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Ethylene is a gaseous phytohormone and the first of this hor-
mone class to be discovered. It is the simplest olefin gas and is
biosynthesized by plants to regulate plant development, growth,
and stress responses via a well-studied signaling pathway. One
of the earliest reported responses to ethylene is the triple
response. This response is common in eudicot seedlings grown
in the dark and is characterized by reduced growth of the root
and hypocotyl, an exaggerated apical hook, and a thickening of
the hypocotyl. This proved a useful assay for genetic screens and
enabled the identification of many components of the ethylene-
signaling pathway. These components include a family of ethyl-
ene receptors in the membrane of the endoplasmic reticulum
(ER); a protein kinase, called constitutive triple response 1
(CTR1); an ER-localized transmembrane protein of unknown
biochemical activity, called ethylene-insensitive 2 (EIN2); and
transcription factors such as EIN3, EIN3-like (EIL}, and ethyl-
ene response factors (ERFs). These studies led to a linear model,
according to which in the absence of ethylene, its cognate recep-
tors signal to CTRI, which inhibits EIN2 and prevents down-
stream signaling. Ethylene acts as an inverse agonist by inhibit-
ing its receptors, resulting in lower CTR1 activity, which
releases EIN2 inhibition, EIN2 alters transcription and transla-
tion, leading to most ethylene responses. Altheugh this canoni-
cal pathway is the predominant signaling cascade, alternative
pathways also affect ethylene responses. This review summa-
tizes our current understanding of ethylene signaling, including
these alternative pathways, and discusses how ethylene signal-
ing has been manipulated for agricultural and horticultural
applications.

Ethylene (IUPAC name ethene) is the simplest olefin gas and
was the first gaseous molecule shown to function as a hormone
(1). Tt is biosynthesized by plants and is well-known to affect
various developmental processes, such as seed germination,
fruit ripening, senescence, and abscission, as well as responses
to various stresses, such as flooding, high salt, and soil compac-
tion (2, 3). The ethylene signal transduction pathway has been
extensively studied, in part because ethylene affects so many
traits related to plant vigor and post-harvest physiology and
storage.

Once biosynthesized, ethylene diffuses throughout the
plant and binds to ethylene receptors to stimulate ethylene
responses. It can also diffuse to surrounding plants and is the
basis of the saying one bad apple spoils the bunch, where ethyl-
ene produced by an apple hastens the ripening of bananas. The
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ethylene-signaling pathway was predominantly delineated with
research on Arabidopsis thaliana and is comprised of a combi-
nation of components that is not found in other pathways. This
review will mainly focus on this research using Arabidopsis.
However, it is worth pointing out that similar signaling path-
ways occur in diverse plants (4—11) so that information from
Arabidopsis about ethylene signaling is usually applicable to
other species.

Early molecular genetic studies uncovered several key com-
ponents for ethylene signaling, including a family of receptors;
the CTRI protein kinase; EIN2, which is a transmembrane pro-
tein of unknown biochemical activity; and transcription factors,
such as EIN3, EILs, and ERFs. This led to a linear, genetic model
where, in the absence of ethylene, the receptors activate CTR],
which negatively regulates downstream signaling (Fig. 1). Eth-
ylene functions as an inverse agonist by inhibiting the recep-
tors, leading to release of inhibition by CTR1, resulting in eth-
ylene responses (12). This genetic model provided a general
framework that has been refined with further research, result-
ing in a more complete and detailed model for ethylene signal-
ing, including surprising cases of cross-tdlk from the receptors
to other signaling pathways, details for how a signal perceived at
the ER membrane affects transcription in the nucleus, and mul-
tiple roles for EIN2. Details from this research have led to var-
ious ways to control ethylene signaling, Most of these controls
are geared toward inhibiting ethylene responses to prevent
post-harvest spoilage. However, there is also a need for stimu-
lating ethylene responses, such as to cause premature germina-
tion of parasitic plants so that fields can be cleared of these
problematic plants. These discoveries and applications will be
summarized in this review,

Ethylene-signaling components and the canonical
pathway

The first step in ethylene perception is the binding of ethyl-
ene to receptors. Ethylene receptors have homology to bacterial
two-component receptors that signal via autophosphorylation
on a histidine residue followed by phosphotransfer to an aspar-
tate residue in the receiver domain of a response regulator pro-
tein (13}, Ethylene receptors, as well as other two-component-
like receptors, such as the phytochromes and cytokinin
receptors, are believed to have been acquired by plants from the
cyanobacterium that gave rise to chloroplasts (14—18). Data
from a recent phylogenetic analysis suggest a common origin
for the ethylene-binding domain in cyanobacteria and plants
(19). Itis thus interesting to note that ethylene binding has been
observed in diverse cyanobacteria, and at least one cyanobacte-
rium, Synechocystis, has a functional ethylene receptor that reg-

ZASBMB

© 2020 Binder. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

0Z0Z ‘T sunf uo AreIqry 228sauua ] Jo Aisioawun e B100qf mmmyy:dny Woly paprojumoqg



JBC REVIEWS: Lthylene signaling

ETR] —-—— > AHP --—» ARR “Hk
_ ERS1 EIN3 T Ethvlene
 Ethyleng| — ETR2 ~—~» CTR1 — EIN2 —> EILi -—>» ERFs —> Y
responses
C;H, EIN4 ElL2
ERS2 —
Transcription
Ethylene factors
receptors

— Canonical ethylene signaling
--—u “Non-canonical” ethylene signaling

Figure 1. Simple genetic model of ethylene signaling. In biack is shown a model for ethylene signaling based on molecular genetic experiments in
Arabidopsis. These experiments showed that ethylene signaling involves ethylene receptors (ETR1, ERS1, ETR2, EIN4, and ERS2), the protein kinase CTR1, and
EIN2 that signals to the transcription factors EIN3, EIL1, and EIL2. These, In turn, signal to other transcription factors, such as the ERFs, leading to ethylene
responses. This has long been considered the canonical signaling pathway. In this model, CTR1 is a negative regulator of signaling. Ethylene functions as an
inverse agonist, where it inhibits the receptors, which leads to lower activity of CTR1 releasing downstream components from inhibition by CTR1. More recent
evidence has shown the existence of an alternative, "noncananical” pathway (in gray), where ETR1 signals to histidine-containing AHPs and then to ARRs to

modulate responses to ethylene.

ulates cell surface properties to affect bicfiim formation and
phototaxis (20 -22). Additionally, ethylene-binding affinities to
some of these cyanobacteria and the heterologously expressed
Synechocystis ethylene receptor are similar to what has been
observed in plants (23), showing a conservation of this domain
between these organisms. However, the organism where ethyl-
ene receptors first arose remains unknown. The observation
that genes encoding for proteins with putative ethylene-bind-
ing domains are found in other phyla of bacteria (22) will make
answering this question difficult.

By conlrast, as will be discussed in more detail below, even
though some of the plant ethylene receptor isoforms have
retained histidine kinase activity, this activity is not crucial for
ethylene perception. This is in contrast to the one cyanobacte-
rial system so far characterized where phosphotransfer is cen-
tral to the function of the receptor (22, 24, 25). Additionally,
some plant ethylene receptor isoforms have serine/threonine
kinase activity, indicating that the outputs of these receptors in
plants are now diverged from the ancestral proteins. Recent
reviews present more information about ethylene receptors in
nonplant species (26, 27).

Plants contain multiple ethylene receptor isoforms. Early
studies identified ethylene-binding sites in the ER membranes
of plants (28, 29), and subsequent research on specific receptor
isoforms from various plants confirmed that ethylene receptors
are localized to the ER (30-35). In Arabidopsis, five isoforms
have been identified and are referred to as ethylene response 1
(ETR1), ethylene response sensor 1 (ERS1), ETR2, ERS2, and
EIN4 (36-40). Mutations in any one of these receptors that
prevent ethylene binding lead to an ethylene-insensitive plant
(12, 20, 36, 37, 41). There are also some mutations in these
receptors that have no effect on ethylene binding but prevent
signaling through the receptor, which also leads to ethylene
insensitivity (20).

The different receptor isoforms in plants have similar
domain architecture (Fig. 2) with three transmembrane a-heli-
ces at the N terminus, which comprises the ethylene-binding
domain, followed by a GAF (cGMP-specific phosphodies-
terases, adenylyl cyclases, and FhlA) and kinase domain. Three
of the five receptors also contain a receiver domain that is sim-
ilar to what is found in bacterial two-component receptors (42,
43). The receptors fali into two subfamilies with ETR1 and
ERS1 in subfamily 1 and the other three isoforms in subfamily 2
{20}. The subfamily 2 receptors contain additional amino acids
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Figure 2. Diagram of domains of receptor isoforms. The receptors are
dimers located in the ER membrane. Each dimer is stabilized by two disulfide
bonds near the N terminus. All of the receptors contain transmembrane heli-
ces that comprise the ethylene-binding domain followed by a GAF and kinase
domain, ETR1 is a histidine kinase, and the other four isoforms are serine/
threonine kinases. Three of the five contain a receiver domain at the C termi-
nus of the protein. The models for the receptors are based on published
structural and computational studies on ETR1 (43, 69), where each monamer
coordinates a copper ion required for ethylene binding. In ETR1, the DHp
domain of the kinase dimerizes, and a flexible region allows each kinase cat-
alytic domain to associate with the DHp domain. It is unknown whether the
kinase domains of the other isoforms atso dimerize. The receiver domains are
predicted to be orientated away from the central axis of the receptor dimer.

SerfThr kinase () c—>
Receiver domain ()

at the N terminus that are unknown in function. The receptors
can be further distinguished by their kinase activity. ETR1 has
histidine kinase activity, whereas ETR2, ERS2, and EIN4 have
serine/threonine kinase activity, and ERS1 has been docu-
mented to have both, depending on assay conditions, although
it is believed to be a serine/threonine kinase in vivo (44, 45),
The receptors form homodimers that are stabilized at their N
termini by two disulfide bonds (46 -48). Nevertheless, these
disulfide bonds are necessary neither for binding of ethylene to
ETRI (48) nor for a functional ETR] receptor in planta (49). In
ETR], it is thought that dimerization between monomers also
occurs between the dimerization and histidine phosphotrans-
fer (DHp) domains of each kinase domain (43). It is unclear
whether dimerization between kinase domains of the other
receptor isoforms occurs. It has also been suggested that het-
erodimers are possible (35, 50). Evidence that these are recep-
tors is that all of these proteins bind ethylene with high affinity
(41, 47, 51, 52), and specific mutations in any one of these pro-
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teins lead to ethylene insensitivity (36, 38 - 40, 53). Similar pro-
teins from tomato also bind ethylene with high affinity and
when mutated lead to ethylene insensitivity (51, 54—56),

Ethylene binds to the N-terminal, transmembrane portion of
heterologously expressed receptors with K, values reported in
the nanomolar range (21, 41, 52), which corresponds to ethyl-
ene-binding affinities reported in plants (57-64). One differ-
ence between heterologously expressed receptors and those in
planta is that ethylene dissociates from the former with a single,
slow rate having a half-time of release of ~10-12 h (41, 51, 52),
whereas there are two rate constants of release in planta (64,
65). In planta, there is an initial, rapid release of ethylene in the
first 30 min after ethylene removal, followed by slow release
with similar kinetics to the heterologously expressed receptors.
Because ethylene can enhance the proteolysis of ethylene
receptors (31, 66, 67}, this rapid release of ethylene from recep-
tors in plants is likely due to proteolysis of the ethylene-bound
receptors.

The cytosolic domains of ETR1 have been structurally char-
acterized (42, 43, 68). This hasled to a model of the ETR1 dimer
where the DHp domain of the histidine kinase domain
dimerizes with the DHp of the other monomer (Fig. 2). In this
model, the catalytic domain associates with the DHp domain.
The catalytic and receiver domains are modeled to extend out-
ward from the DHp pair. The orientation of the receiver
domain in relationship to the remainder of the protein is pre-
dicted to be different from prokaryotic histidine kinases, sug-
gesting that this domain may be diverged in function from pro-
karyotes (68). Additionally, structural studies show that the
¥-loop of ETR1, which is part of the catalytic region of receiver
domains, s in a different orientation from characterized pro-
karyote receiver domains (42, 68). No structural information is
published characterizing the ethylene-binding domain, but a
computational model is available (69). This study coupled with
prior research (20) suggests that ethylene binds in the middle of
helices 1 and 2 and the signal is transduced via helix 3. The
mechanistic details of this transduction through the receptor
are unknown.

A key issue in ethylene signaling has been to determine how
proteins bind ethylene with high affinity, and mutational stud-
ies have identified amino acids in helices 1 and 2 that are impor-
tant for ethylene binding (20, 21, 41). Based on olefin chemistry,
several transition metals were initially suggested as cofactors
for binding activity (70 -73). It was later determined that ETR1
coordinates copper ions, which act as the cofactor for ethylene
binding (21}, Cys-65 in helix 2 is required for coordination of
copper because the etrl-1 mutant receptor with a C65Y muta-
tion is unable to bind copper or ethylene (21, 36, 37, 41).
Mutants such as this render the plant ethylene-insensitive,
Additionally, several studies have determined that the ER
membrane-localized copper transporter, responsive to antag-
onist 1 (RAN1), physically interacts with at least some of the
receptors and is needed for delivery of copper and proper bio-
genesis of the ethylene receptors (74-78). Because copper co-
purifies with the ETR1 dimer with a 1:1 stoichiometry, it was
long thought that each receptor dimer contains one copper ion
(21). Recent experimental evidence, however, indicates that
there are two copper ions per receptor dimer that are modeled
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to be coordinated by amino acids in helices 1 and 2 of each
monomer (69),

The biochemical output of the receptors has yet to be deter-
mined. The GAF, kinase, and receiver domains are the likely
output domains, but the specifics of how ethylene signal is
transduced are unknown. This is complicated by research
showing that even though the receptors have overlapping roles
for many traits, for specific traits or under specific conditions,
individual receptor isoforms have a role, whereas others do not
(52,79-87). In some cases, individual isoforms display opposite
roles from other isoforms. For instance, ETR1 is necessary and
sufficient for ethylene-stimulated nutational bending of hypo-
cotyls in dark-grown Arabidopsis seedlings, whereas the other
four receptor isoforms inhibit this response (80, 86). Also, loss
of ETR1, and to a lesser extent EIN4, results in plants that are
less sensitive to the plant hormone abscisic acid (ABA) during
seed germination, whereas loss of ETR2 causes plants to be
more sensitive to ABA (83, 85). There is recent evidence that
ETR1 and ETR2 are signaling independently of CTR1 to cause
the changes in ABA responsiveness, but the exact pathway has
yet to be determined (84). These observations indicate that
there are likely to be differences in the biochemical output
between receptor isoforms. Although some of these differences
may arise from different kinase specificities (44, 45), this does
not easily explain all of these differences.

Ethylene receptors are homologous to bacterial two-compo-
nent receptors. The simplest bacterial two-component system
signals by histidine autophosphorylation followed by relay of
the phosphoryl to a conserved aspartate on a receiver domain of
a response regulator protein, although more complex varja-
tions of this exist (13). Despite the fact that ETR1 possesses
histidine kinase activity that is modulated by ethylene (44, 45,
88), this activity is not required for responses to ethylene (89,
90). Rather, it may subtly modulate receptor signaling to down-
stream components (81,89, 91-93), including interactions with
EIN2 (94). Similarly, receptor serine/threonine kinase activity
does not appear to be required for ethylene responses but may
have a modulatory role in ethylene receptor signal transduction
and responses (95).

Complexes of receptor dimers have been proposed to explain
the farge range of ethylene concentrations that plants respond
to and to explain how one mutant receptor might affect other,
nonmutant receptors (48, 49, 96--100). As an example, plants
can respond to ethylene at levels down to 0.2 nl/liter (101),
which is at least 300-fold below the K, of binding to the recep-
tors (41). Receptor dimer clusters are proposed as a way for
signal amplification to occur, much like how bacterial chemo-
receptors function. In chemoreceptors, ligand binding to one
receptor dimer can affect the signaling state of neighboring,
unbound receptor dimers to increase signal output (102, 103).
Structural studies suggest that CTR1 or the receptor receiver
domains, or both, may be involved in the formation of ethylene
receptor clusters (43, 104). It remains to be determined whether
this is important in ethylene signaling.

The receptors also form higher-order complexes with other
proteins (48). Specific proteins have been identified as interact-
ing partners with all or a subset of the ethylene receptors. This
includes interactions with RAN1 that may be important for
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correct delivery of copper to the receptors (78). Other interact-
ing partners are less characterized. Reversion to ethylene sen-
sitivity 1 (RTE1) interacts with ETR1 and tetratricopeptide
repeat protein 1 (TRP1) with ERS1 to modulate signaling (34,
105-107). A homolog of TRP1 in tomato interacts with both
SIETRI1 and never ripe (NR or SIETR3) (108). As will be dis-
cussed further below, some of the receptors also interact with
components of the cytekinin signaling pathway (105, 106,
109-111).

Two proteins, CTR1 and EINZ, are central components of
ethylene signaling (112, 113) that physically interact with the
receptors (33, 94, 114-118) and each other (119}, CTR1 is a
serine/threonine protein kinase that functions as a negative
regulator of ethylene signaling {113). EIN2 is required for eth-
ylene signaling and is part of the NRAMP (natural resistance-
associated microphage protein) family of metal transporters; it
is comprised of a large, N-terminal portion containing multiple
transmembrane domains in the ER membrane and a cytosolic
C-terminal portion (112). In the case of ETRI, the kinase
domain of the receptor is required for interactions with both
CTR1 and EIN2, although ETR1 histidine kinase activity is only
important for modulating interactions with EIN2 (94, 117, 120).
These physical interactions appear to be important because
mutations in CTR1 that abolish receptor-CTR1 interactions
result in a nonfunctional CTR1 (117, 118), and blocking intet-
actions between ETRI and EIN2 results in ethylene insensitiv-
ity (121).

Current models predict that in the absence of ethylene, the
ethylene receptors keep CTR1 active (Fig. 3). CTR1 directly
phosphorylates EIN2 (119), which may result in EIN2 ubiquiti-
nation via an Skp1 Cullen F-box (SCF) E3 ubiquitin ligase com-
plex containing the EIN2-targeting protein 1 (ETP1) and ETP2
F-box proteins and subsequent proteolysis by the 265 protea-
some (122), as hypothesized in several studies (119, 123-125).
A downstream consequence of this is that the EIN3, EIL1, and
EIL2 transcription factors are targeted for ubiquitination by an
SCF E3 cormplex that contains the EBF1 and EBF2 F-box pro-
teins (126 —130). The breakdown of these transcription factors
prevents ethylene responses. Thus, in the absence of ethylene,
signal transduction in the pathway is blocked because EIN2
levels are low.

[n the presence of ethylene, the receptors are inhibited, lead-
ing to less phosphorylation of EIN2 by CTR1. Genetic data pre-
dict that the binding of ethylene to the receptors should reduce
the catalytic activity of CTR1. However, this has not yet been
directly tested. Ethylene enhances the interaction between
ETR1 and both CTR1 and EIN2 (66, 94, 117). Thus, an alterna-
tive explanation for reduced EIN2 phosphorylation by CTR1 is
that the binding of ethylene to the receptors results in confor-
mational changes in the recepters that reduces the physical
interaction between CTR1 and EIN2, leading to less EIN2 phos-
phorylation. It is thought that when EIN2 phosphorylation is
reduced, there is less EIN2 ubiquitination, resulting in an
increase in EIN2 levels and subsequent cleavage of EIN2 by an
unknown protease to release the C-terminal portion of EIN2
(EIN2-C) from the membrane-bound N-terminal {(EIN2-N)
portion (119, 122, 124, 125).
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The role of EIN2-N is unknown, but it has diverged from
other NRAMP proteins, because no metal transport activity has
been detected in heterologously expressed EINZ and it cannot
rescue yeast deficient in metal uptake (107, 112), However,
there are hints that EIN2-N has a role in ethylene signaling, In
rice, mao huzi 3 (#h23) mutants are ethylene-insensitive, and
the MHZ3 protein physically interacts with OsEIN2-N and reg-
ulates OsEIN2 abundance; similar genes have been identified in
Arabidopsis that affect ethylene signaling (131, 132). These data
indicate the need to further study EIN2-N to delineate the
mechanism by which it affects ethylene signaling,

By contrast, EIN2-C has two known roles. One is to bind the
mRNAs that encode for EBF1 and EBF2, whereupon this pro-
tein/RNA complex associates with processing bodies (133,
134). This results in the degradation of these mRNAs by exori-
bonuclease 4 (XRN4, also known as EIN5), whichisa 5 — 3’
exoribonuclease known to affect ethylene signaling (133-136).
A consequence of the degradation of EBFI and EBF2 mRNA
is that degradation of EIN3 and EIL1 and probably EIL2 is
reduced, leading to more ethylene signaling (126, 128, 129).
EIN2-C also contains a nuclear localization sequence (NLS),
EIN2-C diffuses into the nucleus, where it associates with EIN2
nuclear associated protein 1 {ENAP1), which is required for the
ability of EIN2-C to regulate EIN3-dependent transcription
(137). Thus EIN2-C provides both transcriptional and transla-
tional control to regulate EIN3 and the related EIL1 transcrip-
tion factor to cause most ethylene responses. This is supported
by a recent study where ethylene-stimulated changes in the
metabolome did not always correlate with changes in the tran-
scriptome (138). The exception to this model is that short-term,
transient responses occur independently of these transcription
factors yet require EIN2 (101). Thus, there are more functions
for EIN2 that have yet to be discovered.

The increase in EIN3, EIL1, and EIL2 activily caused by
EIN2-C leads to changes in the transcription of other ethylene
response genes, including other transcription factors, such as
the ERFs (139-141). Recent studies have identified histone
modifications as having a role in this transcriptional control.
Mutational experiments revealed that several histone acetyl-
transferases and histone deacetylases affect ethylene signaling
(142-144). Additionally, research has identified specific his-
tone acetylation marks that are important in ethylene-regu-
lated gene expression by EIN3 (145-147). Even though more
details about transcriptional regulation are being discov-
ered, it is also clear from a recent metabolome study that
changes in metabolism occur in response to ethylene that are
not predicted by changes in the transcriptome (138). This
indicates that there is additional regulation for responses to
this hormone.

In summary, the model for the canonical ethylene-signaling
pathway has developed from a simple genetic model to a more
complex model with many more biochemical details. However,
there are still gaps in our understanding of this signal transduc-
tion pathway.

Noncanonical signaling

The model discussed above is largely linear, and it summa-
rizes the main pathway by which ethylene affects plants. None-
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Figure 3. Model for ethylene signaling. RAN1 is a copper transporter that delivers copper to the lumen of the ER, where it is required for the biogenesis of the
receptors and is used as a cofactor by the receptors to bind ethylene. 4, in the absence of ethylene, the receptors signal to CTR1, which phosphorylates EIN2.
This results in the ubiguitination of EIN2 by an SCF E3 containing the ETP1/2 F-box proteins, leading to EIN2 degradation by the proteasome. Because EIN2
levels are low, an SCF-E3 containing the EBF1/2 F-box proteins ubiquitinates EIN3 and EIL1, leading to their degradation by the proteasome and preventing
them from affecting transcription in the nucleus. B, in the presence ethylene, the receptors bind ethylene via a copper cofactor, The binding of ethylene is
modeled to cause a conformational change that either reduces CTR1 kinase activity or, as shown, resuits in CTR1 being sequestered by the receptors so that
CTR1 can no longer phosphorylate EINZ, The reduction in EIN2 phasphorylation results in less EIN2 ubiquitination and an increase in EIN2 levels. An unknown
protease cleaves EIN2, releasing the C-terminal end (EIN2-C) from the N-terminal end (EIN2-N), One fate of EIN2-C is to bind the RNAs for EBF and EBF2 and
become sequestered in processing bodies (P-bodies). The reduction of E8F1/2 results in less ubiquitination of EIN3 and EILT, causing higher EIN3/EIL1 |evels.
The other fate of EIN2-C is to translocate to the nucleus, where it increases the transcriptional activity of EIN3/EIL1 via ENAP1. This leads to numerous
transcriptional changes. In parallel with this pathway, phosphoryl transfer from a conserved histidine in the ETR1 DHp domain to an aspartate in the receiver
domain occurs. This is followed by phosphoryl transfer from this residue to AHPs and finally ARRs resulting in transcriptional changes.

theless, it is clear from diverse studies that the ethylene-signal-
ing pathway involves feed-forward and feedback regulation
leading to sensitization and adaptation (101, 148—160}). Most of
this research has identified adaptation mechanisms at the level
of the receptors. For instance, the levels of the receptors them-

7714 1 Biol Chem, (2020) 295(22) 7710-7725

selves can regulate sensitivity, where higher levels lead to less
sensitivity and lower levels to more sensitivity (89, 90,114, 161-
164). However, it is also now clear that other proteins affect
sensitivity at the levels of the receptors. This includes negative
regulation by RTEL and the family of proteins called auxin-
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regulated gene involved in organ size {ARGOS) (149, 154, 165,
166). An RTE1-like protein, green ripe (GR), has a similar role
in tomato {166). The exact mechanisms for reguiation by these
proteins are under investigation. More information about this
is contained in a recent review (167).

The existence of nonlinear components to what has been
considered the canonical pathway raises the possibility that
other ethylene-signaling pathways exist outside of or as branch
points from this core pathway. This is an area of active research,
and in the cases discussed below, evidence is provided showing
that signaling occurs, at least in part, via components not con-
tained in the canonical pathway presented above. These alter-
native (noncanonical) pathways are not necessary for ethylene
responses but appear to have roles in modulating responses to
ethylene cr in altering responses to other hormones,

Results from several studies have led to the suggestion that
the ethylene receptors signal independently of CTR1 or EIN2
(44, 80, 82-85, 168-170). For instance, epistasis analysis has
shown that the role of ETRT and ETR2 in the control of seed
germination by ABA is, at least in part, independent of CTR1
(84). It is possible that such alternative signaling oceurs via
CTR1 homologues, but so far no CTR1 homologue has been
identified as being involved in this. Even though ETR1 histidine
kinase activity is not required for ethylene signaling, this activ-
ity does modulate sensitivity to ethylene, growth recovery
kinetics when ethylene is removed, growth of root apical mer-
istem, seed germination under stress conditions or in response
to ABA, and interactions with EIN2 (81, 83, 84, 89-91, 93, 94,
111). Likely targets for phosphorelay from ETRI1 are compo-
nents of the cytokinin signaling pathway (Fig. 1). The cytokinin
receptors are two-component receptors in plants that, unlike
the ethylene receptors, use phosphorelay as the primary route
for signaling (18, 171). In this pathway, the phosphoryl is trans-
ferred from the cytokinin receptors to histidine-containing
phosphotransfer proteins (AHP family in Arabidopsis) and
finally to response regulator proteins {ARR family in Arabidop-
sis) that function as transcription factors, Various studies have
demonstrated that ETR1 physically interacts with ARR and
AHP proteins (109-111, 172). This interaction involves the
C-terminal portion of ETR1 (109, 111). The affinity between
ETR1 and AHP1 is altered by their phosphorylation state,
where it is highest if one protein is phosphorylated and the
other is not (172).

In support of interactions between ETR1 and the cytokinin
pathway having functional consequences, mutational analyses
revealed that the ARRs are involved in ethylene responses such
as sensitivity to ethylene, recovery kinetics after ethylene is
removed, stomatal aperture control, and the regulation of root
apical meristemn (92, 93, 111, 173). Null mutants of ARRI are
less responsive to ethylene, and this appears to depend upon
ETR1 histidine kinase activity (93). Similarly, null mutants in
several AHPs and ARRs prolong growth recovery when ethylene
is removed, similar to what is observed in plants deficient in
ETRI histidine kinase activity (81, 92). Additionally, ETR]1 his-
tidine kinase activity is involved in both ethylene- and cyto-
kinin-induced changes in root apical meristem (111). Together,
these results are consistent with a model where ETR1 histidine
kinase activity is directly involved in affecting components of
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the cytokinin pathway, resulting in changes in transcription
that modulate ethylene responses (Fig. 3). There is some over-
lap between transcriptional changes caused by ethylene and
cytokinin (174), raising the possibility that there are both over-
lapping and nonoverlapping targets of transcriptional control
from this signaling pathway involving ETRI1 histidine kinase
and the well-known pathway involving EIN3 and ElLs. It is
interesting fo note that in rice, a histidine kinase (MHZ1/
OsHK1) that may have a role in cytokinin signaling functions
downstream of the OsERS2 ethylene receptor and signals inde-
pendently of OsEIN2 (175). Thus, our model for canonical eth-
ylene signaling probably needs to be expanded to include sec-
ondary pathways such as phosphorelay from some of the
ethylene receptors to the AHPs and ARRs.

It should be noted that biochemical experiments show that
ETR1 histidine autophosphorylation decreases upon binding of
ethylene or ethylene receptor agonists (88, 94), whereas genetic
experiments suggest that ethylene leads to more phosphotrans-
fer (81, 89). Histidine kinases can carry out multiple enzymatic
reactions, including kinase, phosphatase, and phosphotransfer
reactions, and receiver domains can catalyze both phospho-
transfer and autodephosphorylation reactions (13, 176). Given
this complexity, one possible resolution to this discrepancy
between biochemical and geneticdata s that histidine autophos-
phorylation occurs in the absence of ethylene, but phospho-
transfer to the receiver domain does not occur until ethylene
binds to the receptor to bring the DHp (site of histidine phos-
phorylation) and receiver domains into the correct orientation.
Thus, ethylene may be increasing phosphotransfer through the
pathway, causing the steady-state level of ETRI histidine phos-
phorylation to decrease. This will only be answered conclu-
sively when we have structural data.

Noncanonical signaling is also likely to occur downstream of
the receptors. For instance, PpCTRI in Physcomitrella patens
has arole in both ethylene and ABA signal transduction, raising
the possibility that CTR1 has more functions than simply phos-
phorylating EIN2 (177). Also, mutants of EIN2 have altered
responses to various hormones (reviewed in Ref. 178), but
whether this reflects alternative signaling from EIN2 or is due to
many pathways converging on EIN2 has yet to be completely
explored.

The signaling pathway downstream of EIN2 is complex
because it involves at least two levels of transcriptional regula-
tion. Because of this, itis harder to distinguish “canonical” from
“noncanonical” signaling. EIN3 is the transcription factor with
the largest role in ethylene signaling (128, 139), and it
homodimerizes to interact with its target DNA (141). However,
environmental factors such as dark versus light or the presence
of other hormones can affect this so that, depending on condi-
tions, EIN3 interacts with other transcription factors, leading to
outputs not predicted by the common ethylene-signaling mod-
els (179 -181). As an example, ethylene is well-known for inhib-
iting hypocotyl growth in dark-grown eudicol seedlings (36,
182} and stimulating hypocotyl growth in the light (183-187).
In the dark, EIN3 directly interacts with another transcription
factor, phytochrome-interacting factor 3 (PIF3), forming an
output module distinct from either transcription factor alone
(181). A recent meta-analysis of transcriptomic data sets com-
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paring ethylene-responsive genes in the light versus the dark
uncovered a set of genes that were similarly regulated in both
conditions, but also many that were differentially regulated
(188). It will be interesting to determine which of these differ-
entially regulated transcripts are controlled by this EIN3/PIF3
module.

The above summarizes evidence that specific ethylene recep-
tor isoforms signal to affect other hormone pathways, such as
cytokinin and ABA. The exact pathways for this have yet to be
delineated, but it appears that at least some of these roles are
independent of CTR1. This also raises the interesting possibil-
ity that the ethylene receptors are affecting other signaling
pathways via yet to be discovered mechanisms. Additionally,
environmental factors can affect the output of this pathway,
adding an additional layer of complexity to understanding all of
the nuances of how ethylene signaling occurs and how we can
manipulate this signaling.

Regulating ethylene signal transduction for agricultural
and horticultural uses

As can be seen from the information provided above, our
understanding about the signaling pathways for the perception
of ethylene has grown and become increasingly complicated.
This increased complexity provides challenges in determining
how to modulate responses to ethylene for commercial pur-
poses, but it also provides opportunities to perhaps modulate
specific responses without off-target outcomes.

It is likely that signaling pathways comparable with those
outlined above in Arabidopsis also occur in most land plant
species because similar genes have been uncovered in diverse
plants, including rice, tomato, strawberry, the clubmoss
Selaginella moellendorffi, and the moss P. patens (4-11). How-
ever, it is important to keep in mind that there are also likely to
be variations on this general signaling pathway that occur from
species to species that need to be taken into account when try-
ing to manipulate ethylene responses. Because ethylene affects
many processes that are important in horticulture and agricul-
ture, a great deal of research has used the information outlined
above to develop ways to regulate ethylene signal transduction.
Even though ethylene itself is used for some applications, such
as to cause uniform fruit ripening, most applications involve
minimizing ethylene signaling. These approaches have genei-
ally been either genetic or chemical in nature.

Early attempts to bioengineer plants that do not respond to
ethylene involved the heterologous expression of the Arabidop-
sisetri-1I gene, which, as mentioned above, contains a mutation
that leads to ethylene insensitivity in Arabidopsis. Heterolo-
gous etrl-1 expression leads to ethylene insensitivity and
reduced flower senescence and longer vase life in several plant
species, delayed fruit ripening in tomato and melon, and altered
regeneration in lettuce leaf explants (189 -197). It is likely that
any ethylene-insensitive receptor transgene will have similar
outcomes because Nemesia strumosa flower life was extended
when heterologously expressing a cucumber etri-1 homolog
(198). A drawback of constitutive expression of ethylene recep-
tor mutants that cause ethylene insensitivity is unintended
effects that can have adverse agricultural and horticultural out-
comes. These adverse outcomes include increased stress in
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tomato plants; increased pathogen susceptibility in tobacco;
reduction in seed germination, pollen viability, number of
adventitious roots, and root performance in petuniag; and
reduced femaleness in melon flowers (194, 195, 199-203).
These unwanted effects reduce the efficacy of this approach for
commercial use.

One potential way around this is to target efrI-1 or another
similar receptor mutant that causes ethylene insensitivity to
tissues of interest. For instance, flower-specific expression of
etr!-1 reduced flower senescence and increased flower life of
two plant species (189, 190, 204). A potential problem with this
approach is that ethylene insensitivity can lead to increased
biosynthesis of ethylene (36), which in turn could affect tissues
not expressing the mutant receptor (194). Another way to
address these issues is to use an inducible promoter for heter-
ologous expression of the mutant receptor. Relevant to this is
the observation that some ethylene receptors are ethylene-in-
ducible, including ETR2 from Arabidopsis and NR from tomato
(51, 54). Both etr2-1 and »r mutants contain point mutations
that result in ethylene-insensitive plants with long-term ethyl-
ene treatments (40, 54). However, both show a transient
response to ethylene and only become insensitive to ethylene
when levels of the mutant receptor increase due to increased
ethylene levels (205). Thus, controlling mutant receptor
expression with inducible heterologous gene expression could
provide control over both the timing and amount of expression.
This has been used in tomato to delay ripening (206), but it
remains to be determined whether or not this reduces the
severity of unwanted effects from the transgene.

Another alternative is to find mutants in other genes that
affect ethylene signaling. For instance, down-regulation of
SIEIN2 in tomato results in inhibition of ripening (207, 208).
One ethylene-signaling mutant that alters ripening is in the GR
gene in tomato, which has homology to RTEI in Arabidopsis
(165, 166). A drawback is that it requires overexpression of GR
to inhibit ripening in tomato {209), leading to issues similar to
those outlined above for heterologous expression of genes.
Fruit ripening, like other developmental processes, is complex
and is regulated by a network of transcription factors (210).
"Thus, to avoid unwanted effects of mutations, it may be neces-
sary to target specific transcription factors for mutagenesis to
regulate specific traits affected by ethylene, without altering
other responses to this hormone. For instance, virus-induced
gene silencing of SIEIN3 leads to delayed tomato fruit ripening,
but no other traits were analyzed to determine whether there
were detrimental outcomes (211). This will require more
research to link specific transcription factors with specific eth-
ylene-related traits.

Research has also focused on developing chemicals that can
regulate ethylene signal transduction. Silver has long been
known to block ethylene responses in plants (73), Silver ions are
larger than copper ions (212-214) yet support ethylene binding
to heterologously expressed ETR1 (21,215). Thisled to an early
hypothesis that silver ions replace the copper in the ethylene
binding site of the receptors, allowing for ethylene binding but
preventing stimulus-response coupling through the receptors
because of steric effects (21, 99, 215, 216). This model may be
incorrect because silver largely functions via the subfamily I
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Figure 4. Chemicals that affect ethylene responses in plants. Many
strained alkenes, such as 2,5-norbornadiene, trans-cyclooctene, and 1-meth-
ylcyclopropene, have been demonstrated to be effective antagonists of eth-
ylene responses that function on the ethylene receptars. Other compounds,
such as triplin, are agonists of ethylene responses. Triplin is believed to func-
tion by altering the delivery of copper ions to the receptors.

receptors, in particular ETR1 (49, 52, 114). Also, silver func-
tions as a noncompetitive inhibitor, suggesting that it binds to a
site other than the ethylene-binding site to inhibit the receptor
(52, 73), although it is possible that silver has the characteristics
of a noncempetitive inhibitor yet acts at the ethylene-binding
site (217). Even though silver ions are effective at blocking eth-
ylene responses in plants, the adverse human health and envi-
ronmental effects of silver limit its use. Additionally, silver has
off-target effects, such as altering auxin transport (218).

Because of this, other compounds have been developed.
Strained alkenes such as cyclic olefins can inhibit ethylene bind-
ingand action (219), and they have been studied for commercial
use (for examples, see Fig, 4). They have also been used to char-
acterize the ethylene-binding site of the receptors. For instance,
even though ethylene is a symmetric molecule, the use of dif-
ferent enantiomers of trans-cyclooctene, a competitive antag-
onist of ethylene receptors, showed that the ethylene-binding
site is asymmetric (220). Of these cyclic olefins, 1-methylcyclo-
propene (1-MCP) has a high binding affinity to the ethylene
receptors and has been patented (221-223). Even though it is
gaseous, it has become commercially successful because a solid
formulation was developed where 1-MCP is released when the
formulation is dissolved in water. This effectively blocks ethyl-
ene responses and is currently used to prolong the storage life of
a variety of produce (224}. Because the active component is a
gas, its use is generally limited to enclosed spaces, such as for
post-harvest storage.

Because gasecus compounds cannot easily be used in open
space applications, such as open fields, research has focused on
finding liquid agonists and antagonists of ethylene receptors
that can be used in open locations. Using a chemical genetics
approach, several such compounds have been identified (225-
227). One of these compounds, triplin (Fig. 4), mimics the
effects of ethylene and was used to help identify the protein
antioxidant protein 1 (ATX1) as a key transporter of copper to
RANTI (227).
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Investigations using details about ethylene signaling, such as
receptor-protein interactions and copper as a cofactor for eth-
ylene binding, have also resulted in interesting compounds.
One such compound is NOP-1, a synthetic octapeptide that
was developed based on details about ETR1-EIN2 interactions
(121}. This peptide corresponds to the NLS in EIN2-C and dis-
rupts the interaction between EIN2 and ETR1 in Arabidopsis as
well as interactions between SIETR1 and SIEIN2 in tomato
{121, 228). NOP-1 binds to various ethylene receptors, includ-
ing ETR1 from Arabidopsis, NR and SIETR4 from tomato, and
DcETRI from carnation (229-231). Importantly, NOP-1 leads
to reduced ethylene sensitivity in various plants and has been
shown to delay tomato fruit ripening and carnation flower
senescence (121, 230). Also important is that it can achieve
these effects by surface application to the plants. Because the
NLS in EIN2s is conserved across many flowering ornamental
species (229), it is very likely that NOP-1 and derivatives will be
effective at blocking ethylene responses in most, if not all, plants
used in agriculture and horticulture.

There is also interest in applying ethylene or ethylene
response agonists to open fields. Even though this may seem
counterintuitive because of the adverse agricultural effects this
could have (such as increased senescence and abscission), there
is strong interest in such compounds as a way to control para-
sitic weeds, such as species of Striga. Striga is an obligate para-
sitic plant that is estimated to cause billions of dollars of crop
damage annually and can result in 100% crop loss in many parts
of sub-Saharan Africa (232, 233). Striga germinates when other
plants germinate nearby, and one of the major cues for this is
ethylene produced by the host plant, although it is unclear
whether this is true for all parasitic weeds (234 —240). A strategy
being explored to control this weed is to stimulate seed germi-
nation in the absence of a host in a process termed suicidal
germination, because the parasite cannot survive without a host
plant (233, 235, 238, 241-244}. Ethylene gas was successfully
used for this purpose in the United States in the 1960s, where
soil contaminated with Striga seeds was fumigated with ethyl-
ene to stimulate germination of the Striga seeds in the absence
of a host needed for survival (235), This has also been shown to
work to varying degrees in Africa (245, 246). Unfortunately,
fumigating with ethylene is not a good solution in sub-Saharan
Africa where this weed is a severe problem, because the farmers
cannot afford the expensive equipment needed for fumigating
soil. Therefore, alternative, less expensive, and more easily
deployed approaches need to be developed. One approach that
was developed is the use of ethylene-producing bacteria to
stimulate germination of Striga (247). Alternatively, application
of ethylene-releasing agents or compounds that stimulate eth-
ylene biosynthesis by Striga seeds have been shown to increase
Striga seed germination (239, 248, 249). However, these
approaches are either cost-prohibitive or less effective, so low-
cost and effective measures still need to be developed to control
parasitic weeds.

Conduding remarks

The details about ethylene signal transduction provided in
this review illustrate that we now know many important aspects
of how plants perceive ethylene. This includes a new apprecia-
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tion that the ethylene receptors signal via alternative pathways,
in addition to the canonical pathway that was originally delin-
eated in genetic screens. Nonetheless, there are clearly gaps in
our understanding of this pathway with unanswered questions,

Despite decades of research on the ethylene receptors, it is
still not known what conformational changes occur when the
receptors bind ethylene and what enzymatic activity or recep-
tor-protein interaction is modulated by this binding event.
Determining the output of the receptors is complicated by the
fact that the receptor isoforms have both overlapping and non-
overlapping roles, indicating that output from the receptors is
not entirely redundant. We also do not know whether we have
uncovered all instances of cross-talk from the receptors to
other pathways, and we still lack fundamental details about the
cross-talk that has been discovered. These details may prove
crucial to develop better-targeted control of ethylene re-
sponses. Despite recent advances in understanding EIN2, there
are still open questions about this protein: What is the role of
the N-terminal, transmembrane portion of EIN2? What addi-
tional roles does EIN2-C have? Given that EIN2 is a central
regulator for ethylene signal transduction, such details are also
important as we develop new methods of controlling ethylene
responses. It is clear that transcriptional regulation by applica-
tion of ethylene is influenced by environmental conditions. Thus,
there is still a great deal we need to examine regarding transcrip-
tional networks that are influenced by ethylene and the factors that
affect these networks. Without this information, targeting specific
transcription factors may have unintended outcomes, depending
on environmental conditions.

No doubt, as we obtain answers to these and other questions,
we will develop new methods to control responses to ethylene
for agricultural and horticultural uses that will have fewer
unwanted, off-target effects that decrease plant vigor and post-
harvest storage. Such an improvement in methods will require
more specific targeting (with either chemicals or genetic mod-
ification) that will only come with further research on this
pathway.
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