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Abstract—Simulation based scientific applications generate increasingly large

amounts of data on high-performance computing (HPC) systems. To allow data to

be stored and analyzed efficiently, data compression is often utilized to reduce the

volume and velocity of data. However, a question often raised by domain scientists

is the level of compression that can be expected so that they can make more

informed decisions, balancing between accuracy and performance. In this letter,

we propose a deep neural network based approach for estimating the

compressibility of scientific data. To train the neural network, we build both general

features as well as compressor-specific features so that the characteristics of both

data and lossy compressors are captured in training. Our approach is

demonstrated to outperform a prior analytical model as well as a sampling based

approach in the case of a biased estimation, i.e., for SZ. However, for the unbiased

estimation (i.e., ZFP), the sampling based approach yields the best accuracy,

despite the high overhead involved in sampling the target dataset.

Index Terms—High-performance computing, data reduction, deep learning

Ç

1 INTRODUCTION

SIMULATION based scientific applications generate increasingly
large amounts of data on high-performance computing (HPC) sys-
tems. To dramatically reduce the storage footprint and allow data
analysis to be done more efficiently, data compression is often uti-
lized to reduce the volume and velocity of data prior to data at
rest. Recent effort in lossy compression managed to achieve much
higher compression ratios than lossless compression by allowing
for controlled information loss. Nevertheless, the performance out-
come of lossy compression is highly variable, and is shown to be
both data and compressor dependent. As a result, a question often
raised by domain scientists is the level of compression that can be
expected for a given error tolerance so that they can make more
informed decisions, balancing between accuracy and performance.
Unfortunately, without testing compression on the data, which is
computationally expensive for large datasets, it is often hard to
give a quantitative answer even for compressor developers. In this
paper, we aim to address the challenge of estimating the compress-
ibility of scientific datasets leveraging deep neural networks, and
make comparisons with a gray-box analytical model and a sam-
pling based approach.

For the deep learning based approach, the idea is to train a deep
neural network with a set of features that captures the characteris-
tics of both data and compressor, and learn the intrinsic relation-
ships between features and compression performance. In
particular, we extract two types of features that impact the overall
compression performance: 1) the statistics of data to measure
the smoothness of data, a primary indicator of compressibility
(Section 3.2.1); 2) compressor related features to capture the inner
mechanisms that a compressor takes to reduce data. This is driven

by the fact that loss compressors are designed differently. For
example, ZFP [1] uses a transformation based method to discard
high-frequency components followed by the embedded encoding,
while SZ [2] is based upon curve-fitting and Huffman tree encod-
ing. These differences in design lead to the discrepancy in the per-
formance outcome among compressors, and therefore need to be
accounted for in the performance estimation. In particular, we cap-
ture hit ratio, quantization intervals, Huffman tree related features
for SZ, and bits per bitplane and maximum precision for ZFP
(Section 3.2.2).

This work further compares the deep learning based approach
with a gray-box analytical model [3], which extrapolates the com-
pression ratio from a base error bound (e.g., 10�9) to a target error
bound for a given dataset. In particular, the idea is to collect the
distribution of compression features, and use the similarity of these
features across error bounds to further derive the compression
ratios. Meanwhile, as a baseline, we also obtain the compression
ratios using a sampling based approach [4]. The major contribu-
tions of this paper are as follows:

� This paper is among the first to use deep learning to under-
stand HPC performance, particularly that of data reduc-
tion. In particular, we have shown that when compressor
related features are incorporated in training, the prediction
performance can be significantly improved.

� Overall, the analytical model achieves the worst perfor-
mance, as a result of the approximation of compression
features across error bounds. For the sampling based esti-
mation, if it is a biased estimation due to the lack of the
bounded locality (e.g., SZ) [4], the deep model outperforms
the sampling based approach. In contrast, for an unbiased
estimation (e.g., ZFP), the sampling based approach
achieves the best accuracy, despite that sampling needs to
be done on a per dataset basis.

The remainder of this paper is organized as follows. Section 2
provides the background and motivation. Section 3 presents the
design of compressibility estimation using deep neural networks,
with a focus on extracting meaningful features that will be used for
training. Section 4 discusses the evaluation results, along with con-
clusions in Section 5.

2 BACKGROUND AND MOTIVATION

2.1 Background

Data Reduction. Data reduction is deemed to be an integral step in
scientific processes to bridge the gap between compute and I/O,
and allow science to be done within the resource constraints.
Depending on whether there is information lost during the process,
data reduction is generally categorized into lossless compression,
such as FPC [5], GZIP [6], and lossy compression, such as ZFP [1]
and SZ [2]. In particular, ZFP partitions data into blocks, with each
block converted into a set of floating-point mantissas along with a
common exponent. Next, the floating-point mantissas are con-
verted to fixed-point values and then taken into a reversible
orthogonal transformation, resulting in the transform coefficients
that are highly compressible. Meanwhile, SZ is based upon a
hybrid Lorenzo curve-fitting scheme. For those data points that are
curve hit, they will be further quantized and encoded using Huff-
man tree. For those that are curve missed, binary representation
analysis is used to further compress the data.

Deep Neural Network. A deep neural network typically consists
of many layers of non-linear functions in order to learn the com-
plex structure and pattern from large datasets [7]. It is commonly
used in both classification and regression. The former is to deter-
mine the category that a new sample belongs to, based upon the
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knowledge of existing samples, whereas the latter is interested in
the continuous decisions, e.g., the compression ratios in the context
of this paper. In each layer, the output of a neuron is a weighted
sum of its input values and bias, transformed by a non-linear acti-
vation function (e.g., Relu). A neural network tunes its parameters,
i.e., weights and bias, by minimizing the cost function (e.g., root
mean square error) that measures the error between the output val-
ues and the desired values. The error is further backpropagated
through the network and the direction with gradient descent will
be explored to reduce the error.

2.2 Motivation

The performance outcome of scientific data compression is highly
variable across compressors and datasets. Fig. 1 shows the com-
pression ratios across 9 datasets for both ZFP and SZ. As a result, it
is beneficial to understand the compression performance prior to
the run, so that domain scientists can make more informed deci-
sion—they may forgo the compression completely if the compres-
sion ratio is too low. Due to the space constraint, interested readers
are referred to our prior work [4] for the details of these datasets.

In our recent work [4], we use the compression ratio of sampled
data to extrapolate that of the full data, inspired by the fact that the
sample data and full data maintain highly similar characteristics.
Despite the good accuracy achieved by this approach, it involves
substantial sampling overhead on a per dataset basis. In compari-
son, this work only takes features, which are substantially smaller,
as input to the neural network for estimation. In addition, the pre-
vious approach is a white-box approach and needs to model the
sophisticated inner mechanisms of a compressor, while this work
is overall a gray-box approach that requires limited knowledge of
the compressor itself.

In our recent work [3], we developed an analytical model to
achieve the cross error bound prediction from a base error bound
to a target error bound. A key observation that enables this estima-
tion is the statistical similarity of compression features (e.g., Quan-
tInterval) across error bounds. In our experiments, we set the base
error bound to 10�9 and use the distribution of compression fea-
tures at the base to extrapolate the compression ratios at other error
bounds. While this approach does not involve sampling or train-
ing, the estimation is relatively inaccurate, as shown later, since the
goal is limited to understanding the overall trend, as opposed to
the individual compression ratios.

3 DESIGN

3.1 Goal

In this paper, we aim to use deep learning to understand and predict
the compressibility of a dataset for a given lossy compressor. Our
goal is twofold: 1) compressibility classification, where we classify a
dataset into either compressible or incompressible. In particular, if
the compression ratio achieved is higher than a prescribed thresh-
old, we label the dataset as compressible. Otherwise, it is labeled as
incompressible. 2) compression ratio regression, where we aim to esti-
mate the compression ratio through learning the non-linearity of
lossy compression. This is motivated by the need to understand the

trade-off between compression ratio and error tolerance. For exam-
ple, it would be very appealing for a user to relax the error tolerance,
if the compression ratio can be drastically improved. Note that we
take features of the target data as input to the deep neural network
in order to make estimation, and thus this work allows one to
dynamically select the compressor (SZ or ZFP) that achieves a
higher compression ratio on a per dataset basis, similar to prior
work [8].

3.2 Feature Extraction

In this section, we discuss the the rationale behind the features that
are selected for training. Overall the features include both general
features as well as compressor-specific features, with the former
capturing the data characteristics as well as the compression param-
eters, while the latter capturing the inner mechanisms used for
compression.

3.2.1 General Features

For lossy compressors, error bound is a key parameter that affects
the outcome of compression. Intuitively, the looser the error bound
is, the larger the compression ratio will be, despite that the counter-
intuitive cases were also occasionally observed [4]. In order to
choose a set of error bounds covering the full range of a dataset
without bias, we use the relative error bound in this paper. Note
that since the native ZFP only supports the absolute error bound
from the library interface, we use the product of the relative error
bound and the root mean square (RMS) as the input to ZFP when
measuring the real compression ratio [3].

Meanwhile, it is evident that data characteristics also play an
important role in data compression—a smoother dataset is in gen-
eral more compressible than a dataset that fluctuates. Here we com-
pute simple statistics to reflect data characteristics, including mean,
variance, standard deviation, quartiles, as well as histograms, for
this purpose.

3.2.2 Compressor-Specific Features

As shown in Fig. 1, the compression performance is highly depen-
dent on the compressor chosen. For example, ZFP is block trans-
form based compression and uses the embedded encoding for each
bit plane, while SZ is based upon curve-fitting and Huffman tree.
Therefore, features that capture how a compressor reacts to a data-
set also need to be incorporated into training. Note that, to reduce
the cost of feature extraction, we only build these features from
sampled datasets, e.g., 10 percent of the original data. We next dis-
cuss the features we build for ZFP and SZ, respectively.

BitsPerBitplane and MaxPrec (ZFP). ZFP partitions data into
blocks, and for each block, it uses a reversible orthogonal transfor-
mation, such as discrete cosine transform (DCT), to generate near-
zero transform coefficients for each data point, which leads to
higher compressibility. To achieve different levels of precision,
compression is done on a per bit plane basis using embedded
encoding. The less the number of bit planes, the lower the precision
is. In particular, BitsPerBitplane is the average number of bits in a
bit plane after encoding, and MaxPrec is the number of bit planes
to be encoded.

HitRatio (SZ). In contrast, SZ was developed around the idea of
curve-fitting and entropy encoding. For curve-fitted data points,
quantization and Huffman tree encoding are utilized, motivated
by the observation that after quantization, duplicated quantization
intervals can occur, which can be well compressed by Huffman
tree. Meanwhile, for curve-missed points, binary representation
analysis is further conducted for compression. As observed by our
previous work [4], most of the compression performance is contrib-
uted by curve-fitting, and as such, HitRatio, defined as the ratio of

Fig. 1. Compression ratios across datasets. Note that the relative error bound is
set to 10�3, and the scales of ZFP and SZ differ.
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the number of points that can be curve-fitted to the total number of
points, is a key indicator for compression performance.

QuantInterval (SZ). QuantInterval is used to measure the number
of quantization levels used by SZ for curve-fitted points. The larger
the error bound is, the smaller the QuantInterval will be, thus the
higher chance that two data points fall into the same quantization
level. After entropy encoding, each quantization level is mapped to
one Huffman tree node and further encoded.

NodeCount, EncodeSize, and TreeByteSize (SZ). During the entropy
encoding for the curve-fitted points, the total number of Huffman
tree nodes is denoted by NodeCount and the total tree size is TreeBy-
teSize. The resulting data size is denoted by EncodeSize.

4 EVALUATION

We use TensorFlow (1.11.0) and Keras (2.2.4) as the programming
environment for training and prediction. To obtain sufficient train-
ing data, we vary the relative error bound from 10�9 to 10�1 for both
ZFP (0.5.0) and SZ (1.4.9), and collect all features from 22 different
datasets spanning across 14 applications. For binary classification,
we empirically select the threshold of ZFP and SZ to be the median
compression ratios of all datasets. More statistics of the datasets
used for training and testing can be found in Tables 1 and 2, respec-
tively. Note that the training and testing datasets can overlap over a
particular application. The more complex cross-application estima-
tion is left for future study, which will result in relatively lower

accuracy and higher RMSE, because the training will not fully cap-
ture the characteristics of the target applications.We utilize a simple
fully connected neural network with three hidden layers, with Relu
being the activation function. This setup achieves the best training
accuracy, as compared to other configurations of the neural net-
works, and therefore is chosen. More details regarding the neural
network can be found at this URL.

We first evaluate the training and testing accuracy for both
binary classification and regression in Figs. 2 and 3, respectively.
The overall trend is that the accuracy improves with the number of
iterations, illustrating that patterns do exist in compression and can
bewell learned by the neural network. The testing accuracy of using
the general features reach as high as 94.83 and 87.47 percent for ZFP
and SZ, respectively. By further incorporating compressor related
features, the accuracy can be substantially improved up to 98.86 and
97.01 percent, respectively. A key finding of this result is that,
despite that these compressor-specific features are collected from a
small sample (e.g., 10 percent) of the full data, they are sufficient to
capture the compressor characteristics and can dramatically
improve the accuracy. On the other hand, the training and testing
accuracy of SZ are lower than those of ZFP under the same settings.
The reason is the effectiveness of learning heavily depends on the
training data. Intuitively, themore statistically rich the training data
are, the better the results will be. We define the statistical richness as
the ratio of the number of training datasets and the compression
ratio range. In particular, the statistical richness of ZFP and SZ train-
ing datasets are 23.42 and 7.82, respectively. As a result, the neural
network can learn more effectively for ZFP than for SZ. Similar
results are observed for regression in Fig. 3.

In Fig. 4, we further compare the outcome of using the neural
network with the analytical model as well as the sampling based
approach. In Fig. 4a, it is shown that the sampling based estimation
achieves the best performance for ZFP, since the compression ratio
of sampled data is an unbiased estimation for that of the full data,
as theoretically proved in our prior work [4]. Meanwhile, the ana-
lytical model yields the highest RMSE due to the error of BitsPerBit-
plane across error bounds. For SZ estimation in Fig. 4b, using the
deep model with general features achieves the highest RMSE.
However, after compressor-specific features are incorporated into

TABLE 1
Description of Training/Testing Datasets (ZFP).

Problem Purpose # of Compressible # of Incompress.

Classification Train 648 402
Test 167 97

Problem Purpose Min Max

Regression Train 0.97 35.77
Test 0.97 25.66

TABLE 2
Description of Training/Testing Datasets (SZ).

Problem Purpose # of Compressible # of Incompress.

Classification Train 617 318
Test 153 82

Problem Purpose Min Max

Regression Train 1.29 99.74
Test 1.29 99.38

Fig. 2. Binary classification. The notation ofGen. indicates that the general features
are incorporated in training and testing, whereas CS denotes compressor-specific
features are further included, followed by the sampling method annotated in
the bracket. In particular, chk and blk denote the sampling granularity of chunk (40
floating-point numbers) and block (4), respectively. The suffix rand and intv denote
the random and interval sampling, respectively. For example, Gen.+CS (chk-rand)
indicates that both general and compressor-specific features of ZFP are used, and
the sampling is chunk-based random sampling.

Fig. 3. Regression.

Fig. 4. Compressor ratio estimation. The legend analytical denotes the analytical
model, while the legend of sampling denotes the compression ratio measured on
the sampled (10%) data. The compression ratio predicted by the deep neural
network is denoted as deep model. Note that the resulting RMSE is calculated
across all 22 testing datasets.
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training, the performance is substantially improved, and interest-
ingly outperforms the sampling based estimation, which is proved
to be a biased estimation toward that of the full data for SZ [4]. To
further understand the performance, we list the real compression
ratios and the predictions for the blast2_p dataset in Table 3. The
analytical model consistently under-estimates the compression
ratio and the magnitude of error increases with the error bound.
The estimation error comes primarily from the over-estimation of
BitsPerBitplane. As the block size can be estimated by multiplication
of estimated BitsPerBitplane and MaxPrec, an over-estimated Bit-
sPerBitplane will result in an over-estimated block size, and in turn
under-estimate the compression ratio.

5 CONCLUSION

In this paper, we propose a deep neural network based method for
estimating the compressibility of scientific data. In particular, we
build a set of features to capture both data and compressor chara-
cteristics to train a deep neural network for both classification and
regression. It is shown that compressor-specific features can dramat-
ically improve the accuracy of training and testing for two leading
lossy compressors, ZFP and SZ.We further compare the deep neural
network model with two other compression estimation schemes to
understand their pros and cons. The results show that the deep
model consistently outperforms the analytical model, as well as the
sampling based approach in the case of a biased estimation.

ACKNOWLEDGMENTS

This work was supported by the US NSF under Grant No.
CCF-1718297, CCF-1812861, and NJIT Research Startup Fund.

REFERENCES

[1] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Trans.
Vis. Comput. Graphics, vol. 20, no. 12, pp. 2674–2683, Dec. 2014.

[2] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2016, pp. 730–739.

[3] J. Wang, T. Liu, Q. Liu, X. He, H. Luo, andW. He, “Compression ratio model-
ing and estimation across error bounds for lossy compression,” IEEE Trans.
Parallel Distrib. Syst., to be published, doi: 10.1109/TPDS.2019.2938503.

[4] T. Lu et al., “Understanding and modeling lossy compression schemes on
HPC scientific data,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2018,
pp. 1–10.

[5] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor for
double-precision floating-point data,” IEEE Trans. Comput., vol. 58, no. 1,
pp. 18–31, Jan. 2009.

[6] J.-L. Gailly, “Gzip: The data compression program,” 2016. [Online]. Available:
https://www.gnu.org/software/gzip/manual/gzip.pdf

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,
USA: MIT Press, 2016.

[8] Y. Wiseman, K. Schwan, and P. Widener, “Efficient end to end data exchange
using configurable compression,” in Proc. 24th Int. Conf. Distrib. Comput. Syst.,
2004, pp. 228–235.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TABLE 3
Compression Ratio Prediction of Blast2_p (ZFP).

Err bound Real
Analytical Sampling Deep model

Value Err% Value Err% Value Err%

10�9 3.56 2.78 �21.91 3.55 �0.28 4.26 19.66
10�8 4.06 3.03 �25.37 4.08 0.49 4.62 13.79
10�7 4.54 3.33 �26.65 4.53 �0.22 4.89 7.71
10�6 5.15 3.69 �28.35 5.14 �0.19 5.05 �1.94
10�5 6.27 4.14 �33.97 6.30 0.48 6.51 3.83
10�4 7.50 4.72 �37.07 7.49 �0.13 6.79 �9.47
10�3 12.03 5.49 �54.36 12.00 �0.25 9.52 �20.86
10�2 15.18 6.55 �56.85 15.13 �0.33 12.96 �14.62
10�1 18.88 8.12 �56.99 18.82 �0.32 17.85 �5.46
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