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Abstract

Discontinuous shear thickening (DST) in concentrated suspensions is accompanied by pronounced fluctuations in the measured viscosity
under a fixed shear rate. In this work, the suspension flow is simulated by a discrete-particle method, in which a repulsive force of magnitude
FR between neighboring particles maintains viscous liquid lubricating films for stress σ , σ0 � FRa�2 with a being the particle radius; when
the films rupture, frictional contacts form. The suspension rheology displays continuous or discontinuous shear thickening for f below or
above fc, respectively. The apparent critical point (fc, _γc) on the viscosity curve dividing these behaviors is identified as the point at which
@hσi=@ _γ ! 1. The probability distribution of σ at a fixed _γ has a well-defined peak at conditions away from this point but broadens to
an essentially flat distribution for _γ ! _γc at fc. The stress fluctuations, determined from force moments on the particles, provide a microscop-
ically based susceptibility, χ̂σ � Ð L=2

r¼2ahσ 0(x, t)σ 0(0, t)id3x, with x being the pair center separation, r ¼ jxj, L the simulation domain size, and
σ 0 the stress fluctuation from hσi; χ̂σ displays strong growth on an approach to (fc, σc). An exchange of hydrodynamic for contact stresses is
shown to be the basis for the shear thickening, and the relationship of the development of the contact network to the onset of DST is
considered. © 2020 The Society of Rheology. https://doi.org/10.1122/1.5131740

I. INTRODUCTION

In the absence of flow, the microstructural arrangement of
particles suspended in viscous liquid is determined by well-
established statistical mechanical principles. The influence of
temperature, conservative forces, and excluded volume estab-
lish an equilibrium state for the particles. By contrast, a non-
equilibrium microstructure of sheared suspensions varies
depending on the strength of an external driving force. A
nonequilibrium suspension microstructure has most com-
monly been analyzed at the pair distribution level using the
Smoluchowksi transport equation, showing pronounced dis-
tortion due to the shear flow of the pair-particle distribution
function relative to its equilibrium form [1–3]. Such an anal-
ysis provides insight into shear thinning and mild shear
thickening but has not been extended to the strong shear
thickening seen in dense suspensions [4–6], where recent
work suggests that a contact between particles is a dominant
stress mechanism [7,8] and the network of contacts is micro-
structurally relevant [9]. These are the conditions of interest
in the present study, as we focus on discontinuous shear
thickening (DST), in which a large increase in the shear and
normal stresses may occur at a fixed shear rate, _γ. This
implies that the viscosity function η( _γ) becomes multivalued
at some shear rate at a “critical” solid concentration fc. Most
of our attention in this work is devoted to the stress fluctua-
tions in the vicinity of this point. However, we also address

briefly the behavior of the contact network near the continu-
ous shear thickening (CST)-DST transition in order to
provide some insight into the structural basis for the stress
fluctuations.

We consider shear-thickening due to a lubricated-to-frictional
(LF) transition in particle interactions [7,10,11], with the
transition determined by a characteristic stress defined by a
repulsive interparticle force, FR, and the particle size a as
σ0 ¼ FR=(6πa2). Based on this characteristic stress and the
suspending fluid viscosity, η0, the scale for the shear rate is
defined as _γ0 ¼ σ0=η0 and the reported shear rates, denoted
by _γ, are nondimensionalized by _γ0. Reported viscosities are
in the form of a relative viscosity, i.e., the apparent viscosity
normalized by η0. Simulations of the LF transition are well-
developed and agree qualitatively with features of experi-
ments [7,10,12]; a brief description appears below.

Our specific purpose is to show that the rapid changes of
rheological functions at the onset of DST may be interpreted
as a consequence of the presence of a type of critical point.
Defining a dimensionless shear stress as ~σ ¼ σ=σ0, this
point is shown as (fc, ~σc) on the diagram of flow states in
Fig. 1(a). This diagram was proposed by Wyart and Cates
(WC) [11] and developed based on simulation data [13]; the
diagram shares features with an experimentally determined
version based on the behavior of cornstarch dispersions [14].
Flow curves in Fig. 1(b) display ~σ as a function of the
dimensionless shear rate, _γ, from a fit of these data to the
WC mean-field theory [11].

We focus our attention on volume fractions that exhibit
strong CST and DST between two flowing states. A key
concept is that for particles which interact frictionally,
the jamming fraction, fμ

J , indicated by the vertical line at
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f � 0:58 in Fig. 1(a), lies below its value for frictionless
particles, denoted by f0

J and indicated by the vertical line to
the left of “frictionless jamming” in the same figure. Thus,
for f in the range of f0

J . f . fμ
J , discontinuous shear

thickening occurs but the thickened state does not have a
finite viscosity as it is jammed. We work at conditions below
fμ
J , but the rheology is nonetheless influenced by the differ-

ent divergences of the viscosity at different stresses, as this
provides the mechanism for a stress-driven transition in vis-
cosity, as outlined in the mean-field model fitting of our data
in Sec. II and the Appendix.

The curve separating CST and DST is at a solid fraction
we label f ¼ fc, to emphasize that at a particular shear rate
the suspension displays a type of critical behavior. This leads
to the interpretation that DST is conceptually analogous to a
phase transition, albeit far from equilibrium since it arises as
a result of varying the external driving. At solid fractions
f . fc, the suspension is able to take on a low- or high-
stress state at a given rate of deformation. We describe the
behavior in terms of the shear stress σ but could equally
use the mean normal stress, or particle pressure [15,16]
Π ¼ �(σxx þ σyy þ σzz)=3 as in the WC formulation [11].
The ratio σ=Π, known as the bulk friction coefficient, under-
goes a decrease as the suspension shear thickens [10,17,18],
but this decrease is relatively small and thus the strong increase
in σ is likewise seen in Π, as shown by Singh et al. [13].

Thorough examinations of nonequilibrium phase transi-
tions have been made in various contexts [19], including
current-driven steady states of charged particles [20] and
ecology models [21]. Here, our goal is more modest, as we
cannot assert based on present understanding that the onset
of DST has the essential properties of a phase transition.
Instead, we are motivated by the fact that, at a critical point,
one often observes strong fluctuations to explore the fluctua-
tional characteristics at the onset of DST; our focus in this
effort is on the stress fluctuations at fixed shear rate. We
begin by considering the mean field description that captures
the abrupt rheological transition [11] and then describe the
simulation results. The rapid and quite large variations in the
stress response at the onset of DST are microscopically asso-
ciated with the formation and breakage of the flow-driven

contact network, and this underlying basis for the rheological
response is briefly considered in relation to recent work by a
similar approach.

II. MEAN FIELD MODEL

Our work has a twofold motivation, with both arising
from a mean-field treatment of the shear-thickening rheology.
The first is the success of the WC mean-field theory [11] in
capturing the behavior of shear-thickening suspensions
[13,22], and the second is the limitation of this approach in
capturing statistical physical features associated with fluctua-
tions expected at the apparent critical point.

The WC description reproduces features of CST and DST
found in simulations, as shown by Singh et al. [13] and illus-
trated in Fig. 1(b). In WC, the stress is described in terms of
the microscopic interactions of close particles, which may be
either lubricated or in frictional contact, depending on the
imposed stress. The transition away from the low-stress lubri-
cated state occurs when the imposed stress overcomes a
repulsive interparticle force, which agrees with the simulation
approach [7,10] applied in the current work. The microscopic
information that determines the macroscopic flow state in the
WC model is the scalar measure f , which gives the fraction
of nearest-neighbor interactions that are contacting. This is a
mean field model because for fixed global parameters of
shear rate (or stress) and solid fraction, f is spatially and tem-
porally uniform. The dependence of the fraction of frictional
contacts was described as f (Π) in WC, considering Π as the
confining normal stress, but we follow Singh et al. [13] and
write f (~σ) in terms of the shear stress. We use the form
found in simulations [10], with f (~σ) being sigmoidal with
f (~σ) ! 0 and f (~σ) ! 1 for small and large ~σ, respectively.
There is a rapid variation near ~σ � 1.

The suspension rheology is described by considering
the two rate-independent limits, lubricated (or frictionless)
and frictional, with divergent properties of the form
η � (f� fJ)

�2 at their corresponding jamming volume frac-
tions, f0

J for ~σ � 1 and fμ
J for ~σ � 1. The jamming fraction

varies with imposed stress through a mixing rule using f (~σ)
as an interpolant between f0

J and fμ
J , as developed in detail

FIG. 1. (a) Flow state diagram, showing the f� ~σ values displaying various flow behaviors, with fc indicated by the (red) dot. The vertical lines at f � 0:58
f � 0:65 indicate the frictional, fμ

J , and firctionless jamming fraction, fμ
J , respectively. (b) Stress as a function of shear rate for f near fc. Points are simulation

results, while the lines are the best fit curves for the Wyart–Cates mean field theory [11]. (c) Stress susceptibility, @~σ=@ _γ, from the fits of part (b).
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by Singh et al. [13]. The suspension viscosity, η, becomes a
function of ~σ only through f (~σ),

η(f, ~σ) ¼ αμf (~σ)þ α0(1� f (~σ))

[fμ
J f (~σ)þ f0

J (1� f (~σ))� f]
2 : (1)

This allows us to write the dimensionless shear rate,
_γ ¼ ~σ=η(f, ~σ), with α0 8 0:2205, αμ 8 0:4850, fμ

J 8 0:5815,
and f0

J 8 0:6470 for the simulation parameters used in this
study. See the Appendix for our fitting to the WC model, with
more details of this constitutive model available elsewhere [13].

This rheology exhibits three classes of flow curves, found
by seeking fixed points, i.e., @ _γ=@~σ ¼ 0. This reveals a
saddle-node bifurcation, with no fixed points for f , fc, a
single fixed point at (fc, _γc, ~σc), and two fixed points for
fc , f , fμ

J . This can be stated in terms of the material
response. For f , fc, the stress is a single-valued function
of the shear rate for all shear rates, corresponding to CST.
For fc , f , fμ

J , the model predicts S-shaped flow curves
so that ~σ can have three possible values for a fixed shear-rate:
this is the DST region. For f . fμ

J , there is only one flowing
state fixed point, as thickening here gives rise to shear
jamming [DST-SJ, as shown in Fig. 1(a)].

The saddle node bifurcation thus has a clear analogy to
the behavior predicted by a cubic, e.g., van der Waals, equa-
tion of state. As the volume fraction increases in Fig. 1(b),
the first point at which @~σ=@ _γ ! 1 is then analogous to a
critical point. Such a state is expected to be associated with
strong fluctuations in certain properties. With this in mind,
rather than analyzing @ _γ=@~σ to find fixed points of a dynam-
ical system, @~σ=@ _γ is interpreted as the stress susceptibility.
Such an interpretation identifies ~σ as an order parameter,
and the WC model predicts a susceptibility divergence
χσ ¼ @~σ=@ _γ ! 1 at a point (fc, _γc, ~σc), as suggested by
Fig. 1(c). These data tend toward the low- and high-shear
rate viscosity in the appropriate limits but exhibit growth to
a maximum at an intermediate value of _γ. A divergence in
the susceptibility, χσ ! 1, is found for fMF

c 8 0:552 and
_γMF
c 8 0:0296 from our fitting of simulation data of this

study to the WC theory; the superscript MF is used to empha-
size that these are the values extracted from our application of
the mean-field theory. Based on these values, χσ � ( _γ � _γc)

�b

near _γc with b8 0:680 for _γ . _γc and b8 0:653 for _γ , _γc;
these exponents are notably close to 2=3 but are determined
numerically as described in the Appendix.

The relationship of the apparent critical point to the sus-
pension properties accords with certain expectations for an
equilibrium thermodynamic critical point. As f increases,
the curves go from CST to DST at fc. Similar behavior is
seen experimentally [4–6,23] for either viscosity or stress as
a function of _γ. In addition to this average behavior, strong
fluctuations are seen experimentally [24–26] in the time
series of σ. In Boersma et al. [24], very concentrated
(f8 0:585) monodisperse polystyrene spheres in water-
glycerine mixtures underwent viscosity fluctuations of over
an order of magnitude, with long periods in either the high-
or low-stress state as _γ approached the transition from below,
although it is unclear whether this condition is near the onset

of DST or fully in that regime. Addressing fluctuations
requires a microscopic view of the material, which we obtain
from simulation, where we can access the temporal and
spatial stress fluctuations at the particle level directly.

III. SIMULATIONS

For this study, we report on discrete-particle simulations
near the critical point as identified by the fitting of the WC
theory, in the range of 0:54 � f � 0:56. The simulation
method is the lubricated flow-discrete element model
(LF-DEM) [7,10]. This method considers spherical particles
immersed in a Newtonian liquid that lubricates the particle
surfaces at low stress but neglects long-range hydrodynamic
interactions. Motivated by the concept of “lubrication break-
down,” the failure of hydrodynamic lubrication to maintain
finite surface separation in sheared dense suspensions as
shown by Ball and Melrose [27], a key feature is that the
method allows for frictional contact interactions between par-
ticles when the imposed shearing force overwhelms a repul-
sive interparticle force.

The particles are bidisperse, with radii a1 ¼ a and
a2 ¼ 1:4a, to avoid ordering observed in dense monodisperse
suspensions [28]. Half of the total solid volume is contrib-
uted by particles of each radius. The N ¼ 500 particles are
confined to a cubic unit cell of volume V fixed by the desired
value of f. The unit cell is periodically replicated in all three
directions and sheared according to Lees-Edwards boundary
conditions. The simulations reported were performed at an
imposed shear rate, with the shear stress fluctuating.

We consider conditions of zero inertia so that each particle
satisfies a balance between finite-range hydrodynamic (FH)
and conservative forces (FR), as well as contact forces (FC).
Here, we use what is termed the critical load model [7] to
capture the influence of the repulsive forces: in this case, we
do not have finite-range repulsion, but instead impose a
threshold contact normal force denoted by FR to indicate its
role in replacing the repulsion; above this normal force, fric-
tion is activated in the contact force. The particles thus obey
the force balance

0 ¼ FH þ FC, (2)

along with a similar torque balance involving hydrodynamic
and frictional torques. The hydrodynamic force FH accounts
for lubrication, which is associated with the fluid in the zone
of closest approach of neighboring particle surfaces and is
the dominant pair hydrodynamic interaction for the volume
fractions of interest, as well as single-particle Stokes drag [7].
We write the lubrication for a generic pair of particles
labeled i and j as FH ¼ �R2(h) � (Uj � Ui), with the pair
resistance tensor R2 � (hþ δ)�1, where h ¼ r � (ai þ aj); δ
restricts the lubrication resistance to be finite at contact
(h ¼ 0) and can be considered as representative of a rough-
ness scale, but without any further physical modeling of
roughness. When contact occurs, the contact force, FC,
comes into play. When the interparticle normal force exceeds
the value FR, friction is activated, and satisfies the Coulomb
criterion, FC,t � μFC,n, relating tangential (FC,t) and normal
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(FC,n) components. We study only μ ¼ 1 here. Prior work
has shown that varying μ alters the frictional jamming frac-
tion and the volume fraction for DST [7,13], leaving the
overall physical scenario intact.

The relative viscosity ηr and the normal stress differences
fluctuate rather strongly in the region of strong shear thicken-
ing, as described in an initial work with LF-DEM [7].
For viscosity, this is qualitatively in accordance with experi-
mental observations [24,25]. A caveat regarding comparison
of simulation and experimental data is that our simulations
are performed in periodic domains without walls, while
the experiments have solid boundaries in the gradient
direction.

The appearance of fluctuations in the viscosity indicates
a growing susceptibility to shear stress. We formalize
the concept by defining this susceptibility as χσ ¼ @h~σi=@ _γ,
with the angle bracket defining an ensemble average over the
nonequilibrium steady state. Strong fluctuations are typically
observed at a thermodynamic critical point, and the suscepti-
bility can be related to the correlation of fluctuations in the
relevant order parameter. This microscopic basis for the
behavior is not accessible to the mean-field model, which
may nonetheless exhibit a divergent χσ as shown by Fig. 1(c)
(i.e., the divergence may be predicted in mean field but is
typically associated with and altered by the “critical state
fluctuations”). We show that the susceptibility χσ defined in
terms of stress fluctuations exhibits strong growth as _γ ! _γc
for f ¼ fc.

The fluctuations of the shear stress are shown in a time
series or more precisely as a function of strain γ ¼ _γt, in
Fig. 2(a) for f ¼ 0:55 and in Fig. 2(b) for f ¼ 0:56. Among
the conditions plotted, that closest to the apparent critical
point, i.e., the point at which DST is first observed, is
f ¼ 0:55 and _γ ¼ 0:0355. At this condition, σ varies fre-
quently between the high- and low- stress states, spending
little time in a given state. For the suspension studied here, we
identify the approximate values, based on the stress statistics,
of fc 8 0:55 and _γc 8 0:0315. Recall that the values obtained
from a mean field fitting are fMF

c 8 0:552 and _γMF
c 8 0:0296.

For f ¼ 0:56 in Fig. 3(b), for _γ ¼ 0:025, the system spends

significant time in both high- and low-stress states, indicating
that this condition is in the two-state portion of the material
response, i.e., it is fully within the DST regime.

A. Stress distributions

We determine the probability distribution for the time
series of the total shear stress (as shown in Fig. 2) and
denote this P(~σ). This is found by sampling ~σ ¼ V�1

PN
i ~σ i

at intervals of 0.01 strain for 20 strain units after reaching a
steady state; ~σ i is the shear stress contribution by particle i,
determined as the appropriate component of the force
moment ~σ i ¼ �P

j xijFij with j denoting the close neigh-
bors, xij the center separation vector of i and j, and Fij all of
the lubrication and contact forces for this pair.

We focus on f ¼ 0:55 and f ¼ 0:56 to illustrate the
primary features of the probability distributions of the bulk
shear stress, P(~σ). Figure 3(a) shows P(~σ) for f ¼ 0:55
(� fc). For the lowest _γ, for which the suspension is in the
low-stress state with lubricated interactions, P(~σ) is relatively
narrow with an average value near a well-defined peak. As _γ
increases toward the transition, the peak of the distribution
shifts to larger values of ~σ and the symmetry of the distribu-
tion is broken with the emergence of a larger tail for
~σ . h~σi, indicating that the stress has a baseline value but
makes occasional excursions to much larger stress; certain
features of the stress probability distribution agree with the
experimental findings presented in Lootens et al. [25]. When
the shear rate approaches the critical point, this tail becomes
more pronounced. The distribution closest to _γ ¼ _γc is nearly
flat, i.e., the system does not remain in states near the mean
stress, but samples from a wide range almost uniformly, as
expected at a critical point. Results of Lootens et al. do not
show a flat probability distribution, possibly indicating that
they sampled at f away from fc, and boundary effects in the
experiments cannot be discounted.

As the value of _γ passes _γc, the reverse trend is observed.
The low stress values in the distribution become less fre-
quent, and the large-~σ peak becomes dominant. The distribu-
tion is wider for the high stress state.

FIG. 2. Shear stress, ~σ, as a function of strain, γ ¼ _γt, for several imposed shear rates _γ at (a) f ¼ 0:55 and (b) f ¼ 0:56.
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Now we consider f ¼ 0:56, which is greater than fc and
well into the DST zone. The distributions shown in Fig. 3(b)
for low and high stress are similar to the forms at f ¼ 0:55.
However, we observe a new feature, as the distribution does
not become flat, but instead the large-~σ tail seen on approach
to the transition splits off: the distribution exhibits two sepa-
rate peaks with a region of vanishing probability between.
This peak at larger stress grows with increasing _γ at the
expense of the small-stress portion of the distribution.
Ultimately, the portion of the distribution at low stress disap-
pears, and we end up with a single distribution for the high-
stress state. The splitting of the distribution indicates temporal
exchange of low- and high-stress states (or “phases”) during
the transition. This is again reminiscent of the experimental
data of Boersma et al. [24], although we once more point out
that the boundaries may play a role in the experimental
behavior.

We return now to the time series of the stress associated
with the P(~σ) plots in Fig. 3 shown for f ¼ 0:55 in Fig. 2(a)
and f ¼ 0:56 in Fig. 2(b). At the higher volume fraction, the
stress is seen to occupy a distinct high or low value, with
sharp jumps between the two, with long periods at either
level for the intermediate shear rates. In contrast to this, for
f ¼ 0:55 at the transition from low to high stress, which
occurs for values of the dimensionless shear rate near
_γ ¼ 0:0355, ~σ is seen to spend time at all values in its range,
and P(~σ) confirms that at this shear rate, there is no preferred
value of the stress.

The particle pressure is the mean particle-phase normal
stress, Π ¼ �(σxx þ σyy þ σzz)=3, a quantity which has been
termed the nonequilibrium osmotic pressure [15]. The inter-
particle forces which are the mechanical basis for this pres-
sure are driven by the shearing motion, and thus Π varies
with _γ. Probability distributions of ~Π ¼ Π=σ0 are shown in
Fig. 4(a) for f ¼ 0:55 and for f ¼ 0:56 in Fig. 4(b). These
demonstrate the same hallmarks of the critical region as does

the shear stress distribution: near the critical point, P(~Π)
is nearly flat, and for f . fc, we observe a bimodal distribu-
tion of ~Π as the result of occupying two distinct states at a
fixed _γ. The probability distribution of Π is quite similar to
that of the shear stress, displayed in Fig. 3, and the time
series is also similar and is not displayed.

B. Exchange of dominant stress mechanism

For the suspension simulated, the stress arises from two
mechanisms, contact (~σc) and hydrodynamic (~σH). Rather
than implementing a finite-range repulsive force, the influ-
ence of FR is captured through the critical load model, in
which frictional forces arise only when the contact normal
force exceeds a threshold; thus the stress due to repulsive
force is captured by the contact stress. The stress is computed
as the moment of the lubrication or contact forces between
neighboring particle surfaces, i.e., for the contact stress this
is given by σ i

c ¼ �P
j xijF

ij
c , with j labeling the close near

neighbors of particle i.
The two stress contributions are shown as a fraction of the

total stress (~σ) for three different volume fractions in Fig. 5.
An exchange between these two mechanisms is observed
during the shear thickening transition. As _γ ! 0, hydrody-
namic stress is the only mechanism: ~σH=~σ ! 1 and
~σc=~σ ! 0. The increase in suspension viscosity at the onset
of shear-thickening is associated with development of the
contact stress, and the abrupt upturn at DST is found to
occur, for f ¼ 0:55, when ~σc=~σ � 0:42, with a similar value
associated with the abrupt jump at f ¼ 0:555. As _γ ! 1,
the hydrodynamic fraction of the total stress becomes very
small but remains finite for the volume fractions considered
since the suspension is able to flow. A vanishing hydrody-
namic stress implies shear jamming as developed by
Seto et al. [29].

FIG. 3. Shear stress distribution for several imposed shear rates _γ at (a) f ¼ 0:55 and (b) f ¼ 0:56.
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C. Stress correlations

We calculate the spatial correlations of the shear stress
fluctuations, ~σ, as

S(r) ¼
XN
i

XN
j=i

σ 0
i(ri, t)σ

0
j(r j, t)δ(rþ r j(t)� ri(t))

hσ iihσ ji , (3)

where σ 0
i denotes a fluctuation of the stress contribution from

its ensemble average hσ 0
ii. Note that the subscript on, for

example, σ i indicates a particle stress (force moment);
this is not the bulk stress, which arises from the sum of
these moments. Since the system studied is translationally
invariant, the correlations are a function of center separation.
Thus, we write x ¼ ri � r j and the fluctuations as
σ 0
i(x, t) ¼ ~σ i(x, t)� h~σ ii. Angularly averaged correlations,

hS(r)i with r ¼ jxj, are presented in Fig. 6. While the correla-
tions have angular variations, we here present only the angu-
larly averaged form. Over the entire domain, the correlations
grow to their largest value in the shear rate range from
_γ � 0:031 to 0.0355 and then decay for larger _γ. The radial
variation of these correlations is similar and long-ranged for
all conditions, with temporal fluctuations pronounced near
_γc; the small size of our simulations, with N ¼ 500 in the
replicated unit cell, may lead to coherent fluctuations over
the entire domain such that only temporal fluctuations are
observed.

Recall that thermodynamic susceptibilities can be related to
fluctuations [30]. We use this as the motivation for considering
the fluctuations in the individual particle stress contributions
as the microscopic basis of the stress susceptibility. We define
a fluctuation-based susceptibility as the volume integral of
the appropriate stress fluctuation correlations normalized
by the system volume, χ̂σ ¼ V̂�1

Ð L=2
r¼2ahσ 0(x, t)σ 0(0, t)id3x,

where V̂ ¼ Ð L=2
r¼2a d

3x; we distinguish this microscopically
defined susceptibility with the hat notation.

FIG. 4. Particle pressure distributions for varying shear rate _γ at (a) f ¼ 0:55 and (b) f ¼ 0:56.

FIG. 5. The fraction of stress from hydrodynamic, ~σH=~σ, or from contact,
~σC=~σ, contributions plotted on the left axis, along with η plotted on the right
axis, for (top) f ¼ 0:54, (middle) f ¼ 0:55, and (bottom) f ¼ 0:555.
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The results of the integrations are presented in the middle
plot of Fig. 7 and show that χ̂σ grows strongly at shear rates
where @~σ=@ _γ ! 1. The microscopic susceptibility becomes
sharply peaked at its highest value for f ¼ 0:55 and
_γ ¼ 0:0315. As noted above, we identify this pair of values
as (fc, ~σc). This point also corresponds to the inflection of

the viscosity η as a function of _γ, as can be seen in the top of
Fig. 7, and is close to the shear rate for which a flat P(~σ) is
observed in Fig. 3. The microscopic χ̂ is compared with the
mean field susceptibility @h~σi=@ _γ in Fig. 8. This figure,
which also includes the divergent fc mean field susceptibil-
ity, illustrates that the microscopic (fluctuational) susceptibil-
ity grows strongly in the same shear rate range as the mean
field version but with a broader peak. The peak broadening
may be influenced by the small size of the simulated system.

It is important to note that in our definition of the stress
fluctuations, taken relative to the ensemble average within
the steady state, the fluctuations are primarily temporal as the
entire system changes the stress level, although there remains
a dispersion around that level. We do not identify a growing
length scale at the transition, but instead there is a system-
spanning correlation at all conditions. The precise basis for
this behavior is not clear but, as noted above, it seems likely
to be due to the smallness of the system size (N ¼ 500, and
thus about eight particle diameters in the linear dimension of
the unit cell) leading to coherent stress fluctuations across the
entire volume simulated.

D. Frictional contact network

The sudden and rather extreme changes in the rheology
seen in the temporal fluctuations near DST can be associated
with changes in the interparticle contact state, which is cap-
tured in a mean-field sense by the fraction of frictional con-
tacts f in the WC theory. A more detailed description is
provided by considering the frictional contact network,
where the particle centers are the vertices and the frictional
contacts form the edges of the network. Such methods have
been considered previously for dense suspensions [9,31].
The adjacency matrix corresponding to this undirected
network is the N � N symmetric Aij, where N is the number
of particles: there is a frictional contact between particles i
and j, then Aij ¼ 1, otherwise Aij ¼ 0. At a given instant, the
contact number of a particle is Zi ¼

PN
j Aij, and the mean

degree of the frictional contact network is Z ¼ P
i Zi=N; the

squared contact number is
P

i Z
2
i =N. We determine hZi ¼

hPi Zi=Ni and hZ2i ¼ hPi Z
2
i =Ni as their sampled averages

over many configurations. The variation of hZi with shear

FIG. 6. Angular average of the shear stress correlation, hS(r)i as a function
of r for f ¼ 0:55.

FIG. 7. Top: suspension viscosity, η; middle: the microscopic (fluctuation-
ally defined) stress susceptibility, χ̂σ ; bottom: the average frictional coordi-
nation number, hZi, in the same range of _γ, near the apparent critical point.

FIG. 8. Comparison of χ̂σ (represented by dots) with the mean field
@h~σi=@ _γ (represented by lines) for f ¼ 0:54 and f ¼ 0:55. Note that from
the mean field analysis, @h~σi=@ _γ diverges at f ¼ fMF

c 8 0:552 and
_γMF
c 8 0:0296.
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rate for three volume fractions f near the critical value is
shown in Fig. 7, with the viscosity and the microscopic stress
susceptibility curves plotted directly above. hZi is closely
linked with the stress state of the suspension, showing a par-
allel trend to the low- to high-viscosity transition. The low-
viscosity (small _γ ) state is associated with hZi ¼ 0, and hZi
reaches its highest value (depending on f) as _γ ! 1, when
the suspension reaches the high-viscosity state. It is thus
clear that, in the LF scenario, the formation of frictional con-
tacts is essential for development of the high-stress state of
the system. This agrees with Fig. 5, which showed that DST
is associated with a rapid exchange of stress mechanism,
with the important feature that there is a discontinuous rise in
the fraction of the stress contributed by the contact forces.

However, the relationship of the contact network to DST
is somewhat subtle. In recent network theoretical analysis of
shear thickening in suspensions [9], it was suggested that the
formation of a percolating frictional network, or a “giant con-
nected component” in the graph theory terminology, was
responsible for the transition from CST to DST. We show
that this is not accurate for the present simulations. To do so,
we first determine the fraction of the total particles in the
largest frictionally contacting cluster, whose average hpi is
displayed as a function of _γ for f ¼ 0:55 in Fig. 9 at top.
Here, a clear correlation of the growth of the largest contact-
ing cluster with the increase in viscosity is seen. However,
the Molloy–Reed (MR) criterion for the development of a
giant component in a random network, namely, that the
second-nearest neighbors outnumber the near neighbors,
implies that hZ2i � 2hZi vanishes at the contact percolation
[32,33]. Dorogovtsev et al. [32] show that the size of a con-
nected cluster as hZi increases is given by s ; 1þ
hZi2=(2hZi � hZ2i) and based on the Molloy–Reed criterion
should diverge at the value of the shear rate corresponding to

the emergence of this system-spanning cluster, known as a
giant component in network theory [32,34]. While it is
unclear whether the MR criterion developed for uncorrelated
networks with arbitrary degree distributions can be directly
used for the network of contacts in the sheared suspension,
we plot the quantity s in Fig. 9 (at bottom) along with the
fluctuationally defined χ̂σ previously shown to be maximized
where the viscosity undergoes its steepest increase in Fig. 7.
It is seen that s diverges, or contact percolation may be
assumed to occur in some direction if this network follows
the results developed for uncorrelated networks (by no
means certain, as noted), at a shear rate lower than _γc, at
which χ̂σ is maximized, indicating that the MR criterion does
not strictly determine the onset of DST. We can safely say
that network criticality associated with percolation of con-
tacts (the formation of a giant component) does not corre-
spond to the “rheological critical point” associated with the
onset of DST, a correspondence that was previously sug-
gested [9]. To make this point more firmly and simply, note
that frictional contact percolation and the giant connected
component can be found even under CST conditions, as
shown for f ¼ 0:54 in Fig. 10; direct analysis of the percola-
tion threshold confirms that percolation occurs in all direc-
tions at f ¼ 0:54, but at a shear rate higher than the
divergence of s, independent of the applicability of network
theory results to this system. Note that in this figure, only
small values of the coordination number, hZi � 1, are con-
sidered, although the value goes up to hZi . 3 at high stress.

IV. DISCUSSION AND CONCLUDING REMARKS

We have explored the fluctuations in stress at the onset of
DST in dense suspensions. This is motivated by the diver-
gence in the rate of increase of stress with shear rate, @σ=@ _γ,
which in the mean field description is a saddle-node bifurca-
tion but may be considered as analogous to a second-order
phase transition at which critical fluctuations may be
expected. In fact, strong fluctuations in the shear and normal
stress are seen when the suspension is driven at a fixed
shear rate near the onset of DST. We have focused here on
the apparent critical point for the transition from low- to

FIG. 9. Top: viscosity, η, and the average fraction of particles in the largest
frictional cluster, hpi; bottom: microscopic (fluctuationally defined) stress
susceptibility, χ̂σ , and the quantity s (defined and described in the text)
which diverges at contact percolation, for f ¼ 0:55.

FIG. 10. The quantity s (see text) which indicates the mean size of a fric-
tional cluster below its divergence, as a function of the mean frictional coor-
dination number, hZi. Note that values for only small values of the
coordination number, hZi , 1, are plotted.
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high-viscosity states on the volume fraction-shear stress
(f-~σ) plane and have shown that the region around this point
(fc, _γc) has large susceptibility to temporal stress fluctua-
tions. The stress fluctuations from simulation have qualitative
similarity with experimental results for spherical particles
[24,25] and recent work by Hermes et al. [26] with corn
starch dispersions, which specifically targeted the DST
regime. We caution that numerous aspects in the experiments
may be absent or differ in the simulations, making a direct
comparison difficult.

From our work, the clear role of a rapid exchange of the
dominant stress mechanism from hydrodynamic to frictional
has been elucidated, and the probability distributions of the
stress response of the suspension have been probed. The
stress is found to be distributed around well-defined peaks
away from the DST transition, but it exhibits a shoulder
indicative of excursions to large stress upon an approach to
transition, and a broad flat distribution near (fc, _γc).

As our system size is quite small, with N ¼ 500 particles
in the periodically replicated simulational unit cell, our
ability to explore spatial correlations of the fluctuations of
stress is limited. It appears that, for this small value of N,
stress fluctuations are correlated across the flow domain,
leading to the dominant fluctuations being temporal. Larger
systems can be studied without extreme computational
expense if systematic analysis of the size dependence is
applied only at conditions very near the apparent critical
point for onset of DST, and this could provide valuable
insight into the form of the growth and potential divergence
of the simulationally determined stress susceptibility. The
strong stress fluctuations are conjectured to be due to an
extreme sensitivity to the addition or removal of individual
frictional contacts as the suspension flows, as this can cause
major changes in the size of a connected component in the
force network and thus strongly alter the total stress the sus-
pension is able to exert at a fixed shear rate. Our own exami-
nations of the network properties of the shear-thickening
suspension are motivated by the insights gained from this
approach by Boromand et al. [9]. We find similar behaviors
to that study, but some differences have been noted; in partic-
ular, we find that percolation of frictional contacts can occur
for both strong CST and DST, and thus the onset of contact
percolation does not imply the onset of DST. Further work
examining the detailed relationship of the force network to
the stress response in suspensions is warranted.
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APPENDIX: WC MODEL—RHEOLOGICAL FITTING
AND BIFURCATION ANALYSIS

First, we describe the fitting of the simulation data to the
WC model [11] using the procedure of Singh et al. [13]. The
rate-independent relative viscosities (normalized by the pure
fluid viscosity) at low- and high-stress conditions are expressed
as ηL(f) ¼ α0(f0

J � f)
�2

and ηH(f, μ) ¼ αμ(fμ
J � f)�2,

where α0 and αμ are constant coefficients, while f0
J and fμ

J
denote the frictionless and frictional jamming volume fractions,
respectively. Figure 11(a) shows the fit of the simulation
data at low- and high-stress conditions with α0 ¼ 0:2205,
αμ ¼ 0:4850, and f0

J ¼ 0:647, fμ
J ¼ 0:5815. The interparticle

friction coefficient is μ ¼ 1, and simulation is by the “critical
load model” [7].

Next, the stress dependent jamming packing fraction
and the coefficients are expressed as fm(~σ) ¼ fμ

J f (~σ)þ f0
J

[1� f (~σ)] and αm(~σ) ¼ αμf (~σ)þ α0(1� f (~σ)), where f (~σ)
denotes the fraction of frictional contacts. Figure 11(b) shows
f (~σ) to be largely independent of volume fraction, and the
simulation data are fitted to the sigmoidal function,
f (~σ) ¼ exp �~σ*=~σ

� �
, with ~σ* ¼ 1:87.

Finally, the dependence of η on ~σ and f is expressed as
η(f, ~σ) ¼ αm(~σ)[fm(~σ)� f]�2, which is shown in an
expanded form as Eq. (1) in the main text, combining the
expressions for fm, αm, and f (~σ). Figure 11(c) shows η as a
function of shear stress ~σ for different f.

Next, we briefly describe the analysis for determining the
fixed points @ _γ=@σ ¼ 0. The expression for _γ ¼ σ=η(σ, f)
using (1) may be written as

_γ ¼ σ[ f (σ)(fμ
J � f0

J )þ (f0
J � f)]

2

f (σ)(αμ � α0)þ α0
: (A1)

Defining

h(σ) ¼ [ f (σ)(fμ
J � f0

J )þ (f0
J � f)]

2
, (A2)

g(σ) ¼ f (σ)(αμ � α0)þ α0, (A3)

we can write

FIG. 11. (a) Rate-independent relative viscosity for low (~σ ¼ 0:2) and high (~σ ¼ 35) stresses, lines correspond to the fit. (b) The fit for the fraction of frictional
contacts, f (~σ), as a function of shear stress ~σ. (c) The fit for viscosity as a function of shear stress ~σ. Note that the friction coefficient is μ ¼ 1.
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d _γ

dσ
¼ d

dσ

σh

g

� �
¼ (σh)0g� σhg0

g2
¼ hgþ σh0g� σhg0

g2
: (A4)

Evaluating h0 and g0 gives

h0 ¼ 2(fμ
J � f0

J )[ f (σ)(f
μ
J � f0

J )þ (f0
J � f)]

df

dσ
, (A5)

g0 ¼ (αμ � α0)
df

dσ
: (A6)

Since the denominator g2 of (A4) is greater than zero for all σ, d _γ=dσ ¼ 0 if the numerator is zero. The numerator reduces to a
differential equation in df =dσ,

σ
df

dσ
� [ f (σ)(fμ

J � f0
J )þ (f0

J � f)][ f (σ)(αμ � α0)þ α0]

(αμ � α0)[ f (σ)(fμ
J � f0

J )þ (f0
J � f)]� 2(fμ

J � f0
J )[ f (σ)(α

μ � α0)þ α0]
¼ 0: (A7)

For f , fc, no value of σ satisfies the equation. For
fμ
J . f . fc, there are two σ values that satisfy the equation,

and for f0
J . f . fμ

J , only one σ value satisfies the equation.
The onset of DST is associated with the single fixed point

at f ¼ fc, which represents the coalescence of the two fixed
points found for fμ

J . f . fc. The procedure for determin-
ing this single fixed point is to increment f until it reaches a
value f., identified by the fact it yields two σ values satisfy-
ing (A7). Let the last value of f that does not yield such a σ
value be called f,; bisection between f, and f. can be
used to determine fc and σc to arbitrary accuracy.
Substituting the fc and σc values to (A1) gives _γc. Plotting
χσ ¼ @σ=@ _γ as a function of ( _γ � _γc) reveals that near _γc,
χσ � ( _γ � _γc)

�b as _γc is approached from either _γ , _γc or
_γ . _γc. The value of b for either direction can be determined
separately by first taking the logarithm of both ( _γ � _γc) and
χσ near the singular point, and then by calculating the slope
of the line of best fit.
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