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Abstract

Shared neuronal variability has been shown to modulate cognitive processing. However, the
relationship between shared variability and behavioral performance is heterogeneous and
complex in frontal areas such as the orbitofrontal cortex (OFC). Mounting evidence shows that
single-units in OFC encode a detailed cognitive map of task-space events, but the existence
of a robust neuronal ensemble coding for the predictability of choice outcome is less estab-
lished. Here, we hypothesize that the coding of foreseeable outcomes is potentially unclear
from the analysis of units activity and their pairwise correlations. However, this code might be
established more conclusively when higher-order neuronal interactions are mapped to the
choice outcome. As a case study, we investigated the trial-to-trial shared variability of neuronal
ensemble activity during a two-choice interval-discrimination task in rodent OFC, specifically
designed such that a lose-switch strategy is optimal by repeating the rewarded stimulus in the
upcoming trial. Results show that correlations among triplets are higher during correct choices
with respect to incorrect ones, and that this is sustained during the entire trial. This effect is not
observed for pairwise nor for higher than third-order correlations. This scenario is compatible
with constellations of up to three interacting units assembled during trials in which the task is
performed correctly. More interestingly, a state-space spanned by such constellations shows
that only correct outcome states that can be successfully predicted are robust over 100 trials
of the task, and thus they can be accurately decoded. However, both incorrect and unpredict-
able outcome representations were unstable and thus non-decodeable, due to spurious nega-
tive correlations. Our results suggest that predictability of successful outcomes, and hence the
optimal behavioral strategy, can be mapped out in OFC ensemble states reliable over trials of
the task, and revealed by sufficiency complex neuronal interactions.
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Author summary

Neuronal responses can differ substantially during repetitions of the same tasks; however,
they are often coordinated (shared) across multiple neighboring neurons. Such correla-
tion between neurons has been related to the capacity of the brain to take decisions, but
specifically how this relation is established is still under study. In this work, we address
this question by focusing on an intriguing case study, the orbitofrontal cortex, since this
brain area has been found in various studies to be useful for decision-making. Here, we
question whether orchestrated groups of neurons encode sufficient information for opti-
mizing their decision strategy; that is, whether the outcome of a choice can be predicted
or not on the basis of previous experience. We thus designed a decision-making task for a
rat in which some of the correct choices can be predicted. We found that only successful
outcomes that can actually be predicted were robustly encoded over time. This finding
was shown by analyzing sufficiently complex interactions between three neurons, whilst
more complex orchestrations did not add further insights. Thus, we propose that coordi-
nated responses of up to three neurons in the OFC could contribute to the capacity of the
animal to take the optimal decision.

Introduction

The functional role of the observed neural and behavioral variability in repetitions of the same
task is a fundamental question in systems neuroscience [1-13] and is currently under extensive
discussion. The focus has been mainly on the analysis of trial-to-trial variability dynamics in
motor [2, 14-17] or in sensory [4, 8, 16, 18-20] cortical areas; and more recently in frontal
regions during decision-making tasks [2, 3, 21-23].

Modeling [5, 7, 9, 24-29] and empirical studies [11, 24, 30, 31] suggest a stereotypical, and
thus predictable, nature of firing-rate fluctuations which is ubiquitous throughout the cortex
[9, 15-17]. In addition, shared variability (noise correlations) is typically reduced by top-down
attention [5, 32-34] and driven by the stimulus [5, 7, 19]. Thus, converging results support the
hypothesis that at least a fraction of the observed trial variability has a predictable, determin-
istic pattern which often plays a functional role, and hence should not be averaged out in anal-
yses (e.g., [4, 8-10, 27, 35-37]).

However, the relationship between shared variability in frontal areas and behavioral perfor-
mance is heterogeneous and complex [9]. It depends on the memory of choices preceding the
current trial, such that successful task engagement is associated with low variability [14]. By
contrast, some orbitofrontal cortex (OFC) neurons show the opposite trend [22]; and whilst
prefrontal cortex (PFC) neurons encode predictable biases in action timing, stochastic variabil-
ity is strongly represented downstream [2]. Moreover, a recent study has shown that mean
pairwise correlation might not serve as a proxy for encoded information nor for behavioral
performance in general, since only the variability along the encoding axis is detrimental to
information [38-40].

In this work, we investigate this scenario further by focusing on the relationship between
optimal choice behavior and shared trial-to-trial variability in rodent OFC [20, 41]. The OFC
provides a particularly interesting case study, since it has been associated with multiple behav-
iorally relevant variables in the decision-making task space (e.g., [42-51]) such as outcomes
expectations that guide action [41, 52], their desirability [53] or the availability of multiple-val-
ued choices in economic decision making [45] (but see also [54]). In contrast with other
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frontal areas [30, 55, 56], the OFC representation of whether optimal choices are or are not
predictable from previous trials outcomes [53] is less established [50, 51, 57].

Our hypothesis is that the representation of the outcome predictability is not always evident
from individual unit rates and their pairwise correlations. However, it might be established
when higher-order neuronal interactions are considered on a trial-by-trial basis. To test this
hypothesis, we used a two-choice interval-discrimination task devised such that the previous
outcome enables the animal to infer the optimal course of action, but in which the stimulus is
not always foreseeable. In this task, it has been previously shown [41] that OFC individual
units encode a compact combination of past-trial state variables that can inform the upcoming
decision [41]. Here, we focus on OFC ensembles for analyzing the role of shared variability in
predicting the choice outcome [15, 16].

We first observed that shared variability among triplets of neurons is higher during correct
choices, and that this was sustained during the entire trial duration; but this effect was unclear
for pairwise correlations. This suggested that stronger three-way correlations are systematically
associated with successful outcomes; whilst pairwise correlations are not sufficient to discrimi-
nate the choice outcome. Paralleling this result, a neuronal state-space spanned by up to three-
way interactions optimally decoded the correct choice versus the rest of the incorrect choices.

Intriguingly, only states representing predictable correct choices remained stable for over
100 trials of the task, while ensemble states for incorrect or unpredictable choice outcomes
randomly wandered in the state space and hence could not be effectively decoded. All in all,
our results suggested that correct-choice predictability and hence the optimal behavioral strat-
egy could be encoded in metastable states temporarily assembled by sufficiently complex,
third-order lateral OFC (I0FC) constellations.

Results

Shared variability among triplets of neurons is higher for correct-choice
outcomes

The mapping of choices to single-unit activity across the course of a trial has been previously
demonstrated [41]. Thus, given the role of second-order statistics in stimulus and behavior
coding (e.g., [5, 33, 38]), we sought to investigate the relationship of behavioral choices with
trial-to-trial variability and neuronal interactions. To this end, we recorded orbitofrontal
ensembles from three behaving rats implanted with tetrodes, while they performed the task
outlined in Fig 1 A. The interval discrimination task is described in more detail in Materials
and Methods and in [41]. The animal had to access the central socket in order to trigger a
sequence of two 50 ms pure tones (T1 and T2) separated by either a short or a long inter-tone
interval; by nose-poking either the left socket (for short ITI, light orange shades, see example
in Fig 1A) or the right socket (for long I'TI, darker orange shades) to successfully retrieve the
reward. After an incorrect trial, the previous ITI was repeated. Otherwise, the ITI was ran-
domly drawn from a distribution of values which grade the difficulty of the task (Fig 1A, see
also Materials and methods and Fig 5A).

First, as an exploratory analysis, we computed a common measure of shared neuronal vari-
ability (e.g., [9, 33, 38, 58-60]), the absolutely value of the trial-averaged correlations for each
ensemble; separately for correct- and incorrect-choice outcomes (Eq (1) in Materials and
methods).

Fig 1 shows the absolute value of such correlations averaged across ensembles of n > 5
units for illustrative purposes. Conventional, pairwise Pearson correlation coefficients (Fig 1B,
left) are weak (below 0.05 on average, Fig 1C), and do not discern between correct- and
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Fig 1. Shared variability within small ensembles increases for successful choices. (A) Schematics of the task. The animal has to
discriminate between two sequences of 50 ms pure tones (T1 and T2) separated by an inter-tone-interval (ITI) of variable duration,
by nose-poking either the right socket for long ITI (termed here stimulus long, ITI 350 — 500 ms) or the left socket for short ITI
(termed stimulus short, ITI 50 — 200 ms, example shown in the figure) to successfully retrieve the reward. Vertical lines indicate the
average position of different salient events during the trial (yellow: T1 onset, orange: T2 onset, cyan: averaged movement onset,
which has a high variance and thus is merely indicative). (B) Trial-averaged correlations (Eq (1) in Materials and methods) among
pairs (left panel), triplets of neurons (center panel) and quadruplets (right panel), further averaged across 5 ensembles having n > 5
units. Correlations are computed separately on trials in which the choice was correct (blue) and for the remaining trials (incorrect,
black). ** p < 0.001 (test details in main text, error bars are SD). Vertical lines indicate the average position of different salient events.
(C) Same as in (B), averaged over the trial, *** p < 0.0001. (D) Mean correlations for three periods of interest during the trial: trial
initiation (left), stimulus offset (central) and choice (right), * p < 0.01.

https://doi.org/10.1371/journal.pcbi.1007862.g001
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incorrect-choice outcomes (Fig 1B, left), in line with a recent study that analyzes the effects of
mean pairwise correlations on different tasks and brain regions [39].

However, the distinction between correct- and incorrect-choice outcomes (encompassing
all types of incorrect responses) is more strongly expressed in systems of triplets of units (Fig
1B and 1C). Such correlations are higher in magnitude for correct-choice outcomes (Fig 1B,
center; two-tailed t-test of mean correlation coefficients T(40) =7.3,p =6.2 - 10~°, MANOVA
incorrect vs correct trials, Wilks’ /\ = 0.88, p = 1.8 - 10™*), are sustained throughout the entire
trial and significant (one-sided Wilcoxon signed-rank of mean correlation coefficients for all
trials W = 1125, p = 1.11 - 107°).

Thus, this distinction is significant during the three 150-ms periods of special interest we
defined during the trial (Materials and methods, [41]), namely the trial-initiation period (Fig
1D, T(6) = 2.8, p = 0.029); the stimulus offset period, which starts 100 ms before the second
tone onset (Fig 1D, Wilcoxon rank sum W = 26, p = 0.028); and the choice period, starting
from the rat nose-poking (Fig 1D, T(6) = 2.6, p = 0.042). The discrimination among choice
outcomes vanishes again for both pairwise and weaker, higher-order interactions (Fig 1B,
right). Averaged correlations differ across orders for correct-choice outcomes (Fig 1C,
ANOVA F(2,60) = 105.03, p=2.51 - 107%°, Bonferroni corrected post-hoc comparisons
between orders 2 to 4, p = 1.27 - 1072, 7 - 107'2, 1.7 - 107 respectively).

Moreover, we tested this observation in a setting in which animals were passively exposed
to the same stimuli, but in which rewards were not provided [41]. If triple-wise correlations
are associated with the task, passive correlations should be weaker than correlations associated
with correct-choice trials, that is, when the task has been performed successfully. S1 Fig sug-
gests that passive correlations are not distinguishable from correlations during incorrect trials
and hence they are significantly lower than for correct-choice trials.

Opverall, this exploratory analysis seems consistent with constellations of up to three inter-
acting units, assembled during trials in which the task is successfully performed, whilst pair-
wise correlations do not suffice to discriminate the choice outcome.

Successful choices are encoded in orchestrated interactions within small
ensembles

Mechanistically, correlations in Fig 1 are thus suggestive of a sustained, orchestrated firing of
small OFC networks accompanying successful performance. This raises the question of
whether neuronal interactions help decodability of the choice outcome and thus behavior.

To assess this question, we first constructed state spaces as explained in Materials and
Methods (schematics in Fig 2A): the multi-unit space spanned by the firing rates of each
ensemble units (Fig 2A, left), is then enriched by incorporating pairwise (Fig 2A center) plus
triplet products of the rates (Fig 2A right) as new axes (Eq (8)). A multi-unit space enlarged by
6 > 1 rate products can represent up to 6"-order correlations, as demonstrated in Materials
and Methods/S1 Methods. (Eqs (10) and (11), (S17a), (S17b)) and will be thus referred to as
the 6"-order space [10, 37, 56].

Second, a decoder specialized in operating on such sparse high-dimensional input data (a
regularized kernel-Fisher discriminant [61], Eqs (3) to (7)) was used to predict the trial choice
outcome from ensemble rates. The entire trial duration was used, since three-way correlations
consistently depend on the correctness of the choice during all trial periods (Fig 1).

Is worth stressing that this decoder is just a conventional linear discriminant operating in a
state space spanned not only by the neuron fining rates as in previous studies, but also by prod-
ucts among such firing rates. For instance, for 6 = 3 and an ensemble of three neurons with
firing rates x,(t), i = 1, 2, 3, the expanded space would contain axes such as x;(f), x,(t), x5(t),
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Fig 2. Correct choices are robustly represented in high-order state spaces. (A) Schematics of the state spaces used in
Figs 2 and 3. Axes consist of single-unit firing-rates (left) plus up to their pairwise (middle) and triplet-wise (right)
products. Insets represent optimally discriminant subspaces (DC1-DC3). The figure is merely a sketch, axes DC1-DC3
are orthogonal (Materials and methods), but their orientation with respect to the high-dimensional state-space axes is
not represented in the figure and are not parallel to them. See also Fig 3, in which the same color-code is used. (B)
Projections onto the three discriminant coordinates, further orthogonalized, for an ensemble of # = 8 units, see
Materials and methods for details. Analyses for all ensembles (# = 82 units) are shown in Fig 4. Projections are derived
from the regularized linear discriminant decoder operating in an expanded space containing up to thee-way
interactions within the ensemble (termed kernel-discriminant [56, 61]). Each marker corresponds to the firing-rate
observation during a 80 ms bin, plots show data from 40 consecutive trials each. Colors represent behavioral response
categories for the trial, namely “C” (correct response, blue), “M” (missed responses and false alarms, red), “P-C”
(premature central response, gray), “P-L” (premature lateral response, see description in Materials and methods). (C)
Triplet (left) and pairwise (right) correlations, averaged for the entire trial duration for each one of the response
categories. Dashed lines in the pairwise correlation plots indicate the triplet-wise correlations on the left, which are
significantly higher for correct choices (* omitted for clarity). Error bars are SD. * p < 0.05 (test details in main text).

https://doi.org/10.1371/journal.pcbi.1007862.g002

x1(8) - %5(8) or x1(t) - x,5(1) - x5(¢) etc. (Fig 2A, right panel; see Materials and methods and S1
Methods for further details). The decisive advantage of this approach over a conventional
decoder is in leveraging the 6-order correlations to foster the out-of-sample decoding perfor-
mance, as shown in the next section.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1007862  June 24, 2020 6/30



PLOS COMPUTATIONAL BIOLOGY Representation of foreseeable outcomes in orbitofrontal cortex triplet-wise interactions

Trials 1 to 40 41-80

B .
Triplets
*
§0.15 .
kel
100¢ 100 o 01
3
= 0.05 15
807 S 80 O €0l oM
- E | wWore
=R o '
& 2 . L
2 60t £ 60 I
g 3 Trial Choice Outcome
i g
2 ao0r = 40 : l Correct (C)
=l 3
§ g’, - Missed/False Alarms (M/F)
O oot g 2ob | = ©  Premature-Central (P-C)
i o Premature-Lateral (P-L)
G ﬁ\\‘? oL oM o W oL oM

Fig 3. Correct-choice states are robust through tens of trials. (A) State-space projections in the orthogonalized discriminant subspace as in Fig 2 for
one of the smallest ensembles recorded (n = 5 units). Legend like in Fig 2: “C” (correct response, blue), “M” (missed responses and false alarms, red),
“P-C” (premature central response, gray), “P-L” (premature lateral response®. The green line shows an example of a single-trial trajectory; that is, a
sequence of consecutive 80 ms bins in the state space during the entire trial, in this example the outcome was an incorrect, premature-lateral response.
The whole trajectory is correctly classified and thus it does not diverge (see Materials and methods). This is only intuited from the figure, since the
nonlinear discriminant boundaries are not shown for clarity, see panel (B) below for this computation over all trials. (B) The same kernel-discriminant
was used to compute the six-fold-ahead, causally cross-validated decoding error (DE, left plot) and the trajectory divergence index (DT, right) over
blocks of trials shown in panel (A), as detailed in Materials and Methods. Analyses for all ensembles are shown in Fig 4. Orange boxplots indicate
bootstrap quartiles from the permutation test. Bootstraps were constructed by shuffling the trial outcome category (n = 1000; see Materials and
methods). Whiskers indicate outliers (+2.7 - SD), triangle markers the 1% percentile. The inset shows triplet-wise correlations averaged for the entire
trial duration and for each one of the response categories (* p < 0.05, error bars are SD).

https://doi.org/10.1371/journal.pchi.1007862.g003

Fig 2 illustrates the results of this analysis for the largest ensemble available, consisting of
eight units as a visual example. The figure shows an orthogonal representation derived from
the discriminant analysis operating in a third-order space, cross-validated in blocks of 40 trials.
In Figs 2 and 3, DC stands for the discriminant coordinates, which define the optimal subspace
(further orthogonalized) in which the data is projected for decoding (see Data analysis section
in Materials and methods). All categories of unsuccessful choice outcomes (missed and false
alarms, plus both sides premature responses; red, grey and green dots, respectively, in Fig 2B)
are mapped onto different volumes in the state space, drifting randomly and largely
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overlapping around the origin. By contrast, the response pattern during correct choices (blue)
remains in the same position of the state space from trial to trial (the same axes are used for all
plots in Fig 2B).

Moreover, correlations averaged for all ensemble units and trial bins (as in Fig 1C) are
consistent with this visualization: all triplet-wise correlations are substantially stronger for
correct choices (Fig 2C; Kruskall-Wallis 1%(3,124) = 50.4,p=6.6 - 107'%; Bonferroni-cor-
rected comparisons with correct choices at p < 0.05 indicated). However, this effect is not
observed in pairwise correlations, which, in addition, decrease significantly for correct
choices with respect to triplets of neurons (Wilcoxon rank sum, W = 1040, p = 7.2 - 10 '2,
dashed versus solid lines in Fig 2C) and only distinguish among correct and premature
central responses. The same striking observation is salient for smaller ensembles (for
instance Fig 3A); again consistent with mean triplet-wise correlations (Fig 3B inset,
F(3,124) = 16.4, p = 5.0 - 10°, p < 0.05 for all Bonferroni-corrected post-hoc comparisons
with correct-choice).

The robustness of the decoding over trials was assessed by two causally cross-validated
indexes computed on future trials not used to train the decoder: the decoding error, DE, and
the divergent trajectories, DT, indexes defined in Materials and Methods. This cross-validation
process is specifically designed to quantify how much the 3-dimensional subspace DC1 — DC2
— DC3 obtained in previous trials is still a valid decoder for future trials; that is, the stability of
the subspace over time.

We refer to “trajectory” as the sequence of consecutive firing rate bins during a single trial
(Eq (12)). For instance, during a 2000 ms trial using a 80 ms bin, a trajectory is a sequence of
25 consecutive points in the space corresponding to the same trial (see an example in Fig 3A).
The DT index measures the percentage of trials containing at least one incorrectly decoded
point, starting from the trial endpoint and checking the trajectory backwards in time (Eq
(13)). This index is suggestive of the degree in which decoded states differ empirically from
ideal attracting sets as discussed in [10, 37, 56].

The overall decoding accuracy is significant but low. This is expected, since the cross-vali-
dation imposed is demanding: training (estimation) and validation sets may not be consecu-
tive and both contain the same number of trials. By contrast, training sets are typically much
larger than test sets in decoding studies [41]. Despite this, and in line with the visual display,
DE and DT are substantially lower for the correct choice than in the rest of the responses
(see analysis with the full dataset in Fig 4). Permutation tests constructed by shuffling the trial
choice outcome (Materials and methods) further confirm this analysis: the correct choice is
significantly decoded (Fig 3B, p = 0.001, orange boxplots). In short, the trial-to-trial drift in the
state space seems to be visually reduced for successful choice trials.

These examples are suggestive of OFC populations consistently encoding correct choices
over tens of trials in a low-variability state. This hypothesis is tested for all the data in Fig 4,
large panels below. In line with the previous examples, DE and DT averaged over all ensembles
are significantly low for correct choices (Fig 4 bootstrap test, p = 0.001, orange boxplots) and
significantly smaller than for incorrect trial outcomes (DE and DT for black bars are averages
for premature, missed and false alarms, Wilcoxon rank-sum, W = 17118, p = 0.0043;

W =13779, p = 6.8 - 10~'?), which cannot be decoded (DE below the bootstraps significance
chance level, Fig 4 large bottom panels). This phenomenon is even often observable in an
ensemble-by-ensemble basis for 73% of the units (see examples of some individual ensembles
in S2 Fig). Note that the decoder is still multivariate, thus, standard receiver-operating charac-
teristics curve analyses do not apply and the chance level of a uniformly random decoder
would be at DE = 75%.
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comparison across orders, only ensembles consisting of four or more units are considered in the inset plots and in
forthcoming analyses. Results for the optimal state-space order (order 3, magenta) are also shown in the large panels
below for comparison.

https://doi.org/10.1371/journal.pcbi.1007862.9004

In addition, and consistently with the correlation analysis (Fig 1B-1D), the decoding of cor-
rect choices is suboptimal when the space is spanned only by the units activity (rendering a
conventional linear discriminant analysis, order 1 in Fig 4 top panels, post-hoc tests order 0 =
1 vs order 6 = 3, p <0.037, Bonferroni-corrected) or by using up to pairwise interactions; this
is also the trend observed when more complex interactions over triplets are considered (for
establishing a fair comparison between orders, only ensembles with four or more units are
used in the top panels in Fig 4 and in forthcoming analyses, rendering the same conclusions;
see pink bars in bottom panels for comparison). Note that larger state spaces (6 > 3) tend to
over-fit, as shown, for example, in [37, 56].

Moveover, decoding is still possible when the correlation with the immediately previous
trial is removed, suggesting that higher interactions may carry extra information for decoding
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[41]. To test this, we regressed units rates with the preceding trial (Eq (2)), and repeated the
decoding analysis on the residuals of the optimal adjustment (S3 Fig). Even though there is an
expected, significant drop in decoding performance, we observed a similar phenomenon as in
Fig 4.

In summary, only the “correct-choice state” can be decoded from the ensemble rates; that
is, it is associated with high trial-to-trial stability (Figs 2B, 3 and 4), often even on a single-
ensemble basis (52 Fig). This phenomenon is optimally salient when up to three-way interac-
tions within each ensemble are considered for decoding (inset panels in Fig 4) and is attenu-
ated, but still expressed when the information from the immediately previous trial is linearly
decimated (S3 Fig).

Destabilization of unpredictable correct-choice states

Results so far suggest that correct-choice ensemble states are robust over trials. However, cor-
rect-choice trials are not consecutive and can have different cognitive demands: this task is
designed such that the stimulus is repeated in the upcoming trial after an incorrect-choice out-
come, and randomized otherwise (Fig 5A and Behavior section in Materials and methods). In
addition, previous studies showed that OFC encodes a map of the task-space variables for both
the current and the immediately previous trial [41]. Thus, we hypothesize that the low decod-
ing error for correct-choice trials (Fig 4) represents the predictability of the decision after
incorrect choices.

To verify this hypothesis, it should be impossible to decode the correct-choice state when
immediately preceded by another correct-choice trial (Fig 5A, top schematics), since in this sit-
uation the upcoming stimulus is randomized and thus no longer predictable; whilst successful
decoding would falsify it.

The results in Fig 5B provide support to the hypothesis. When the same decoding analysis
is restricted to trials following premature, missed or false responses (termed here Predictable
trials in Fig 5A, bottom schematics), DE shows the same trend observed in Fig 4, further
enhanced. Successful choice states are again remarkably stable throughout trials when com-
pared with incorrect-choice states, as indicated by the mean DE for all ensembles (Fig 5B right,
Wilcoxon rank sum W = 648.5, p = 2 - 107, p is two orders of magnitude lower than in Fig 4,
pink bars in the left large panel). Again in line with previous section results, DE for correct
choices is below the bootstrap test significance level (permutation test, p = 0.001, symbols as in
Fig 3), and this effect is often observable in an ensemble-by-ensemble basis (examples in Fig
5C right panels).

In contrast, by decoding only trials following correct choices; that is, trials in which the
stimulus is randomized (termed here Unpredictable trials, Fig 5A top), correct choices cannot
be decoded any longer (permutation test). The correct-choice state also becomes indistin-
guishable from other states (Fig 5B left, W = 976.5, p = 0.636, individual ensemble examples in
Fig 5C left panels).

Shared variability is associated with predictability of successful choices

Allin all, low decoding errors for correct choices (Fig 4) are associated with correlated variabil-
ity among small constellations consisting of three units (Figs 1B, 2 and 3). Moreover, the opti-
mal decoder operates in a space in which constellations of up to three units are explicitly
represented (Fig 4). Thus, we expect that stronger positive correlations during trials after
incorrect-choice outcomes might explain the reason for low decoding errors for choices asso-
ciated with predictable successful outcomes (Fig 5).
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Fig 5. Destabilization of unpredictable correct-choice states. (A) Schematics of the stimulus delivery protocol (see
also Fig 1). Stimulus is repeated after an incorrect-choice outcome and thus is Predictable (bottom row) and randomized
otherwise (Unpredictable, top row). (B) Decoding error DE for correct choices and the average for other choice states,
when the immediately previous trial outcome was incorrect (predictable, right plot) or correct (unpredictable, left plot).
Error bars show SEM, *p < 0.05, **p < 0.001, test details in main text. Orange # = 1000 bootstraps, see previous figure
legend. (C) Example of the analysis for four individual ensembles, the same ones shown in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1007862.g005

Fig 6 shows this correlation analysis for unpredictable and predictable choice outcomes,
averaged for the ensembles analyzed in Fig 5. As expected, positive correlations are dominant,
consisting of 64.7 — 73.3% of all three-way (unfilled pie charts in Fig 6C) and pairwise correla-
tions (unfilled pie charts, S4A Fig). However, and intriguingly, positive correlations during
correct-choice trials do not depend on the preceding choice (comparison between
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unpredictable and predictable trials, triplet-wise distinct positive correlation coefficients aver-
aged during the trial shown in Fig 6C center, unfilled bars, Wilcoxon rank sum W = 131652,
p = 0.35; positive pairwise correlations in S4A Fig, unfilled bars, W = 44257, p = 0.43), against
our intuition.

By contrast, negative triplet-wise correlations for correct choices depend on the preceding
trial outcome (Fig 6C center, filled bars, W = 143391, p = 2.4 - 10”7). Thus, we hypothesized
that negative correlations may explain the differences in DE between unpredictable and pre-
dictable correct-choice trials shown in Fig 5B. Intuitively, infrequent negative correlations,
randomly appearing during the trial, would introduce perturbations causing cross-validated
decoding errors to increase with the strength of negative correlations.

Fig 6 tests this hypothesis. Three-way negative correlations are stronger for correct choices
during trials preceded by another consecutive correct choice (Fig 6A); that is, when the current
stimulus is unpredictable (insets in Fig 6A, coefficients averaged over the trial duration,

W = 45381, p = 4.1 - 10~°). These weak but significant triplet-wise negative correlations can
counter-balance the effect of dominant positive correlations in the stability of the correct-
choice state during the trial, explaining the high DE for correct-choice trials in Fig 5A (left).
This is the case either for most of the periods of interest individually (Fig 6B left plots, averages
over the three periods of interests defined in Materials and Methods and in Fig 1).

On the contrary, negative correlations among triplets of neurons do not distinguish among
choice outcomes after trials in which the stimulus is repeated (predictable stimuli, inset in Fig
6A right plot, W = 123951, p = 0.066). In this scenario, infrequent negative correlations are too
weak to destabilize the correct-choice ensemble state, explaining the lower DE for predictable
correct choices (Fig 5B right). Consistent with our previous analysis, this predictability-depen-
dent effect is overall not observed for negative pairwise correlations, shown in S4A Fig.

Interestingly, negative correlations during correct choices are particularly low during early
trial stages, when no information about the upcoming stimulus is available (Fig 6A right, ‘Initi-
ation’ period averages, W = 119577, p = 2 - 10~*). We thus propose that for predictable trials
the hampering effect of infrequent negative correlations in decoding is negligible, since in
such trials the information on the optimal decision is already available during the trial initia-
tion period, and negative correlations during this period are dampened. To further test this
hypothesis, we have devised a simple surrogate index termed differential correlation, described
in S1 Methods and in S5 Fig. In short, this index amounts how much positive correlations
express more strongly the difference between correct and incorrect trials than negative ones
during a specific time period (Eqs (S18) and (S19)). According to our hypothesis, this effect is
only significant for third-order correlations and early trial stages (S5 Fig, central row, trial ini-
tiation and stimulus periods).

However, trial-to-trial correlations could be also induced by stimulus repetition in the pre-
ceding trial and thus might not be indicative of stimulus predictability per se. To control for
this possibility, we repeated the correlation analysis but on the residual of the optimally
regressed units rates with the preceding trial; exactly as we did for the decoding analysis in S3
Fig (Eq (2)). Fig 7 and S4B Fig show these partial correlation coefficients (correlation coeffi-
cients of the residuals), which render similar results. That is, negative three-way correlations
for correct-choice trials are still significantly stronger when the current stimulus is unpredict-
able (Fig 7C filled bars). This distinction is inconclusive for partial three-way positive correla-
tions (Fig 7C, unfilled bars), and again for partial pairwise correlations (S4B Fig).

To conclude, the ensemble state during correct-choice trials is robust when the optimal
choice can be predicted from the previous trial outcome; it temporarily destabilizes otherwise.
This state emerges from up to three-way interactions within OFC networks consistently over
trials, and it is not observed for incorrect choices.
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Fig 6. Negative triplet-wise correlations accompany the unsuccessful decoding of correct choices for unpredictable stimuli. (A)
Negative correlations among triplets of units after correct (unpredictable, left) and after incorrect (predictable, right) trial choice
outcomes, averaged across all ensembles used in Fig 5. Correct choices are shown in blue, incorrect choices in black; shaded areas are
SD. Insets show the average through the entire trial duration. Magenta filling is used through the figure to indicate negative
correlations. (B) Averages for the periods of interest defined in Fig 1A: trial initiation (left), stimulus offset (central) and choice
(right). (C) Total fraction of positive and negative correlations for all ensembles and trials after correct (unpredictable, left) and after
incorrect (predictable, right) trial choice outcomes. The center panel show the averaged correlation only for correct choices. **

p <0.001, *** p < 0.0001; test details in the main text. See Fig 7 for partial triplet-wise correlations and S4 Fig for pairwise
correlations. See also S5 Fig for a complementary index.

https://doi.org/10.1371/journal.pchi.1007862.9006
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Fig 7. Correlation of the residuals of a linear regression adjustment with the preceding trial. Partial (residual) negative trial
averaged, triplet-wise correlations accompany the unsuccessful decoding of correct choices for unpredictable stimuli. (A) Negative
correlations among triplets after correct (unpredictable, left) and after incorrect (predictable, right) trial choice outcomes, averaged
across all ensembles recorded. Correct choices are shown in blue, incorrect choices in black; shaded areas are SD. Solid lines indicate
the partial correlation coefficients; that is, correlations among the residual firing-rates after being regressed with the immediately
previous trial rates (like in S3 Fig), see Data analysis section in Materials and methods. Dashed lines indicate the raw triplet-wise
correlations shown in Fig 6A for comparison. Like in Fig 6, magenta filling is used though the figure to indicate negative partial
correlations. (B) Averages for the periods of interest defined in Fig 1: trial initiation (left), stimulus offset (central) and choice (right).
Signed-rank tests, p < 0.0036. (C) Average partial triplet-wise correlations only for correct choices (comparison of unpredictable
versus predictable negative partial correlations, Wilcoxon rank sum, W = 141540, p = 6.8 - 10°°). Left and right pie charts show the
total fraction of partial positive and negative correlations for all ensembles and trials. * p < 0.01, ** p < 0.001, *** p < 0.0001. See also
Fig 6 for raw triplet-wise correlations, and S4 Fig for raw and partial pairwise correlations.

https://doi.org/10.1371/journal.pcbi.1007862.9007
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Discussion

The representation of behavioral choices in frontal areas variability is currently the focus of a
debate (e.g., [9, 30, 35, 55, 62, 63]). In this study, we find that correct choices that can be pre-
dicted from the previous trial outcome are associated with a reliable representation over tens
of trials in IOFC (Figs 2-5, S2 and S3 Figs). Constellations of triplets of neurons positively
correlated (Figs 1, 6 and 7, S1, S4 and S5 Figs) seem to furnish such a robust representation of
correctly predicted choice outcomes. However, the representation of unsuccessful or unpre-
dictable choice outcomes is weakly cohesive and randomly wanders in the state space.

Recent evidence suggests that the cognitive map of the task-space provided by OFC units
[64] enable them to encode a compact combination of past-trial state variables, which can pre-
dict the upcoming decision [41]. However, the coding of behavioral performance in OFC
ensembles remains controversial [41, 45, 50, 57, 64]. Our results suggest that correlations
within OFC constellations involving up to three units, enhance the reliability of the decoding
of the behavioral responses, in accordance with recent findings in the PFC [3]. Leveraging the
continuous activity over tens of trials, and harnessing the finer temporal synchrony provided
by multi-unit recordings [2], we found that such three-way interactions enable IOFC ensem-
bles to encode predictable outcomes.

Shared variability dynamics during cognitive processing

The relationship between variability decline and the cognitive state has been extensively stud-
ied using pairwise noise correlations; that is, how much of such variability across trials is
shared across units. Weakly correlated trial-to-trial variability has been often considered to be
beneficial for behavioral performance [14, 15, 33, 34]. Attenuation in noise correlations was
typically associated with top-down effects of selective attention [32]; which reduces task-irrele-
vant variability in the visual cortex [34] and thus increases the signal-to-noise ratio. This effect
led to suggest that low correlations may contribute to the effective processing of cognitive deci-
sions, as also proposed by various models [9, 65].

However, recent results challenge these classical views, suggesting instead that attention
reshapes the stimulus representation in earlier stages such that they are more effectively
decoded by downstream neurons, to ultimately guide decision-making [66]. This optimization
can result in opposite effects of attention on shared variability within and between processing
areas. For instance, attention would result in an increase of pairwise correlated variability
between the middle-temporal area and the superior colliculus for effective visualmotor pro-
cessing [66].

Moreover, despite the vast literature in noise correlations, it was recently shown that lower
(higher) mean pairwise correlations do not necessarily imply higher (lower) signal-to-noise
ratios, and thus they are not guaranteed to affect behavior as often suggested [39]. Indeed, the
dynamic pattern of noise correlations and not their absolute magnitude is often the determi-
nant factor which modulates the information encoded by ensembles [3, 5, 32, 38, 40, 59].

This was found to be the case for correlations that are similar over all periods of behavioral
interest during the task [3], as we also observed in the present work for triple-wise correlations
(Fig 1D). In our study, slightly correlated variability is suggestive of a systematic three-way
interaction pattern occurring during trials in which the choice outcome can be predicted. Con-
sistently, although relatively weak, third-order positive correlations are the strongest of all and
contribute to equip the most informative state space [3]; whilst infrequent triplet negative cor-
relations seem to undermine the decoding of unpredictable trial outcomes (Figs 6 and 7, 54
and S5 Figs).
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By contrast, mean pairwise correlations do not suffice to discriminate between correct and
incorrect choices (Fig 1B left and S4 Fig), nor are informative enough to build up the state
space in which correct outcomes are stable (order 2 in Fig 4 top, inset panels). This result also
seems consistent with previous reports studying the roles of weak higher-order correlations in
cortical ensembles (e.g., [67-69]). It is also in line with Nogueira et al. recent study [39] dis-
cussed before, in which pairwise correlations computed on multiple behavioral tasks and brain
areas are not reliable surrogates for the behavioral performance [39]. As previously stressed in
[38], only the variability along the encoding axis modulates information coding, not necessar-
ily the mean magnitude of pairwise correlations.

Neuronal correlations and state-space decoding

Stable subspaces of the space spanned by the ensemble activity, encoding components of the
task-space, have been identified in primate PFC (for instance in [24]) and in rodent anterior
cingulate cortex [37, 56] during working memory. In our study, a linear combination of
ensemble unit activity and their correlations up to a third order define the correct-choice
robust subspace, indicating a stable weighing of the connectivity among units over time.

The identification of this functional interaction pattern between units could be addressed
in future studies leveraging recent dynamic generalized linear models, which implement adap-
tive Granger causality analysis for spike trains [70]. In addition, within-trial non-stationarity
in high-order interactions could be captured by specifically designed state-space approaches
[71]. This robust, fixed interaction pattern may facilitate a subsequent readout of the informa-
tion downstream as proposed in [24]. This hypothesis is also reminiscent of a recent aforemen-
tioned study [66], suggesting that optimal processing could entail remolding stimulus
representations with respect to fixed readout dimensions at subsequent processing stages.

Other computationally efficient methods to estimate high-order correlations for larger neu-
ronal populations are specialized information geometry frameworks (e.g., [72-74]); whilst a
recent approach demonstrates that third-order correlations are capable of inducing synergy/
redundancy states in an information-theoretic sense [75]. More broadly, these information-
theoretic approaches are advantageous to assess the importance of orders higher than three,
which is computationally challenging for the direct calculation of the coefficients (Eq (1) and
(S17)), and would require larger ensembles.

In this study, we propose that triple-wise correlations switching their sign irregularly during
the trial (Figs 6 and 7) hinder decoding of unpredictable choice outcomes (Fig 5A left). All in
all, absolute correlation coefficients are low (Fig 1B), indicating sparse spiking and the pres-
ence of frequent silence periods. Simultaneous silences in spike trains can underlie the
observed higher-order correlations, as was recently demonstrated in cultured hippocampal
slices [69]. Moreover, such simultaneous silences explain the alternating signs at successive
higher interactions orders estimated in maximum entropy models. Interestingly, the authors
[69] observed how higher-order (6 > 2) interactions vanish when inhibition is blocked. In this
scenario, pairwise correlations suffice to account for the probability distribution of spike pat-
terns [69], as reported in retina [76]. The sparse firing and sign-alternating triplet interactions
we observed here may also stem from balanced inhibition [65]; whilst higher orders are too
weak in these small ensembles to play a significant role in decoding.

Our results are also in line with a recent report which shows evidence of long-term memory
representations of cue-reward associations in rodent OFC neurons, which are stable for days
and even after changing such associations [51]. The cognitive map of the task-space that we
previously found in single-units and small ensembles [41], seemed to be more robust when the
animal follows the optimal lose-switch strategy in this task [41]. Thus, we speculate that task-
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space representations in OFC might be modulated by a higher-order representation of the
behavioral outcomes operating at a longer timescale (Figs 2 and 3); which resembles findings
in premotor areas [14]. The downstream routing of this information to optimize behavior
remains unknown, and could be investigated using in vivo two-photon calcium imaging [51].

Intriguingly, the weak correlations observed (Fig 1B) are also suggestive of a relatively irreg-
ular, near-asynchronous dynamics, typically associated with a wide dynamical repertoire (e.g.,
[65,77]). In a more conjectural vein, the successful processing of the task by small IOFC
ensembles could map to long-lasting metastable states over tens of trials [78], which gain sta-
bility when the choice is deterministic and behaviorally relevant, and destabilize otherwise.
Such a metastable portrait might subserve the enhancement of detailed coding of task-epoch
variables that enable the animal to effectively predict the upcoming choice.

Materials and methods
Experiments

Ethics approval. The project was approved by the animal Ethics Committee of the Uni-
versity of Barcelona. All procedures were performed in compliance with protocols approved
by the Animal Care and Use Committee of Autonomous University of Barcelona (CEEAH
number 3866), with authorization from Department of Environment of the Generalitat de
Catalunya, and with guidelines approved by the EU Council Directive for the care and use of
laboratory animals (2010/63/EU).

Electrophysiology. Data were obtained from three Wistar rats (250 — 350 g) that were
chronically implanted (when the psychometric curve reached the 70% in the task outlined
below) with tetrodes in their lateral orbitofrontal (IOFC) cortex and trained as described in
detail in [41]. We recorded n = 137 single-units and ensembles from three animals. Single-unit
and small ensembles (up to three units) were analyzed in a previous work [41]. In the present
study, we specifically focus on ensembles containing a minimum of three units (82 units in
total), and their corresponding local field potential (LFP). The LFP was downsampled to 250
Hz to filter out the typical spiking activity component (see S1 Methods).

Spike trains were convolved with Gaussian functions to obtain statistically reliable estimates
of spike densities. The value of the optimal bandwidth for each neuron (variance of the Gauss-
ian smoothing function) was optimized using a multivariate kernel density estimation
approach as recommended in [56, 79]. Spike density estimates were then binned at 40 ms. The
reason for selecting this bin width is that at least 99% of bins for each unit contained up to a
single spike, enabling us to compute standard spike train correlation analyses for most of the
bins. Results reported were statistically invariant by using bin sizes up to 80 ms which was then
used to reduce the computational cost of the decoding analysis (Data analysis section). Low-
responsive units (< 2 Hz) are considered in this study, since the focus is on analyzing the
dynamic pattern of correlations during the trial irrespective of their mean magnitude or the
mean firing rate [38, 39].

Behavior. The experiment was designed to identify deterministic temporal patterns across
consecutive trials as a function of animal performance. Further details of the behavioral task
can be found in [41]. Briefly, rats were trained in an auditory time-interval categorization task.
Trials were self-initiated by the animals by nose poking in a central slot (Fig 1A), which trig-
gered a tone of 50 ms duration (delivered through earphones) after a randomly drawn delay
uniformly discretely distributed from 50 to 300 ms in steps of 50 ms. After an inter-tone inter-
val (ITI), randomly drawn (except for incorrect trials, see next section), a second pure tone of
the same duration and frequency was presented. The task is to classify the ITI, as short (50,
100, 150 or 200 ms) or long (350, 400, 450 or 500 ms).
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A reward was delivered when the animal poked the left socket for short ITI and the right
for long ITL; and was available for 3 s before the beginning of the next trial. False alarms (pok-
ing the incorrect side) and withdrawals before the second tone were followed by white noise
after a 3-s delay (WAV-file, 0.5 s, 80 dB sound pressure level). After an incorrect trial, the ITI
of the previous trial was repeated (see schematics in Fig 5A). More details can be found in [41].
Only trials in which animals engaged in the task were considered for the study.

For variability and correlation analyses, three periods of interest within the first 1000 ms of
the trial were considered [41]: (1) trial-initiation, which starts with the rat nose-poking into
the central socket and ends 150 ms later; (2) the stimulus offset period, which starts 100 ms
before the second tone onset and it finishes 50 ms later with its offset; and (3) the choice
period, corresponding to the 150 ms time window starting from the rat nose-poking into one
of the two lateral sockets.

For decoding analyses (see Data analysis section), we focused on 160 consecutive entire tri-
als of the task for visualization purposes (Figs 2 and 3). Behavioral responses associated with a
trial were summarized in ¢ = 4 non-overlapping categories, namely “correct response” (the
animal pokes the correct lever and successfully retrieves the reward), “missed responses and
false alarms” (this category encompasses all types of non-premature yet incorrect responses:
the animal stays idle and comes back to the central socket without choosing a side, or moves
away from it towards the wrong side), “premature central response” (the animal moves away
from the central socket too early, before the presentation of second tone) and “premature lat-
eral response” (the animal pokes any side again too early).

This categorization was chosen to provide a similar number of trials for each behavioral
response. It also enabled us to visualize the decoding process in a three-dimensional space
using discriminant analysis, which projects multi-unit ensemble rates to a (¢ — 1)-dimensional
subspace (number of distinct behavioral categories-1) to perform the decoding (see next sec-
tion). For such decoding analysis, the discrepancy in the number of bins per behavioral cate-
gory was kept to < 10% by discarding excess bins, enabling us to hypothesize a similar prior
probability of each choice overall. In three of the ensembles analyzed, both premature
responses were joined into a single category in order to have a balanced number of bins per
category for a more reliable decoding, thus ¢ = 3 for them.

In the comparative analyses of trials after correct and after incorrect behavioral responses
(termed Unpredictable and Predictable respectively in Figs 5-7, S4 and S5 Figs), trials are not
consecutive. Thus, to establish a faithful comparison among correct and other trial choices
(termed incorrect here), only some of the incorrect trials were considered; specifically those
which occurred immediately after (or as near as possible) correct-choice trials, such that the
number of trials of both types is balanced. In this way, both types of trials are in comparable
temporal vicinities.

Data analysis

Shared neuronal variability: Statistical testing. Shared variability was analyzed by trial-
averaged correlations between combinations of # distinct units within each ensemble, where
trial-averages were specific to each response category. Thus, we may loosely refer to them as
“noise decision correlations” (hereafter simply “correlations), since the behavioral response is
fixed, even though the stimulus is typically randomized from trial to trial. Figs 1-3, 6 and 7, S1,
S4 and S5 Figs, show means and standard deviations of these correlations across units and
ensembles.

The Pearson correlation among up to 6 units x; in a given ensemble, 1 < i < #, of rates
x1(6 T), x5(8, T), . .., x,,(¢, T) is defined next (Eq (1)). In this 6-order correlation coefficient,
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i indicates the neuron number, t is the time bin within each trial and T is the trial number,
whilst < x(¢) > is the trial-average:

0=2:
2o (6 T)— <x(t) >) - (%t T)— < x,(t) >)

Corr(x,,x,;0 = 2)(t) = )
{/Zr(xl(t» T)= <x(t) >)" 2 (0t T)= < x%(t) >)’

0<n:

Corr(x“ X 0)(t) _ ZT(xl(ta T)_ <X >) b (xn(tv T)_ <X, >) ! 7

V(6T <x, >)) ™ (S (6 T) = < x, >)')™

such that m; are any natural numbers that verify:
Zmi:07 mie{oa"'70_1}? (1)
i=1

where the denominator of the coefficients for a correlation order 6 odd is real in this study;
this definition ensures that 0 < Corr(xy, x,, . . ., x,; 6)() < 1. Noticeably, the 8-order correla-
tion must take into account all possible products of the neuronsi=1, ..., n up to order 8 < n.
For instance, in the same vein that the numerator of the pairwise Pearson correlation coeffi-
cient between units i = 1, 2 for zero-mean rates, contains x;(¢, T) - x,(t, T) summands; the 6 =3
numerator of one of the coefficients among units i = 1, 2, 3 contains terms such as x;(t, T) -
x,(t, T) - x5(t, T), whilst another 3" order coefficient contains summands like x2(t,T) -
x,(t, T) etc. Further details are discussed in S1 Methods. The kernel-discriminant described
below is a classifier which will take into consideration such 8-order correlations for decoding;
as discussed in the next section and demonstrated in S1 Methods.

The partial correlation coefficient Corr(%,,%,, . .., %,; 0) (Fig 7 and S4B Fig) is defined as in
Eq (1), but variables are instead the residuals of a linear regression adjustment with the preced-
ing trial,

x%,(t,T) =x,(t, T) — b, - x,(t,T — 1) — by, (2)

where x(t, T — 1) is the rate of the i unit at the same time bin ¢ in the immediately preceding
trial T — 1, and by, b, are linear regression coefficients optimized by least-squares across trials.

Nonparametric tests were used when normality assumption was rejected according to con-
servative Lilliefors tests at p = 0.01, as further detailed in the Results section. For the decoding
analysis (next section), permutation tests were performed by generating n = 1000 bootstraps,
providing a one-tailed significance level p = 0.001. Bootstraps were designed by shuffling the
bin order for each neuron within each single trial (orange boxplots in Figs 3-5 and S2 Fig).
Whiskers in the boxplots show outliers, defined here as +2.7 - SD, orange triangle markers
indicate the 1% percentile.

Decoding algorithm. Analyses shown in Figs 2-5, S2 and S3 Figs were based on a robust
standard decoder, termed a regularized kernel-Fisher discriminant [10, 37, 56, 80, 81] (briefly,
kernel-discriminant). In this section, the trial index T will be omitted for simplicity, that is, x
(t) = x(¢, T); where, like in the previous section, ¢ is time bin index within a specific trial.

As intuitively outlined in Results, this decoder is simply a standard linear discriminant
operating in a state space spanned by firing rates plus products among them (see Fig 2A, right
panel schematics). The advantage over a standard linear discriminant is in improving its
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decoding capability by considering 0-order correlations, as explained in the next section (see
also Fig 4 top panels for a comparison with a linear discriminant, order 1 lines). See for exam-
ple [10, 37, 56] for comprehensive descriptions of this standard approach in machine learning,
but adapted for ensemble recording analyses. In addition, SI Methods show a detailed descrip-
tion of the decoder and intuitive parallels with classical discriminant analyses.

Like the conventional linear discriminant, under optimal conditions (next section), the ker-
nel-discriminant provides the Gaussian conditional probability P(x(¢)|y) of an (1 x 1) observa-
tion vector x(#) = [x,(2), %,(), . . ., x,()] T, spanned by the firing-rates in an n-units ensemble.
y€{1,..., c} represents the behavioral category index, where c is the maximum number of dif-
ferent behavioral categories as defined in the previous section (correct responses, missed
responses and false alarms, and premature central/lateral responses, see full description in
Experiments).

As discussed earlier, for 8 = 1, the kernel-discriminant is fully equivalent to a classical dis-
criminant analysis (Fig 2A, left panel); whilst for 6 > 1 it functions in a state space explicitly
accounting for all possible interactions among units up to order 6 (Fig 2A, center and right).
Other standard approaches such as kernel-logistic regression, relevance support-vector
machines [61], or more recently deep learners [82] can have comparable capabilities. However,
as discussed in the following sections and in S1 Methods, this classifier straightforwardly pro-
vides a direct link with (neuronal) correlations, and an intuitive visualization of the effect of
correlations for decoding (Figs 2 and 3, see also [10, 56]). In contrast to other approaches, it is
based on the optimization of a single parameter A (Eq (3) below). Thus, it was the choice for
this study for its interpretability and robustness.

The kernel-discriminant can be casted as a constrained optimization problem [61] (S1
Methods), in which the goal is to obtain ¢ — 1 nonzero vectors & of dimension (I x 1). In what
follows, | = Z;:1 I, is the number of observation vectors on each estimation (training) dataset
(see Reliability over trials analysis section for dataset definitions), where I, are the observations
associated with the y™ behavioral category. The optimization program is:

a: min,(a"Na + A - a"Ka),

subject to:
C 1 [
aT'Z(”y_Im:l’m:?Dlw (3)
y=1

where terms in such an optimization program and the probabilistic interpretation are
described below.

Loss term. The first summand in Eq (3) plus the constraint is analogous to a loss function
(S1 Methods). Nis a (I x I) matrix defined as:

c

N=K-K'=> (-, n),

y=1

1
-K1

Py =77 00
Y0
where 1, isa (I x 1) vector whose entries are ones if the observation x(#) occurs during a trial

in which the behavioral response is y = y, and zero otherwise. K is termed the gram matrix
(I x I), whose entries K, , for two input observations x(f), x(#') are provided by the following
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function commonly termed inhomogeneous multinomial kernel [83]:
k(x(),x(t)) = (L +x(8)" - x(#))" — 1, (5)

where 0 is the maximum correlation order represented in the space, as will be discussed below.
The output of the discriminant is the next (I x (c — 1)) matrix F of entries F;;:

F=K-A. (6)

In Eq (6), A is the (I x (¢ — 1)) matrix whose columns A; = a are the vectors & of dimension
(I x 1) providing subsequent minimums to the optimization program (Eq (3)) i.e., thej=1,

.. ¢ — 1 columns of F are F; = Ka for each a. This program can be solved via least squares or,
for moderate sizes of the gram matrices K, directly as an eigenvalue problem in which & are
the successive generalized eigenvectors of (3, (u, —m) - (u, — ma=v-(N+r-Ka
[61], sorted in decreasing order of the eigenvalues v (see details in S1 Methods).

Rows of F, termed F; = f(x(t)) are (1 x (c — 1)) projections for the single observation x(r)
and all its interactions up to order 6 (see next section) onto an optimally discriminant subspace
of dimension ¢ — 1 (Figs 2-5, S2 and S3 Figs). This intuitive interpretation is further discussed
in S1 Methods, adapted from well-known results and previous studies [37, 61]. All in all, F row
vectors present minimal within-category variance whilst maximizing the distance between
mean vectors per category, like a conventional discriminant [84], to facilitate decoding, as dis-
cussed in the next section.

Regularization and probabilistic interpretation. The second summand in Eq (3) is the Tiko-
nov (L2) regularization term to avoid over-fitting, and it is the same as the one used in support
vector machines [61], weighed by the penalization constant A optimized by cross-validation
per ensemble (see Reliability over trials analysis section).

The discriminant criterion is a Bayes-optimal decoding choice over other classifiers if the
data projected in the output subspace is normally distributed [84]. That is, if f(x(t)) ~ N,
where N“"' is a ¢ — 1 multivariate normal distribution. This is typically the case in our data
(Lilliefors non-parametric test, p < 0.045 for all ensembles but a small ensemble # = 5 units,
see S1 Methods for further discussion). Thus, a reliable estimation of the probability of an
observation x(f) to be classified in the category y = y, is

P(x(t) ‘)’o) _ 1 . e_§-<f(x(t>>_<f>},0 )Z5 H(E(x(1) = <£>,)T

(2- n)% /IZ,] ' (7)

where < f > and 2)’0 are, respectively, the mean vector and the (c — 1 x ¢ — 1) covariance
matrix of the projected data vector f computed for all the I, observations associated with the
behavioral category y,. Thus, the predicted class is the one that maximizes Eq (7), since equal
class-priors were assumed (Experiments section).

State spaces and correlations. The decoder operates in a range of state spaces (see sche-
matics in Fig 2A). A 0-order state space is defined as the ensemble multi-unit space spanned
by the units rates as dimensions, further augmented by axes representing constellations of
units interacting up to a specific order 0 (Fig 2A) [37]. The /" component of a vector at the

time bin ¢, ¢(f) on a 0"-order space constructed from a n-units ensemble is defined as:
0=1:

{¢(0 = 1,X(t))}j = xj(t)v
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{60 =2,x(0))}; = {[VZ %,(8). V2 5%,(1), ..., V2 x,(0), V2 2, () - (1), .-,
\/5 : xl(t) 'xn(t)7 s 7x1(t)27 s 7xn(t)2]T}j’

0 i iy s . .
oxon,= /(0 ) w00 =i, e
e,
subject to:
0<iy<0,0<i,<0,> i=0, (8)
k=0

where j(ip,.., ,,) is the jth entry of the ¢(6, x(t)) vector uniquely associated with specific values

0!
..... i, igliy!

The dimensionality of

such spaces is D = (") — 1; which in this study spans from D = n to a much higher
dimensionality. For instance, in an ensemble of n = 9 unitsand 6 = 3, D = (?) — 1 = 1319.
Such state spaces are typically sparse since D = | dataset patterns (see next section). This leads
to computational challenges for any classifier operating is such high-dimensional spaces.

Thus, instead of classifying directly in spaces spanned by ¢(6, x(t)) high-dimensional vec-
tors, the decoder used (Eq (3)) alleviates this drawback by recasting the optimization problem
in terms of the (I x [) symmetric gram matrix, whose entries are provided by Eq (5), which is
computationally tractable here. This step is the well-known kernelization process of a classifier,
which relies on the fact that only the D x D covariance matrix and thus products of input vec-
tors x(t) are typically needed for their classification, whereas explicit representations of the
individual vectors are unnecessary [61].

The kernel function (Eq (5)) corresponds to the product of any pair of such (D x 1) sparse
vectors, ¢(6, x(1)), ¢(6, x(¢')) [37, 61]; where their jth elements are shown in Eq (8). That is,

3(0,x(1))" - $(0,x(t')) = k(x(t),x(t)) . )

The demonstration is shown in S1 Methods. Thus, knowledge of the kernel matrix of
entries K; » = k(x(t), x(')) suffices for solving the decoding program (Eq (3)). The explicit, ill-
posed computation of high-dimensional covariance matrices based on vectors ¢(6, x(t)) is thus
avoided and decoding becomes computationally feasible [61] (see details in S1 Methods).

Correlation coefficients (Eq (1)) are directly linked with the state space. For this discussion,
we make explicit again the trial index T for a given observation vector x(t, T), and start by rede-
fining the state-space vectors as:

- 0,x(t,T))}.
(3(0.x(e, 1)}, = LT

(") ()

subject to the same constraints indicated in Eq (8). Thus, for z-scored data, the correlation
coefficient between any pair of different units a, # a, in an ensemble (Eq (1)) is simply
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Corr(x, ,x, ;0 =2)(t) = 3 {6(0 = 2,x(t, T))};,where j = j(i, ,i,), a;, a, > 0is aspecific

a;? "ag?
entry of the ¢ vector (Eq (10)) corresponding to i, =1, = 1. The average correlation for all

possible pairs of different units in an ensemble of # units at time bin ¢ within a trial can be
expressed as:

(n+l
< Corr(x, ,%,;2) ml%)(t) (n+1) — Z Z{¢ (2,x(t, 7))}, (11)

n—1

where a, # a, and ("“) — n is the number of different correlation coefficients per ensemble.
The S1 Methods demonstrate this relationship between mean projections on space coordinates
and correlations for an arbitrary higher-order 6 (Eqs (S17a) and (S17b)).

Reliability over trials analysis. Columns & of the matrix A are further orthogonalized
using the Gram-Schmidt algorithm to depict an intuitive portrait of the data projected in a
Euclidean space. Thus, the projected data matrix (Eq (6)) is F = K- A, where A columns are
orthogonal [10]. This is the view displayed on Figs 2A and 3A. Orthogonalization provides a
faithful representation of the data projected in an optimized subspace.

Consecutive blocks By, of 40 successive trials each (hereafter termed blocks) were used as
estimation and test data; this was the lowest number of test trials to effectively decode the
choice outcome. To quantify the reliability of the decoded representation through future trials,
causal cross-validation was defined as follows: first, the optimization program (Eq (3)) was
computed for a given block By. Second, solution vectors (columns of A) were held fixed. Third
and finally, the discriminant output f was computed for the following blocks By, . . ., B4 (ren-
dering a six-fold-ahead cross-validation), that is, the test data is always set in the future.

This cross-validation strategy was specifically devised to test the stability of the decoded
choices for the longest possible period, even on non-consecutive validation blocks up to 160
trials away. This exigent setting, in which estimation and validation sets are of the same size
and not adjacent, is particularly challenging for any decoder [84].

To evaluate the reliability over future trials of the representation obtained in the training
data set, two simple indexes were computed: The conventional classification error per behav-
ioral category (decoding error, DE) and the divergent trajectories index (DT) [56]. We term
DE as the fraction of misclassified trials on the test data, averaged over all cross-validation
blocks per choice outcome category. Penalization constants A were fixed to yield minimum
DEs from a uniform grid of up to 1000 sampled values dawn from [0, 0.5] [56].

Divergent trajectories. For computing DT, we leveraged the decoding probabilities (Eq (7))
to estimate the distance of each vector x(f) with respect to the centroid of the category; this spa-
tial relationship is not straightforwardly provided by other approaches [84].

Consider the matrix R, of size (n x Iy) associated with a category y = y, containing the
sequence of consecutive firing rate vectors x(t) of an n-units ensemble during a single trial con-
sisting of l, bins (see an example in Fig 3A),

=x(t=1)x(t= t2)7"'7x<t:t10)]' (12)

A divergent trajectory Rm is defined as a matrix R in which its last  + 1 > 0 consecutive
column vectors, x(t =, ), ..., X(t = t; ) are misclassified. That is, at least the vector x(t = t, )

is misclassified, and, potentially, any immediately previous vectors, or in other words:

=R

yo Y0
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such that for an index r, 0 < r < [, it holds that:
max (P(x(t)[y)) # yo,Vt € {t s ti_1s by ) (13)

where DT is also defined as the mean fraction of divergent trajectories Ryo over test sets; that is,
in upcoming blocks of trials. This is an indication that such trajectory tends to escape the cate-
gory boundaries defined by the discriminant, as further discussed in [10]. In Fig 5 analyses, tri-
als are not consecutive and thus only DEs are computed.

Analyses were performed in a 16-core Hewlett-Packard Z440 workstation using Matlab
Parallel Computing Toolbox 2018 (Matworks inc.). Demonstrations and further implementa-
tion details are provided in S1 Methods.

Supporting information

S1 Fig. Triplet-wise passive correlations are weaker than correlations during correct trials.
(A) Trial-averaged triple-wise correlations (Eq (1) in Materials and methods) further averaged
across ensembles having # > 5 units used in Fig 1. Correlations were computed during trials
in which animals were passively exposed to the same set of stimuli as in Fig 1, but in which the
reward was not delivered (green line). Vertical lines indicate the average position of different
salient events (see Fig 1). (B) Same as in (A) during three periods of interest: trial initiation
(left), stimulus offset (central) and choice (right) (Materials and methods), error bars are SD.
Incorrect and passive trials and indistinguishable during the entire trial (passive vs incorrect T
(40) = 0.344, p = 0.72, likewise for each one of the individual periods, data normal per Lilliefors
test, p > 0.3); whilst correct and passive differ (T(40) = —-6.59, p = 2.1 1077 Bonferroni cor-
rected; MANOVA for correct, passive and incorrect groups, Wilks’ A = 0.83 for correct versus
passive subspace, p = 5.3 - 107°). (C) Passive pairwise (left) and quadruplet-wise correlations
(right) are shown for comparison.

(TIF)

$2 Fig. Examples of decoding indexes for four of the largest ensembles. As in Figs 2-5, S3
Fig, an optimal regularized kernel-discriminant (order 3) was used to compute the mean of
the six-fold-ahead causally cross-validated value of the decoding error (DE, top) and the trajec-
tory divergence index (DT, bottom) for each ensemble. Blue bars show the index values for
correct choices (“C”), black the average through the rest of choices (“I” stands for Incorrect
choice). *p < 0.05, **p < 0.001, Wilcoxon rank sum tests. Orange boxplots show the quartiles,
whiskers indicate outliers, triangle markers the 1% percentile of n = 1000 bootstraps drawn for
the permutation tests, see Materials and methods.

(TIF)

S3 Fig. Decoding the residuals of a linear regression adjustment with the preceding trial.
See Materials and methods, Eq (2) in the main text. As in Figs 2-5, S2 Fig, an optimal regular-
ized kernel-discriminant (order 3) was used to compute the mean of the six-fold-ahead caus-
ally cross-validated value of the decoding error (DE) and the trajectory divergence index (DT)
for all the ensembles recorded (n = 82 units). Blue bars show values for correct choices, black
the average through the rest of choices, blue and black error bars are SEM. Dotted lines indi-
cate decoding results for the original data for benchmark (Fig 4). Differences between correct
and incorrect trials are significant both for DE (Wilcoxon rank sum, W = 19363, p = 3.9 - 107)
and DT (W = 20695, p = 0.006). Orange markers show averages and SEM of n = 300 bootstraps
drawn for the permutation tests of the residual data, see Materials and methods.

(TIF)
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S4 Fig. Pairwise correlations do not discriminate among the predictability of correct
choices. (A) Average correlations only for correct choices. Like in Figs 6C and 7C, left and
right pie charts show the total fraction of positive and negative correlations for all ensembles
and trials. Dashed lines indicate the mean triplet-wise correlations shown in Fig 6C for com-
parison. (B) The same analysis as in (A) but for partial pairwise correlations. See also Figs 6
and 7 for raw and partial triplet-wise correlations respectively.

(TIF)

S5 Fig. Triplet differential correlations are stronger on early trial stages of predictable trials.
The jth differential correlation coefficient Ady cdictaple(unpredictavie)(js 0) is the difference between
positive (6") and negative (5”) deltas; where 6" ) consist of the difference between positive
(negative) correlations during correct and incorrect trials, aggregated during a specific time
period (see Eq (518)). The figure shows mean differential correlation coefficients for 6 = 2 (top
row), 0 = 3 (middle row) and 6 = 4 (bottom row), bars are SEM. Consistently with Fig 6 ((A)
and (B), right panels), the mean Ad;cgicrapie(6 = 3) is significantly stronger than Ad,.predictavie(0 =
3) during early stages of the trial; especially before the upcoming stimulus becomes available
(trial initiation period, left panel in middle row, Wilcoxon rank-sum W = 122311, p = 0.015,

n = 359; stimulus period, p = 0.023). This effect does not reach significance neither for pairwise
(top row) nor for quadruple-wise correlations (bottom row, dotted lines show the third order
correlations, A§(6 = 3), for comparison).

(TIF)

S1 Methods. Supplementary methods.
(PDF)
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