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ABSTRACT The spatial structure and physical properties of the cytosol are not well under-
stood. Measurements of the material state of the cytosol are challenging due to its spatial
and temporal heterogeneity. Recent development of genetically encoded multimeric
nanoparticles (GEMs) has opened up study of the cytosol at the length scales of multiprotein
complexes (20-60 nm). We developed an image analysis pipeline for 3D imaging of GEMs in
the context of large, multinucleate fungi where there is evidence of functional compartmen-
talization of the cytosol for both the nuclear division cycle and branching. We applied a neural
network to track particles in 3D and then created quantitative visualizations of spatially vary-
ing diffusivity. Using this pipeline to analyze spatial diffusivity patterns, we found that there
is substantial variability in the properties of the cytosol. We detected zones where GEMs
display especially low diffusivity at hyphal tips and near some nuclei, showing that the physi-
cal state of the cytosol varies spatially within a single cell. Additionally, we observed signifi-
cant cell-to-cell variability in the average diffusivity of GEMs. Thus, the physical properties of
the cytosol vary substantially in time and space and can be a source of heterogeneity within
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individual cells and across populations.

INTRODUCTION

The nature of the cytosol has been speculated about since the first
glimpses of cells in primitive microscopes, yet the cytosolic environ-
ment experienced by macromolecules across different length scales
remains elusive today. In 1899, E.B. Wilson expanded on the possi-
ble explanations for the meshwork appearance of the cytosol and
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described it as an emulsion in which multiple liquids of different
chemical and physical properties coexist (Wilson, 1899). With elec-
tron microscopy, it became clear that the cytoskeleton, endomem-
brane systems, and protein translation machinery can generate a
crowded landscape in the cytosol. Furthermore, substantial mole-
cular crowding within the cytosol has been predicted due to the
high concentration of macromolecules. Measurements of colloid
osmotic pressure have been used to argue for a less crowded pic-
ture of the cytosol at the length scale of single proteins (<10 nm) due
to the potential for many macromolecules to exist in higher-order
complexes (Mitchison, 2019). It is not well understood to what de-
gree the motion of macromolecular complexes on the scale of
~10-100 nm is impacted by crowding, or how crowding may impact
the formation of biomolecular condensates within cells. Thus, the
structure of the cytosol across length scales and the effect that this
has on biochemistry are still a highly debated topic in cell biology.
Molecular crowding can alter the material properties of the
cytosol, which in turn influences the thermal, entropic fluctuations
of molecular species within, such as Brownian motion of small
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molecules. Crowding may therefore have a critical influence on cell
function, as molecular motion directly affects a broad range of phys-
iological processes (Bressloff and Newby, 2013). For example, the
diffusion of signaling molecules could be much slower within
crowded regions of the cytosol delaying the downstream response
in those regions. Conversely, some reactions may be potentiated by
crowding through entropic depletion attraction effects, which favor
molecular interactions (Zhou et al., 2008) and molecular condensa-
tion (Delarue et al., 2018). Additionally, it has been shown that glu-
cose starvation can lead to a drastic reduction in mobility of mole-
cules in the cytosol, indicating that cells may be able to tune their
cytosolic material properties as a survival mechanism (Joyner et al.,
2016; Munder et al., 2016). These impacts of cytosolic crowding are
not limited to eukaryotes but have also been seen in bacterial cells
(Parry et al., 2014; Gray et al., 2019).

The effect of crowding on particle motion is particularly rele-
vant for large, multinucleate cells, where distinct functional territo-
ries emerge within the cytosol. In certain multinucleate fungi, in-
cluding Ashbya gossypii, nuclei that reside in a common cytosol
divide asynchronously, indicating that proteins that control the di-
vision cycle do not diffuse uniformly. Our previous work showed
that this asynchrony is in part due to the assembly of RNAs and
proteins important for the cell cycle into liquidlike condensates in
the vicinity of nuclei (Lee et al., 2013, 2015; Zhang et al., 2015;
Langdon et al., 2018). Multiple studies of liquid-liquid phase sepa-
ration (Boeynaems et al., 2018; Delarue et al., 2018; Langdon and
Gladfelter, 2018; Alberti et al., 2019) showed that phase separa-
tion can be enhanced by crowding, and we speculated that spatial
heterogeneity in crowding can influence where biomolecular con-
densates form.

The best-established methods for evaluating molecular crowd-
ing involve particle tracking of passive particles of known sizes that
are introduced into cells in a noninvasive manner. Based on the ob-
served position-time series tracks, local properties of the medium
such as crowding, confinement, viscosity, and elasticity can be esti-
mated. Applications of particle tracking to measure cytosolic prop-
erties in a living cell have been limited due to challenges in creating
ideal probes, rapid 3D imaging, and tracking. The recent develop-
ment of genetically encoded multimeric nanoparticles (GEMs) has
greatly facilitated the measurement of material properties of the
cytosol (Delarue et al., 2018). Two types of GEMs have been de-
scribed, each at a well-defined diameter of 20 and 40 nm and icosa-
hedral shape. Introduction of a single gene leads to self-assembly of
GEMs in any cell. They are an improvement over previous probes
such as the pNS system which lacked a stereotypical assembly stoi-
chiometry, size, and shape (Parry et al. 2014; Munder et al., 2016).
As the proteins that make up the structure of GEMs are from sepa-
rate kingdoms than Ashbya, it is unlikely that they will be subject to
specific chemical interactions within the Ashbya cytosol. Recently,
GEMs were used to show that changes in ribosome concentration
had a substantial impact on molecular crowding and altered diffusiv-
ity in the cytosol. The specific 20 and 40 nm size of GEMs was critical
for detecting the changes in porosity of the cytosol at the mesoscale
length-scale relevant to macromolecular complexes (Delarue et al.,
2018).

The goal of this work was to spatially resolve cytosolic properties
within cellular volumes, which require 3D particle tracking. There are
multiple challenges for 3D particle tracking in live cells using probes
based on biological fluorophores. Compared to synthetic nanopar-
ticles, GEMs have lower signal output that, when expressed in Ash-
bya and imaged rapidly in 3D, degrades over time due to photo-
bleaching, leading to low and temporally decaying signal-to-noise
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ratio (SNR) conditions. To tackle these challenges, we developed an
image processing pipeline that begins with a recently designed
neural network-based particle tracker (Newby et al., 2018), which is
highly automated and was shown to perform well in low SNR condi-
tions. Neural networks have recently made several breakthroughs in
microscopy image analysis, including cell tracking (Moen et al.,
2019). Expanding on the neural network-based particle tracking
software, we built an analysis pipeline that constructs a polygonal
mesh of the cell surface so that our measurements can be correlated
with cellular structures.

Here, we analyze mobility of 40-nm GEM particles within the
morphologically complex and large cells of the multinucleate fun-
gus Ashbya to study the spatial heterogeneity of the cytosol at this
length scale. We find substantial variability in the apparent crowding
of the cytosol both within a single cell and between different cells.
Furthermore, we find that biomolecular condensates are more likely
to form at hyphal tips and in the vicinity of nuclei, regions where we
also detected more pronounced apparent crowding. This work pro-
vides evidence that the fundamental structure of the cytosol may be
an underappreciated source of cell-to-cell variation in populations,
which has far-reaching implications for diverse cell processes. This
study also provides a technical platform for the spatial analysis of 3D
particle tracking data within cells.

RESULTS

Native and artificial condensates localize in the vicinity

of nuclei and at hyphal tips

How cells control the location of liquidlike compartments formed
through phase separation is not well understood. There could be
specific molecular determinants that nucleate condensates and/or
their positions could be driven by physiochemical parameters such
as crowding or pH. The RNA-binding protein Whi3 forms liquidlike
condensates in the vicinity of nuclei and hyphal tips in Ashbya cells
to localize transcripts for the cell cycle and cell polarity (Figure 1, A
and B) (Lee et al., 2013, 2015; Zhang et al., 2015; Langdon et al.,
2018). We wondered if the physical properties of the cytosol in
these areas generally promote phase separation, potentially through
molecular crowding. In this case, we would predict that phase sepa-
ration of other biomolecules would also occur in the same areas
where Whi3 condensates are formed.

To test this, we expressed an exogenous synthetic phase sepa-
rating system made up of multivalent protein interaction domains,
coexpressed from a single plasmid developed by Emmanual Levy’s
lab (Heidenreich et al., 2020). We were surprised to see that these
exogenous proteins also condensed in the regions around nuclei
and at hyphal tips (Figure 1C). These condensates span a range of
sizes with many much larger than Whi3 condensates; 41.3% of hy-
phal tips had an artificial condensate with center within 1 pm of the
tip apex (N> 100 tips). Hyphae tend to be multiple orders of mag-
nitude longer than these 1-pum tip regions, suggesting that they
are not located here from random chance. In the rest of the hy-
phae (regions >1 um from a tip), 72.5% of the artificial condensates
were located within 1 pm of the edge of a nucleus (N > 100 con-
densates), despite the fact that an estimated 39% of the cytosol
resides within 1 um of nuclei (see Materials and Methods). This
suggests that the cytosol around nuclei and at tips where Whi3
normally condenses is also able to promote the formation of artifi-
cially engineered condensates. Thus, there may be general fea-
tures in these areas that promote phase separation. These obser-
vations motivated us to examine the physical properties of the
cytosol near nuclei and at hyphal tips through 3D particle tracking
of GEMs.
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Native and exogenous condensates are nonrandomly localized. (A) Part of a large, multinucleate Ashbya
cell. Ashbya grows in branched filaments called hyphae, each containing many nuclei residing in a common cytosol. Cells
are made up of multiple hyphae and grow exclusively at regions called tips. Nuclei are labeled with HHF1-GFP.

(B) Condensates comprised of endogenously expressed RNA-binding protein Whi3 localize near nuclei and at hyphal
tips. (C) Exogenous synthetic phase-separating proteins are also largely located in the vicinity of nuclei and hyphal tips;
41.3% of hyphal tips had a condensate present within 1 pm of the tip apex, measured from the center of the
condensate (N > 100 tips). In regions >1 pm from a tip, 72.5% of condensates were within 1 um of a nucleus, measured
from the center of the condensate to the edge of the nearest nucleus (N > 100 condensates).

Development of a pipeline for cytosolic particle tracking
analysis

To test the hypothesis that there are spatial inhomogeneities in the
cytosol of Ashbya cells, we tracked 40-nm GEMs throughout the 3D
space of the cytosol to measure its physical properties. As the
tracked motion of nanoparticles can report local crowding, we used
the measured diffusivity as a readout for the state of the cytosol at
the 40-nm length scale. We attempted to film smaller 20-nm GEMs,
but these were too dim when expressed in these cells, making it
impossible to film fast enough in 3D to accurately track. Therefore
we restricted our focus to the brighter 40-nm GEMs, which we will
refer to simply as GEMs throughout the manuscript.

There are multiple challenges for particle tracking in live cells,
including acquisition, storage, and automated analysis of 3D video
sets. The 3D videos can be exceptionally large datasets; a single
video can range from ~10 to 100 GB and potentially much larger
given the current rapid development in the 3D microscopy space.
We implemented our pipeline within Google Cloud to take advan-
tage of their data storage facilities and its full array of high-perfor-
mance computing services that are designed for high-throughput
data processing. The ultimate purpose of the analysis pipeline is
extraction of spatiotemporal information of diffusivity in the context
of cell architecture (see Figure 2, C and D).

The traditional approach of measuring diffusivity from tracked
particles is through mean square displacement (MSD) analysis of
particle tracks. The applicability of this approach assumes that
particles experience spatially uniform fluid properties and uncon-
fined motion. The small size of GEMs and their resulting high mo-
bility over the timescales of 3D imaging mean that particles are
routinely observed to move between regions having large differ-
ences in diffusivity (see Figure 2C). The standard MSD approach
would effectively average the spatial variability experienced by
the particle throughout the observed track, as a single diffusivity
value is calculated from a full track. Additionally, GEMs within the
Ashbya cytosol are confined within the tubelike interior of hy-
phae, which have diameters generally less than 5 um (see Figure
2A). MSD estimates use particle displacements over timescales
large enough to be significantly affected by confinement due to
the cell boundary. This is particularly relevant for 3D particle track-
ing, as the z-stack acquisition rate is lower than the 2D video
frame rate.
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These considerations, combined with the main purpose of our
pipeline to map and quantify spatial heterogeneity with respect to
specific intracellular structures, call for a different approach to mea-
suring spatially varying diffusivity within the cytosol of Ashbya cells.
Variable diffusion is defined here as being governed by Fick's law of
diffusion which states that the particle concentration flux points in
the opposite direction of the concentration gradient, with the diffu-
sion coefficient dependent on location (for more details, see the
Materials and Methods section on spatially varying diffusion). In-
stead of analyzing the entire trajectory of a particle, which could
contain information about multiple spatial regions with differing
amounts of crowding, we use the Maximum Likelihood estimator for
diffusivity to analyze frame-to-frame particle displacements to get a
local estimate of diffusivity. As a result, the diffusivity estimates can
be spatially resolved and are more resistant to the effects of confine-
ment (see the Materials and Methods section Boundary effects on
particle tracking). As with any parameter estimation from data, fewer
observations imply more uncertainty in the estimate. Therefore, it is
then necessary to combine our individual diffusivity estimates into
groups to get a reasonably accurate estimate of diffusivity within a
given spatial region. To accomplish this, we perform spatiotemporal
averaging using a kernel-regression estimator (KRE), which can be
thought of as grouping particle displacements that are close to one
another spatially and temporally. Length scale and timescale param-
eters control how far apart in space and time to group observations
(see Materials and Methods section on KRE). Tuning of these param-
eters was done by testing our pipeline on synthetic videos (de-
scribed below). Parameters were set to be small enough to get suf-
ficient spatial and temporal resolution and large enough that a
sufficient number of observations are grouped together for an ac-
curate estimate.

Particle tracking with machine learning

To spatially analyze diffusivity, we implemented a new processing
pipeline built on a recently developed automatic particle tracking
algorithm (Newby et al., 2018). The neural network tracker (NNT)
employs machine learning methods to accurately localize particle
centers from 3D image data. After localization, particle positions are
‘linked" into tracks (see Figure 2B). Linking algorithms generally have
at least one parameter that fixes the maximum allowable step size
between localizations. Because particle mobility varied strongly in
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Particle tracking and cellular geometry analysis pipeline. (A) A representative max projection of GEMs
imaged within Ashbya. (B) Green spheres show location of GEMs from the region in A that were localized for this frame
and linked to at least one other time point. Any GEMs visible in A that are not shown in B are likely due to an inability
to link in time, rather than a missed localization. Multicolored lines show the tracks for the entirety of the video.

(C) Schematic of a heterogeneous cytosol, where local material properties, and resultant diffusivity of GEMs, change
throughout space as represented by the blue tessellation. Hypothetical GEMs tracks through time are shown as colored
lines as in B. Due to the small 40 nm size of GEMs, they have high mobility and individual particles can explore a
relatively large region of the cytosol over the course of 3D imaging. Due to this, we use only the frame-to-frame
displacements of GEMs to create a map of spatially varying diffusivity within the cytosol. (D) A diagram representing the
flow of the analysis pipeline, starting with particle tracking on image data (bottom panel, green spheres), followed by
surface segmentation (middle panel, white wireframe of the polygonal surface mesh), and computation of the medial
axis (red curve). A representative surface projection of diffusivity is shown for the final step (top panel, heat map).

(E) A diagram showing the general organization and steps of the particle tracking analysis pipeline.

space, some regions required small step sizes while others much
larger. To adaptively and automatically link a wide range of particle
step sizes, we employed a machine learning method based on the
Expectation-Maximization algorithm (Rabiner and Juang, 1986).
The localizations were first linked assuming a spatially constant
diffusivity. The linked tracks were then used to obtain a preliminary
estimate of spatially varying diffusivity using a 3D KRE estimator. We
used this preliminary estimate (replacing the spatially constant
diffusivity) to link a new set of tracks, which were used to obtain a
better estimate of the spatially varying diffusivity. This process was
repeated, with each iteration yielding progressively better results.
We found that after 12 iterations we achieved sufficient conver-
gence (see accuracy indicated in Figure 3). Additional iterations
made virtually no change to the estimates. These methods would
ordinarily be computationally expensive to perform on a full set of
localizations from a 3D video. By segmenting localizations by hy-
phae, we were able to link only those that shared the same cytosolic
space, as two particles can be close in terms of three dimensional
distance but be in different hyphae. The subdivided localizations
were also used to compute the cellular geometry for each hypha.

Estimating diffusivity relative to cell surfaces and cell
geometry

Even with high quality automated tracking software, the end result
is a collection of space-time series tracks without the context of sur-
rounding cellular structures. Without this information, we cannot say
how a particular particle’s motion relates to the cell structure, or
whether it should be combined with or compared with nearby ob-
servations. To address this challenge, we used the particle observa-
tions to reconstruct the cell surfaces (Figure 2D) of Ashbya, which
form highly branched mycelial structures (see Figure 1). Using the
open-source software library CGAL, we used the cell surfaces to
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compute a medial axis curve that traverses the midline along the
interior of the cell surface, which includes the graph structure of
branches (Figure 2D). After obtaining particle localizations, we used
the set of 3D points to segment individual hyphae within a given
video. The grouped points were then used to construct polygonal
meshes of the cell surfaces. The resulting surfaces were used to
compute an approximate medial axis curve, also using the CGAL li-
brary (Figure 2D, middle). Additional details are included in Materials
and Methods.

As discussed previously, we used KRE and exponential time av-
eraging to compute spatiotemporal estimates of diffusivity (see the
Materials and Methods section KRE with exponential time averag-
ing for precise definitions). We use two geometric projections for
these estimates: a medial axis projection and a surface projection. In
each, observations of particle movement are grouped together
based on their location. For example, in the medial axis projection,
we group observations by their closest point on the medial axis. The
medial axis projection assumes that the cytosol is approximately ra-
dially symmetric around a given medial axis point and that its prop-
erties change only along the length of each hypha. The surface pro-
jection assumes that cytosolic properties might vary depending on
the radial direction but not on the radial distance from the medial
axis. The medial axis curves have fewer points than the surfaces,
which means the medial axis projection has reduced sampling error
compared with the surface projection because, on average, more
observations are grouped together compared with the surface
projections.

The surface projections allow us to visualize a heat map of the
diffusivity overlaid on the surfaces using the 3D-capable interactive
data visualization software DataTank (see Figure 2D, top; Figure 4A,;
and Supplemental Videos S1 and S2) (Adalsteinsson, 2002-2020).
While the surface meshes contain more 3D information than the
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FIGURE 3: Synthetic testing shows accuracy across a range of diffusivities and imaging speeds. (A) Diagram illustrating
the cylindrical domain used to generate synthetic testing videos. The cylinder represents a small segment of a hypha
where there is a sharp jump in diffusivity. The diameter was chosen to match the experimental z-stack distance. The
purpose of the test is to quantitatively measure the ability of the pipeline to simultaneously measure low and high

diffusivity adjacent within a hypha. The plots in B-D contain testing results from medial axis diffusivity projections

because all quantification in Figure 4, C-F and Figure 5, B, C, E, and F was performed on the medial axis curves. (B) Top:
results of analysis of simulations in which hyphae containing GEM-like particles were created to closely mimic our real
data. Half the field was comprised of low diffusivity (0.01 pm? s™7) particles and half high diffusivity (0.1 pm? s7),
shown as a dotted black line. The z-stack acquisition rate was set at 0.85 s per stack. The videos were then passed
through the full analysis pipeline. A curve representing the average diffusivity moving along the medial axis is plotted
for each simulation. Each curve shows results from simulations with a different density of particles. Bottom: the
diffusivity estimated from passing ground truth tracks through the analysis pipeline (bypassing the particle tracking
stage). This removes error due to particle tracking and shows purely error due to sample size and spatial averaging.
(C) Diffusivity estimates obtained by processing synthetic videos of varying imaging speeds through the full pipeline.
For reference, the GEMs videos were imaged 0.92 s per stack on average, and GEMs particle density varied around

0.05-0.15 pm=3. (D) Diffusivity estimates from particle tracks obtained by processing synthetic videos of a lower

diffusivity range through the full pipeline. The z-stack acquisition rate was set at 0.85 s per stack.
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value at each medial axis point comes from a cytosolic volume of 2 pm? on average. Each diffusivity value is weighted by
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other, about half were significantly different (see Table 1). The number of medial axis diffusivity values per cell ranges
from 374 to 1702. (E) Box plots show the average of each hypha’s medial axis signal, indicating hypha-to-hypha
variability of average diffusivity within each cell. Each cell had seven hyphae on average. Outliers are shown as
diamonds. Any cell with less than five hyphae has all data points shown as gray circles. (F) Box plots show CV for each
hypha's medial axis signal. Each CV provides a measure of the variability of diffusivity along the medial axis in a given

hypha.

medial axial projections, they also have more uncertainty due to
lower sample size. The particle tracking observations are more
spread out on the surface than they are on the medial axis. We
found both methods to be useful for characterizing the variability in
diffusivity over the full dataset. Due to the positioning of nuclei be-
ing fairly evenly spaced along the medial axis (see Figure 1A), and
the tip regions being easily defined as end portions of the medial
axis, the medial axis projection was chosen for quantifying these
regions. Surface projections were used as a visualization tool, as well
as a method of putting the medial axis projections into context.

Testing inference accuracy using synthetic videos

To test the accuracy of the pipeline, we generated synthetic videos
of simulated particles moving within a cylindrical hypha (see Figure
3A). The 3D synthetic videos were generated using a custom Python
script that simulated particle trajectories and computed correspond-
ing images that were carefully constructed to closely mimic the
video conditions we observed, including noise, 3D particle PSFs,
stochastic motion between z-stack slices, and random background
intensity within the hypha (additional details are in the Materials and
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Methods section on pipeline testing). All particles moved by simu-
lated Brownian motion with spatially variable diffusivity consistent
with Fickian diffusion. Particle diffusion in each half of the hypha was
set to a different value (up to 0.2 pm?/s).

For the initial test in Figure 3B, a set of 10 videos with a range of
particle densities was generated to test the accuracy of the medial
axis diffusivity estimates. The synthetic videos were fully processed
through the particle tracker and the subsequent pipeline (see Sup-
plemental Video S3). Medial axis projections of the test data are
shown in Figure 3B, top. Error in the absolute measurement of dif-
fusivity was partially due to missing observations and linking errors
at the initial particle tracking stage. For comparison, we also used
ground-truth particle tracks (simulating perfect tracking by bypass-
ing the initial particle tracking step) to isolate the subsequent pipe-
line error from particle tracking error (see Figure 3B, bottom). Error
in the diffusivity estimates using the ground truth tracks was due to
sample size and spatial averaging. This can be seen in the lowest
density conditions (brown curves) where even the ground-truth
tracks result in increased variability because of the low number of
observations.
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Additional synthetic video test sets were generated to assess
performance over a range of imaging speeds and diffusivities (see
Figure 3, C and D) with similar results. Faster imaging speed im-
proved the accuracy of high diffusivity, while accuracy at low diffusiv-
ity was slightly reduced for the fastest imaging speed (0.3 s per
stack) due to simulated localization error. To ensure that we can si-
multaneously measure very small differences and very large differ-
ences, automatically, with the same linker, we varied the range of
diffusivities in an additional test set. In Figure 3D, we show a 10x
reduction of diffusivities, compared with Figure 3C. Overall, we
were able to accurately estimate diffusivities between 0.001 and
0.2 pm?/s. Lower diffusivities may be possible but were not tested or
observed in our experiments. We underestimate high diffusivity val-
ues due to time lost imaging through z, but this is a trade-off to en-
able 3D tracking. We expect the accuracy to improve and better
estimates of high diffusivity to emerge in the future as faster 3D im-
aging techniques are developed.

The measured diffusivities were able to capture the relative
change in diffusivity within the synthetic hyphae with sufficient spa-
tial resolution to distinguish each region, which was the primary goal
of the pipeline. Importantly, the measurements maintained consis-
tent performance over a wide range of particle densities at the SNR
conditions observed in real videos. In summary, these simulations
gave us confidence that the pipeline is able to track 3D particles of
the intensity and density seen in the data we collected from live cells.

Diffusivity varies within and between cells

We next analyzed Ashbya cells expressing 40-nm GEMs (Delarue
et al., 2018) using the described pipeline. Figure 4 shows spatially
and temporally averaged diffusivity estimates through the first 50
frames, around 40 s into imaging, as diffusivity estimates have con-
verged by this time and photobleaching is still negligible. We
found that average GEM diffusivity was 0.02 + 0.02 (SD) um?/s
(Figure 4C), slower than previously reported for the same particles
in the budding yeast Saccharomyces cerevisiae (Delarue et al.,
2018). Our diffusivity is underestimated due to the limitations of 3D
imaging rate, but direct comparisons between the species in iden-
tical imaging conditions also show that diffusivity in Ashbya is ~2-
fold slower than S. cerevisiae (G.P. Brittingham, personal communi-
cation). Notably, we found substantial spatial variability in diffusivity,
both within individual hyphae and between cells, which are made
up of many individual hyphae connected by a common cytosol
(Figure 4, A-F).

In Figure 4A, we show three representative montages of cell sur-
face projections of GEMs diffusivity, demonstrating that cells show
varying degrees of heterogeneity within hyphae. The diffusivity
within single hyphae (e.g., Figure 4B showing a representative me-
dial axis projection) was observed to range roughly over 0.01-
0.1 pm?%s overall. Given the testing we performed on the pipeline,
our measurements likely underestimate the total range of diffusivi-
ties somewhat. Nevertheless, it is the relative variability that is of
primary interest. In terms of spatial resolution, we were able to de-
tect significant changes in diffusivity over distances as small as 1 pm.
The resolution is limited by the need to spatially average the diffu-
sivity. Decreasing the length scale of averaging results in noisier es-
timates because fewer observations are grouped together.

In Figure 4C, we show a histogram of measured medial axis dif-
fusivities, weighted by volume, of the combined dataset. To get a
picture of the cell-to-cell variability, the global histogram can be
compared with violin plots in Figure 4D, which show diffusivity dis-
tributions grouped by cell. As each cell contains many hyphae that
each have multitudes of nuclei and corresponding microenviron-
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ments within them, aggregating in this manner could cause us to
miss local differences. Therefore, to further quantify the cell-to-cell,
intracell, and intrahyphae variability, we computed the average dif-
fusivity per hypha, and the coefficient of variation (CV) of each me-
dial axis signal, defined as the SD divided by the mean (Figure 4, E
and F), respectively. Hyphal diffusivity averages varied considerably
both within the same cell and between cells. The distributions of
CVs show that some cells (e.g., cell 5) exhibited much more intrahy-
phal heterogeneity of diffusivity than others (e.g., cell 1). These
analyses indicate that there is substantial spatial variation in crowd-
ing as measured by GEM diffusivity both within a single cytosol and
between individual cells.

Diffusivity is correlated with nuclear position and cell cycle

With the observation of spatially heterogeneous diffusivity, we next
asked how the variability is organized relative to cellular structures
such as nuclei and hyphal tips (see Figure 5, A and D). Videos of cells
with both GEMs and a fluorescently tagged component of the spin-
dle pole body (SPB), which is embedded in the nuclear envelope,
were collected to localize nuclei in different stages of the cell division
cycle in relation to diffusivity estimates. To correlate our diffusivity
estimates with the position of nuclei, we projected the SPB locations
to their nearest medial axis point. As nuclei in Ashbya move relatively
slowly (Alberti-Segui et al., 2001), the nuclei-localized diffusivity val-
ues are representative of the local environment around nuclei and
unlikely to be impacted by the motion of the neighboring nucleus.

Initially, we noticed that some of the low diffusivity regions in the
surface projections appeared to be in the vicinity of nuclei. To assess
if there was indeed a systematic association between slower than
average diffusing GEMs and nuclei, we compared the distribution
of GEMs' diffusivities at the medial axis point closest to each SPB to
the medial axis values from the spaces in between nuclei. Any de-
viation of the former distribution, if statistically significant, would
suggest heterogeneity of the physical properties of cytosol around
nuclei. Surprisingly, as Figure 5B shows, both distributions are nearly
identical (up to sampling error); however, this is comparing nuclear
regions to the whole distribution of diffusivity values rather than
comparing regions within a single cell which, given cell-to-cell vari-
ability, could be masking local differences. Therefore, for each nu-
clei, we computed the ratio of (diffusivity at the medial axis point
closest to nucleus)/(the average diffusivity between nuclei in that
hypha), a more local comparison of relative crowding differences
(Figure 5C). The distribution of these ratios was compared with a
baseline distribution: the ratio of (diffusivity at each medial axis
point between nuclei)/(the average diffusivity between nuclei in that
hypha), of which 55.8% of ratios were <1. For all nuclei, 59.2% of
ratios were <1, a slight (and not statistically significant compared
with baseline, p < 0.16, see Table 2 and the Materials and Methods
section Statistics) tendency for diffusivity to be locally lower near
nuclei. Because the SPB is a reporter of the cell cycle stage of a
given nucleus, we also checked if there was any connection be-
tween the cell cycle stage and the local diffusivity that might be
masked when the data are aggregated for all cell cycle stages. For
nuclei in G1 and M, 53.7 and 50.0% of ratios were <1, respectively.
For nuclei in S/G2, 69.0% of ratios were <1, a moderate increase
above baseline (and statistically significant, p < 0.03, see Table 2
and Materials and Methods), indicating a cell cycle-dependent
change in local cytosolic crowding.

It is possible that boundary effects from the nuclear membrane
could account for some of the observed relative reduction of
diffusivity. However, based on our synthetic testing, we estimate
that boundary effects might account for a ~1-2% reduction. In our
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FIGURE 5: Diffusivity estimates relative to cell landmarks. (A) Single hypha diffusivity surface projection and
corresponding medial axis projection. Blue dots show medial axis locations of nuclei within the hypha. Nuclei were
imaged first in a single z-stack, followed immediately by 3D imaging of GEMs; 353 nuclei were localized within 59 total
hyphae from four cells by fluorescently tagging a component of the SPB. (B) Blue histogram shows diffusivity values near
nuclei, as determined by mapping each SPB to its nearest medial axis point and extracting the diffusivity value there. The
diffusivity value at each medial axis point comes from a cytosolic volume of 2 um? on average. Each diffusivity value is
weighted by the volume that it was estimated from. The gray histogram shows medial axis diffusivity values that are more
than 2 pm from any SPB. As nuclei are 2 ym in diameter on average, and we only have the SPB marked, these values give
diffusivity in the regions between nuclei. Note that we observed a slightly higher range in estimated diffusivities in this
strain compared with wild type. For the gray histogram, n = 4457 for medial axis diffusivity values more than 2 pm from
any SPB, coming from a combined 1194 pm of medial axis. For the blue histogram, n = 353 medial axis values from nuclei
locations. (C) For each of the 353 nuclei, we calculated the ratio of diffusivity near nuclei to average diffusivity of regions
between nuclei. (D) Single hypha diffusivity surface projection and corresponding medial axis projection, with the red bar

highlighting the tip region which we have defined to be the last 1 pm of the medial axis diffusivity curve. For these
measurements, 41 hyphal tips were analyzed across nine cells from the large dataset used for analysis in Figure 4.

(E) Diffusivity values from all hyphae compared with diffusivity values within the tip region. The gray histogram is from
Figure 4C. For the red histogram, n = 226 medial axis diffusivity values from 41 tip regions. (F) For each of the 41 hypha
with tips analyzed, we calculated the ratio of average diffusivity in the tip region to average hyphal diffusivity. All
histograms normalized to have area of 1 by dividing count/(number of observations * bin width) to get a probability

density.

simulations we tested a completely solid wall barrier (each hyphal
segment had solid barriers at both ends, see Figure 3A) and ob-
served a ~5% relative reduction at high diffusivity (recall that bound-
ary effects are more significant at higher diffusivity; see Materials
and Methods). Most cytosolic regions we measured had lower dif-
fusivity than was used in testing. Moreover, a nucleus would typically
form only a partial barrier. A nucleus with radius 1 pm within a hypha
of radius 2 pm would occupy (at most) 25% of the cross-sectional
area of the hypha. It is therefore unlikely that the presence of a nu-
clear boundary could fully explain the effect we measured for nuclei
in S/G2. Overall, these results suggest a moderate correlation be-
tween nuclei and lower diffusivity compared with the hypha aver-
age, specifically for nuclei in S/G2.

Hyphal tips are more crowded than other regions of the cell
In Ashbya, cell growth occurs exclusively at the hyphal tips, which
are known to be sites of enriched actin assembly and liquid-liquid
phase separation (see Figure 1). To quantitatively compare the dif-
fusivity at tips to the overall average, we defined the tip region to be
the last 1 ym of the medial axis curve (see Figure 5D). Overall, dif-
fusivities at hyphal tips were lower than those measured throughout
the full volume of cytosol (see Figure 5E). Looking within individual
hyphae, we observed that a majority of hyphal tips (~?0%) had lower
diffusivity relative to the average within their hypha (see Figure 5F).
Note that the observed difference was also statistically significant,
p < 107, see Table 2 and Materials and Methods. We suspect a
small fraction (~10%) of tips have higher diffusivity because they are
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not actively growing, and the organization of cytosol may depend
on the local growth rate. Note that the reduction we observed at
tips is substantially higher than could be accounted for by boundary
effects based on our simulations (for more details, see the Materials
and Methods section Boundary effects on particle tracing).

DISCUSSION
A major frontier in cell biology is to map the structure of the cytosol
to understand how cells may use and react to its different physical
states. Although differences in organization can have profound influ-
ences on a molecule’s ability to localize to distinct sites in a cell and
interact with particular partners or substrates, little is known about
how cells actively control the crowding of their cytosol to tune mole-
cular diffusion. Here we find significant variations in the diffusivity of
GEM particles within a continuous cytosol and between genetically
identical cells indicating that cytosolic organization can be highly
heterogeneous. This finding is important because it indicates that a
potentially underappreciated source of regulation and noise in bio-
logical systems can arise from the physical structure of the cytosol.
As we observed self-assembly of artificial condensates near nuclei
and at hyphal tips, our main goal was to correlate cytosolic heteroge-
neity with the positions of these relevant cellular structures. Com-
pared to their individual hyphal averages, approximately 90% of hy-
phal tips were found to have lower diffusivity. Tips are known to be
sites of actin dynamics, enrichment of ribosomes, and liquid-liquid
phase separation which all may contribute to local crowding. Taken
together, our results suggest a link between crowding and low
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diffusivity at hyphal tips and a more modest association between dif-
fusivity at nuclei that is most pronounced in the S/G2 phase of the
cell cycle. This period is associated with growth and could reflect
enhanced ribosome density locally as it is known that the amount of
local cytosol per nucleus increases through progression of the nu-
clear division cycle (Anderson et al., 2013).

Why do we not see a more substantial correlation between nu-
clear areas and low diffusivity zones? It is possible that in this area
phase separation is more driven by specific molecules that nucleate
condensates or chemical cues that are not detected here. Addition-
ally, there could be a small volume of crowding surrounding nuclei
that is a minor fraction of the total local volume of cytosol, making it
hard to distinguish by volume averaging estimates. It is also possi-
ble that changes in cytosolic properties near nuclei are too small to
be detected by our current analysis or are not accessible to the
GEMs due to small pore sizes.

This work shows substantial heterogeneity in the motion of
40 nm-GEMs in a single cell. What is the source of this variation in
motion? The initial characterization of GEMs supported that they
are not interacting substantially with native proteins, indicating that
they should display Brownian motion when the cytosol porosity is
larger than 40 nm (Delarue et al., 2018). We therefore infer that low
diffusivity zones are an indication of crowding rather than elastic
effects from GEMs interacting with subcellular structures.

How do low diffusivity zones arise and persist? We observed sig-
nificantly lower than average diffusivity within regions as small as
1 pm, and smaller regions may be beyond our ability to resolve with-
out further improvement in the particle tracking methods used here.
These regions were relatively stable and often persisted over the full
duration of the video (~1-2 min). There are several possibilities for
what might be causing low diffusivity regions, including crowding by
large macromolecules and liquidlike condensates. If untethered,
large macromolecules and condensates would diffuse and eventu-
ally spread out evenly throughout the cytosol, which would elimi-
nate any heterogeneities. However, for large enough macromole-
cules, mixing could take a sufficiently long time that crowded
regions could persist on the timescale of minutes or longer, consis-
tent with our findings. Moreover, it is possible that some low diffusiv-
ity areas are GEMs reporting from within condensates. The interior
of RNA liquid condensates has been measured to have substantially
higher viscosity than the bulk average we observed within the cyto-
sol (Zhang et al., 2015). Cytoskeletal networks would also be capa-
ble of restricting molecular mobility. However, it is unclear if such
polymeric structures within fungal cells have pore size sufficiently
small to affect diffusion of molecules smaller than 50 nm, as the actin
and microtubule networks are far less dense than in animal cells.

Looking forward with respect to our analysis pipeline, it could,
with small modifications, be applied to virtually any cell shape. Seg-
menting filamentous fungal cells proved challenging to automate,
so time was lost manually doing this. For traditional cells, the man-
ual segmentation step in the pipeline could be replaced with some-
thing automated, which would speed up the process. The rest of the
pipeline, including particle tracking, averaging, and surface projec-
tions, is not shape dependent. Medial axis projections may be rele-
vant for cells of narrower shape; however, the surface projections are
likely to be more informative for nonfilamentous cells.

Substantial improvements in particle tracking are on the horizon,
such as improved tracking methods, diffusivity estimation, and mi-
croscope and camera hardware. A recent study claims to achieve
accurate diffusivity estimates and Hurst exponents from short tracks
using neural network-based regression (Granik et al., 2019), which
could allow for less KRE averaging and finer spatial resolution with
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the same quantity of tracking data. Using light sheet microscopy
would reduce photobleaching and allow for longer videos. Cur-
rently, imaging speed for 3D microscopy with standard piezoelectric
stepping is slower than the frame rate of a typical camera, and many
groups are working to eliminate this bottleneck (Abrahamsson et al.,
2013; Voleti et al., 2019). Higher acquisition speeds will generally
further improve the quality of all tracking inferences, will enable
tracking of smaller rapidly diffusing probes, and will allow for acqui-
sition of thicker volumes. These improvements, combined with the
engineering of different sized probes with different chemical fea-
tures, will bring substantial insights into how cells control and use
cytosolic organization.

MATERIALS AND METHODS

Plasmid and strain construction

Plasmid expressing exogenous phase-separating peptides were
gifted from the Emmanual Levy lab, modified to have a selectable
marker for Ashbya expression and transformed under standard
conditions to generate strain AG893 (Wendland et al., 2000). For
nuclear visualization in Figure 1A, strain AG275 was used. Whi3-
tomato strains (AG834) were generated by transforming the plas-
mid AGB 050 into the wild-type Ashbya strain (AG416). For pPfV-
Sapphire GEMs::GEN strains, we transformed the plasmid AGB
910 (pPfV-Sapphire GEMs under control of the ScHIS3 promoter)
into Ashbya wild type (AG416) and cells expressing Tub4-mCherry
(AG270.1) via electroporation and selection on Ashbya full media
(AFM)+G418 plates. This generated strains AG837(WT) and
AG908(Tub4).

Cell culture and microscope setup

Ashbya cells AG837(WT) and AG908(Tub4) expressing the 40-nm
GEM plasmid were grown under selection of G418 (150 pg/ml) in
10 ml AFM in a 125-ml baffled flask shaking at 30°C for 16 h.
Cultures were transferred to 15-ml conical tubes (VWR) and spun at
300 rpm for 2 min. Cells were then washed with 2x low fluorescence
media, spun again, and placed on a gel-pad embedded in a de-
pression slide comprised of 2x low fluorescence media and 1% aga-
rose. Slides were sealed with valap and imaged on a spinning disk
confocal microscope (Nikon Ti-Eclipse with a Yokogawa CSU-X
spinning disk module and PI P-736.ZR2S triggered piezo stage) us-
ing a 100x 1.49 NA oil immersion objective and sCMOS 95% QE
camera (Photometrics prime 95B). The 3D time lapses of GEMs
were acquired using triggered 488-nm lasers at 100% power for 1-2
min with a z-stack volume of 3.2 pm (0.2 pm per slice) and 40 ms
exposure per image. The average time to image through a volume
was 0.92 s, with 200 ms on average spent resetting the piezo. For
cells expressing Tub4-mCherry, nuclei were imaged prior to GEMs
with a single, equivalent z-stack using a 561-nm laser at 40% power
with 200 ms exposure. Cells expressing exogenous phase-separat-
ing peptides were grown and prepared for imaging under the same
selection and conditions as cells expressing GEMs. These slides
were then imaged using a 60x 1.49 NA oil immersion objective over
a z-stack volume of 3.2 um (0.2 um per slice) using a 561-nm laser at
100% power with 400 ms exposure. Cells with Whi3-tomato tag
were also grown and prepared in the same way, and imaged over a
z-stack volume of 3.2 pm using a 561-nm laser at 80% power with a
200 ms exposure.

Analysis of exogenous phase-separating condensates

The locations of the exogenous condensates relative to hyphal tips
and nuclei were measured manually in ImageJ from max projec-
tions. Condensates were counted as being at a hyphal tip if the
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Cell 1 2 3 4
1

2 0.00154

3 0.00135 1.63E-07

4 1.11E-04  5.06E-09 0.189

5 0.00310 1.20E-07 0.149 0.118
6 4.20E-06  4.39E-15  0.109 0.206
7 1.20E-04 4.12E-08 0.200 0.383
8 1.28E-04  2.22E-09 0.179 0.466
9 0.00477 2.70E-08  0.239 0.115
N (resampled 75 137 80 54

points from all
hyphae in cell):

p-values from
v bootstrapped KS tests

0.0278
0.0453 0.197
0.132 0.349 0.322
0.308 0.0629 0.0741 0.116
93 124 45 50 58

Statistics from Figure 4D. Matrix of p values from two-sample KS tests, with blue highlighting p < 0.05. As each GEM displacement substantially contributes to the
surrounding 3 pm of medial axis due to the spatial averaging, the distributions of all medial axis points were resampled (with replacement) with N equal to the total
length of cell’s medial axis/3 um to ensure independent observations. Each cell’s resampled distribution was then compared with all other cells, and this process was

repeated 1000 times to get an average p value.

TABLE 1: Statistics from Figure 4D.

center of the condensate was within 1 pm of the tip apex. If the
condensate was so large that it obstructed the view of the tip apex,
it was scored as being at the tip. All visible tips (138) within four cells
were scored. Nuclei could be seen as holes in the cytosolic back-
ground, and condensates were counted as being near a nuclei if
their center was within 1 um of the edge of the nearest nuclei. Forty-
three hyphae across four cells were analyzed, chosen based on visi-
bility of nuclear holes; 102 droplets within these hyphae were
scored. The cytosolic area within 1 um of nuclei can be estimated as
a 1-pm thick shell surrounding a circle of radius 1 pm. Assuming
nuclei are spaced 4.3 pm apart (Anderson et al., 2013) within a rect-
angular hypha of width 4 um, 39% of the cytosolic area is within
these shells.

Statistics

Due to the KRE spatial averaging (see the Materials and Methods
section KRE with exponential time averaging) used to generate the
medial axis diffusivity estimates, the diffusivity value at each medial
axis point is not necessarily independent from its immediate neigh-
bors. Based on our synthetic testing (see the Materials and Methods
section Pipeline testing with stochastic particle simulations and syn-
thetic videos), the KRE averaging smooths the diffusivity estimates
over a ~3-pm section of the medial axis. In other words, diffusivity
estimates spaced farther than 3 pm apart were approximately un-
correlated (from the KRE smoothing). For statistically comparing the
distributions in Figure 4D, we therefore applied bootstrapping (ran-
dom resampling with replacement) to each distribution with the
number of samples, N, set to the total length of all medial axis seg-
ments in that cell divided by 3 pm. We performed pairwise compari-
sons over the collection of bootstrapped sample sets with a two-
sample Kolmogorov-Smirnov (KS) test, resulting in a p value for
each pairwise comparison. We repeated this procedure 1000 times,
each time using independent bootstrap samples, to get a set of
averaged p value for each pair of datasets, as shown in Table 1.

For Figure 5C, for all nuclei combined (as well as split up by cell
cycle stage), we sought to compare the distribution of ratios: (D at
each SPB)/(average D in regions >2 ym from any SPB) with the dis-
tribution of ratios: (D at each medial axis point >2 um from any SPB)/
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(average D in regions >2 pm from any SPB). As nuclei tend to be
spaced 5 pm apart, we assumed that each data point in the first ratio
was independent. We applied the reasoning described above to
the second ratio and resampled it (with replacement) with N as the
total number of 3-um medial axis segments in regions > 2um from
any SPB. A two-sample KS test was then applied to these two distri-
butions, and this was then repeated 1000 times to get an average
p value, shown in Table 2. This was done for all of the nuclei com-
bined and then for nuclei subdivided by cell cycle stage.

For Figure 5F, we compared the distribution of ratios: (average D
at each tip)/(average D in hypha) with the distribution of ratios: (D at
each medial axis point)/(average D in hypha). The distribution of the
first ratio was resampled (with replacement) with N equal to the
number of tips and the second with N equal to the number of 3-um
medial axis segments in all of the analyzed hyphae. A two-sample
KS was again applied and this procedure was repeated 1000 times
to get an average p value.

Tracking analysis pipeline

The GEMs video dataset is comprised of two subsets: WT+GEMs
(AG837) and tub4-mCherry+GEMs (AG?08). The main purpose of
the analysis pipeline is to track GEMs and use the tracks to infer
properties of the cytosol, namely, spatiotemporally varying GEMs
concentration and diffusivity. The analysis pipeline is comprised of
custom software (written in Python and C++), combined with a num-
ber of open source software libraries. In Figure 2E, we show the
basic steps in the pipeline.

The first step performs particle tracking on all videos using the
NNT. The NNT uses map reduce-style methods (Apache Beam) to-
gether with cloud computing resources from Google Cloud (Data-
flow) to batch process our large datasets and large file sizes.

The second stage of the pipeline computes an accurate recon-
struction of the cell surface and a coordinate system representing the
cell geometry. Because of the branched morphology of the cells,
multiple branches often lay side by side, making it difficult to group
GEM localizations belonging to a specific hypha. To compute the
GEM concentration, we also needed to estimate the local volume of
the cell interior, which required some means of determining whether
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For Figure 5C

All cell cycle stages G1 S/G2 M
p Value 0.152 0.194 0.0298 0.701
N (localized SPBs in cell cycle stage) 353 162 142 30
N (resampled points >2 pm from any SPB) 398 398 398 398
For Figure 5F
p Value 5.52E-05
N (hyphal tips) 41
N (resampled points in hyphae) 716

Statistics from Figure 5, C and F. For statistics relevant to Figure 5C, p values are shown from two- sample KS tests comparing the distribution of ratios: (D at each
SPB)/(average D in regions >2 pm from any SPB) with the distribution of ratios: (D at each medial axis point >2 pm from any SPB)/(average D in regions >2 pym from
any SPB). Blue highlights p < 0.05. Medial axis points >2 pm from any SPB were resampled (with replacement) with N equal to the length of medial axis in those
regions/3 pm to ensure independent observations. p Values are the average of 1000 runs. For statistics relevant to Figure 5F, p values are from two-sample KS tests
comparing the distribution of ratios: (average D at each tip)/(average D in hypha) with the distribution of ratios: (D at each medial axis point)/(average D in hypha).
The first ratio was resampled with N equal to the number of tips and the second as described above to ensure independent observations. p Values shown are again

the average of 1000 runs.

TABLE 2: Statistics from Figure 5, C and F.

a given point was inside or outside the cell and which hypha it be-
longed to.

Once we fully constructed cell geometries for each hypha seg-
ment, we used it to group GEM localizations by hypha segment. We
then linked the grouped GEM localizations through time into paths
or tracks. This ensured that a given particle path would not jump
from one hypha segment to another.

Google Cloud image processing

We built our pipeline to use the Google Cloud Dataflow service,
which is an implementation of Apache Beam. The challenges for
batch processing large image datasets are 1) processing images
through hardware without exceeding the memory capacity and 2)
delivering large quantities of data in storage to distributed CPUs
over a network. Convolutional neural networks are particularly chal-
lenging because they require large amounts of memory, many times
the file size of the image being processed. Dataflow uses one or
more “workers” or virtual machines (an independent computational
unit comprised of a CPU, memory, and storage) to read image data
from Google Cloud Storage and process it through the neural net-
work pipeline. The main benefit of using Dataflow is that the service
automatically scales the number of workers based on the size of the
job. In our case, the size of the job was primarily determined by the
quantity of image data, which could range from ~10 GB to several
terabytes.

We designed our pipeline to break up large videos into manage-
able blocks of fixed size, predetermined to be sufficiently small that
they could be processed through the neural network without over-
loading the memory available to a single worker. The image blocks
were “padded” to include overlapping regions of the image to
eliminate artifacts at the edges of each block. The image blocks
were then distributed to the available workers, which sequentially
processed each block through the neural network. After neural net-
work processing, particle localizations were identified. At this stage,
the size of a localization dataset was orders of magnitude less than
the image data, which allowed all of the localizations from a single
video to be combined together for further processing without over-
loading the memory available to a single worker.

Uploading the videos to cloud storage was the slowest step. Up-
load of large datasets over a high-speed connection can take hours
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to days to complete. Google Cloud provides command-line utilities
to efficiently and quickly upload files using multiple threads and
compression. The uploads are resumable in case of disruption or
network dropouts. Downloading the results (in our case, the set of
particle localizations for each video) is fast and essentially instanta-
neous over most high-speed connections.

Processing time did not scale linearly with the amount of data.
The pipeline was designed with large datasets in mind and was rela-
tively less efficient for smaller datasets. On average, small datasets
took at least 1 h to process, while larger datasets (as large as 1-2
terabytes) took roughly 5-10 h to process.

The cost of running videos through the Dataflow pipeline was
surprisingly low, though it required an initial investment of time for
development of the pipeline. The cost of using Google Cloud com-
puting resources is based on the duration of time the resources are
used (e.g., CPUs per hour). Dataflow only uses the computational
resources for as long as they are needed and automatically shuts
down workers when finished. Our pipeline used as many as 1000
workers for large datasets. A rough estimate for our pipeline was
$0.15 (US) per gigabyte of image data (uncompressed).

Hypha geometry estimation

After the videos were tracked, we used the tracking data to gener-
ate a surface mesh and the medial axis curve (including branch
points) extending down the length of each hypha. All of the particle
localizations (particle positions), were grouped within each video.
The resulting point set was used to generate a polygonal surface
mesh of each hypha. Because it was exceedingly difficult to auto-
matically segment each hypha (particularly when two hyphae lay
alongside one another), hand segmentation and hand touch-ups of
the surfaces meshes were performed. Only the nonoverlapping por-
tions of hyphae were segmented, with all included hyphae contain-
ing or being near to a hyphal tip. These were the only steps in the
pipeline that required interactive processing; the remaining steps
were fully automated.

The surface meshes were initially constructed using tools from
the Computational Geometry Algorithms Library (CGAL). First, a 3D
Delaunay triangulation was computed for each hypha segment,
which resulted in a convex solid comprised of many connected tet-
rahedra. The cell surface was then computed using the CGAL 3D
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Alpha Shapes package. The resulting surface mesh was usually
quite rough and ill conditioned for the downstream steps of the
pipeline. The CGAL Triangulated Surface Mesh Simplification pack-
age was used to resample and smooth the surface mesh. In some
cases, topological imperfections could not be removed automati-
cally (a known problem in constructing surface meshes from random
point collections). We typically saw one to two small spots on ap-
proximately one out of every 10 hypha segments that required hand
corrections. We repaired these surfaces meshes using Meshmixer.

The medial axis for each hypha segment was computed using
the CGAL Triangulated Surface Mesh Skeletonization package (Ta-
gliasacchi et al., 2012). This package required a well-formatted sur-
face mesh, free of holes and topological imperfections. An approxi-
mation of the medial axis was obtained, a connected graph of
points, which extends along the center of each hypha, connected at
branch points. A secondary product of the mesh skeletonization
procedure was a mapping from a given medial axis point to surface
points. Each medial axis point was connected to zero or more sur-
face points such that each surface point is connected to exactly one
medial axis point.

This data structure was used to determine if a given point was
inside or outside a given hyphal segment. We also used this map-
ping to project a given point within a hyphal segment to the closest
medial axis point. This allowed us to generate estimates of diffusiv-
ity along each hypha medial axis. We also obtained estimates of
concentration and diffusivity on the cell surfaces by mapping a
given interior point to the nearest surface point.

Using polygonal surface mesh and medial axis to sort points
inside a given hypha segment

We used the surface mesh and the medial axis curve to efficiently
determine if a given point was inside or outside a hyphal segment.
While this is trivial to compute for closed convex regions, hypha
segments are almost never convex. They are, however, locally con-
vex. Let the medial axis be given by M = TXE, where T = {x,} is
the set of nodes and E = {ej} is the set of edges linking each node.
As described above, we also have a mapping from medial axis
points to local surrounding surface points. Let Si = {x, } be the set
of surface points connected to the medial axis point x.

Given an input point X to test, the method proceeds as follows.
First, the closest medial axis point x4 to the test point x is com-
puted. This step can be done quickly by brute force as there are a
relatively small number of medial axis points. Second, we search the
set of surface points connected to x4 for the closest local surface
point xs. These are given by

XA =argming,er | Xk —X|, Xs = argming, cs, |Xm—X|

Then, we say that the test point x is inside the hypha segment if

|x—xal<|xs—xa|+€

where € >0 is a small parameter that pads the estimate so that
points that are very close to the surface are not mistakenly excluded.
The parameter € can be thought of as the uncertainty in the esti-
mated surface position. In pixel coordinates, we used e = 1, which
works out to be approximately 100 nm.

KRE with exponential time averaging

Spatiotemporal estimates of diffusivity were computed using a
kernel-regression estimator (KRE). This can be thought of as a
“smooth histogram.” Let the set of particle positions at time t be
given by {XM}, for 0 <n<N;, where N; is the total number of
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particles at time t. A Gaussian centered at each observation with a
predetermined length scale parameter 6 (~6 pm for surface projec-
tions and ~12 pm for medial axis projections) are summed together.
For the first stage in computing estimates (prior to time averaging),
we define

N |Xnt—X|2
G(x,t) = _ont 7
U(X ) %exp[ 202 :|

N [ Xnt—x 12
5(x,t) = ZSM exp[—'ztfzx}

n=1

where S, ; is the contribution to the estimate from a single observa-
tion, centered at X, ;. For diffusivity, the standard maximum likeli-
hood estimator for a track in d=1,2,3 dimensions is given by

| AX . 12
2dAt,

nt —

where AX ¢ = Xt — Xpt-at, is a particle displacement (or increment)
and At is the time step between observations within the track, which
is an integer multiple of the average interstack time interval of the
video (the linker can skip over missing observations).

The next step is to apply exponential time averaging to the re-
sult. For a given function f:RIXR, - R, let fj= f(x,tj), for
1< j <M, where ty =T is the max time. Then, the final time-aver-
aged estimates are defined by

uj = puj+(1-p)a;

5= [psj-1+(1-p)5; ]
uj

where p € (0,1). We can relate pto a physical timescale with p = At/1,
where At is the average interstack time interval of the video and 1 is
a parameter that determines the time-scale of averaging. We used
timescales of T = 64 and 192 s for exponential averaging of surface
projections and medial axis projections, respectively.

Radius estimation and filtering large particles

We observed a small number (compared with GEMs) of fluorescent
particles with larger radii than GEMs within some hyphae. Their ori-
gin could not be determined. The distribution of these larger parti-
cles was random, though possibly elevated somewhat near tips.
They moved randomly, diffusively, or possibly subdiffusively, with
mobility substantially lower than GEMs. To reduce their potential
influence on our measurements of heterogeneous diffusivity of
GEMs, we estimated the PSF radius and peak intensity of all particle
localizations by regression of the local surrounding image patch to a
Gaussian profile.

The filter was more accurate when applied to tracks instead of
individual localizations. Averaging the PSF radius and peak inten-
sity over all localizations within a track mitigated the influence of
noise. We applied basic linking (assuming constant diffusivity for
filtering) to the localizations to obtain a set of tracks specifically for
filtering. The tracks used in the primary analysis were computed
during a later step. After linking, we averaged the radius over each
track to get the average PSF radius (1) and the peak intensity (Ipeak)-
We filtered those tracks that had at least four observations and
satisfied at least of one of the following two conditions

r>550 nm and Ipeak > 140
r>225nm and lpea > 280

1509

3D tracking of nanoparticles in cytosol |



These criteria were chosen heuristically to achieve a balance be-
tween filtering as many large particles as possible while minimizing
the number of true GEMs mistakenly filtered out. Due to this trade-
off, a small fraction of the larger particles was tracked. However, their
contribution to the overall observed heterogeneity was minimal.

Within the wild-type set, over half of the hyphae had no larger
particles visible, and 90% of the hyphae had <5% of their localiza-
tions coming from the larger particles. All hyphae in the analysis had
<10% of their total localizations coming from large particles. Hyphal
tips were only included in the analysis if they did not have large par-
ticles within last 3 um of the hypha. The larger particles were infre-
quent in the Tub4-Cherry set, accounting for <1% of localizations.

Motion model used to define spatially varying diffusion

The notion of a spatially varying diffusivity assumes an underlying
particle motion model. We assumed that diffusion is governed by
the so-called Fickian model, which is consistent with Fick's Law of
diffusion

aC
at

The corresponding motion model (a stochastic differential equa-
tion) is described in a below section. A large (approaching infinite)
number of independent particles moving by the stochastic motion
model will give rise to a particle concentration C(x,t) that satisfies
the above equation. This model was chosen because it preserves
detailed balance and is consistent with a thermodynamic equilib-
rium. Note that we do not assume that the system is at thermody-
namic equilibrium, since the living cell is certainly far from equilib-
rium. The model assumes that at steady state, the concentration of
particles will be uniform throughout the accessible volume of the
cell. Any concentration gradients that exist would require an energy-
consuming “pump” to maintain. It is possible to maintain concen-
tration differences of a given chemical species across the interface
of phase-separated liquids, provided that there is a chemical poten-
tial difference between the two liquids. We assume that GEMs are
sufficiently inert that they do not interact with any cellular compo-
nents that would establish such an effective pumping mechanism.
Note that we do not assume that the GEMs concentration is uniform
within any particular observation. The thermodynamic consistency is
simply the criteria we use to select the motion model. Other models
of spatially variable diffusion, such as Ito or Stratonovich diffusion,
do not give rise to uniform steady state concentrations (Schnitzer,
1993).

V-(D(x)-VC)

Pipeline testing with stochastic particle simulations

and synthetic videos

To test the particle tracking pipeline, we generated synthetic videos
of particle diffusing in a cylindrical domain with reflecting boundar-
ies. The cylindrical domain was used to mimic a small section of a
hypha, 14 pm long and 3.4 pm in diameter (see Figure 3A); 3.4 pm
was chosen for the diameter to match the total z-step distance of
the experimental videos.

Videos were comprised of a time series of 50 z-stacks with an
average acquisition time of 0.85 s per stack. Each z-stack had 17
slices with separation of 0.2 um. Each image slice contained 128 x
128 pixels with a pixel size of 0.11 ym. Videos were generated with
Gaussian noise (with mean intensity 100 and SD 5), slowly varying
background intensity (mimicking nonspecific fluorescence within
the hypha), and a small ~3 pixel radius Gaussian PSF (with max in-
tensity above background of 34) for each particle (see Supplemental
Video S3).
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The diffusivity was changed at the midpoint of the hypha so that
the left half had a lower diffusivity than the right half. Five video
sets, each containing 10 videos, were generated with different dif-
fusivity values for the left and right halves of the cylinder. We varied
the total number of diffusing particles for each video within a given
video set.

Stochastic particle simulations

Particle simulations of Brownian motion with spatially varying
diffusivity (under the Fickian interpretation) were performed using
a time-stepping method. We assumed independent particle
motion so that there were no interactions between particles. Let
X: € R? be the position of a track at time t. The simulation scheme
is given by

Z =N3 (0,1)

Y:Xt+ ZD(Xt)CItZ

Xesdt = Xy ++/2D(Y)dtZ

where N3(0,1) e R® is a vector of numerically generated, indepen-
dent, normal random variables with mean zero and unit variance.
The simulation time step was dt = At/16 (i.e., there were 16 simula-
tion time steps between each z-stack of the simulated video). Re-
flection at cylinder boundaries was done using the method of bal-
listic reflection, which preserves detailed balance.

Note that the motion model appears "anticipatory” (meaning
that steps depend on future motion), but it can be formulated as the
motion of a nonanticipatory particle in a potential D(x), with the cor-
responding Ito SDE,

dX = VD(X)dt+./2D(X)dw
where dW s a 3D Wiener process (Gardiner 2009).

Boundary effects on particle tracking

The tubelike hyphal geometry restricts 3D Brownian motion to a
quasi-1D closed domain. Using a 3D diffusivity maximum likeli-
hood estimator, the apparent diffusivity from purely 1D Brownian
motion would be 4x lower than unbounded 3D Brownian motion.
We were able to reduce this potential effect by ignoring the z-po-
sition in our diffusivity estimates, which reduced the maximum pos-
sible boundary effect from a 4x reduction to a 2x reduction. Bound-
ary effects should begin to affect diffusivity estimates (reducing the
estimated diffusivity by up to 2x its actual value) once the average
width of a hypha is about the same distance as a typical GEMs
displacement during one video frame. In the synthetic testing, we
observed ~10% reduction in estimated diffusivity when the true
diffusivity was 0.2 um?/s. At hyphal tips, there is another boundary
restricting motion, and we again observed an underestimation ef-
fect at high diffusivities (~15% at 0.2 um?/s, with ~5% due to the
presence of the boundary). As expected, this effect was negligible
for lower diffusivities.

Figures

Plots were generated using the open-source Python packages,
Matplotlib and Seaborn. Images were generated using the open-
source application ImageJ and Nikon'’s proprietary Elements. Three-
dimensional surface projections and supplemental videos were
generated using the proprietary application DataTank. Adobe Pho-
toshop and lllustrator were used to compile the main figures
together.
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Surface projection videos

Three videos were generated to illustrate the spatio-temporal surface
projection estimates. Supplemental Video S1 shows the max projec-
tion of GEMs in an Ashbya cell; 3D GEM localizations are visualized
as green spheres above the max projection, and surface-projected
diffusivity estimates are shown above those. Supplemental Video S2
shows the max projection, localizations, and surface-projected diffu-
sivity estimates for a single hypha. Lower diffusivity at the hyphal tip
as well as heterogeneity of diffusivity within the hypha can be seen.
Supplemental Video S3 shows an example of a testing video as de-
scribed in Figure 3A. Max projection of simulated Brownian motion is
shown, with localizations as green spheres and surface-projected dif-
fusivity estimates above.

Code availability
Data analysis and figure generation code is available at https://
github.com/newby-jay/AshbyaTracking.
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