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Identifying the features of population responses that are relevant to the amount of information encoded by neuronal populations is a
crucial step toward understanding population coding. Statistical features, such as tuning properties, individual and shared response
variability, and global activity modulations, could all affect the amount of information encoded and modulate behavioral performance.
We show that two features inparticular affect information: themodulationof population responses across conditions (population signal)
and the inverse population covariability along themodulation axis (projected precision). We demonstrate that fluctuations of these two
quantities are correlated with fluctuations of behavioral performance in various tasks and brain regions consistently across 4 monkeys
(1 female and 1maleMacacamulatta; and 2maleMacaca fascicularis). In contrast, fluctuations inmean correlations amongneurons and
global activity have negligible or inconsistent effects on the amount of information encoded and behavioral performance. We also show
thatdifferential correlations reduce the amountof informationencoded in finitepopulationsby reducingprojectedprecision.Our results
are consistent with predictions of a model that optimally decodes population responses to produce behavior.
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Introduction
Identifying the statistical features of neuronal population re-
sponses that affect the amount of encoded information and be-

havioral performance is critical for understanding neuronal
population coding (Arandia-Romero et al., 2017; Panzeri et al.,
2017). Changes in network states, such as global modulations of
activity (Harris and Thiele, 2011; Luczak et al., 2013; Gutnisky et
al., 2017), as well as changes in correlated noise among neurons,
have been shown to constrain the amount of information en-
coded by neuronal populations (Zohary et al., 1994; Ecker et al.,
2014; Lin et al., 2015; Schölvinck et al., 2015). Indeed, it has been
suggested that changes in neuronal tuning, global activity modu-
lations, and noise correlations affect behavioral performance in cer-
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Significance Statement

The last two or three decades of research have seen hot debates about what features of population tuning and trial-by-trial
variability influence the information carried by a population of neurons, with some camps arguing, for instance, that mean
pairwise correlations or global fluctuations are important while other camps report opposite results. In this study, we identify the
most important features of neural population responses that determine the amount of encoded information and behavioral
performance by combining analytic calculations with a novel nonparametric method that allows us to isolate the effects of
different statistical features. We tested our hypothesis on 4 macaques, three decision-making tasks, and two brain areas. The
predictions of our theory were in agreement with the experimental data.
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tain conditions (Cohen and Newsome, 2008; Cohen andMaunsell,
2009; Mitchell et al., 2009; Gu et al., 2011; Verhoef and Maunsell,
2017; Ni et al., 2018). Additionally, theoretical studies have deter-
mined the exact pattern of noise correlations that limit the amount
of encoded information for very large neuronal populations, so-
called differential correlations (Moreno-Bote et al., 2014; Kanitsc-
heider et al., 2015). However, the aspects of neuronal responses that
most directly affect the amount of encoded information for finite
neuronal populations are not clear because experimental designs
often do not allow control over other statistical features that could
potentially be involved. Furthermore, it is unknown whether the
samefeaturesofpopulationresponsesthataffecttheamountofencoded
information also impact behavioral performance (Arandia-Romero et
al., 2017; Panzeri et al., 2017).

In a population of N neurons, it is possible to define Nmean
firing rates, N(N � 1)/2 independent covariances, as well as fea-
tures based on combinations of these quantities. What statistical
features matter the most for encoding information? Do these
same features also affect behavioral performance? To address
these questions, we characterized the amount of encoded infor-
mation and behavioral performance in three different tasks based
on responses of multiple neurons recorded simultaneously in
macaque monkeys. We examined neurons recorded in two dif-
ferent brain areas: the middle temporal area (MT), and area 8a in
the lateral prefrontal cortex (LPFC).We developed a conditioned
bootstrapping approach that allowed us to determine the features
of neuronal population responses that influence the amount of
information encoded and behavioral performance by generating
fluctuations of one feature while keeping the other features
constant. Using this approach, we found that the amount of in-
formation encoded in neuronal ensembles was primarily deter-
mined by two features: (1) the length of the vector joining the
mean population responses in different experimental conditions
(referred to here as population signal [PS]); and (2) the inverse
population covariability projected onto the direction of the PS
vector (projected precision [PP]). Contrary to previous sugges-
tions (Zohary et al., 1994; Kanitscheider et al., 2015; Lin et al.,
2015; Ecker et al., 2016; Gutnisky et al., 2017), other statistical
features, such as mean pairwise correlations (MPC) and global ac-
tivity (GA) modulations, did not affect the amount of information
encoded when PS and PP were kept constant. Strikingly, we also
found that PS and PP are predictive of behavioral performance,
whereasMPC and GA are not.

We show that MPC and GA are correlated with, and thus
confoundedwith, PS andPP. This can explainwhyprevious stud-
ies report that changes in MPC (Zohary et al., 1994; Mitchell et
al., 2009; Ecker et al., 2010; Renart et al., 2010; Gu et al., 2011; Ni
et al., 2018) or GA (Kanitscheider et al., 2015; Lin et al., 2015;
Ecker et al., 2016; Gutnisky et al., 2017) modulate the amount of
information encoded and behavioral performance, as those ef-
fects may have been due to concomitant changes in PS and PP,
not MPC or GA per se. Finally, we link our results with previous
theoretical work by showing that PP is reduced when differential
correlations are added into the system. Our results are broadly
consistent with predictions of a model that optimally decodes
population responses to produce behavior.

Materials andMethods
Theoretical expression for the amount of encoded information
Theoretical decoding performance (DP) for an arbitrary linear classifier. If
we assume that the activity of a neuronal population r (N neurons)

follows a multivariate Gaussian distribution, the covariance matrix for r
is stimulus-independent, the probability of presenting condition 1 is
same as presenting condition 2 �p�C1� � p�C2� � 0.5�, and the classi-
fication is based on a linear projection of r onto a scalar variable
z � �Tr � �0 (linear classifier) (see Fisher, 1936), then the performance
of the linear classifier can be expressed as follows:

DP � �� 12 �T�f

��T��
� (2)

where �f � �1 � �2, �1 � ��r � C1	, �2 � �[r � C2], � � �[(r � �1)
�r � �1�

T � C1] � �[(r � �2)�r � �2�
T � C2], �� � � is the cumulative

Gaussian function and DP is the decoding performance. This expression
gives the percentage of correct classifications (i.e., DP) that would be
achieved by a linear classifier that reads out from a neuronal ensemble using
an arbitrary set of weights, �.
Theoretical DP for the optimal linear classifier. By optimizing Equation

2 with respect to �, we find that �opt
��1�f, which corresponds to the
solution for the linear discriminant analysis (LDA) (Fisher, 1936). We
can substitute � for �opt in Equation 2 to find the DP for the optimal
classifier:

DP � �� 12 ��fT��1�f�. (3)

The term inside�� � � is known as d� � ��fT��1�f (Averbeck and Lee,
2006; Chen et al., 2006). It is a scalar quantity; therefore, it remains
invariant under unitary rotations of the reference frame. By rotating the
original neuron-based orthogonal basis so that � (and thus ��1) be-
comes diagonal, we can express Equation 3 as follows:

DP � �� 12��f���i
1

N cos2�̂i

�̂i
2 �. (4)

For a similar derivation in the case of linear Fisher information, see
Moreno-Bote et al. (2014). The first term, ��f�, which we will refer to as
population signal (PS), is the norm of the stimulus tuning vector �f. It
measures the overall modulation of the activity of the neuronal popula-
tion as a function of the stimulus conditions. The second term,

��i � 1
N

cos2�̂i

�̂i
2 , which wewill call projected precision (PP), is a function

of �̂i, the angle between the i-th eigenvector of the covariance matrix �

and the direction of the stimulus tuning vector u�f �
�f

��f�, and �̂i
2, the

i-th eigenvalue of the covariance matrix (Fig. 1A,B). Thus, PP is the
square root of the sum of squares of the eigenvalues of the precision
matrix (inverse of the noise covariance matrix, �) projected onto the
direction u�f. This rotation allows us to dissect the independent con-
tributions of population tuning (first-order statistics) and trial-by-
trial variability (second-order statistics) to the amount of
information encoded by a neural population, which is not possible
with the standard factorization of d� into signal and noise compo-
nents (see Discussion).
Theoretical DP for shuffled neuronal recording data. Trial shuffling is a

commonly used technique to destroy the trial-by-trial shared fluctua-
tions among neurons while preserving their mean firing rate to different
experimental conditions. To understand the effects of noise correlations
on DP, it is useful to derive theoretical expressions of DP for shuffled
data. Shuffling the activity of single neurons across trials for a fixed
stimulus condition transforms the covariance matrix � into �sh (Aver-
beck et al., 2006), which is only approximately diagonal due to finite
data size effects. The theoretical expression of DP for the shuffled data
is given by:

DP � �� 12 �T�f

��T�sh�
�. (5)

The optimal classifier is therefore�opt 
 �sh
�1�f, and Equation 4 becomes:
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DP � �� 1
2

��f���i
1

N
cos2�i

�i
2 �. (6)

In this expression, PS remains the same as in
Equation 4, whereas the PP for the shuffled

data becomes ��i�1
N

cos2�i

�i
2 , where �i

2 is the

variance of the response of each neuron and �i

is the angle between the stimulus tuning axis
u�f and each vector of the neuron-based or-
thogonal basis defining the original
N-dimensional space of the neuronal activity.
The above equation can also be expressed as
follows:

DP � �� 12��i
1

N ��fi�
2

�i
2 �, (7)

where ��i�1
N

��fi�
2

�i
2 can be understood as the

square root of the sum of the signal-to-noise
ratio of all neurons in the ensemble (Seung and
Sompolinsky, 1993).
Theoretical DP under suboptimal readouts.

Here, we derive theoretical expressions of DP
for two suboptimal classifiers: one blind to re-
sponse variability and another blind to pair-
wise correlations (Pitkow et al., 2015).

The variability-blind classifier takes into ac-
count the neuronal tuning, but it is blind to any
elements of the covariance matrix (i.e., it con-
siders the covariancematrix to be proportional
to the identity matrix). Thus, the readout
weights for this classifier are given by � 
 �f.
Introducing this expression into Equation 2,
we find the following:

DP � �� 12 ��f�

��i
1

N
�̂i
2cos2�̂i

�, (8)

where �̂i
2 and �̂i are as defined previously. The

variability-blind classifier is directly related to
the “axis of discrimination” framework and as-
sociated d� measure previously proposed (Co-
hen and Maunsell, 2009). In this framework,
the axis of discrimination becomes precisely
the difference in means vector �f, which cor-
responds to a suboptimal readout direction
that ignores both the shared and individual
trial-by-trial variability of the population.
The variability-blind PP is defined as follows:

� �i
1

N
�̂ i

2cos2�̂i��
1

2

which is a lower bound on the real population’s PP. As shown in Fig. 1-1
(available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.
f1-1), the analytical expression for encoded information based on the
variability-blind classifier performs more poorly than the theoretical DP
obtained using the full covariance matrix. Moreover, the degree of sub-
optimality of the variability-blind classifier grows with neural ensemble
size.
The correlation-blind classifier (Pitkow et al., 2015) only takes into

account the signal-to-noise ratio of each neuron and ignores pairwise
correlations among the neuronal ensemble (i.e., the off-diagonal
terms in the covariance matrix are 0). The set of weights for this

classifier, then, is given by �i 

�fi
�i
2 , which can also be written as

� 
 �sh
� 1�f. By substituting this expression into Equation 2, we

obtain the following:

DP � �	 12��f�
�i
1

N
cos2�i

� i
2

��i
1

N
cos2�̃i

�̃ i
2

, (9)

where � i
2 and �i are as defined earlier and �̃i

2 and �̃i correspond to the
i-th eigenvalue and the angle between u�f and the i-th eigenvector of the
matrix �sh

� 1��sh
� 1, respectively. The correlation blind classifier, though

suboptimal for correlation-intact data, is optimal for shuffled data from
which pairwise correlations have been removed. As in the variability-
blind case, PS is equivalent to that for the optimal case, while the

A

C

B

Figure 1. The information encoded by a neuronal ensemble is fully characterized by population signal (PS) and projected precision
(PP). A, The trial-by-trial joint activity of a network consisting of N neurons can be characterized by an ellipsoid embedded in an
N-dimensionalspace(arepresentativepopulationof twoMTneuronsfromMonkey4isshownhere;seeFig.2; seeMaterialsandMethods).
The covariancematrix andmeanactivity of the population determine the shape and location of the ellipsoids corresponding to stimulus 1
(s1;green)andstimulus2 (s2;blue). The linear classifier is characterizedbya linearboundary that separates the twocloudsofpointsaswell
as possible (red line). The difference in mean value for the decision variable z and its SD are represented by��z and�z, respectively
(signal-to-noiseratioofd�).B,GraphicaldepictionofPSandPP.PSisdefinedasthenormofthetuningvector,�f,whichcorrespondstothe
distancebetween themean responses associatedwith s1 andwith s2 (distancebetween the centers of thegreenandblueellipsoids). PP is
calculated fromtheangles (�̂i) betweeneacheigenvector of the covariancematrix and the tuning vector (�f ) (orientationof eachaxis of
the ellipsoid with respect to�f ) as well as from their eigenvalues (�̂i

2; length of each axis). Greater information is encoded when the
longest axis of the ellipsoidbecomesorthogonal to thedirectionof�f.Meanpairwise correlations (MPC) is definedas themeanacross all
neuronal pairs of the trial-by-trial covariability (Pearson correlation) for a given set of trials. Global activity (GA) is defined as the mean
activityacrosstrialsneuronsandneuronsforasetoftrials.C,Wheninformation-limitingcorrelationsareaddedintothesystem,theamount
of encoded information is harmeddue to a reductionof PP. BecausePSaccounts for the contributionof thepopulation tuningonencoded
information, it isnotaffectedbythepresenceof information-limitingcorrelations.Themagnitudeof thereduction inPPwilldependonthe
strength of information-limiting correlations (	), the sensitivity of the population tuning to stimulus changes (�f��2), and PP without
information-limiting correlations (PP0) (see Materials and Methods). See also Figure 1-1 (available at https://doi.org/10.1523/
JNEUROSCI.0859-19.2019.f1-1), Figure 1-2 (available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-2), and Figure 1-3 (avail-
able at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-3).
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correlation-blind PP becomes

�i�1
N

cos2�i

�i
2

��i � 1
N

cos2�̃i

�̃i
2

, which is also a lower

bound on the true PP of a population of neurons.
Relationship to information-limiting correlations (differential correlations).

There is a well-known characterization of the type of correlations that limit in-
formation in large neuronal populations, the so-called differential correlations
(Moreno-Bote et al., 2014; Kanitscheider et al., 2015). The fundamental dif-
ference between the formulation of differential correlations and our ap-
proach is that the expression for differential correlations applies to
correlations that limit information in very large neuronal populations
(N ¡ �), while the statistical features PS and PP are guaranteed, under
some assumptions, to be the only features that affect information for
finite neuronal populations (N 
 �).However, as information-limiting
correlations can also have an impact on the amount of encoded informa-
tion for finiteN, we examine in detail the relationship between these two
approaches.
As described above, the task of our binary classifier is to assign one

of two possible labels to a multidimensional pattern of activity. In
most experimental situations, the two discrete labels are just partic-
ular instances of a continuous variable. For example, the direction of
motion is a continuous variable, but the subject may be asked to discrimi-
nate between two particular directions (e.g., left vs right) in a motion dis-
crimination task. Although we may measure neuronal activity only for
particular valuesof a stimulus variable s (e.g., s1 and s2; �s � �s1 � s2�), the
population tuning curve, f, is a continuously varying function of s, f(s).
Differential correlations (Moreno-Boteetal., 2014)aredefinedasa rank-one
perturbation of the covariance matrix along the f�(s) direction:

� � �0 � 	f�f�T (10)

where 	 is the strength of the differential correlations,
df(s)

ds
� f��s� is the

derivative of the tuning curves, and �0 is the covariance matrix without
differential correlations. As we are interested in discrimination tasks for
which the stimulus categories are not contiguous, we take the approxi-

mation f�(s) �
�f

�s
for both stimulus conditions (Fig. 1C).

We can assess the impact of information-limiting correlations on the
amount of encoded information in a finite population of neurons by
directly inserting Equation 10 into Equation 2 to obtain the following:

DP � �� 12 �T�f

��T�0 � � 	��Tf�)2�. (11)

In general, the optimal classifier takes the form �opt 
 ��1 �f (see pre-

vious section). Under f�(s) �
�f

�s
, this optimal readout direction is par-

allel to the optimal readout direction in the absence of differential
correlations, �0,opt � �0

�1 �f (Moreno-Bote et al., 2014). However, as
we will see now, DP is strongly affected by the presence of differential
correlations. To see why, note that the amount of encoded information

when there are no differential correlations �	 � 0� is DP � ��12 d0��,
where d0� � ��fT�0

�1 �f. In contrast, with differential correlations, the
amount of encoded information is given by the following:

DP � �	
1

2

d0�

�1 �
	

�s2
d0�

2
. (12)

Therefore, when differential correlations are introduced into the system,

the original d�0 is reduced by a factor �1 �
	

�s2
d0�

2, and thus encoded

information is reduced. When the neuronal ensemble is very large
(N ¡ �), Equation 12 becomes the following:

DP � �� 12 �s

�	
� (13)

assuming that d�0 grows monotonically with N (this is the case if �0 does
not contain differential correlations). Therefore, nomatter how large the

neuronal population is, information is bounded by ��12 �s

�	
�.

To make more explicit the contribution of information-limiting cor-
relations, PS, and PP, we can rewrite Equation 12 as follows:

DP � �� 12 PS �
PP0

�1 � 	̃ � PP0
2� (14)

where PP0 is the PP evaluated using �0 instead of � and 	̃ � 	�f��2. The
larger the strength of information-limiting correlations (	), the larger the
decrease in encoded information in the neuronal population. In other
words, when information-limiting correlations are introduced into the
system, the statistical feature PS is not affected, whereas PP is reduced by
a factor �1 � 	̃ � PP0

2. The framework presented in this study is com-
plementary to the framework described byMoreno-Bote et al. (2014) by
showing that, in finite neuronal populations, the contribution of trial-
by-trial variability to encoded information is not necessarily dominated
by differential correlations.

Comparison between theoretical and cross-validated DP on
experimental data
We evaluated how well DP of the theoretical expression (DPth) agrees
with the DP of classifiers trained and tested on experimental data (DPcv).
We plottedDPth against DPcv and performed Type II regression (orthog-
onal linear regression) on the data. We assessed the similarity between
the two measures of DP by computing the percentage of the variance in
DPcv that can be explained by DPth as �1/��1 � �2� � 100, where �1

and �2 correspond to the variance captured by the first and second prin-
cipal components of the DPth versus DPcv plot, respectively. To account
for possible idiosyncrasies from choosing an LDA when evaluating DPcv
and possible overfitting on DPcv due to the limited number of trials in
our datasets, we also computed DPcv using logistic regression (LR) on
both the test and the training sets (Fig. 1-2, available at https://doi.org/
10.1523/JNEUROSCI.0859-19.2019.f1-2). In addition to the percentage
of explained variance as the goodness-of-fit metric for the linear fit (%
explained variance), we also considered the slope and intercept parame-
ters as complementary goodness-of-fit metrics (Fig. 1-2, available at
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-2) and obtained
very similar overall results.
We compared how well the optimal expression (Eq. 4) approximated

DPcv with respect to the suboptimal expressions for DPth (Eqs. 8, 9) by
plotting the ratio between the percentages of explained variance (Fig. 1-1A,
available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-1). We
performed the same analysis after shuffling across trials the activity of each
individual neuron for a given stimulus condition (Fig. 1-1B, available at
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-1). Finally, we com-
pared an LDA, a quadratic discriminant analysis (QDA), and an LR. Since
LDA performed the best among the three (Fig. 1-3, available at https://
doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-3), we chose LDA for com-
putingDPcv in all analyses presented here. For a detailed description of how
these fits were performed for each dataset, see Experimental design and sta-
tistical analysis.

Conditioned bootstrapping method
We performed an analysis based on bootstrapping to test the effects of
fluctuations in PS, PP, and other statistical quantities of neuronal
responses on the amount of encoded information (DPcv) and behav-
ioral performance. The conditioned bootstrapping method involves
two steps: (1) generating fluctuations in statistical quantities through
bootstrapping, and (2) conditioning by selecting bootstrap samples
that produce fluctuations in certain statistical features but not in
others.
For a particular set of trials (subdataset, see below), bootstrap samples

were generated by randomly selectingM trials (M being the total number
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of trials for this particular subdataset) with replacement. For each boot-
strap sample, we calculated the following quantities:

● Behavioral performance of the animal, denoted as B (see below for
the definition of behavioral performance in each task).

● Theoretical DP, DPth (Eq. 4).
● DP of a cross-validated linear classifier (LDA), DPcv.
● PS and PP.
● MPC, defined as the average of all pairwise response correlations
among neuron pairs for a fixed stimulus condition.

● GA of the neuronal population, defined as the mean neuronal activ-
ity across all neurons and trials.

We generated 2 � 104 bootstrap samples when analyzing behavior
(see Fig. 9) and 103 when analyzing DPcv (see Figs. 4, 6, and 8), as fitting
the classifier is computationally expensive. From this procedure, we ob-
tained a distribution of each quantity listed above. We will denote the
obtained value of the statistical feature i for the bootstrap iteration j as xij,
and the fluctuation of xij with respect to the median value of the distri-
bution across bootstrap iterations as 
xij � xij � x̃i, where x̃i denotes
the median of the distribution for that particular feature. We used the
median rather than the mean so that the method works just as robustly
for skewed distributions as for symmetrical distributions, although
strongly skewed distributionswere typically not observed (see Fig. 3). It is
important to note that bootstrap samples could include nonunique trials.
When evaluating statistical features computed using the covariance ma-
trix, if the number of unique trials is small, singular matrices could be
generated. Nevertheless, the number of unique trials in all datasets is
typically 10 times larger than the number of neurons used in the analysis
(see next section). Therefore, the rank of the bootstrapped covariance
matrix is always bound by the number of neurons rather than by the
number of unique trials subsampled for each bootstrap iteration. In
other words, the probability of generating covariance matrices of full
rank (number of neurons) in 2 � 104 (or 103) bootstrap iterations is
effectively 1.
To assess what statistical features affect the amount of encoded infor-

mation and behavioral performance the most, we evaluated the depen-
dency of 
DPcv and 
B on 
xi, where, as above, xi represents a particular
statistical feature of the neuronal responses. Here, dependency is mea-
sured by various quantities, including correlation. A dependency across
bootstrap iterations between
DPcv and 
xi (referred here as p�
DPcv, 
xi�), and
between 
B and 
xi �p�
B, 
xi�) could result from dependencies mediated
by a third quantity 
xk. For instance, Equation 4 predicts that DPcv de-
pends exclusively on PS and PP, but since PP decreases as the ensemble’s
noise (both individual and pairwise) increases, an inverse relationship
between 
MPC and 
PP is expected. Therefore, we may find a correla-
tion between 
DPcv and 
MPC as a result of their dependencies on 
PP.
To estimate the strengths of the dependencies p�
DPcv, 
xi� and p�
B, 
xi�
that are not confounded by other variables, we developed a method for
minimizing the correlationdue todependenciesof
DPcv �or 
B� and 
xion
a third variable 
xk. Among all generated bootstrap samples, we selected
those that yielded 
xk � 0 (i.e., xk values within the �15th percentile of
its median value). Based on the selected samples, we computed
p�
DPcv, 
xi�
xk � 0��or p�
B, 
xi�
xk � 0��, that is, the dependency be-
tween 
DPcv �or 
B� and 
xi conditioned on 
xk. This method can easily
be extended to multiple conditioning variables (
xl, 
xr, etc.) as long as
there are enough bootstrap samples for the analysis that satisfy the con-
ditions. Using this technique, we computed the following conditional
dependencies:

● p�
DPcv, 
PS�
PP � 0, 
MPC � 0, 
GA � 0� and
p�
B, 
PS�
PP � 0, 
MPC � 0, 
GA � 0�

● p�
DPcv, 
PP�
PS � 0, 
MPC � 0, 
GA � 0� and
p�
B, 
PP�
PS � 0, 
MPC � 0, 
GA � 0�

● p�
DPcv, 
MPC�
PS � 0, 
PP � 0, 
GA � 0� and
p�
B, 
MPC�
PS � 0, 
PP � 0, 
GA � 0�

● p�
DPcv, 
GA�
PS � 0, 
PP � 0, 
MPC � 0� and
p�
B, 
GA�
PS � 0, 
PP � 0, 
MPC � 0�

Bootstrap samples were selected based on conditioned features,
not on tested features, and the feature under study played no role
on the conditioning procedure. For instance, to determine the
real dependency between 
DPcv and 
PS, we used only samples for
which 
PP � 0, 
MPC � 0, 
GA � 0, but 
PS was unconstrained. To
evaluate p�
DPcv, 
xi�
xk � 0, 
xl � 0, 
xr � 0� (see Figs. 6, 10B) and
p�
B, 
xi�
xk � 0, 
xl � 0, 
xr � 0� (see Figs. 9, 10C; Fig. 9-1, available
at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1), we used
103 and 2� 104 bootstrap iterations, respectively.With the conditioning
criterion of �15th percentile around the median, �2.7% of the total
number of bootstrap iterations (27 for dependencies onDPcv and 540 for
B) satisfied the conditioning on all three xk, xl, and xr from which to
compute dependencies.
The dependencies p�
DPcv, 
xi�
xk � 0, 
xl � 0, 
xr � 0� and

p�
B, 
xi�
xk � 0, 
xl � 0, 
xr � 0� were evaluated by using two
metrics: (1) the Pearson correlation coefficient (Fig. 9-1B, available at
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1) and (2) the
percent change (see Figs. 4, 6, 9, 10B,C; Fig. 9-1A, available at https://
doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1). Percent change in
DPcv with respect to 
xi (% change DPcv

i ) was defined as follows:

%change DPcv
i �


 DPcv


xi
�

� � 
 DPcv


xi
�

�


 DPcv


xi
�

�
, (15)

where 
 DPcv

xi

�

� and 
 DPcv

xi

�

� represent the mean DPcv values

for the bootstrap iterations that produced 
xi above (
xi
�) and below

�
xi
� � its median value x̃i, respectively. Similarly, percent change in B

with respect to 
xi (% change Bi) was defined as follows:

%change Bi �

 B
xi

�

� � 
 B
xi
�

�


 B
xi
�

�
, (16)

where 
 B
xi
�

� and 
 B
xi
�

� represent the mean B values for the

bootstrap iterations that produced
xi above (
xi
�) and below (
xi

�) its
median value x̃i, respectively. Because behavior (B) was quantified as the
mean reaction time in the attentional task, the sign of p�
B, 
xi�
xk � 0,

xl � 0, 
xl � 0� was inverted so that negative fluctuations in B corre-
spond to positive fluctuations in performance (see Figs. 8, 9B,C; Fig. 9-1,
available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1) for
Monkeys 2 and 3 (attentional task with recordings in LPFC 8a). A nega-
tive correlation between the statistical feature 
xi and % change DPcv

i

and/or % change Bi signifies an anticorrelation between the particular
statistical feature and the amount of encoded information and/or behav-
ioral performance.
To confirm that our results still hold for different conditioning crite-

ria, we also computed percent change B using bootstrap iterations that
restricted the range of the conditioning variables xk, xl, and xr to bewithin
�10th and �20th percentile of their respective median values (Fig. 9-1,
available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1).
We observed no significant differences between the results from the dif-
ferent conditioning criteria.
In Figure 4, the dependencies p�
DPcv, 
MPC� and p�
DPcv, 
GA�

were evaluated using percent change DPcv
i (Eq. 15) without condition-

ing on the rest of statistical features of the neuronal responses. For
each monkey and ensemble size, the reported dependencies corre-
sponded to the median value across independent subdatasets (see de-
tailed description of each experimental dataset in Experimental design and
statistical analysis). Statistical significance was calculated with a two-sided
Wilcoxon signed-rank test, with which we tested whether themedian of the
distribution of independently obtained values was significantly greater or
less than zero. Likewise, in Figure 5, the dependencies p�
PS, 
MPC�,
p�
PS, 
GA�, p�
PP, 
MPC�, and p�
PP, 
GA� were evaluated with the
Pearson correlation between the bootstrap fluctuations of these statistical
features. For each ensemble size, the reporteddependencies corresponded to
themedian values across independent subdatasets andmonkeys, and statis-
tical significance was calculated with a two-sidedWilcoxon signed-rank test
as before. For Figure 8 and Fig. 10-1G (available at https://doi.org/10.1523/
JNEUROSCI.0859–19.2019.f10-1), the dependency p�
B, 
DPcv� was eval-
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uated by computing the Pearson correlation coefficient between 
DPcv and

B. For each monkey and ensemble size, the median value across indepen-
dent subdatasetswas reported, andstatistical significancewascalculatedwith
a two-sided Wilcoxon signed-rank test as for Figures 4 and 5. Error bars
indicate the 25th to 75th percentile of a distribution ofmedians obtained by
sampling with replacement from the distribution of independent values
(bootstrap error bars; 1000 iterations). Error bars are only provided for vi-
sual guidance.

Neural population model
We built a neural population model that captures the basic statistical
properties of the neural responses that we observed experimentally. The
model includes limited-range correlations, differential correlations, and
realistic values for tuning sensitivity, firing rates, and Fano factors. The
model also generated choices based on optimal read out of information.
We evaluated the simulation results by repeating all of the analyses de-
scribed in the previous sections, including describing the relationships
between PS, PP, MPC, and GA with both encoded information and
simulated behavioral performance.
Population activity model. Our neural population model consisted of

N 
 1000 neurons. Each neuron’s firing rate was modeled as a function
of stimulus parameter s (e.g., motion direction) and stimulus strength, �
(representing, e.g.,motion coherence, which controls task difficulty).We
considered two stimuli s1 
 �1 and s2 
 �1 (analogous to the two
directions of motion around the discrimination boundary) at three stim-
ulus strength levels, v � �0.16, 0.32, 0.48�. We defined mean firing rate �
of neuron k as a linear function of stimulus parameters (i.e., tuning
curve) as follows:

�k�s,�� � m1k s� � m0k (17)

where m1k and m0k are the slope (sensitivity) and the baseline (sponta-
neous) firing rate of neuron k, respectively. The slope parameters m1k

were drawn randomly from a normal distribution centered at the origin
with a SD of �m1

� 1.3, andm0k was drawn from a gamma distribution
with shape and scale parameters set at 20 and 1, respectively. The param-
eters of the distributions were chosen to approximate empirical distribu-
tions. In what follows, we will use �k�s, v� and fk�s, v� (defined earlier in
Theoretical expression for the amount of encoded information) synon-
ymously. We will use the terms spike count, firing rate, and neuronal
activity during a stimulus presentation interchangeably as the stimulus
duration was set to 1 s in our simulations.
Responses of neurons to identical stimuli vary from trial to trial, and

the trial-by-trial variabilities are partially shared among neurons (noise
correlation) (Cohen and Kohn, 2011; Kohn et al., 2016). We incorpo-
rated noise correlations into our model in the form of limited-range
pairwise correlations between neurons k and l (Kanitscheider et al., 2015;
Kohn et al., 2016) as follows:

�kl
gen � �Aexp� �

�m1k � m1l�
� � � C��1 � 
kl� � 
kl, (18)

where 
kl is the Kronecker delta (A
 0.1,C
 0, and � 
 1 are used in our
model).
Then, we defined a generative covariance matrix as follows:

�kl
gen�s, v� � �k�s, v��l�s, v��kl

gen, (19)

where �k
2�s, v� represents the trial-by-trial variance of neuron k. We used

�k
2�s, v� � ��k�s, v� �� � 0.5�, so that Fano factors of the model neu-

rons arewithin the rage of values typically found in experiments (Shadlen
andNewsome, 1998; Arandia-Romero et al., 2016; Nogueira et al., 2018).
�kl
gen�s, v� is not yet the full model’s covariance matrix, �kl�s, v�, which

includes differential correlations and other components as derived in the
next section.
Based on ��s, v� and �gen�s, v�, we generated neuronal activity as fol-

lows. First, we chose s and � pseudo-randomly for each trial of 1 s dura-
tion such that there were 100 trials per stimulus condition (600 trials in
total per simulated recording session). Then, we generated a preliminary
response vector rj� for each trial j as follows:

rj� � ��sj, vj� � Mzj � ��
sj, (20)

where �kl
gen � MMT, zj represents an N-dimensional vector whose ele-

ments are drawn from a zero-mean, unit-varianceGaussian distribution,
�� denotes the derivative of the population tuning curve (f ), which
equalsm1 in our model, and 
sj indicates a common sensory noise term
drawn from aGaussian distribution with zeromean and variance�
s

2 
	.
The last term��
sj introduces differential correlations to the population
activity (Moreno-Bote et al., 2014; Kanitscheider et al., 2015). The gen-
erated population activity pattern njwas calculated by applyingmultipli-
cative and additive global modulations to the vector rj� before putting it
through a Poisson process that generated spike counts for each model
neuron, that is:

nj � Poisson�gjrj� � gj�. (21)

Here, gj is the global modulation factor drawn from a gamma distribution
with scale and shapeparameter�g � 10�5 and kg � 105, respectively (such
that 
 gj � � 1 and �g

2 � 10�5). The global modulation incorporates
the short and long timescale fluctuations in population activity often seen in
vivo recordings (Ecker et al., 2014; Goris et al., 2014; Lin et al., 2015;
Arandia-Romero et al., 2016). We generated a total of 10 simulated re-
cording sessions that reproduced experimentally realistic distributions of
Fano factors and pairwise correlations (Fig. 10-1C,D, available at https://
doi.org/10.1523/JNEUROSCI.0859-19.2019.f10-1).

Behavioral decision model. We also modeled trial-by-trial behavioral
choices using an optimal linear classifier that reads out the activity of the
simulated population. For a given set of trials, simulated behavioral per-
formance was calculated as the percentage of correct choices, just like the
behavioral performance in the task involvedMonkeys 1 and 4. For mod-
eling behavior, the optimal classifier was derived from an analytical ex-
pression (Eqs. 22, 23, below) rather than from data fitting since the
simulated data had a limited number of trials (200 trials per stimulus
intensity) andmay result in overfitting. By introducing Equation 17 into
the analytical expression for the optimal linear classifier derived in The-
oretical expression for the amount of encoded information, we obtain
the following:

�opt � 2��1vm1, (22)

where � is the covariance matrix for our population model, which is
given by the following:

�kl � ��g
2 � 1�� �kl

gen � 	�k�� l�� � �g
2���k � 1��� l � 1��

� ��k � 1�
kl. (23)

For each trial j, a decision variable was chosen as follows:

dj � �opt
T nj � �0, (24)

where �0 � � 2vm1
T��1m0. The behavioral choice c for trial j is, then,

given by the sign of the decision variable d, that is, cj 
 sign(dj). Behav-
ioral performance was evaluated by the number of correct classifications
over the total number of trials.
Information encoded by the model. In this section, we derive a theoret-

ical expression for DP (DPth) of our model. In our model, f� �
�f

�s
, and

therefore, d� is given by Equation 12. When N ¡ �:

d� �
2v

�	
, (25)

and therefore

DP � �� v

�	
�. (26)

Equation 26 suggests that, when the input signal is noisy on a trial-by-
trial basis, DP (the amount of information that can be extracted) of a very
large neural ensemble does not saturate at perfect performance. In-
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stead, it will approach an asymptote below 1 determined by the signal-

to-noise ratio of the input signal
v

�	
(see Fig. 10-1F, available at

https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f10-1).
Analysis of model simulation data. We performed the analyses on our

simulated neuronal and behavioral data (see Comparison between theo-
retical and cross-validated DP on experimental data and Conditioned
bootstrapping method). First, we examined how well our theoretical DP
(DPth) approximated the cross-validated DP (DPcv) of a linear classifier
(LDA) evaluated on the simulated data, in the same way as we did for the
in vivo recording data. For a particular ensemble size, we randomly se-
lected a neuronal ensemble from a recording session and stimulus inten-
sity and computed DPth and DPcv. For each ensemble size, stimulus
intensity and simulated recording session, we repeated this process 20
times. We then fitted a line to the relationship between DPth and DPcv,
and computed the percentage of variance in DPcv that was explained by
DPth, as described in Comparison between theoretical and cross-
validated DP on experimental data (Fig. 10-1E, available at https://
doi.org/10.1523/JNEUROSCI.0859-19.2019.f10-1).
We also conducted the conditioned bootstrapping analyses on the

simulated data using the method described in Conditioned bootstrap-
ping method. We examined the effects of bootstrap fluctuations in sta-
tistical features of the population activity on the amount of encoded
information and behavioral performance. For each bootstrap iteration,
we selected an ensemble of a given size (2, 4, 6, 8, and 10 units) and
calculated the following quantities: theoretical DP (DPth), cross-
validated DP of a linear classifier (DPcv), PS, PP, MPC, GA, and behav-
ioral performance (B). Both DPth and DPcv were evaluated for inferring
the stimulus (either s1 or s2) from the activity pattern of the population
model. This process was repeated 20 times for each of the recording
sessions and stimulus intensities. The dependencies of DPcv and B on
different features of the neural activity were quantified by percent change
in DPcv and B as defined in Equations 15 and 16, as well as by Pearson
correlation coefficients. The results were averaged over repetitions. For
each ensemble size, we thus obtained 30 independent samples (10 surro-
gate recording sessions � 3 stimulus intensities), and the median was
reported. Statistical significance for the dependency between the vari-
ables DPcv (or B) and 
xi in terms of p�
DPcv, 
xi�
xk � 0, 
xl � 0,

xr � 0� �or p�
B, 
xi�
xk � 0, 
xl � 0, 
xr � 0�� for each ensemble
size was calculated with a two-sided Wilcoxon signed-rank test, with
which we tested whether the median of the distribution of 30 indepen-
dently obtained values was significantly greater or less than zero. It is
important to note that p�
B,
xi�
xk � 0, 
xl � 0, 
xr � 0� as percent
change of surrogate behavior (see Fig. 10C; Eq. 16) can be very small for
relatively large surrogate ensemble sizes (N � 100) while it may exhibit
strong Pearson correlation at the same time. In our analysis, however, we
prefer using percent change of behavior because of its interpretability and
robustness to outliers in the distributionof bootstrap fluctuations. The same
bias could potentially arise when evaluating p�
DPcv, 
xi�
xk � 0, 
xl � 0,

xr � 0� as percent change of DPcv. Nevertheless, in this case, this effect is
typically masked by the strong dependency between the amount of en-
coded information and PS/PP, a consequence of using the same neuronal
population to compute all the relevant quantities.

Experimental design and statistical analysis
Our theory was tested on three different datasets obtained from 4 mon-
keys, each of which involved simultaneously recorded units (from 2 to
�50 units). One dataset involved pairs of MT neurons from a monkey
(Monkey 1) performing a coarse direction discrimination task (Zohary et
al., 1994). The second dataset involved LPFC (area 8a) neurons recorded
from2monkeys (Monkeys 2 and 3) that were trained to perform a spatial
attention task (Tremblay et al., 2015). The final dataset involved record-
ings from groups of MT neurons in a monkey (Monkey 4) trained to
perform a fine direction discrimination task. The details for each exper-
iment are described below.
Coarse direction discrimination task with recordings in area MT. This

dataset has been previously described (Zohary et al., 1994), and is freely
available at the Neural Signal Archive (http://www.neuralsignal.org,
nsa2004.2). Data from 1 female adult macaque monkey (Macacca mu-

latta) are included in this dataset. The animal was trained to perform a
coarse direction discrimination task (Britten et al., 1992), and pairs of
single neurons were recorded in area MT. The monkey performed a
coarse direction discrimination task, in which a noisy random-dot mo-
tion stimulus moved in one of two opposite directions. In each trial, a
stimulus was presented for 2 s. The presented direction of motion was
either the preferred or null direction of the recorded neurons. If the
preferred directions of the two neurons differed substantially, the axis of
discrimination was set to the preferred-null axis of the best-responding
neuron. The null direction was defined as the direction opposite to the
preferred direction. The strength of the motion signal was manipulated
by controlling the fraction of dots thatmoved coherently fromone frame
to the next (motion coherence), whereas the remaining “noise” dotswere
randomly replotted on each video update. When motion coherence was
0%, all dotsmoved randomly, and there was no coherent direction in the
net motion. When motion coherence was 100%, all dots moved coher-
ently in either the preferred or null direction for the pair of neurons. A
range of coherences between 0% and 100% was used to adjust task diffi-
culty and measure neural and behavioral sensitivity. In each trial, the
monkey was presented randomly with either the preferred or null direc-
tion ofmotion at a particular coherence. Themonkey’s taskwas to report
the direction of the net motion by making a saccade to one of two choice
targets. The psychometric function averaged across sessions is shown in
Figure 7A.

Each trial started with the appearance of a fixation point. After 2 s of
stimulus presentation, the random dot pattern and the fixation point
disappeared, and two choice targets appeared on the screen, correspond-
ing to the two possible directions of motions (preferred or null) (see Fig.
2A). The monkey made a saccadic eye movement to one of the targets to
report its perceived direction of motion. Data from this experiment (Zo-
hary et al., 1994) consisted of 41 recording sessions in which pairs of
single units were simultaneously recorded in areaMT.Only sessionswith
random-dot motion stimuli generated from a variable seed were used.
Since stimulus strength was controlled by the motion coherence pa-

rameter, we subdivided each recording session according to the coher-
ence presented in each trial. Trials belonging to the 0% coherence
condition were discarded because stimulus identity and correct behav-
ioral performance were not defined for this condition. To evaluate how
accurate our analytical approximation was for the amount of informa-
tion encoded by the neural population, we plotted DPth against DPcv for
each recorded pair of neurons and coherence condition and fitted the
data points with a Type II linear regression. The percentage of variance
explained by the first principal component of the data represented the
goodness of fit (see Comparison between theoretical and cross-validated
DP on experimental data).
For the analysis involving behavior, we also discarded trials with co-

herences that elicited a mean behavioral performance �98% correct to
avoid ceiling effects (25.6%, 51.2%, and 99.9% coherence were elimi-
nated by this criterion). This was done because the bootstrap distribu-
tions for behavioral performance (B) would have very low variability for
these high coherences; therefore, calculating p�
B,
xi�
xk � 0, 
xl � 0,

xr � 0� may be highly biased or even undefined. The criterion for dis-
carding easy trials (98%percent correct) corresponds to eliminating con-
ditions that are�2 SDs away from themean of a cumulative Gaussian fit,
since ��2�� � 0.98. After splitting recording sessions by coherence and
discarding 0% and high coherences as described above, we obtained 187
independent subdatasets, each of which corresponded to a set of trials for
a particular coherence level and recording session. The mean number of
trials per subdataset was 75, ranging from 30 to 231 trials. For the anal-
ysis, we used a trial-by-trial population activity vector whose entries
corresponded to the spike count from the entire 2 s stimulus duration for
each neuron. All statistical features (PS, PP, GA, andMPC) as well as DP
(and DPth) were calculated using this time window.

From each subdataset, we generated bootstrap distributions for the
following quantities: theoretical DP (DPth), cross-validated (trained and
tested on different sets of trials) DP of a linear classifier (DPcv), PS, PP,
MPC, GA, and B. Behavioral performance was defined as the fraction of
correct choices of the monkey on each subdataset. Both DPth and DPcv
were calculated by inferring the motion direction (preferred or null)
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presented to themonkey on a trial-by-trial basis from the simultaneously
recorded activity of a neuronal pair.
Significance for the dependency p�
DPcv, 
xi�
xk � 0, 
xl � 0,


xr � 0��or p�
B, 
xi�
xk � 0, 
xl � 0, 
xr � 0�� for the whole ex-
periment (187 independent subdatasets) was calculated with a two-
sided Wilcoxon signed-rank test, with which we tested whether the
median of the distribution of 187 independently obtained values was
significantly greater or less than zero.
Spatial attention task with recordings in LPFC (prearcuate area 8a). This

dataset is described in detail by Tremblay et al. (2015). Two male mon-
keys (Macaca fascicularis), both 6 years old (Monkey F, 5.8 kg; Monkey
JL, 7.5 kg), contributed to this dataset. In each monkey, a 96-channel
“Utah” multielectrode array was chronically implanted in the left caudal
LPFC. Themultielectrode array was inserted on the prearcuate convexity
posterior to the caudal end of the principal sulcus and anterior to the
arcuate sulcus, a region cytoarchitectonically known as area 8a (Bullock
et al., 2017). The monkeys were trained to covertly sustain attention to
one of four Gabor stimuli (target) presented on a screen while ignoring
the other three Gabor stimuli (distractors) (see Fig. 2B). At the beginning
of each trial, a cue indicated which of the four Gabor stimuli was the
target (cue period, 363 ms). After the cue period, all four Gabor stimuli
appeared on the screen, whichmarked the start of the attentional period.
The attentional period ended after a variable delay (585–1755 ms) when
one or two Gabor stimuli changed orientation by 90°. Only correct “Tar-
get” trials were used in the analysis reported here (Tremblay et al., 2015).
The mean number of correct “Target” trials per recording session was

207 (range: 172–224) for Monkey JL and 221 trials (range: 198–246) for
Monkey F. The mean number of simultaneously recorded units was 56
(range: 53–61) for Monkey JL and 54 (range: 44–66) for Monkey F.
Neuronal recordings included both single units and multiunits. The
mean percentage of single units over the total number of simultaneously
recorded units was 44% and 40% for Monkey JL and Monkey F, respec-
tively. Because units with very low firing rates precluded reliable statisti-
cal analysis, we excluded units with firing rates �1 Hz for all subsequent
analyses. After this exclusion, the mean number of simultaneously re-
corded units was 51 (range: 50–53) forMonkey JL and 50 (range: 42–59)
for Monkey F. The shortest attentional period used was 585 ms; there-
fore, we defined a fixed attentional time window of 585ms starting at the
end of the cue period. In this way, the firing rate of all units was calculated
over the same time window. All statistical features (PS, PP, GA, and
MPC) as well as DP (and DPth) were calculated using this time window.
To maximize the statistical power of our analysis, we created a larger

number of independent subdatasets as follows. For each recording ses-
sion, we randomly selected 21, 10, 7, 5, and 4 nonoverlapping ensembles
of size 2, 4, 6, 8, and 10, respectively, and repeated this process 5 times.
Since the smallest number of simultaneously recorded units for both
monkeys was 42 units, we chose values that maximized the number of
nonoverlapping ensembles for each size.
To evaluate how accurate our analytical approximation was for the

amount of information encoded by the neural population for a particular
ensemble size, we plottedDPth againstDPcv for each subdataset and fitted
the data points with a Type II linear regression. The percentage of vari-
ance explained by the first principal component of the data represented
the goodness of fit of our approximation (see Comparison between the-
oretical and cross-validated DP on experimental data).
For each subdataset and bootstrap iteration, we calculated the follow-

ing quantities: DPth, DPcv, PS, PP, MPC, GA, and behavioral perfor-
mance (B). Behavioral performance was quantified as the mean reaction
time across trials (either the original subdataset or a bootstrap iteration)
(for reaction time distributions from Monkeys 2 and 3, see Fig. 7B,C,
respectively). Both DPth and DPcv were calculated by inferring the
monkey’s location of attention on a trial-by-trial basis from the si-
multaneously recorded activity of an ensemble. For decoding pur-
poses, we considered two binary classification tasks. In the first task,
the decoder classified the locus of attention as being on the right or
the left side of the screen. In the second task, the decoder classified the
locus of attention as being on the upper half or the lower half of the
screen. The reported DPcv (and DPth) values are averages over the two
decoding tasks.

For a given subdataset, the reported dependency relationship p�
DPcv,

xi�
xk � 0, 
xl � 0, 
xr � 0)�or p�
B, 
xi�
xk � 0,
xl � 0, 
xr � 0))
was evaluated as the mean across the five iterations and the two classifi-
cation tasks (vertical and horizontal). For each ensemble size and mon-
key, the reported dependency p�
DPcv, 
xi�
xk � 0, 
xl � 0, 
xr � 0�
�or p�
B, 
xi�
xk � 0,
xl � 0, 
xr � 0�� was the median across record-
ing sessions and nonoverlapping ensembles of units (independent sub-
datasets). We obtained 84, 40, 28, 20, and 16 (the number of
nonoverlapping ensembles � 4 recording sessions per monkey) inde-
pendent values for ensemble sizes of 2, 4, 6, 8, and 10 units, respectively,
and assessed the median and tested significance. Significance was calcu-
lated with a two-sidedWilcoxon signed-rank test of whether the median
of the distribution of independently obtained values for each ensemble
size and monkey was significantly greater or less than zero.
Fine direction discrimination task with recordings in MT. This dataset

was obtained specifically for this analysis, as part of a larger series of
ongoing studies of how MT neurons represent local motion in the pres-
ence of background optic flow. One male adult macaque monkey (M.
mulatta) was used in this experiment. The animal was surgically im-
planted with a circular head holding device, a scleral coil for measuring
eye movements, and a recording grid (Gu et al., 2006, 2008). The animal
was trained to perform a fine direction discrimination task (described
below) with water as a reward for correct performance. Eye movements
were measured and controlled at all times. Neuronal activity in MT/V5
was recordedwith 24-channel linear electrode arrays (V-probes, Plexon).
Spike waveforms were acquired by a Cerebus System (Blackrock). All
experimental procedures conformed to National Institutes of Health
guidelines and were approved by the University Committee on Animal
Resources at the University of Rochester.
In each recording session, a V-probe was inserted intoMT/V5 andwas

allowed to settle for�30min.We then performed standard tests (DeAn-
gelis and Uka, 2003) tomap receptive fields and tomeasure the direction
tuning of the recorded units. These measurements were used to deter-
mine the location and size of the stimulus aperture such that it was larger
than the receptive fields of the units under study. However, stimulus
motion was not tailored to the preferred directions and speeds of the
recorded neurons; a fixed set of stimulus velocities was used across ses-
sions for the fine discrimination task. A total of 75 units were recorded
across 3 sessions. The mean number of simultaneously recorded units
was 25 (range: 24–27). Most recordings included multiunit activity as
well as 2–4 well-isolated single units. Because units with very low firing
rates precluded reliable statistical analysis, we excluded units with firing
rates �1 Hz for all subsequent analyses. Despite the exclusion, the mean
number of simultaneously recorded units remained at 25 (range: 24–27).
The monkey was trained to perform a fine direction discrimination

task. A pattern of random dots, presented within a circular aperture,
moved upward in the visual field with either a rightward or leftward
component. The animal’s task was to report whether the perceived mo-
tion was up-right or up-left by making a saccade to one of two choice
targets. The motion stimulus was presented at 100% coherence in one
visual hemifield and was localized and sized according to the receptive
fields of the recorded units. Stimulus motion within the aperture fol-
lowed a Gaussian velocity profile with an SD of 333ms and a duration of
2 s. Once the monkey fixated for 200 ms, the motion stimulus appeared
and began to move. The stimulus was presented stereoscopically at zero
disparity, such that motion appeared in the plane of the display. The
experimental protocol involved 7 directions of motion relative to verti-
cal:�12°,�6°,�3°, 0°, 3°, 6°, and 12°, where negative and positive values
correspond to leftward and rightward motion, respectively. After stimu-
lus presentation was completed, two saccade targets appeared, 5° to the
right and left of the fixation target, and the monkey reported his per-
ceived direction of motion by making a saccade to one of the targets (see
Fig. 2C). Because stimuli were presented at 100% coherence, task diffi-
culty was controlled by the direction of motion with respect to vertical
(see Fig. 7D). The mean number of trials per session was 742 (range:
735–756). In each recording session, the same number of trials were
presented for each direction of motion.
Since direction of motion controlled the difficulty of the task, this

parameter was considered to be the stimulus strength. To control for
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stimulus strength, we divided data from each
recording session according to motion direc-
tion. The task of our decoder is to correctly
classify each trial as having rightward or left-
ward motion direction; therefore, trials from
each recording session were split into 4 inde-
pendent subdatasets (�12°, �6°, �3°, and 0°
stimulus directions relative to vertical). As de-
scribed above for the coarse discrimination
task, we subsequently discarded stimulus con-
ditions that were either ambiguous (0° motion
direction; correct behavioral performance is
not defined) or too easy (�12° directions;
mean behavioral performance � 0.98). The
analysis was thus performed on 6 independent
subdatasets (3 recording sessions � 2 absolute
motion directions). To quantify neuronal ac-
tivity, we computed firing rates in a time win-
dow that included �1 SD around the peak of
the Gaussian velocity profile of the stimulus
(666 ms window width). All statistical features
(PS, PP, GA, and MPC) as well as DP (and
DPth) were calculated using this time window.
To increase statistical power, we created a

larger number of independent subdatasets by
sampling randomly nonoverlapping ensembles
of particular sizes. Namely, we considered en-
semble sizes of 2, 4, 6, 8, and10,which yielded 12,
6, 4, 3, and 2 nonoverlapping ensembles of units,
respectively. We repeated this sampling proce-
dure 20 times. Since the smallest number of si-
multaneously recorded units was 24, we chose
values that maximized the number of nonover-
lapping ensembles for each size.
We evaluated how accurate DPth was with

respect to DPcv by following the same proce-
dure as for Monkeys 2 and 3 (see previous sec-
tion). For each subdataset and bootstrap
iteration, we calculated the following quanti-
ties: DPth, DPcv, PS, PP, MPC, GA, and behav-
ioral performance (B). For this task, behavioral
performancewas defined as the fraction of cor-
rect choices for that particular subdataset. Both
DPth and DPcv were calculated by inferring
whether motion direction was leftward or
rightward of vertical for each trial based on the
neuronal activity pattern. For a particular ran-
domly constructed ensemble, the reported de-
pendency relationship p�
DPcv, 
xi�
xk � 0,

xl � 0, 
xr � 0)�or p�
B, 
xi�
xk � 0, 
xl � 0,

xr � 0)) was evaluated as the mean across the
20 iterations. For each ensemble size, the reported dependency p�
DPcv,

xi�
xk � 0, 
xl � 0,
xr � 0)�or p�
B, 
xi�
xk � 0, 
xl � 0, 
xr � 0�� was
the median across recording sessions, stimulus strengths, and nonoverlap-
ping ensembles of units. We used 72, 36, 24, 18, and 12 (the number of
nonoverlapping ensembles� 3 independent recording sessions� 2 stimu-
lus strengths) independent values to assess the median and test its signifi-
cance for ensemble sizes of 2, 4, 6, 8, and 10 units, respectively. Significance
was calculated with a two-sided Wilcoxon signed-rank test for whether the
median of the distribution of independent values for each ensemble sizewas
significantly greater or less than zero.

Data and software availability
The datasets generated in this study and the code used for their analysis are
available from the corresponding author upon reasonable request.

Results
We start by showing that fluctuations of MPC and GA influence
the amount of information encoded in population activity, con-

sistent with some previous studies. We then demonstrate that
these effects of MPC and GA are eliminated when PS and PP are
controlled for, whereas isolated fluctuations of PS and PP strongly
predict the amount of information encoded in the population. Fi-
nally,wedemonstrate that fluctuations of PS and PP are correlated
with behavioral performance, and we compare this finding with
predictions of an optimal decoding model.

MPC and GA correlate with the amount of encoded
information
MPC and GA have been thought to modulate the amount of
information encoded in neuronal populations (Zohary et al.,
1994; Renart et al., 2010; Ecker et al., 2011, 2016; Kanitscheider et
al., 2015; Lin et al., 2015; Gutnisky et al., 2017). We tested the
correlation between these statistical features and the amount of
information in three different datasets consisting of simultane-
ously recorded units (2 to �50 single units or multiunits) in 4

Figure 2. Three behavioral tasks used to test theoretical predictions in macaquemonkeys. A, One monkey performed a coarse
direction discrimination task (Monkey 1) while pairs of units were recorded in the MT area (Britten et al., 1992). After stimulus
presentation (random dots moving toward the preferred or null direction of the neurons under study), the monkey reported the
direction of motion by making a saccade to one of two targets. Difficulty was controlled by varying the percentage of coherently
moving dots in the stimulus. B, Two monkeys performed an attentional task (Monkeys 2 and 3) while�50 units were recorded
simultaneously fromtheLPFC (area8a) (Tremblayet al., 2015). FourGaborpatternswerepresentedon the screen, and the taskwas
to make a saccade to the attended location after a change in orientation of the cued Gabor. C, One monkey performed a fine
directiondiscrimination task (Monkey4)while�25unitswere recorded simultaneously fromareaMT.After presentationof a fully
coherent random dot stimulus, the monkey had to report whether dots moved leftward or rightward of vertical by making a
saccade to one of two targets. Difficulty was controlled by making the left/right component of motion very small. For details, see
Materials and Methods.
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monkeys, two brain areas, and three tasks: (1) pairs of MT neu-
rons recorded while the animal performed a coarse motion dis-
crimination task (Zohary et al., 1994) (Monkey 1, Fig. 2A); (2)
LPFC (area 8a) neurons recorded with a Utah array while 2 ani-
mals performed an attentional task (Tremblay et al., 2015) (Mon-
keys 2 and 3; Fig. 2B); and (3) MT neurons recorded with a
24-channel linear arraywhile the animal performed a finemotion
discrimination task (Monkey 4; Fig. 2C). Behavioral performance
in these tasks was defined as the percentage of correctly reported
directionsofmotion(Monkeys1and4)oras themeanreaction time
when correctly detecting a change in orientation of the attended
Gabor patch (Monkeys 2 and 3). The amount of encoded informa-
tion for eachdatasetwas quantified as the cross-validatedDP (DPcv)
of a linear classifier that reads out the activity of the recorded neuro-
nal population to predict (1) which of two opposite directions of
motion was presented in the coarse motion task (Monkey 1); (2)
which Gabor patch was cued in the attention task (Monkeys 2 and
3); or (3) whether the stimulusmotionwas right or left of vertical in
the fine direction discrimination task (Monkey 4). In each case, the

classifier was trained on the activity of neu-
ronal ensembles recorded inareaMTfor the
motion tasks or LPFC (area 8a) for the at-
tention task (for details, see Materials and
Methods).

To evaluate whether the amount of en-
coded information (DPcv) wasmodulated
by MPC and GA, we used a nonparamet-
ric method to produce fluctuations of
MPC and GA generated by bootstrapping
trials from each neural recording dataset
(Fig. 3A,B). We then examined how fluc-
tuations of MPC and GA affected DPcv
(Fig. 4; see Materials and Methods). We
found that an increase in MPC tended to
produce a decrease in DPcv, therefore re-
ducing the amount of encoded informa-
tion. This was largely consistent across
tasks and animals. For instance, for Mon-
key 1 (Fig. 4A), an increase ofMPC signif-
icantly reduced the amount of encoded
information by �0.05% (Wilcoxon
signed-rank test, p 
 2.6 � 10�3; see Ma-
terials and Methods). Qualitatively simi-
lar results were found for Monkeys 2–4
(Fig. 4B–D). In contrast, positive boot-
strap fluctuations of GA tended to
increase the amount of encoded informa-
tion for some animals, particularly those
from which wemade PFC recordings. For
Monkey 2 (Fig. 4B), bootstrap fluctua-
tions of GA produced significant positive
changes in DPcv by 0.91% (ensemble size
2, Wilcoxon signed-rank test, p 
 6.9 �
10�15; see Materials and Methods). For
Monkey 3 (Fig. 4C), results were qualita-
tively similar to those obtained for Mon-
key 2, but for Monkeys 1 and 4, no
significant effect was observed. Some of
the size differences in the effects of MPC
and GA on DP may be due to differences
in behavioral tasks and/or brain areas
(MT vs LPFC 8a). In particular, the pop-
ulation of LPFC 8a neurons was some-

what unbalanced with respect to spatial preference (�70%
contralateral preference), whereas direction selectivity in pop-
ulations ofMT neurons is generally quite balanced. This might
explain the overall stronger effects of MPC and GA fluctua-
tions on encoded information in the PFC animals (Monkeys 2
and 3) because those fluctuations have a stronger chance to
spontaneously align with the individual, but unbalanced, sen-
sory preferences.

Although the observed correlations between MPC, GA, and
the amount of encoded information are generally consistent with
those from previous experimental and theoretical studies (Zo-
hary et al., 1994; Renart et al., 2010; Ecker et al., 2011, 2016;
Kanitscheider et al., 2015; Lin et al., 2015; Gutnisky et al., 2017),
the effects are rather small and somewhat inconsistent. It is im-
portant to note that the results reported in Figure 4 are obtained
by correlating MPC and GA with DPcv using all bootstrap
samples. Thus, the correlation between MPC and GA fluctua-
tions with DPcv could be mostly due to other statistical fea-
tures that cofluctuate with MPC or GA. Indeed, as shown

A

B

C

Figure 3. Dependencies between encoded information and statistical features of neuronal responses can be evaluated by the condi-
tioned bootstrapping method. A, B, By subsampling trials with replacement (bootstrap) from the original dataset, distributions of the
values of encoded information (DPcv) (A) and statistical features of the neuronal activity (B) are generated. Example distributions of the
values of PS, PP,MPCs, andGA forMonkey 4 (ensemble size
10units).C, A conditioning analysis is performed to determine the impact
of fluctuations of each feature of the neuronal response on information by selecting subsets of bootstraps inwhich the other features are
held close to their distributionalmedians. For instance, to study theeffect ofMPCon information, bootstraps are selected such thatPS, PP,
andGAare fixednear theirmedian values (dark regions in thedistributions). If bootstrap fluctuations inMPC (while fixingPS, PP, andGA)
do not modulate DPcv, we can conclude that MPC do not play a role in the amount of information encoded by a neural network. This
approach is also used to study the effects of bootstrap fluctuations of neuronal activity on behavioral performance.
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below, MPC and GA are confounded
with PP and PS, and do not exhibit sig-
nificant correlations with DPcv once PP
and PS are held constant.

PS and PP determine the amount of
information encoded in neuronal
population responses
In this section, we identify the statistical
features of population tuning and trial-
by-trial variability that affect the amount
of encoded information (as measured by
DPcv), and we test our predictions on the
neural data described above.

Under some common assumptions (see
Materials and Methods), an analytical ex-
pression for the theoretical DP (DPth) of a
linear classifier can be derived (Averbeck
and Lee, 2006). This expression takes the
form DPth � �(d�/2), where ��x� is the
cumulative normal function and d�
� ��fT��1�f is the signal-to-noise ra-
tio generalized for a population of neu-
rons (Averbeck and Lee, 2006; Chen et al.,
2006; Gutnisky et al., 2017). The term �f
is the vector joining the means of the
population responses in the two stimu-
lus conditions, and � is the stimulus-
invariant noise covariance matrix of the
neuronal population. To understand
the roles of population tuning and trial-
by-trial variability in determining the
amount of encoded information, it is
useful to rewrite this equation by rotat-
ing the original N-dimensional neural response space along
the eigenvectors of the covariance matrix as follows:

DPth � ��1
2
��f���i
1

N
cos2�̂i

�̂i
2 �, (1)

where �̂i represents the angle between the i-th eigenvector of the
covariancematrix and the unitary direction defined by the stimulus
vector �f, and �̂i

2 denotes the i-th eigenvalue of the covariance ma-
trix (Fig. 1). Equation 1 reveals that the amount of information en-
coded by a neural population can be divided into two independent
components: the first-order contribution from the population
tuning (PS
 ��f�) and the second-order contribution fromthe trial-

by-trial variability �PP � ��i�1
N

cos2�̂i

�̂i
2 �. It is important to re-

mark that d� is often expressed as the signal-to-noise ratio of

the linear classifier � d� �
��z

�z
� , where under optimality, the

signal is given by ��z � �fT��1�f, and the noise is given by
�z � ��fT��1�f. While this d� formulation aims to differenti-
ate signal from noise with respect to the classifier’s decision vari-
able (Averbeck and Lee, 2006) (Fig. 1), it does not separate the
contributions of firing rate modulation (PS) and trial-by-trial
variability (PP) of the population to the amount of encoded in-
formation because ��z and �z both contain terms associated
with PS and PP.

There are two salient points to make regarding the relation-
ships between PS/PP and other measures of neuronal population
information. First, it is important to emphasize that PP is not
simply the projection of correlated noise (covariance matrix)
onto the vector joining the means of the population responses in
the two stimulus conditions, �f (for additional details, see Mate-
rials and Methods). For instance, it is possible to have a finite
projection of correlated noise onto�f, but PP can nevertheless be
very large. This can happen if there is an eigenvector of the covari-
ancematrix that is not orthogonal to�fwith a very small eigenvalue,
indicating the presence of highly correlated sets of neurons. Second,
previous studies have identified the exact pattern of noise corre-
lations that limit information for very large neuronal popula-
tions, the so-called differential correlations (Moreno-Bote et al.,
2014; Kanitscheider et al., 2015). Differential correlations add
neuronal activity fluctuations along f� (parallel to the discrimina-
tion direction, �f), and they are known to be the only type of
correlations that can limit information for very large neuronal
populations (N ¡ �). We show (see Materials and Methods)
that adding differential correlations into the system reduces PP
but does not affect PS. The reduction of PP by differential corre-
lations is �1 � 	̃ � PP0

2, where 	̃ � 	�f��2 and PP0 is the PP
evaluated on the original covariance matrix without infor-
mation-limiting correlations. The variable 	 directly measures the
strength of differential correlations. Thus, differential correlations
can have a strong effect on PP, but they are not the only factor in
determining PP for finite neuronal populations.

We find that Equation 1 provides a very good approximation
to the empirical measure of the amount of encoded information,

Figure 4. MPC and GA correlate with encoded information. A, Percent change in the amount of encoded information
(DPcv) related to fluctuations of MPC (blue) and GA (orange). Fluctuations of MPC and GA are produced through a bootstrap
process in which virtual instances of the same experiment are generated by sampling trials with replacement from a
particular dataset (Fig. 3B; see Materials and Methods; not to be confused with the conditioning analysis described in Fig.
3C). Smaller values of MPC produce significantly larger values of DPcv; thus, they are negatively correlated. Data are shown
from pairs of neurons recorded in MT during a coarse direction discrimination task (Monkey 1; Fig. 2A). B, C, Percent change
in DPcv, as a function of ensemble size (2, 4, 6, 8, and 10 units), for recordings from LPFC 8a during an attentional task
(Monkeys 2 and 3; see Fig. 2B; see Materials and Methods). GA has a strong modulatory effect on encoded information on
both monkeys. D, Analogous results for MT ensembles recorded during a fine direction discrimination task (Monkey 4; see
Fig. 2C; see Materials and Methods). MPC has a consistent negative effect on encoded information. In all panels, error bars
indicate the 25th to 75th percentile of the distribution of bootstrap medians. High-contrast colored bars represent signif-
icant deviations from 0 (Wilcoxon signed rank test, p � 0.05).
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as it accounts for more than 96% of the variance in the cross-
validated DP of a linear classifier (DPcv) for all datasets (Fig. 1-2,
available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-2).
In addition, Equation 1 is a better approximation to DPcv than
analytical expressions that simplify the covariance structure by
removing the off-diagonal terms (Averbeck and Lee, 2006; Aver-
beck et al., 2006; Pitkow et al., 2015) or calculations that assume a
covariance proportional to the identity matrix (“axis of discrim-
ination”method; seeMaterials andMethods; Fig. 1-1, available at
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-1) (Co-
hen and Maunsell, 2009). Finally, LDA produced better matches
to DPcv across different ensemble sizes andmonkeys than LR and
QDAdid, justifying our use of LDA to evaluate the amount of infor-
mation encoded by neural populations (DPcv; Fig. 1-3, available at
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f1-3).

Having identified analytically the two features of population
tuning and trial-by-trial variability that should determine the

amount of encoded information (i.e., PS
and PP), we now test the central predic-
tion that information depends exclusively
on PS and PP and does not depend on
other statistical features, such asMPC and
GA,unless those features are correlatedwith
PS and PP. Indeed, we found that bootstrap
fluctuations of MPC, GA, PS, and PP
showed substantial correlations among
them (Fig. 5; see Materials and Methods).
For instance, for Monkey 1, the correla-
tions between fluctuations of PS and GA,
PP andMPC, and PP andGAwere all highly
significant (ensemble size 2, �PS,GA 
 0.18,
p 
 2.4 � 10�24; �PP,MPC 
 �0.16, p 

1.1 � 10�11; �PP,GA 
 �0.091, p 
 1.1 �
10�12), whereas the correlation between
fluctuations of PS and MPC was not sta-
tistically significant (ensemble size 2,
�PS,MPC 
 0.019, Wilcoxon signed-rank
test, p 
 0.15; see Materials and Methods).
ForMonkeys 2–4, results were qualitatively
similar; although for Monkeys 2 and 3, the
correlation �PP,MPC was weaker. Therefore,
we suspected that the relationships between
MPC (andGA) and the amount of encoded
information (Fig. 4) would be reduced, if
not eliminated, once the modulations in
MPC (GA) were made independent of PS,
PP, and GA (MPC) by selecting bootstrap
samples with constant PS, PP, and GA
(MPC) values.

We tested these predictions by using a
conditioned bootstrapping method to
evaluate the effect of fluctuations in one
feature on the amount of encoded infor-
mation while the values of other features
are kept constant (Fig. 3C; see Materials
andMethods). For example, to determine
the effects of MPC on DPcv independent
of PS, PP, andGA,we generated bootstrap
samples from the original dataset and
selected those bootstrap iterations that
produced PS, PP, and GA values within a
narrow range around their medians.
Then, for the selected data, we evaluated

the percent change in DPcv introduced by the bootstrap fluctua-
tions inMPC. Any dependence of DPcv onMPC, then, would not
be explainable by the dependencies ofDPcv onPS, PP, orGA.This
method can be used to test the effects of any statistical feature on
the amount of encoded information by fixing other features to
their representative values, thus isolating the individual effects.
There are other possible approaches to isolating the effects of
different statistical features on the amount of encoded informa-
tion (DPcv), such as a model-dependent analysis based on GLMs.
However,due to the linearityassumptionsunderlyingGLMsandthe
potential collinearity between several statistical features, it is prefer-
able to use a model-independent approach based on conditioned
bootstrapping (seeMaterials andMethods).

Applying this conditioned bootstrapping approach to our da-
tasets, we found that bootstrap fluctuations of PS and PP greatly
affected the amount of encoded information, whereas fluctua-
tions ofMPC andGA produced negligible changes in DPcv across

A

B

Figure 5. Bootstrap fluctuations in PS, PP, MPC, and GA are correlated. A, Examples of how bootstrap fluctuations (without
conditioning) in GA are correlatedwith bootstrap fluctuations in PS (left), and fluctuations ofMPC are correlatedwith PP (right) for
pairs of neurons recorded in MT during a coarse direction discrimination task (Monkey 1; Fig. 2A). B, Median Pearson correlation
between fluctuations in PS and MPC (red), PS and GA (green), PP and MPC (blue), and PP and GA (orange) for each monkey and
ensemble size (seeMaterials andMethods). Error bars indicate the 25th to 75thpercentile of the distribution of bootstrapmedians.
High-contrast colored bars represent significant deviations from 0 (Wilcoxon signed rank test, p� 0.05). Correlations between
these different statistical features of the neuronal activity are likely to explain reported dependencies of encoded information on
MPC and GA.
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different tasks, animals, and neuronal en-
semble sizes (Fig. 6). As anticipated, when
fluctuations of MPC and GA were condi-
tioned on PS and PP, the effects reported
in Figure 4 largely vanished (Fig. 6, right
column). For Monkey 1 (Fig. 6A), fluctu-
ations of PS and PP produced significant
positive changes in the amount of en-
coded information by 5.43% (Wilcoxon
signed-rank test, p
 3.2� 10�37; seeMa-
terials and Methods) and 2.75% (p 

1.3 � 10�35), respectively. In contrast,
fluctuations of MPC and GA had no sig-
nificant effects onDPcv (p
 0.33 and p

0.16, respectively). For Monkeys 2–4
(Fig. 6B–D), resultswere qualitatively sim-
ilar to those obtained forMonkey 1 (Table
6-1, available at https://doi.org/10.1523/
JNEUROSCI.0859-19.2019.t6-1). We also
compared the difference in percent
change in DPcv for all pairs of statistical
features and found again that PS and PP
had the most significant effects on the
amount of encoded information (Table
6-2, available at https://doi.org/10.1523/
JNEUROSCI.0859-19.2019.t6-2). The ob-
served dependency of DPcv on PP is
generallyweaker than thatonPS.This could
be explained at least partially by the fact that
PP isa second-order statistic andtherefore is
expected to be noisier than the first-order
statistic, PS, when estimated from limited
experimental data.

PS and PP are also the strongest
predictors of behavioral performance
We have shown that PS and PP are the
major statistical features of population ac-
tivity that affect the amount of encoded
information in neuronal populations. But
do these features also have an impact on
behavioral performance? We reasoned
that, if downstream neurons that contrib-
ute to behavioral choices can extract most
of the information encoded by a neuronal
population, then behavioral performance
should depend on PS and PP while it is
largely independent of MPC and GA.
However, since there could be many lay-
ers of nonlinear computations between
the information encoding stage and the
final behavioral choice, finding such a re-
lationship is not guaranteed a priori.

Behavioral performancewasmeasured
as the percentage of correctly reported di-
rections of motion (Monkeys 1 and 4)
(Fig. 7A,D) or as the mean reaction time
(Monkeys 2 and 3) (Fig. 7B,C). We first
confirmed that modulations in the amount
of encoded information (DPcv) over different bootstrap samples
were significantly correlated with the corresponding changes in
behavioral performance (Fig. 8). Although the reported correla-
tions are weak, they are nevertheless consistent with the predic-

tions of a model that reads out neuronal population activity
optimally to produce behavioral choices (see next section). We
then performed the conditioned bootstrap analysis on behavioral
performance separately for each stimulus strength or task difficulty

Figure 6. Encoded information dependsmainly on PS andPPonce other variables are controlled.A, Percent change in the amount of
encoded information (DPcv) when changes in one statistical feature of neuronal responses are isolated by the conditioned bootstrapping
methoddescribedinFigure3C.RedrepresentsPS.GreenrepresentsPP.BluerepresentsMPC.OrangerepresentsGA.OnlyPSandPPproduce
significant changes in DPcv when the other three features are kept constant (e.g., PS is tested by using bootstrap samples for which the
values of PP, MPC, and GA are all close to their respectivemedian values). Data are shown from pairs of neurons recorded inMT during a
coarse direction discrimination task (Monkey 1; see Fig. 2A; see Materials and Methods). B, C, Percent change in DPcv, as a function of
ensemble size (2, 4, 6, 8, and10units), for recordings fromLPFC8aduring anattentional task (Monkeys 2 and3; see Fig. 2B; seeMaterials
and Methods). D, Analogous results for MT ensembles recorded during a fine direction discrimination task (Monkey 4; see Fig. 2C; see
MaterialsandMethods). Inallpanels,errorbars indicate the25thto75thpercentileof thedistributionofbootstrapmedians.High-contrast
coloredbars represent significantdeviations from0(Wilcoxon signed rank test,p�0.05). SeealsoTable6-1 (available athttps://doi.org/
10.1523/JNEUROSCI.0859-19.2019.t6-1) and Table 6-2 (available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.t6-2).
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to control for trivial dependencies (seeMaterials andMethods).We
found that bootstrap fluctuations of PS and PP predicted significant
modulations of behavioral performance across different datasets
and ensemble sizes, whereas changes in behavioral performance
produced by fluctuations in MPC and GA were either weak or in-
consistent across different animals and ensemble sizes (Fig. 9). For
example, bootstrap fluctuations of PS or PP, while keeping all other
statistical features fixed, predicted significant changes in behavioral

performance forMonkey 1 (Fig. 9A; behav-
ioral change predicted by PS alone: 1.59%,
Wilcoxon signed-rank test, p 
 3.6 �
10�14; PP alone: 0.53%, p 
 1.4 � 10�3).
However, the average change in behavioral
performance predicted by bootstrap fluctu-
ations of eitherMPC orGA alone were very
small and not statistically significant for this
animal (MPC: 0.06%, Wilcoxon signed-
rank test, p
 0.33; GA:�0.03%, p
 0.44).
We obtained qualitatively similar results for
other monkeys and tasks (Fig. 9B–D; Table
9-2, available at https://doi.org/10.1523/
JNEUROSCI.0859-19.2019.t9-2), except
that bootstrap fluctuations of GA pro-
duced significant fluctuations in behav-
ioral performance for Monkey 2, but not
Monkey 3, in the attentional task.We also
analyzed the data using Pearson’s correla-
tion coefficient in place of percent change
in DPcv and obtained qualitatively similar
results (Fig. 9-1, available at https://
doi.org/10.1523/JNEUROSCI.0859-19.
2019.f9-1). These results were also robust
across different conditioning thresholds (Fig.
9-1, available at https://doi.org/10.1523/
JNEUROSCI.0859-19.2019.f9-1; see Ma-
terials and Methods) and for all pairs of
statistical features (Table 9-3, available at
https://doi.org/10.1523/JNEUROSCI.
0859-19.2019.t9-3).

In summary, we find that PS and PP
are the primary statistical features of neu-
ral activity that exhibit modulatory effects

on behavioral performance, whereas MPC and GA show little or
no consistent effects. These results are in linewith those described
earlier for the amount of encoded information (Fig. 6).

An experimentally constrainedmodel accounts for
the findings
Todeterminewhether our experimental findings (Fig. 9) are con-
sistent with an optimal readout of a neuronal population much
larger than the observed ensembles, we developed a model
constrained by the observed statistical properties of the neural re-
sponses (Fig. 10A; Fig. 10-1A, available at https://doi.org/10.1523/
JNEUROSCI.0859-19.2019.f10-1; see Materials and Methods).
The model simulates a number of trials (M trials in total) in
which a stimulus (s 
 {�1, �1}) drives a large population con-
sisting of N 
 1000 neurons. Each neuron has a linear tuning
curve with a slope (m1) drawn from a normal distribution.
Neuronal correlations combined limited-range dependencies
(Kanitscheider et al., 2015; Kohn et al., 2016), differential corre-
lations (Moreno-Bote et al., 2014), and multiplicative and addi-
tive gains (Arandia-Romero et al., 2016). These correlations were
generated though a sequence of steps as follows. For each trial j, a
vector r�j (sizeN
 1000 neurons) was drawn from amultivariate
Gaussian withmean� and covariancematrix� gen. The response
vector r�j was then corrupted with sensory noise, 
sj, which in-
troduces differential correlations and limits the amount of infor-
mation encoded in large populations of neurons (Moreno-Bote
et al., 2014). Multiplicative and additive gains were then applied

A B

C D

Figure 7. Definitions of behavioral performance for each task. A, Psychometric curve averaged across recording sessions for
Monkey 1. Proportion of choices in favor of the preferred direction as a function ofmotion coherence (positive values of coherence
correspond to the preferred direction of motion). Gray region represents SEM. B, C, Distributions of reaction times for Monkeys 2
and 3. For the attentional task, reaction time is defined as mean time (across trials in a particular dataset) from the change in
stimulus orientation until the saccade to the cued Gabor pattern. D, Psychometric curve averaged across recording sessions for
Monkey 4. Proportion of rightward choices as a function of the direction of motion with respect to vertical (positive and negative
values denote motions with a rightward and leftward component, respectively). Gray region represents SEM.

Figure 8. Amount of encoded information correlateswith behavioral performance. Pearson
correlation between fluctuations in encoded information (DPcv) and fluctuations in monkeys’
performance (seeMaterials andMethods). Across all datasets and ensemble sizes, trials associ-
ated with larger encoded information are also significantly associated with better task perfor-
mance. Error bars indicate the 25th to 75th percentile of the distribution of bootstrapmedians,
and significant deviations from 0 (high-contrast colored bars) are calculated by a Wilcoxon
signed rank test (not significant if p� 0.05).

Nogueira et al. • Dissecting Population Information and Behavior J. Neurosci., January 29, 2020 • 40(5):1066–1083 • 1079

https://doi.org/10.1523/JNEUROSCI.0859-19.2019.t9-2
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.t9-2
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.t9-3
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.t9-3
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f10-1
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f10-1


(Arandia-Romero et al., 2016) (gj), and a
final Poisson step converted each re-
sponse rate into an observed spike count
nj (Kanitscheider et al., 2015) (seeMaterials
and Methods). Fano factors that approxi-
matelymatched typical values found exper-
imentally were used (Shadlen and
Newsome, 1998; Arandia-Romero et al.,
2016; Nogueira et al., 2018). Finally, based
on the neuronal activity generated by the
network,wegenerated surrogate choices (cj)
by optimally decoding the whole popula-
tion of 1000 simulated neurons (cj
� sign��opt

T nj � �0�) on a trial-by-trial
basis. The presence of differential correla-
tions ensures that the amount of encoded
information could not scale indefinitely
with the number of neurons.

To comparewith our experimental data,
we randomly selected small ensembles (up
to 10 model neurons) out of the full popu-
lation (consisting of 1000 neurons) to test
how fluctuations in PS and PP of the small
ensembles correlate with encoded informa-
tion and simulated behavior of the full
network (Fig. 10-1, available at https://
doi.org/10.1523/JNEUROSCI.0859-19.
2019.f10-1). We repeated the analyses
performedon the experimental data (Figs.
6, 9). Consistent with the experimental
data, PS and PP computed from these
small ensembles of model neurons are the
only features that correlated significantly
with DPcv and surrogate behavioral per-
formance, whereas MPC and GA did not
(Fig. 10B,C). We also found that changes
in the model’s simulated behavioral per-
formance associated with bootstrap fluc-
tuations of PS and PP were quite small
(Fig. 10C; ensemble size 2; surrogate be-
havioral change predicted by PS alone:
0.32%, Wilcoxon signed-rank test, p 

2.12 � 10�6; PP alone: 0.028%, p 

0.049) and approximately similar in mag-
nitude to the experimental results (Fig. 9).
As expected, when neuronal ensembles of
up to 100 neurons were sampled from the
full population, fluctuations of PS and PP
had a larger effect on surrogate behavioral
performance (ensemble size 100; surro-
gate behavioral change predicted by PS
alone: 0.90%, Wilcoxon signed-rank test,
p 
 1.73 � 10�6; PP alone: 0.21%, p 
 4.38 � 10�3). Finally,
correlations between fluctuations of DPcv and simulated behav-
ioral performance were weak (Fig. 10-1G, available at https://
doi.org/10.1523/JNEUROSCI.0859-19.2019.f10-1)andcomparable
with those observed in the experimental data (Fig. 7). In summary,
the weak correlations that we observed experimentally between
PS/PP and behavioral performance are broadly consistent with the
weak dependencies between neuronal activity and choice observed
using single-neuron analyses (Britten et al., 1996; Uka andDeAnge-
lis, 2004; Nienborg and Cumming, 2009; Haefner et al., 2013), and

are also consistent with our hypothesis that behavior is generated by
an optimal readout of a much larger population of neurons.

Discussion
Identifying the statistical features of neural population responses
that determine the amount of encoded information and predict
behavioral performance is essential for understanding the link
between neuronal activity and behavior. Based on data collected
from twobrain areas and three behavioral tasks, we identified two
critical features: the length of the vector joining the mean re-

Figure9. PS andPPbest predict behavioral performance.A,Monkey 1.B,Monkey 2. C,Monkey 3.D,Monkey 4. Percent change
in behavioral performance, as a function of ensemble size, is shown for each behavioral task when the conditioned bootstrapping
approach is used to isolate fluctuations in PS (red), PP (green), MPC (blue), and GA (orange). See also Figure 9–1 (available at
https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f9-1), Table 9–2 (available at https://doi.org/10.1523/JNEUROSCI.0859-
19.2019.t9-2), and Table 9–3 (available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.t9-3).
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sponses of the population of neurons across two conditions to be
distinguished (PS), and the inverse of the population covariabil-
ity projected onto the direction of that vector (PP). We found
that changes in PS and PP are significantly correlated with the
amount of encoded information and behavioral performance,
but MPC and GA are not, once PS and PP are held fixed. Our
experimental results are consistent with predictions of a neuronal
population model with realistic neuronal tuning, variability,
and correlations that is readout optimally to generate behav-
ioral choices.

Although previous studies have examined how input signals
are represented in the average activity of neurons (Hubel and
Wiesel, 1959; Mountcastle et al., 1967; Renart and van Rossum,
2012), described the types of neuronal correlations that can ben-
efit or harm encoded information (Zohary et al., 1994; Abbott
and Dayan, 1999; Averbeck et al., 2006; Ecker et al., 2011;
Moreno-Bote et al., 2014; Verhoef andMaunsell, 2017), and cau-
tioned about directly linkingMPCwith information (Abbott and
Dayan, 1999; Averbeck et al., 2006; Moreno-Bote et al., 2014),
they have not clearly separated the primary features of neuronal
population activity that constrain the amount of encoded infor-
mation and affect behavioral performance. As shown above, the
traditional interpretation of neuronal population sensitivity, d�,
considers the signal and noise components of the classifier’s de-
cision variable. However, contrary to this classic interpretation,
our framework separates the contributions of population tuning
(first-order statistic) and trial-by-trial variability (second-order
statistic) of the neuronal responses to the amount of encoded
information. Separating these two contributions of d� is impor-
tant for several reasons. First, as we have shown, the effects of
statistical features, such as MPC and GA, on the amount of en-
coded information and behavioral performance can be under-

stood in terms of the contributions by the first-order (PS) and
second-order (PP) statistical components. This suggests that PS
and PP are fundamental statistical features that underlie many
other statistical features that affect the amount of information
encoded and behavioral performance. Second, when addressing
how learning affects neuronal coding, for example, it is important
to understand not just how d� changes during learning but also how
learning alters the tuning curves of individual neurons (i.e., PS) and
the coordination among neurons along relevant task axis (i.e., PP).
Therefore, distinguishing the first- and second-order contributions
may help us understand circuit-level models of learning.

Previous studies have also identified the exact pattern of noise
correlations that limit information for very large neuronal pop-
ulations (Moreno-Bote et al., 2014; Kanitscheider et al., 2015),
but as we have shown, the precision of the neuronal code for
finite neuronal populations depends only partially on differential
correlations, which act by reducing PP. Thus, one important con-
tribution of our study is identifying PS and PP as the critical
features of neuronal activity that modulate the amount of en-
coded information and predict behavioral performance for finite
populations sizes.

Another contribution of this study involves demonstrating
that other features of neuronal activity, namely, MPC and GA,
have little or no impact on the amount of encoded information
and behavioral performance once PS and PP are controlled for
(Zohary et al., 1994; Shadlen andNewsome, 1998;McAdams and
Maunsell, 1999; Kanitscheider et al., 2015; Lin et al., 2015;
Arandia-Romero et al., 2016; Ecker et al., 2016; Gutnisky et al.,
2017; Verhoef and Maunsell, 2017). We developed a novel ap-
proach for studying correlations among multiple variables while
eliminating the effects of other variables (conditioned bootstrap-
ping method). This method uses bootstrapping to generate con-

Figure 10. An experimentally constrained neural population model accounts for the empirical findings. A, Generative model for the simulated neuronal responses. A population of N model
neuronswas characterized by linear tuning curveswith slopem1. An intermediate activity pattern (rj�) was obtained by drawing anN-dimensional sample from amultivariate Gaussian distribution
(mean� and covariance� gen) and then corrupting it with sensory noise (
sj) on every trial j (rj) (M trials in total). A homogeneous response gainmodulation (gj) and a Poisson step were applied
to produce the final population spike count (nj). The choice of the virtual agent (cj) was obtained by an optimal readout of the population activity pattern on each trial (seeMaterials andMethods).
B, Percent change in the amount of information encoded by themodel (DPcv), as a function of the ensemble size, when bootstrap fluctuations of different features of the neural activity are isolated.
Only isolated bootstrap fluctuations in PS and PP influence the amount of information encoded by the population, consistent with the experimental observations (Fig. 6). C, Percent change in
behavioral performance predicted by fluctuations in different statistical features of model population activity. PS and PP are the most important factors influencing behavioral performance. The
magnitude of changes in behavioral performance is similar to that observed experimentally (Fig. 9). See also Figure 10-1 (available at https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f10-1).

Nogueira et al. • Dissecting Population Information and Behavior J. Neurosci., January 29, 2020 • 40(5):1066–1083 • 1081

https://doi.org/10.1523/JNEUROSCI.0859-19.2019.f10-1


tinuous distributions of multiple statistical features so that
fluctuations of some features can be computed for a subset of
bootstrap samples that yielded no fluctuations in other features.
This method allowed us to isolate the effects of a particular fea-
ture on both the amount of encoded information and behavioral
performance. Thus, our approach clearly differs from the tradi-
tional trial shufflingmethod that destroys all dependencies in the
data to examine the effects of correlations (Romo et al., 2003;
Kohn and Smith, 2005; Tremblay et al., 2015; Leavitt et al., 2017).
It also differs from maximum entropy models that generate sur-
rogate data while fixing the first and second moments of the
generated distribution to desired values (Elsayed and Cunning-
ham, 2017).

Previous studies have suggested that MPC and GA affect be-
havioral performance (Cohen and Newsome, 2008; Cohen and
Maunsell, 2009; Mitchell et al., 2009; Gu et al., 2011; Ni et al.,
2018). On the surface, these studies appear to be at odds with our
main finding that only PS and PP should affect the amount of
encoded information or behavioral performance. Indeed, we find
that bootstrap fluctuations of MPC and GA have little effect on
the amount of encoded information or behavioral performance
when PS and PP are kept constant. Our results suggest that the
previous studies found effects of MPC and GA on behavioral
performance because these variables are themselves correlated
with PS and PP (Fig. 5). Indeed, there may be many other statis-
tical features of neuronal responses that seemingly influence the
amount of encoded information and behavioral performance,
but such relationships could be explained as a byproduct of cor-
relations of these statistical features with PS and PP.

Although theoretical research has proposed that fluctuations
of GA can modulate the amount of encoded information (Kan-
itscheider et al., 2015; Lin et al., 2015; Ecker et al., 2016), a recent
study based on large neuronal populations in monkey primary
visual cortex found that the amount of information does not vary
with large fluctuations in GA (Arandia-Romero et al., 2016). An-
other recent study found amodest, but significant, increase inDP
when population activity decreased (Gutnisky et al., 2017), which
appears to be inconsistent with our theoretical prediction. Again,
however, some of the previous reports of positive effects of GA
may have arisen from correlations between fluctuations in GA
and PS. Indeed, we have found a highly significant correlation
between PS andGA. Therefore, an important question is whether
there is a residual effect of GA on the amount of encoded infor-
mation in the previous studies after the contributions of PS and
PP are eliminated. Our theory predicts that there should not be,
and the conditioned bootstrapping approach that we have devel-
opedwould be useful for teasing apart the statistical features (e.g.,
PS and PP) that fundamentally affect the amount of encoded
information and behavioral performance from heuristic param-
eters, such as GA, which may have only secondary effects on
information or behavior.

In conclusion, based on information metrics that are readily
applicable to neuronal data, we developed a theory-driven anal-
ysis that has identified the statistical features of neural population
responses that modulate the amount of information encoded by
cortical neuronal populations. We found an excellent agreement
between the theory and the experimental results, which indicates
that the assumptions of our approach are reasonable. A critical
finding is that PS and PP are the primary features that correlate
with behavioral performance and that one must be careful when
interpreting effects of other statistical features that may covary
with PS or PP. Finally, we showed that our results are consistent

with predictions of a model that optimally decodes population
responses to produce behavior.
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