approaches continue to mature and inform one another,

at an ever-increasing pace, insights into the structure and dynamics of the genome continue to

deepen.

The motivation for this paper lies in the information that can be inferred from these mas-

sive datasets, from Hi-C, live cell imaging experiments, and polymer physics modeling. In pre-

vious studies, cf. [21] and references therein, we showed that heterogeneity in experimental

images derive from substructures that are formed within the nucleolus. We decided to use the

array of tools from network community detection analysis, modeling, and associated fast algo-

rithms, to automate the search for dynamic architectures in the 4D datasets generated by poly-

mer modeling. We note a similar network analysis approach has been applied to Hi-C datasets

[26–28], whereas our datasets have the added feature of highly resolved temporal information.

Our aim was to infer organization beyond 2-point, time-averaged or population-averaged,

gene-gene proximity statistics and heat maps generated from the statistics, and to remove the

bias of an individual’s visual determination of structure. To do so, we used the advances in net-

work-based models, their temporal generalization, data analysis, and algorithms, and applied

this arsenal of tools to 4D datasets across four decades of crosslinking timescales to: (i) robustly

identify clusters, or communities, of genes (5k bp domains, or beads, in our model), i.e., to

directly detect gene sub-organization at the scale it exists rather than attempt to seek larger

scale organization from gene-gene statistics and heat maps; (ii) determine the size distribution

(number of genes) in such sub-structures; (iii) determine the persistence times of communi-

ties; and, (iv) determine the interaction frequency of communities and corresponding gene

exchanges, which are the drivers of gene-gene interaction statistics. In this way, network

algorithms automate gene community detection and persistence, with robustness built in by

enforcing insensitivity to algorithm tuning parameters.

We elected to build and implement these network tools on the 4D datasets generated in

house, from simulations of our recent polymer modeling of interphase budding yeast [21]. In

this model, a pool of SMC proteins transiently and indiscriminantly crosslink 5k bp domains

within the nucleolus on Chromosome XII. The kinetics of the cross-linking anchors relative to

the substrate is a major driver of sub-nuclear organization. If the crosslinkers bind and release

more rapidly than the chains can relocate, the non-intuitive consequence is that the chains

explore less space. When dense clusters of crosslinker/binding sites arise, they persist for

extended time periods when the crosslinking kinetics is sufficiently fast.

We previously showed in [21] that very short-lived (μ = 0.09sec) binding kinetics pro-

vided closer agreement with experimental results (highest degree of compaction of the

nucleolus into a crescent shape against the nuclear wall). It was also shown via visualization

of the simulated 4D datasets that this timescale induces a decomposition of the nucleolus

into a large number of clusters each consisting of many 5k bp domains, and these clusters

were persistent over time. On the other hand, with long-lived crosslinks (μ = 90sec) the

clusters disappeared. These results reveal that the timescales of the crosslinkers relative to
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entropic fluctuations of the chromosome polymer chains are a fundamental contributor to

genome organization.

For the present paper, the sample set of binding kinetics in [21] was expanded to 4D data-

sets of interphase, sampling over four decades of crosslinking duration timescales. We applied

standard, distance-based, 2-point statistical metrics and visualization tools, and then analyzed

the full range of 4D datasets with the fast, automated network models and tools. The network

algorithms search for and detect time-varying communities (clusters, sub-structures) at the

scales they exist, not at a prescribed scale of two or more genes; the spatial and temporal scales

are identified with the criteria that they are robust to the algorithm parameters. We then use

this information to label and color-code communities, using community-level description to

understand the persistence and interactions (merging and division marked by gene exchanges)

between communities.

With the above community-scale information and statistics, we generalize standard

gene-gene interaction statistics across the four decades of bond duration timescale. As a

generalization of waiting times for 2 distant genes to come within a specific distance of one

another, we calculate waiting times for genes in the same community to leave and then re-

enter another common community, and calculate the fraction of all genes that were in the

same community at least once during interphase, which we call the community cross-commu-

nication fraction.

From these analyses, we discovered a novel dynamic self-organization regime, wherein

the rigid, persistent communities at relatively short-lived crosslink timescales (μ = .09sec) tran-

sition at slightly longer-lived crosslink timescales (μ = 0.19sec) to more mobile (literally, the

clusters diffuse faster) communities that interact far more frequently, each interaction corre-

sponding to merger, subsequent division, and an exchange of genes. We refer to this regime as

flexible community structure with enhanced cross-communication. Furthermore, we discov-

ered non-monotonicity in the dynamic self-organization behavior: the community cross-com-

munication fraction is maximized, coincident with a minimum waiting time between genes

departing and returning to common communities, with a crosslink timescale of μ = 0.19sec.
Both properties fall off, albeit in different ways, for shorter and longer timescales.

We emphasize that these network tools and fast algorithms are amenable to any 4D dataset

from polymer models. While we restricted the analysis in this study to the nucleolus during

G1 of budding yeast where SMC proteins are allowed to transiently crosslink 5k bp domains,

the same analyses can be applied to data with tandem SMC crosslinking and loop generation,

for any cell type and for any phase of the cell cycle. Moreover, given the growing interest in

network-based analyses for Hi-C data, network modeling is well-positioned to provide a fruit-

ful direction for data assimilation efforts aimed at connecting simulated and empirical 4D

chromosome conformation data. An important challenge facing this pursuit is the develop-

ment of improved data pre-processing and community-detection methodology for temporal

and multimodal network datasets [52, 53].

Materials and methods

Model

Chromatin dynamics within confined yeast nuclei has been widely modeled using Rouse poly-

mer bead-spring chains; see earlier citations. We employ the identical model and code in [21],

resolving the entire yeast genome into 2803 total beads, each of which represents approxi-

mately 5k base pairs (bp). As such, each bead is interpreted as a chromosome domain or a

tension blob, as explained in the polymer physics literature. The beads are arranged on 32

chromosome arms having lengths that reflect their experimentally identified lengths. Each
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arm is tethered at both ends to the nuclear wall: all emanating from the centromere at one end,

with the other end tethered to one of six telomeres. Along each arm, there are entropic, nonlin-

ear springs (the wormlike chain model is used here) that connect neighboring beads. The

beads also experience Brownian, entropic, repulsive and hydrodynamic drag forces, and are

physically confined to the nucleus. We simulate approximately 20 minutes of G1 during inter-

phase, and each simulation is initialized with 32 chromosome arms tethered at the centromere

and one of six telomeres on the nuclear wall, otherwise randomly located within the nucleus

(idealized as a spherical domain).

We model the effect of SMC proteins by transiently crosslinking pairs of non-neighboring

beads in the nucleolus, represented by a contiguous chain of 361 beads on chromosome XII.

(We note in passing that [21] also studied, experimentally and computationally, when the

nucleolus is split onto separate chromosome arms, showing this to have a negligible affect on

the clustering and interaction results). A transient crosslink is modeled by a pair of stochastic

events—a binding and unbinding of two non-adjacent nucleolar beads—and the timescale of

these events is tuned by a single parameter μ (measured in seconds). We defer to [21] for the

details, but elaborate here on the role of μ. To implement crosslinks, all nucleolar beads are

assigned a state of “active” or “inactive,” and crosslinks are allowed only between active beads.

Each bead’s state fluctuates stochastically as follows: an active bead becomes inactive after a

duration that is a random number drawn the normal distribution N(μ, (μ/5)2); and an inactive

bead becomes active after a duration drawn from N(μ/9, (μ/45)2). If two nucleolar beads are

both active and the distance between them is less than ~d ¼ 90 nm, then a crosslink is formed

between them (i.e., they bind). Each bead may be involved in at most one crosslink at a time,

decided on the basis of pairwise proximity among all active beads at each timestep. If either

bead becomes inactive, then the crosslink is broken (i.e., they unbind). Hence, crosslinks are

established and broken stochastically in the nucleolus, and the single parameter μ dictates the

kinetic timescales for crosslinking. See [21] for additional model details.

Pairwise-distance maps for high-throughput chromosome conformation

capture (Hi-C)

Each simulation of the Rouse-like polymer model yields time-series data fxiðtÞg 2 R3 that

defines the 3D location of each bead i 2 {1, . . ., N} at each discrete time step t = 0, 1, . . .. We

establish a connection between our simulated data and the state-of-the-art in chromosome

imaging—namely, high-throughput conformation capture (Hi-C)—by constructing and ana-

lyzing pairwise-distance maps. Hi-C “images” the conformation of chromosomes using a com-

bination of proximity-based ligation and massively parallel sequencing, which yields a map

that is correlated with the pairwise distances between gene segments. While the actual pairwise

distances between gene segments cannot be directly measured, Hi-C implements spatially con-

strained ligation followed by a locus-specific polymerase chain reaction to obtain pairwise
count maps that are correlated with spatial proximity: the count between two gene segments

monotonically decreases as the physical 3-dimensional distance between them increases.

To provide an analogue to Hi-C imaging, we construct pairwise-distance maps for our sim-

ulated data {xi(t)}. Let

F : fxigi¼N
i¼1

7! RN�N ð1Þ

define a map (used here in the mathematical sense) from a set of N points fxig 2 R3
to a

matrix such that each entry (i, j) in the matrix gives the distance between point i and point j.
Whereas Hi-C imaging aims to study the positioning of chromosomes using noisy measure-

ments that are inversely correlated with pairwise distances, for our simulations we have access
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to the complete information about the chromosome positioning. We therefore define and

study several variations for pairwise distance maps, which will allow us to also study artifacts

that can arise under different preprocessing techniques, such as averaging the time series data

across time windows and/or averaging across multiple simulations with different initial condi-

tions. We define the following pairwise distance maps:

• An instantaneous pairwise distance map X(t) = F({xi(t)}) encodes pairwise distances between

beads (i.e., chromosome domains) at a particular timestep t.

• A time-averaged pairwise distance map YðtÞ ¼ 1

jtj

P
t2t

XðtÞ encodes the pairwise distance

between beads averaged across a set of timesteps τ.

• A population-averaged pairwise distance map Z(t) = hX(t)ip encodes the pairwise distance at

timestep t between beads, which are averaged across several simulations that have different

initial conditions (which are chosen uniformly at random).

These pairwise distance maps represent the data that is sought after, but cannot be directly

measured, by Hi-C imaging. Moreover, by defining several distance maps we are able to study

“averaging” artifacts that can arise due to various limitations of Hi-C imaging. For example,

Hi-C imaging obtains measurements that are typically averaged across a large heterogeneous

distribution of cells that are subjected to nonidentical conditions and exist at nonidentical

states in their cell cycles.

Microscope image acquisition, processing and analysis

Yeast strains for experiment. The budding yeast strains used in this study were obtained

by transforming the yeast strain EMS219 (Mat alpha, his5 leu2-3,212 ura3-50 CAN1 asp5 gal2

(form I1 rDNA::leu2 URA3+)) with CDC14-GFP:KANR, to label the nucleolus, and SPC29-

RFP:HYGR, to label the spindle pole body, to generate the yeast strain DCY1021.1. DCY1021.1

was transformed to knock out FOB1 and HMO1 to generate DCY1055.1 and DCY1056.1

respectively.

Image acquisition and baseline processing. Fluorescent image stacks of unbudded yeast

cells were acquired using a Eclipse Ti wide-field inverted microscope (Nikon) with a 100×
Apo TIRF 1.49 NA objective (Nikon) and Clara charge-coupled device camera (Andor) using

Nikon NIS Elements imaging software (Nikon). Each image stack contained 7 Z-planes with

200 nm step-size.

Image stacks of experimental images were cropped to 7 Z-plane image stacks of single cells

using ImageJ and saved as TIFF files. The cropped Z-stacks were read into MATLAB 2018b

(MathWorks), converted into maximum intensity projections, and the projections of hmo1Δ
and fob1Δ were cropped to 55 × 55 pixels, to match the dimensions of WT projections, using

MATLAB function padarray with replicate option specified to extend outer edge of pixel

values to ensure the center of all cropped images was the brightest pixel. The intensity values

of all projections were normalized by subtracting all intensity values by the minimum value

and then dividing the resulting values by the maximum intensity value after subtraction. The

normalized intensity values were stored with double point precision, preventing any loss in

dynamic range.

Image analysis. The areas of nucleolar signals were determined by setting all values below

threshold, calculated using multithresh function, to NaN and then summing number of

values that were not NaNs. That pixel count was converted to μm2 by multiplying the sums by

0.06482, the area of each pixel in μm2.
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To calculate the standard deviation of the intensities of the nucleolar signal, the non-NaN

values remaining after thresholding were re-normalized using the same method described

above, and the standard deviation of those values was measured.

To count clusters within the nucleolar signal, the normalized images were deconvolved with

5 × 5 Gaussian structural element, using deconvblind function, and underwent two rounds of

background subtraction by setting all intensity values below threshold value, calculated using

default multithresh function, to NaN and then all NaN values to 0. Clusters were identified

using the imregionalmax function and counted using bwconncomp function.

The simulated images generated from our simulations were analyzed as described above

with the additional step of measuring the standard deviation of the each simulated maximum

intensity projection. All WT images were analyzed using the script wtExpIm.m. All hmo1Δ
and fob1Δ images were analyzed using the script cropExpIm.m. All simulated images were

analyzed using the script clusterCountLoop.m.

All MATLAB scripts have been made available at [49].

Cluster identification via network community detection

Gene-interaction networks from pairwise-distance data. Given a pairwise distance map

X 2 RN�N
in which each entry Xij gives the (possibly averaged) Euclidean distance between

beads i and j as described in Pairwise-distance maps for high-throughput chromosome confor-

mation capture (Hi-C), we construct a network model in which there are weighted edges (i.e.,

interactions) only between beads that are in close proximity to each other and for which each

edge weight Aij � 0 decreases monotonically with distance Xij. We propose a model with two

parameters, d� and s, which represent a distance threshold and a decay rate, respectively. In

particular, we define a network adjacency matrix A having entries

Aij ¼

(
e�sXij ; Xij < d�

0; Xij � d�:
ð2Þ

Note that there exists an undirected edge between i and j (i.e., Aij > 0) only when Xij < d�,

and s controls the rate in which the edge weight Aij decreases with increasing distance Xij.

Because the edge weights exponentially decrease with distance, the community detection

algorithms we study are insensitive to the choice for d�, provided that d� is sufficiently large so

that the network is connected. Our choice d� = 325 in Section: Temporal stability of clusters

ensures there is an edge between all beads in the same cluster (recall Fig 6 in the main text)

and was found to yield qualitatively similar results for other choices of d�.

Eq (2) defines a map between a distance matrix and an affinity matrix that encodes a net-

work. Note that for any such adjacency matrix A, we can equivalently define the network using

the graph-theoretic formulation GðV ;E Þ. Here V ¼ f1; . . . ;Ng denotes the set of nodes (i.e.,

the beads in the chromosome model) and E ¼ fði; j;AijÞ : Aij > 0g denotes the set of weighted

edges (i.e., a set encoding which beads are interacting as well as their interaction strengths).

In Pairwise-distance maps for high-throughput chromosome conformation capture (Hi-C)

we defined several versions of pairwise distance maps—instantaneous, time-averaged, and

population-averaged maps—and a network model can be constructed for any of these maps:

• An instantaneous interaction network refers to a network associated with an instantaneous

pairwise distance map X(t).

• A time-averaged interaction network refers to a network associated with a time-averaged

pairwise distance map Y(τ). We point out that due to the nonlinearity of Eq (2), a network
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associated with a time-averaged distance map can in general differ from a temporal average

of instantaneous interaction networks, averaged across the same time interval.

• A population-averaged interaction network refers to a network associated with an popula-

tion-averaged distance map hZ(t)ip.

In addition to the above network models, we are particularly interested in constructing and

studying temporal interaction networks, which we define as a sequence of time-averaged inter-

action networks encoded by a sequence of adjacency matrices fAs
ijg. In particular, given a

sequence of timesteps s 2 {1, 2, . . ., T}, we partition time into a sequence of time windows τs =

{(s − 1)Δ + 1, . . ., sΔ} for s = 1, 2, . . . of width Δ. We then define a sequence of time-averaged

networks {G(s)} for s = 1, 2, . . . associated with these distance maps, which are time-averaged

across the non-overlapping time windows {τs}. The result is a sequence of adjacency matrices

so that each entry As
ij indicates the absence (As

ij ¼ 0) or presence (As
ij > 0) of an edge between i

and j during time window τs.
In practice, we choose the time window width Δ to be similar to—but slightly larger than—

μ. Matching the time-scales of μ and Δ allows the temporal interaction networks to efficiently

capture the dynamics of interactions. Specifically, if Δ is too short then the temporal network

will be identical across many time steps, which is not an efficient use of computer memory.

Moreover, if Δ is too large, then the temporal network data will be too coarse to identify inter-

action dynamics occurring at a faster time scale. We chose Δ = 10 to aggregate the time-varying

bead-location data (which was saved every 0.1 second) into 1-second intervals. We studied

1000 such time windows to produce Fig 8.

Spatiotemporal gene clusters revealed by community detection in temporal networks.

We analyze spatiotemporal clustering of chromosomes using community detection methodol-

ogy for temporal interaction networks, particularly an approach based on multilayer-modular-

ity optimization. Given a sequence of adjacency matrices {As} for s 2 {1, 2, . . ., T}, we study the

multilayer modularity measure [37]

Q ¼
1

2m

X

i;j;s;r

As
ij � g

ksik
s
j

2ms

� �

dðs; rÞ þ odði; jÞCsr

� �

dðcis; cjrÞ; ð3Þ

where As
ij denotes an entry in the adjacency matrix for network layer s (i.e., that associated

with time window τs), γ is again a tunable “resolution parameter,” ksi ¼
P

j A
s
ij is the weighted

node degree for node i in layer s, 2ms ¼
P

ij A
s
ij is twice the total number of undirected edges

in layer s, δ(m, n) is again a Dirac delta function, Csr = δ(s, r − 1) + δ(s, r + 1) defines the cou-

pling between consecutive (time) layers and Csr = 1 if only if r = s ± 1 (otherwise Csr = 0), and

{cis} are the integer indices that indicate the community for each node i in each layer s. If one

wished to analyze just a single network (e.g., a time-averaged or population-averaged net-

work), then one can simply set Csr = 0 so that the second term in the square brackets is

discarded.

Letting i 2 {1, . . ., N} enumerate the nodes and s 2 {1, . . ., T} enumerate the network layers,

the goal is to assign a community label cis to each node-layer pair (i, s) to maximize Q [37].

Here, cis = c indicates that node i is in community c during time window τs. There are many

techniques to solve such an optimization problem, and we identify partitions that optimize Q
using a variational approach commonly referred to as the Louvain algorithm [38]. To provide

some intuition into this optimization problem, we briefly comment on how the different terms

in Eq (3) contribute to this optimization problem.
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Consider the first term, ðAs
ij � g

ksi k
s
j

2ms
Þ, which is a slight generalization of Newman’s original

definition of the modularity measure [36] (which assumed γ = 1). The part
ksi k

s
j

2ms
is the expected

probability of an edge between i and j in layer s according to the configuration null-model

for networks [36], and the effect on Q of this null-model comparison is scaled by γ. Thus, as

whole, the first term is largest when there exists an edge between i and j in time window τs
and when the expected probability of such an edge is smallest. Effectively, this term influences

optimal partitions to give (i, s) and (j, s) the same community label if there is an edge between

nodes i and j in time window τs. We next consider the second term, ωδ(i, j)Csr, which is non-

negative since ω > 0 and Csr 2 {0, 1}. Since Csr = 1 only when τs and τr are consecutive time

windows (i.e., |s − r| = 1), this term influences the community labels cis and cir to be the same

from one time window to the next.

Note that multilayer modularity involves two parameters γ and ω, which are “tuning

knobs” to identify clusters in which their size and temporal coherence are appropriate. In

practice, we explore a wide range of parameter values γ 2 [γmin, γmax] and ω 2 [ωmin, ωmax]

to study the multiscale organization of clusters. This approach efficiently explores clustering

phenomena at multiple spatial and temporal scales, identifying at which scales clustering

is most prevalent and at which scales clustering is nonexistent. To identify appropriate

values for γ and ω, we used a variety of techniques including the CHAMP algorithm [50]

(which utilizes fast algorithms that detect convex hulls in the (γ, ω) parameter space) and

comparisons to other community-detection algorithms including the study of connected-

components.

Supporting information

S1 Video. One minute of real-time simulation for μ = 0.09, demonstrating association

of beads into large, stable clusters. Resource available at https://github.com/bwalker1/

chromosome-videos/blob/master/Dataset0_allRed_finer_realtime.mp4.

(MP4)

S2 Video. One minute of real-time simulation for μ = 0.19, showing association of beads

into clusters that exhibit frequent changes in membership. Resource available at https://

github.com/bwalker1/chromosome-videos/blob/master/Dataset6_allRed_finer_realtime.mp4.

(MP4)

S3 Video. One minute of real-time simulation for μ = 1.6, showing no apparent structure

in the bead positions beyond simple pairing. Resource available at https://github.com/

bwalker1/chromosome-videos/blob/master/Dataset12_allRed_finer_realtime.mp4.

(MP4)

S4 Video. One minute of real-time simulation for the rigid clustering regime with μ = 0.09.

We observe that the stable and well-separated clusters have been distinctly labeled by the com-

munity detection algorithm. Resource available at https://github.com/bwalker1/chromosome-

videos/blob/master/Dataset0_color_finer_realtime_altView.mp4.

(MP4)

S5 Video. One minute of real-time simulation for the flexible clustering regime with μ =

0.19. Here the clusters are not so clearly separated, but the colored labels still appear consistent

with what one would expect. Resource available at https://github.com/bwalker1/chromosome-

videos/blob/master/Dataset6_color_finer_realtime_altView.mp4.

(MP4)
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S6 Video. One minute of real-time simulation for the non-clustering regime with μ = 1.6.

Here there are no clusters present in the data, but the community detection algorithm still tries

to give the same label to nearby beads. Due to the lack of stable community structure, beads

change label more frequently than for smaller values of μ. Resource available at https://github.

com/bwalker1/chromosome-videos/blob/master/Dataset12_color_finer_realtime_altView.mp4.

(MP4)
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