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Abstract—Providing reliable service to users close to the edge
between cells remains a challenge in cellular systems, even as
5G deployment is around the corner. These users are subject to
significant signal attenuation, which also degrades their uplink
channel estimates. Even joint detection using base station (BS)
cooperation often fails to reliably detect such users, due to near-
far power imbalance, and channel estimation errors. Is it possible
to bypass the channel estimation stage and design a detector
that can reliably detect cell-edge user signals under significant
near-far imbalance? This paper shows, perhaps surprisingly,
that the answer is affirmative – albeit not via traditional
multiuser detection. Exploiting that cell-edge user signals are
weak but common to different base stations, while cell-center
users are unique to their serving BS, this paper establishes
an elegant connection between cell-edge user detection and
canonical correlation analysis (CCA) of the associated space-
time baseband-equivalent matrices. It proves that CCA identifies
the common subspace of these matrices, even under significant
intra- and inter-cell interference. The resulting mixture of cell-
edge user signals can subsequently be unraveled using a well-
known algebraic signal processing technique. Interestingly, the
proposed approach does not even require that the signals from
the different base stations are synchronized – the right synchro-
nization can be automatically determined as well. Experimental
results demonstrate that the proposed approach achieves order
of magnitude BER improvements compared to ‘oracle’ multiuser
detection that assumes perfect knowledge of the cell-center user
channels.

I. INTRODUCTION

AT the dawn of 5G, providing reliable high-speed service
to users on the edge between cells remains a challenge

that has persisted through several generations of cellular
wireless systems. In 4G and legacy systems, the problem
is usually tackled using aggressive power control, multiuser
detection, and dynamic base station (BS) assignment / hand-
off [2], [3]. Multiuser detection (MUD) is computationally
complex (optimal MUD is NP-hard) [4], [5], requires accurate
channel estimates for all users, and while it can tolerate power
imbalance, practically tractable multiuser detection does not
work well in near-far scenarios, especially when the channels
for the far users are not accurately known. The so-called
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sphere decoder (SD – a branch-and-bound type implementa-
tion of the maximum likelihood detector) features significantly
lower complexity than naive implementations at moderately
high signal to noise ratios (SNRs), albeit worst-case and
average complexities remain exponential [6], [7]. Semidefinite
relaxation (SDR) is a polynomial-time alternative to SD, in
the low to moderate SNR regime where it yields better error
rates and lower complexity than SD [8], [9]. The complexity
of SDR remains high for practical implementation [10].

Minimum mean square error (MMSE) [11], and the zero-
forcing (ZF – also known as the decorrelating) detector are
low-complexity linear detectors, whose performance remains
far from optimal in general. ZF and MMSE detectors can be
further improved by successively canceling the strong user
signals once they are decoded – a technique referred to as
successive interference cancellation (SIC), decision feedback
(DF) [12], [13], or ‘turbo’ (iterative) interference cancellation
[14].

Although all of the aforementioned detectors have been
proven successful in many applications, their detection per-
formance is contingent on the availability of accurate chan-
nel estimates. In wireless cellular systems, accurate channel
estimates may be acquired for cell-center (strong) users,
however, cell-edge (weak) user signals are received at low
SNR due to the inverse power law relationship between
received signal power and distance. This and the intra- and
inter-cell interference (particularly prominent for the cell-edge
users) together induce high uncertainty in the cell-edge user
channel estimates, degrading their detection performance and
even leading to connection drops [15], [16]. Furthermore,
the frequent hand-offs of such users further complicate their
situation [17]. While power control [18] and scheduling
algorithms [19], [20] serve as two possible candidates that can
considerably enhance cell-edge user detection performance,
this comes at the expense of significantly reducing the rates
of cell-center users. These are the ones with the best channels,
so throttling their rate has a serious impact on the overall sum
rate of the system.

This begs the question whether it is possible to reliably
detect cell-edge user signals without knowing their channels
or sacrificing cell-center user rates?

This paper shows that with a suitable base station ‘inter-
ferometry’ strategy inspired from machine learning, together
with a well-known algebraic signal processing tool, the cell-
edge user signals can be reliably decoded under mild condi-
tions, even at low SNR and when buried under heavy intra-cell
and inter-cell interference. Exploiting the fact that cell-edge
user signals are weak but common to both base stations, while
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users close to a base station are unique to that base station, re-
liable detection is enabled by Canonical Correlation Analysis
(CCA) [21], [22] – a machine learning technique that reliably
estimates a common subspace using eigendecomposition, even
in the presence of strong interference.

Our approach is very different from multi-user detection
using base station cooperation [23], as it capitalizes on
CCA. CCA has been employed in several signal processing,
communications, and machine learning applications, including
array processing [24], multiple-input multiple-output (MIMO)
equalization [25], [26], direction-of-arrival (DoA) estima-
tion [27], radar anti-jamming [28] and blind source separa-
tion [29]–[32], and multi-view learning [33], to name a few
applications; but not anywhere close to our present context.
Scalable algorithms for generalized (multi-view) CCA were
recently developed by the authors’ group [34]–[36], also
incorporating various constraints.

A. Contributions
This paper proposes a two-stage learning based approach

that leverages base station cooperation to reliably detect cell-
edge user signals without knowing their channels. The idea
relies on connecting canonical correlation analysis with cell-
edge user detection. In the first stage, CCA is invoked to find
the common subspace of two space-time matrices, containing
the baseband-equivalent signals received at two base stations.
A basis for this common subspace is a mixture of the cell-
edge user signals. In the second stage, this mixture is unrav-
eled in an unsupervised fashion, using a classical algebraic
technique from array signal processing, namely (R)ACMA
[37]. (R)ACMA exploits constant modulus structure in the
transmitted cell-edge signals, owing to digital binary/M-ary
phase shift keying (BPSK or MPSK) modulation, to re-
cover the individual cell-edge signals. Judicious experiments
demonstrate that the proposed approach works remarkably
well without any power control under realistic levels of intra-
cell and inter-cell interference (following the urban macro
scenario from the 3GPP 38.901 standard), delivering order
of magnitude error rate improvements compared to ‘oracle’
multiuser detection that assumes perfect knowledge of the
cell-center user channels. Furthermore, the proposed approach
does not even require that the signals from the different base
stations are synchronized – the right synchronization can be
automatically determined as well.

Beyond these compelling contributions to the particular
application in cellular communications considered herein, this
paper makes two notable theoretical contributions of broader
interest. First, it proves that CCA identifies the common
subspace between two matrices, under a rather general (and
purely deterministic) linear generative model. Second, it in-
cludes a performance analysis which shows that CCA works
even in the non-ideal case where there is background noise
and ‘leakage’ of the individual components to the other matrix
view – e.g., the case where there is thermal noise and realistic
adjacent-cell interference from non-cell-edge users that cannot
be neglected, in the context of our application herein.

The overall complexity of the proposed method depends
on the cost incurred in solving CCA and RACMA. Fortu-

nately, both admit relatively simple algebraic solution via
eigenvalue decomposition [22], [37]. This renders the overall
approach computationally efficient even when the base station
is equipped with a large number of antennas and is serving a
large number of users.

A preliminary version of part of this work was presented
at IEEE SPAWC 2019 [1]. This journal version includes
performance analysis that was missing from [1], a new section
showing how the common cell-edge signals can be used to
synchronize the signals from the two base stations even if
they were asynchronously acquired (thus alleviating the need
for symbol-level synchronization), and a new comprehensive
suite of experiments to demonstrate the superior performance
of the proposed method in more practical scenarios.

B. Outline of the Paper

The rest of this paper is organized as follows. After
a succinct introduction to CCA in Section II, Section III
describes the system model and gives a brief review on cell-
edge user detection. The proposed detector is presented in
Section IV, while Section V explains how our detector can
be used to resolve symbol synchronization between the two
base stations. Simulation results are provided in Section VI,
and conclusions are drawn in Section VII. Long proofs and
derivations are relegated to the Appendix.

C. Notation

In this work, we use upper and lower case bold letters to
denote matrices and column vectors, respectively. For any
general matrix G, we use GT , GH , G−1, G† and Tr(G)
to denote the transpose, the conjugate-transpose, the inverse,
the pseudo-inverse, and the trace of G, respectively. Scalars
are represented in the normal face, while calligraphic font is
reserved for sets. ‖.‖2 and ‖.‖F denote the `2-norm and the
Frobenius norm, respectively. Finally, IN and 0N×M denote
the N × N identity matrix and the N × M zero matrix,
respectively.

II. CANONICAL CORRELATION ANALYSIS

Consider T samples of the pair (y1,y2), where y1 ∈ RM1

and y2 ∈ RM2 are two “views” of the same entity. For
example, y1 could contain a set of economic indicators, while
y2 could contain crime, corruption, or social welfare data
corresponding to the same country or municipality, and we
have data for T countries or municipalities. Or, y1 could be
the electroencephalogram (EEG) of a person and y2 could be
the voxels of a functional magnetic resonance (fMRI) scan; or
y1 could be a person’s consumer record, while y2 could reflect
his/her social network connections, and we have data for T
people. We are interested in discovering what is common
between these two views of the same set of entities. Is there
a particular ‘latent’ factor that affects both the economy and
crime, for example? Towards this end, we would like to derive
‘meta-variables’, one from each view, which are strongly
correlated with each other. How can we do this?

Let y1[t] and y2[t] denote the t-th observation of y1

and y2, respectively, corresponding to the t-th entity, for
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t ∈ {1, · · · , T}. Assume that both y1 and y2 are zero-
mean, otherwise the sample mean can be subtracted as a pre-
processing step. In its simplest form, CCA seeks to find a pair
of linear combinations of the variables in the two respective
views which are highly correlated to each other – ideally,
perfectly correlated. Mathematically, CCA seeks to weight
vectors q1 ∈ RM1 and q2 ∈ RM2 such that the correlation
coefficient between YT

1 q1 and YT
2 q2 is maximized, where

Y` := [y`[1], · · · ,y`[T ]] ∈ RM`×T and ` ∈ {1, 2}. In an
optimization framework, this can be expressed as

max
q1,q2

qT1 Y1Y
T
2 q2√

qT1 Y1YT
1 q1

√
qT2 Y2YT

2 q2

(1)

Let Ry`y`
:= 1

T Y`Y
T
` and Ry1y2

:= 1
T Y1Y

T
2 denote the

sample auto-correlation matrix of y` and the sample cross-
correlation matrix of y1 and y2, respectively. Then, (1) can
be equivalently written as

max
q1,q2

qT1 Ry1y2
q2 (2a)

s.t. qT` Ry`y`
q` = 1, ` = 1, 2 (2b)

where the constraints in (2b) arise from the fact that the
objective of (1) is not affected by re-scaling q1 and/or q2.
Using the Lagrange duality theorem, a solution of (2) can be
provided in closed-form. The Lagrangian of (2) is

L(q1,q2, λ1, λ2) = qT1 Ry1y2q2 −
2∑
`=1

λ`
2

(qT` Ry`y`
q` − 1)

(3)
By taking the derivatives with respect to q1 and q2, we obtain

∂L
∂q1

= Ry1y2q2 − λ1Ry1y1q1 = 0 (4)

∂L
∂q2

= Ry2y1
q1 − λ2Ry2y2

q2 = 0 (5)

By left multiplying (4) and (5) with qT1 and qT2 , respectively,
we have

qT1 Ry1y2
q2 = λ1q

T
1 Ry1y1

q1 (6)

qT2 Ry2y1
q1 = λ2q

T
2 Ry2y2

q2 (7)

which together with the constraints in (2b) imply that λ1 =
λ2 = λ. By assuming that the matrix Ry2y2 is invertible, the
optimal solution, q∗2, of (5) is given by

q∗2 =
1

λ
R−1y2y2

Ry2y1
q∗1 (8)

Then by substituting in (4), the optimal solution, q∗1, can
be obtained by solving the following generalized eigenvalue
problem

Ry1y2R
−1
y2y2

Ry2y1q1 = λ2Ry1y1q1 (9)

It can be easily seen from (4) that the maximum eigenvalue λ∗

of (9) is nothing but the square of the correlation coefficient,
ρ1, associated with the canonical pair (q∗1,q

∗
2).

Considering the generalization to N ≤ min(M1,M2)
canonical pairs, {(q1[n],q2[n])}Nn=1. After identifying

q∗1[1] = q∗1 and q∗2[1] = q∗2, we can iteratively solve the
following problem

max
q1[n],q2[n]

qT1 [n]Ry1y2q2[n] (10a)

s.t. qT` [n]Ry`y`
q`[n] = 1, ` = 1, 2 (10b)

qT` [n]Ry`y`
q`[j] = 0, j = 1, · · · , n− 1 (10c)

for n = {2, · · · , N}. Instead of solving N sub-problems of
type (10), we can instead solve one joint problem. Let us
stack the vectors {q`[n]}Nn=1 in the matrix Q` ∈ RM`×N , for
` ∈ {1, 2}, and rewrite (10) in the following compact form

max
Q1,Q2

Tr(QT
1 Ry1y2

Q2) (11a)

s.t. QT
` Ry`y`

Q` = I, ` = 1, 2 (11b)

which yields simultaneously multiple canonical pairs. Follow-
ing the same procedures for solving (2), it can be shown
that the optimal solution Q∗1 should satisfy the following
generalized eigenvalue equation

Ry1y2
R−1y2y2

Ry2y1
Q1 = Ry1y1

Q1Λ2 (12)

where Λ = Diag([ρ1, · · · , ρN ]) with ρ` be the `-th correlation
coefficient associated with the `-th canonical pair, for ` =
{1, · · · , N}. Note that the optimal solution Q∗2 can be directly
obtained from (8) after solving (12).

The two-view CCA problem in (11) can be equivalently
formulated as a distance minimization between the low dimen-
sional representations YT

1 Q1 and YT
2 Q2 [22], [38], where the

distance is measured by the Frobenius norm, i.e.,

min
Q1,Q2

‖YT
1 Q1 −YT

2 Q2‖2F (13a)

s.t. QT
` Y`Y

T
` Q` = I, ` = 1, 2 (13b)

Note that by expanding the objective in (13), the equivalence
between (12) and (13) can be readily verified. In what follows,
we will see how the CCA approach can be utilized to handle
the problem of cell-edge user detection in a multi-cell multi-
user system.

III. PROBLEM STATEMENT

A. System Model
Consider a multi-cell multi-user MIMO system comprising

two hexagonal cells with a single base station (BS) located
at the center of each cell, as shown in Figure 1. The `-th BS
is equipped with M` antennas and serves K` single-antenna
users, for ` ∈ {1, 2}. Let Ke = Ke1 + Ke2 denote the total
number of cell-edge users located around the common edge
between the two cells, where Ke` < K` represents the number
of cell-edge users served by the `-th BS. Let h`kj model path-
loss and small scale fading between the k-th user in the j-th
cell and the `-th BS, given by

h`kj =
√
α`kjz`kj (14)

where z`kj ∈ CM`×1 represents the small scale fading
between user k in cell j and BS `, while α`kj ∈ R models
the large scale fading that accounts for the path loss between
BS ` and user k in cell j. Throughout this work, it is assumed
that the uplink channel vectors h`kj for the cell-edge users
are not a priori known at any BS.
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Fig. 1: System Model

B. Uplink transmission
Consider uplink transmission from the users to the BSs

where each user aims at transmitting its data to its serving BS.
We assume that all users access the same channel without any
(sub-) channel allocation or coordination mechanism, thereby
creating intra- and inter-cell interference. Define skj ∈ RT×1
to be the vector containing symbols transmitted by the k-th
user in cell j, where each entry of skj belongs to the finite
alphabet Ω = {±1} (our approach works for general PSK and
other alphabets, with some variations in the second stage). The
received signal, Y` ∈ CM`×T , at the `-th BS can be expressed
as

Y` =

2∑
j=1

Kj∑
k=1

√
βkjh`kjs

T
kj + W` (15)

where h`kj ∈ CM`×1 is the uplink channel response vector
defined in (14), W` ∈ CM`×T contains independent identi-
cally distributed (i.i.d.) complex Gaussian entries of zero mean
and variance σ2, and βkj represents the transmit power of the
k-th user in the j-th cell.

Throughout this paper, we assume that each BS forwards
its received signal to a central signal processing unit (CSPU).
Although BSs cooperation has been considered before for
the sake of mitigating inter-cell interference [39], cooperation
here is assumed for a very different purpose. That is, we
leverage the joint processing of the BSs signals at the CSPU
to provide reliable detection of cell-edge user signals at low
SNR, without knowledge of their channels. Furthermore, in
contrast to prior cooperation strategies that assume perfect
synchronization of the received signals from different BSs
[23], [40], this work deals with BS asynchrony as well,
rendering the approach more practical. Specifically, it will be
shown in Section V how the proposed method can detect the
cell-edge user signals even if there exists a time delay between
Y1 and Y2.

C. Cell-Edge User Detection
Let us denote the cell-edge user transmitted signals by

Sc ∈ RT×Ke (where the subscript c stands for common),

and those of the cell-center served by the `-th BS as Sp` ∈
RT×(K`−Ke`

) (where the subscript p stands for private).
Furthermore, let W̃` represent the noise at the `-th BS plus the
inter-cell interference caused by the cell-center users in cell
j, where j 6= `. Therefore, (15) can be expressed as follows

Y` = H`p`S
T
p`

+ H`cS
T
c + W̃` (16)

where the matrices H`c ∈ CM`×Ke and H`p` ∈
CM`×(K`−Ke`

) hold on their columns all the channel vectors
from cell-edge users to the `-th BS, and the channel vectors
from cell-center users to their serving BS, respectively. More-
over, absorb the transmitted signal power, βkj , of the k-th user
in the j-th cell in its respective channel vectors, ∀ k, j.

In general, to guarantee reliable detection performance
for each cell-edge user, its serving BS requires accurate
knowledge about its channel state information (CSI) [41]–
[43]. However, due to the fact that cell-edge user signals are
often received intermittently at very low signal to interference
plus noise ratio (SINR) and SNR, their channel estimates are
inaccurate [15], [16].

One possible approach to detect cell-edge user signals is to
apply zero-forcing successive interference cancellation (ZF-
SIC) [12], which is based on successively removing the cell-
center (strong) user signals once they are detected using ZF.
Applying SIC after ZF improves the detection performance
of the cell edge user signals as it (ideally) cancels the strong
interference that stems from the transmissions of cell-center
users, i.e., intra-cell interference. However, cell-center user
detection is imperfect, which can lead to error propagation,
and in-cell SIC does not address the inter-cell interference,
which is particularly prominent for the cell-edge users. In the
absence of power control [18] and/or scheduling [19] , cell-
edge user detection performance is severely affected by the
intra-cell interference from cell-center users. In what follows,
we present a novel blind detector that can reliably decode cell-
edge user signals at low received SNR and without knowing
their channels.

IV. CELL-EDGE USER DETECTION VIA CCA

In this section, it is assumed that the base stations signals
are perfectly synchronized at the CSPU. We will explain how
to deal with asynchrony later. The goal of the proposed de-
tector is to decode cell-edge user signals Sc from the received
signals Y1 and Y2. As a pre-processing step, the signals
are transformed to the real domain by forming the matrix
Y` := [Y

(r)
` ; Y

(i)
` ] ∈ R2M`×T , where Y

(r)
` = IRe{Y`} and

Y
(i)
` = IIm{Y`} represent the real and imaginary compo-

nents of the `-th BS signal. Similarly, denote by A`p` :=

[H
(r)
`p`

; H
(i)
`p`

] ∈ R2M`×(K`−Ke`
), A`c := [H

(r)
`c ; H

(i)
`c ] ∈

R2M`×Ke and W` = [W̃
(r)
` ; W̃

(i)
` ] ∈ R2M`×T . Therefore,

(16) can be equivalently expressed as

Y` = A`p`S
T
p`

+ A`cS
T
c + W`. (17)

Remark 1. Due to the broadcast nature of the wireless
medium, each BS may (over)hear the transmitted signals of
all users. However, due to the inverse relationship between
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power and distance, the received signal power of the cell-
center users associated with the `-th BS is high at the `-th
BS (the serving one) and low at the j-th BS (the non-serving
one). This power imbalance renders the received SNR of these
users to be high at the serving BS and very low at the non-
serving one, and hence, one can think of these users as being
“private” to their serving BS, as their received signals are
around the noise floor at the non-serving BS. On the other
hand, cell-edge users are approximately half-way between two
different BSs, and so they are received at commensurate power
at both BSs. In this sense, cell-edge users are “common” to
both BSs. In what follows, we will show theoretically and
experimentally that our proposed CCA-based approach can
reliably recover these common cell-edge user signals under
realistic conditions.

In what follows, the two-view CCA formulation in (13)
is exploited to estimate the subspace containing the cell-
edge user signals. For the sake of brevity, we refer to this
subspace as the common subspace. Define the two matrices
Q1 ∈ R2M1×N and Q2 ∈ R2M2×N , where the n-th column
of Q` represents the n-th canonical component of view Y`,
for n ∈ {1, · · · , N}. The number of components (pairs) ex-
tracted, (N ), depends on the minimum value of the correlation
coefficient that needs to be considered.

An alternative formulation of (13) is to search for an
orthogonal representation G ∈ RT×N that is maximally
correlated after the linear projections of Y1 and Y2 on Q1

and Q2, respectively. This can be written as

min
Q1,Q2,G

2∑
`=1

‖YT

` Q` −G‖2F (18a)

s.t. GTG = I (18b)

Problem (18) is known as the maximum-variance (MAX-
VAR) formulation of CCA [38], [44], and, in the case of two
views considered here, it is equivalent to (13) in the sense that
both problems yield the same solution Q

∗
` . In this section, we

focus on the formulation in (18) as it facilitates our proof.
Assume that we are interested in the first Ke canonical

components of the matrices Q1 and Q2, i.e., N = Ke. We
have the following result.

Theorem 1. In the noiseless case, if matrix B :=
[Sc,Sp1 ,Sp2 ] ∈ RT×(K1+K2) is full column rank, and A` =
[A`c,A`p` ] ∈ R2M`×(Ke+K`−Ke`

) is full column rank for
` ∈ {1, 2}, then the optimal solution G? of problem (18) is
given by G? = ScP, where P is a Ke × Ke non-singular
matrix.

Remark 2. The full column rank condition on B requires
T greater than or equal to (K1 + K2), and the transmitted
sequences from the different users to be linearly independent.
For finite-alphabet signals, this occurs with very high prob-
ability for modest T , since the different user transmissions
are independent. The more restrictive condition is full column
rank of A`, which relates the number of base station antennas
and signals impinging on each base station. We thus need
two times the number of antennas in each base station to

be greater than or equal to the number of users assigned to
that base station, plus any cell-edge users assigned to the
other base station. Other than this dimensionality constraint
though, if the channel vectors are drawn from a jointly
continuous distribution, the latter condition will be satisfied
with probability one.

Proof. First, let us start with the single cell-edge user case,
i.e., Ke = 1 and each of Sc,G and Q` is a vector. In such
setting (18) reduces to the following

min
q1,q2,g

2∑
`=1

‖YT

` q` − g‖22 (19a)

s.t. ‖g‖22 = 1 (19b)

To solve the above problem, we need to find (q∗1,q
∗
2,g
∗) that

can together attain a zero-cost. In other words, we need the
following two conditions to be satisfied simultaneously

Y
T

1 q1 = g (20a)

Y
T

2 q2 = g (20b)

Without loss of generality, we can let q` = A`(A
T

` A`)
−1u`,

where u` is any vector in RKe+K`−Ke` . The reason is
that we can always decompose q` into a component in the
subspace spanned by A` and one orthogonal to it. The latter is
annihilated anyway after multiplication with A

T

` . Substituting
in (20a) and (20b) and taking their difference, we obtain

Bu = 0, (21)

where B = [sc,Sp1 ,Sp2 ] ∈ RT×(K1+K2) and u = [u1(1) −
u2(1),u1(2 : end),−u2(2 : end)]T ∈ R(K1+K2), where
u1(2 : end) is the vector containing all except the first element
of u. It can be easily seen that if B is full column rank, then
u = 0(K1+K2)×1 is the only possible solution of (21). This
means that u1 = u2 = ce1, where c is any constant and
e1 is the first column of the identity matrix. Consequently,
from (20), g? = αsc/‖sc‖2, with α = ±1, will be the only
possible solution for problem (19).

The generalization to Ke > 1 now follows naturally.
Letting Q` = A`(A

T

` A`)
−1U`, and defining

U :=


U1(1 : Ke, :)−U2(1 : Ke, :)

U1(Ke + 1 : end, :)

− U2(Ke + 1 : end, :)

 ∈ R(K1+K2)×Ke ,

where U1(1 : Ke, :) means rows 1 to Ke and all columns of
U1, we obtain

BU = 0, (22)

and when B is full column rank the solution is unique:
U = 0, and therefore U1(1 : Ke, :) = U2(1 : Ke, :) =: P,
U1(Ke + 1 : end, :) = 0, U2(Ke + 1 : end, :) = 0, and
therefore G? = ScP, where P is Ke × Ke non-singular
such that the orthonormality constraint (18b) is satisfied. Note
that if the signals themselves are (approximately) orthogonal,
then P will be orthogonal as well, which helps with the next
(RACMA) stage.
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Remark 3. Theorem 1 provides results for an idealized
scenario, where at each BS we ignore other-cell signals
coming from users that are not close to the given BS’s cell-
edge. This is a reasonable approximation that we use to prove
that the cell-edge signals can be recovered even when buried
under very strong cell-center signals. In other words, Theorem
1 says that if we have two multi-antenna signal “views” that
include very strong but private components (in our context,
the received signals of each group of cell-center users at their
serving BS, respectively) and weak but common components
(in our context, the received signals of the cell-edge users
between the two BSs), then CCA will exactly recover the
subspace of the common components irrespective of their
relatively low power. We will later present an elegant analysis
which shows that what matters is the power (im)balance:
signals received at roughly the same power at the two BSs
are “common” and recovered via CCA, and signals received
at high SNR at one BS and low SNR at the other BS are
“private”, and cannot be recovered by CCA.

The next step is to extract the cell-edge user sequences
Sc from G? = ScP. This problem can be viewed as a bi-
linear factorization of the matrix G? to its factors P and Sc
under the constraint that the entries of Sc belong to the finite
alphabet Ω = ±1. This can be mathematically posed as an
optimization problem as follows

min
Sc,P

‖G? − ScP‖2F (23a)

s.t. Sc(i, j) ∈ Ω (23b)

In [37], van der Veen proposed an algebraic algorithm called
Real Analytical Constant Modulus Algorithm (RACMA) for
this problem. RACMA does not claim to optimally solve
(23), which is NP-hard even if P is known. Instead, RACMA
assumes that noise is small, and reduces (23) to a generalized
eigenvalue problem. The solution is subject to sign and user
permutation ambiguity. This means that the original Sc can be
identified up to permutations and column-wise (user) scaling
by ±1. From the practical point of view, each user has its
unique identification sequence, so once the users signals are
received correctly each BS can identify each user signal (and
sign) via correlation with the identification sequence.

The following Algorithm describes the two-step procedure
for cell-edge users detection via CCA followed by RACMA.

Algorithm 1 CCA for Cell-Edge User Detection

Input: Y1,Y2

1) Solve problem (13) for Q` as explained in Section II
2) Compute G` = Y

T

` Q` ∈ RT×Ke , ∀` = 1, 2
3) Construct G = [G1; G2] ∈ R2T×Ke and pass it to

RACMA
4) Compute the BER of cell-edge users by comparing

the output of RACMA with the original cell-edge user
transmitted sequences

Notice that the second step in Algorithm 1 stems out from
the fact that the zero-cost solution of problem (18) is not
guaranteed in the noisy case, and therefore, Y

T

1 Q1 is not

equal to Y
T

2 Q2 in general. Then, it turns out that feeding
RACMA with both Y

T

1 Q1 and Y
T

2 Q2 simultaneously results
in much better BER as we will see in Section VI.

The overall complexity of the proposed method comes
from solving problems (13) and (23). Fortunately, similar to
(13), (23) also admits simple algebraic solution via eigenvalue
decomposition [37]. This means that our end-to-end method
requires solving two eigenvalue problems, i.e., the overall
complexity is of O(M3), with M = max{M1,M2}.

It is important to emphasize that, in the noisy case and
under inter-cell interference (i.e., users close to base station
B can be overheard at base station A), it turns out that our
method can still identify the common subspace, even at low
SNR values. In order to show this, we follow a very different
path from that described in the proof of Theorem 1.

First, let us define two channel matrices
H1 := [H1c,H1p1 ,H1p2 ] ∈ CM1×(K1+K2) and
H2 := [H2c,H2p1 ,H2p2 ] ∈ CM2×(K1+K2), where H`

holds in its columns all the channel vectors from all users
to the `-th BS, for ` = 1, 2. Note that one can factor
H` = Z`P

1/2
` , where the columns of Z` are the channel

vectors representing small scale fading between the `-th
BS and all users. Accordingly, the diagonal matrix P`

incorporates the transmitted power and the path-loss between
each user and the `-th BS. We have the following result.

Proposition 1. In the noisy and inter-cell interference case, if
1
T BTB ≈ I and ZH` Z` ≈ I, then under certain conditions on
the relative SNRs of cell-center and cell-edge users (see the
Appendix), the optimal solution Q?

` of problem (13) is given
by Q?

` = Z`VM`, where V contains the first Ke columns
of an (K1 +K2)× (K1 +K2) identity matrix, and M` is a
Ke ×Ke non-singular matrix.

The approximate semi-⊥ constraint on the matrix B posits
that the transmitted sequences of different users are approx-
imately orthogonal. For binary signals, this occurs with high
probability for large enough T , since the user transmissions
are independent. The approximate orthonormality constraint
on Z` requires the number of base station antennas to be
greater than the total number of users assigned to both base
stations, and is satisfied if, for example, the entries of Z` are
drawn from an i.i.d. zero-mean complex Gaussian distribution
with variance 1/M` (which is often assumed in the case of
rich scattering).

Remark 4. Recall that, in Theorem 1 we considered the
MAX-VAR formulation in (18), and showed that under certain
conditions the optimal solution G∗ is the subspace containing
the cell-edge user signals. In Proposition 1, however, instead
of directly estimating the common subspace, we will consider
the generalized eigenvalue problem in (12) to solve for Q∗` ,
for ` = 1, 2. Then, we will show in the Appendix that
upon applying the resulting Q∗` to the corresponding received
signals at BS `, we obtain the common subspace corrupted
by reduced noise (see (42) in the Appendix). It is worth
mentioning that when the noise is absent, (42) boils down
to the result we have in the Theorem.

Proof. The proof is relegated to Appendix A.
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V. SYNCHRONIZATION

In Section IV, we proposed a learning-based approach that
can identify cell-edge user signals. However, this was under
the assumption that the received signals from both BSs are
perfectly synchronized at the CSPU. One natural question that
can be posed is what if there exists a time delay τd between
Y1 and Y2 at the CSPU. It turns out that our proposed method
not only can recover cell-edge user signals in the synchronized
case, it can even detect the time difference, τd, between the
two signals, re-synchronize the signals and then decode them
as explained in Section IV.

Assume that the CSPU has received two long sequences
Ỹ1 ∈ R2M1×T̃ and Ỹ2 ∈ R2M2×T̃ , where T̃ > T , and that
the sequence length T is known or has been estimated [45] at
the CSPU. The goal is to find the correct delay between the
signals Ỹ1 and Ỹ2 so that we can extract the desired signal
Y` from Ỹ`, and then apply Algorithm 1 to identify cell-edge
user signals. Exploiting the fact that communication signals
are uncorrelated in time, and thus two copies of the same
signal shifted by even one symbol are already uncorrelated,
common user signals cannot be extracted via CCA if the T̃
symbols are misaligned. The correlation coefficient, ρn, asso-
ciated with each pair of canonical directions of Q1 and Q2

will not be at its maximum in this case, ∀n ∈ {1, · · · ,Ke}.
Based on this key observation, we develop a CCA based
algorithm that can re-synchronize and then recover cell-edge
user signals.

Define Ỹ1(τ1) := Ỹ1(:, τ1 : T + τ1 − 1) and Ỹ2(τ2) :=
Ỹ2(:, τ2 : T + τ2 − 1). Furthermore, let us define a search
window of size [wL, wR] symbols. Upon setting τ2 = 1,
the CSPU solves problem (13) using the signals Ỹ1(τ1) and
Ỹ2(τ2) to obtain q∗1 := Q∗1(:, 1) and q∗2 := Q

∗
2(:, 1). Then,

the CSPU computes and stores the corresponding correlation
coefficient ρ1 between ỸT

1 (τ1)q∗1 and ỸT
2 (τ2)q∗2. If τ2 ≤ ws,

increment τ2 and repeat, where ws := wR − wL + 1 is the
window size. Finally, pick the value τ∗2 that gives the highest
ρ1. This procedure is summarized in Algorithm 2.

Remark 5. Note that as the locations of the T symbols are not
generally known, the value of τ1 is chosen such that Ỹ1(τ1)
includes a sufficient part of Y1. This is guaranteed with a very
high probability as long as ws << T . One possible choice is
to set τ1 = T̃ /2 − T/2 so that one can assure the existence
of enough samples from all users in Ỹ1(τ1).

Algorithm 2 CCA SYNC

Input: Ỹ1 ∈ RM1×T̃ , Ỹ2 ∈ RM2×T̃

Initialization: τ1 = T̃ /2− T/2, τ2 := 1
while τ2 ≤ ws do

Compute ρ1 after solving (13) using Ỹ1(τ1) and Ỹ2(τ2)
Store (τ2, ρ1) in a stack
Set τ2 := τ2 + 1

end
Selection: pick the τ∗2 := τ2 corresponding to the highest ρ1.

While Algorithm 2 returns the correct shift, τd = τ∗2 − τ1,
between the two sequences, the common part in both Ỹ(τ1)

and Ỹ(τ∗2 ) is not necessarily of length T since Ỹ(τ1) may
not be equal to Y1. However, from the practical point of view,
each user has its own identification sequence as a preamble, so
once we know the correct relative delay, we can run algorithm
1 on Ỹ(τ1) and Ỹ(τ∗2 ) , and then simply find the sample
index at which Y1 starts via correlation with the identification
sequence of any of the cell-edge users. It is worth mentioning
that the computational complexity of Algorithm 2 is that of
solving for the principal component (canonical pair) of (13)
a number of times (equal to the search window). The first
canonical pair can be cheaply computed via a power iteration.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of our proposed method, we
consider a scenario with two hexagonal cells; each with radius
R = 500 meters. Cell edge users are dropped randomly
around the common edge between the two cells, i.e., the
locations of cell-edge users were chosen randomly between
0.95R and 1.05R. On the other hand, cell-center users are
randomly dropped within distance zR from their serving BS,
and we vary the value of z to see the effect of inter-cell
interference on the proposed method. The transmitted power
βkj is set to 25dBm, ∀k, j, i.e., power control is not employed.
Furthermore, the transmitted sequence length T is fixed to
800. Additive white Gaussian noise is assumed with variance
σ2 so that the SNR is Pe/σ

2, where Pe is the average
received power of cell-edge users. This enables us to see
what values of SNR should cell-edge users have to achieve a
specific BER. Furthermore, all results are averaged over 1000
channel realizations assuming different user locations in each
realization. The uplink channel response vectors {hH`kj} are
modeled as

hH`kj =

√
1

M`

L∑
n=1

√
α
(n)
`kjar(θ

(n))H (24)

where L is the number of paths between the `-th BS and the
k-th user in cell j, ∀{`, j} ∈ {1, 2} and k ∈ {1, · · · ,K`}. We
use the path-loss model of the urban macro (UMa) scenario
from the 3GPP 38.901 standard to compute the complex path
gain α(n)

`kj , ∀n, `, j, k. Cell-center users were allowed to have
a line of sight (LOS) path according to the LOS probability in
the 3GPP 38.901 standard, however, all cell-edge users were
non-LOS. The term ar(.) is the array response vector at the
BS, and θ(n) ∼ U [−π, π] denotes the azimuth angle of arrival
of the n-th path. Assuming the BS is equipped with a uniform
linear array, then

ar(θ) = [1, expikd cos(θ), · · · , expikd(M−1) cos(θ)] (25)

where k = 2π/λ, λ is the carrier wavelength and d = λ/2 is
the spacing between antenna elements.

In order to benchmark the performance of our proposed
method, we adopted three baselines. First, we implemented
zero-forcing successive interference cancellation (ZF-SIC)
where the channels of the cell-center users were assumed to
be perfectly known at their serving BSs. Specifically, each
BS decodes its cell-center users signals using ZF, encodes
them again and then subtracts them from its received signal.
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Fig. 2: BER vs. SNR of cell-edge users, M1 = M2 = 10,
K1 = K2 = 8 and Ke = 2, distance of cell-center users <
0.3R

Afterwards, the residual signal from each BS will be passed
to RACMA [37] in order to identify cell-edge user signals.
Finally, the bit error rate (BER) of the cell-edge users is
computed at both BSs and the best of the two BERs is
reported. Furthermore, in order to guarantee fairness, since
we have assumed joint processing of the BSs received signals,
both residual signals from both BSs are further sent simulta-
neously to RACMA and the resulting BER (from RACMA
with “double measurements”) is also reported. Second, we
estimated the channels of cell-center users and cell-edge users
via transmitting orthogonal pilot sequences of length 300
each, then we used a ZF detector at each BS and reported
the best of the two BERs computed at the two BSs. Third,
we implemented maximum likelihood successive interference
cancellation (ML-SIC) to decode and subtract cell-center users
signals assuming perfect knowledge of their channels at their
serving BS. However, since in the worst-case the ML detector
requires enumeration over all possible sequences of cell-center
users, we only used this baseline when the number of cell-
center users is small. The CCA approach (first stage) was
implemented in MATLAB, while the MATLAB codes written
by A.-J. van der Veen [37] were utilized for the RACMA
(second stage) implementation. In a preliminary experiment,
we consider a scenario with K1 = K2 = 8, M1 = M2 = 10,
Ke = 2 and cell-center users are dropped randomly up to
distance zR, with z = 0.3. The numerical results for BER
versus SNR of the cell-edge users is shown in Figure 2.
It is obvious that our method significantly outperforms ZF-
SIC and ML-SIC which assume perfect CSI of the cell-
center users, whereas our method does not. For instance, more
than one order of magnitude improvement using our CCA-
RACMA method is observed at SNR= 6dB. Furthermore, the
bad performance of ZF with channel estimation reflects how
the inaccurate channel estimates of cell-edge users severely
degrade their detection performance.

In order to see the effect of increasing the number of
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ML-SIC RACMA Combined (M=20)
ZF with channel estimation (M = 10)
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Fig. 3: BER vs. SNR of cell-edge users, M1 = M2 = M ,
K1 = K2 = 8 and Ke = 2, distance of cell-center users <
0.3R
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Fig. 4: BER vs. distance of cell-center users from their serving
BS, with M1 = M2 = 20, K1 = K2 = 8 and Ke = 2,
SNR = 5dB

antennas on the performance of the proposed method, we con-
sidered the same setting of the previous experiment, however,
we increased the number of antennas at each base station
to 20, i.e., M1 = M2 = 20. Figure 3 shows that doubling
the number of antennas at each base station improves the
BER of cell-edge users obtained by all methods. However,
a significant improvement gap in the BER obtained by our
“blind” method is observed compared to that of ZF-SIC and
ML-SIC. For instance, while ZF-SIC achieves an order of
magnitude reduction in BER with M = 20, CCA-RACMA
attains more than three orders of magnitudes improvement
in BER at SNR = 5dB. Furthermore, Figure 3 shows that
our approach does yield measurable BER when the SNR
of cell-edge users exceeds 5dB. The reason is that CCA
can aggressively suppress the inter-cell interference when the
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Fig. 5: BER vs. number of cell-center users at each BS, M1 =
M2 = 30, SNR = 4dB and Ke = 2, distance of cell-center
users < 0.6R

number of antennas exceeds the total number of users, as
explained in Appendix A.

To test the effect of inter-cell interference, we vary the
locations of cell-center users in their cell from 0.1R to 0.8R,
and for each setting we measure the BER attained by all meth-
ods at SNR = 5dB. Figure 4 demonstrates that the proposed
CCA-RACMA approach still exhibits a favorable performance
relative to that of ZF-SIC and ML-SIC. In particular, two
orders of magnitude increase in the BER attained by ZF-SIC
and ML-SIC is observed when the cell-center users are spread
up to 0.8R compared to 0.1R from their serving BS, however,
a very slight degradation in the performance of CCA-RACMA
is observed, even for high spreads. Notice that, while the
two baselines assume perfect knowledge of the cell-center
user channels, this assumption becomes less realistic when
“cell-center” users are in fact fully scattered throughout the
cell. This therefore give a big advantage to the baselines over
our method; notwithstanding, our method still works the best,
even in this case.

We now consider another experiment with M1 = M2 = 30,
Ke = 2 and SNR = 5dB. Assuming fixed user positions, we
vary the number of cell-center users in each cell from 20 to
8, and for each given number of cell-center users we compute
the BER of cell-edge users. In this experiment, all cell-center
users are randomly dropped up to distance 0.5R from their
serving BS. In Figure 5, we observe that our proposed blind
method can attain BER that is below the detectable threshold
for this simulation when the number of cell-center users per
cell is less than 16 while the ZF-SIC detector is severely
affected by the cancellation errors from cell-center users. This
shows how the proposed approach can handle dense scenarios,
and hence, it is expected to work well in the case of multiple
BSs (more than two).

We next consider M1 = M2 = M = 25, K1 = K2 = 15,
Ke = 3 and cell-center users are randomly located at distance
less than 0.8R from their serving BS. As shown in Figure 6,
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Fig. 6: BER vs. SNR, with M1 = M2 = 25, K1 = K2 = 15
and Ke = 3, distance of cell-center users < 0.8R
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Fig. 7: BER vs. SNR, with M1 = M2 = M , K1 = K2 = 15
and Ke = 3, distance of cell-center users < 0.8R

jointly injecting more users (cell-center and cell-edge) and
allowing them to be more spread, yields a noticeable degra-
dation in the BER of cell-edge users achieved by all methods.
This makes sense because, for ZF-SIC, there exists a higher
chance that the detection performance of some cell-center
users will be affected by the interference of cell-edge users
resulting in cancellation errors from SIC. On the other hand,
our method also exhibits some degradation in the performance
because adding more users creates more intercell interference
that can contaminate the common subspace estimated by
CCA. However, our approach can still achieve much better
performance to that obtained by ZF-SIC with perfect cell-
center CSI. For example, our method still has more than an
order of magnitude lower BER at different SNR values.

We further simulate the previous scenario with double the
number of antennas at each base station. As Figure 7 depicts,
doubling the number of antennas at each base station yields an
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Fig. 8: Correlation coefficient of the first pair-wise canonical
component ρ1 vs. delay

order of magnitude improvement in the BER of our method,
while only slightly improving the BER of ZF-SIC.

Finally, to show how CCA can still detect cell-edge user
signals even when the received signals at the two BSs are
not perfectly synchronized, we consider a scenario with
K1 = K2 = 8, M1 = M2 = 10, Ke = 2, SNR = 3dB,
T = 800 and cell-center users are dropped randomly up
to distance 0.5R, and we assume that the received signal
at the `-th BS is Ỹ` ∈ RM`×T̃ , where T̃ was set to
830. Then, we applied Algorithm 2 on Ỹ1 and Ỹ2, and
observed the correlation coefficient of the first pair-wise
canonical components as a function of the relative shift.
Figure 8 shows how CCA can clearly identify the correct
delay, and hence, detect cell-edge user signals as explained
before. Clearly when the BS signals are not synchronized,
there is no meaningful common subspace – even the first pair
of canonical components exhibits low correlation. When we
hit the correct delay, on the other hand, there are common
components and the correlation coefficient ρ1 is very high, as
shown in Figure 8.

VII. CONCLUSION AND FUTURE WORK

This paper has considered cell-edge user signal detection in
the uplink of a multi-cell multi-user MIMO system. The goal
is to design a detector that can reliably demodulate cell-edge
user signals in the presence of strong intra-cell interference
from users close to the base station, without resorting to power
control or scheduling algorithms that throttle the cell-center
user rates. This paper proposed a two-stage approach that
leverages base stations cooperation to reliably identify cell-
edge user signals at low SNR, without even knowing their
channels. First, two-view CCA was brought in to estimate
the subspace containing the cell-edge user signals shared
by both base stations under the assumption that BS signals
are synchronized. Then, an efficient analytical method called
RACMA that guarantees the identifiability of binary signals
from well-conditioned mixtures was utilized to extract the
cell-edge user signals from the resulted mixture. We presented

theoretical analysis of common subspace identifiability, in
both ideal and realistic scenarios that include noise and inter-
cell interference.

Furthermore, we developed an algorithm that can identify
cell-edge user signals in the case when BS signals are not
fully synchronized at the CSPU. Extensive simulations using
a realistic path-loss model were carried out to show the
superiority of the proposed learning-based method. It was
shown that our blind CCA method achieves more than an
order of magnitude improvement in the cell-edge user BER
compared to the ‘oracle’ zero forcing and maximum likeli-
hood cell-center multiuser detection followed by interference
cancellation of the cell-center users before detecting the cell-
edge users.

In the future, it is interesting to study the more general
setting of the problem that considers (possibly many) more
than two ‘entangled’ base stations. This introduces much
more interference on cell-edge users that renders the problem
much more challenging. In such scenarios, one can resort to
generalized canonical correlation analysis to detect unknown
cell-edge users whose signals are received with relatively
equal power at multiple BSs. More importantly, one can
investigate how many base stations should cooperate to pro-
vide the best detection performance for cell-edge users, and
construct a performance-complexity blueprint. In addition, it
is crucial to develop an efficient algorithm that can resolve
the synchronization issue in the case of cooperation amongst
a large number of BSs.

APPENDIX A
PROOF OF PROPOSITION 1

In order to see how CCA can identify cell-edge user signals
in the noisy and inter-cell interference case, let us first rewrite
the received signal at the `-th BS as

Y` = H`p`S
T
p`

+ H`cS
T
c + H`pjS

T
pj + W` (26)

where `, j ∈ {1, 2} and j 6= `. Recall that, from (14) and (15),
one can easily see that the channel matrix H`p` in (26) can
be factored into Z`p`P

1/2 where Z`p` ∈ CM`×(K`−Ke`
) holds

in its columns the small-scale fading vectors defined in (14)
while P`p` ∈ RK`−Ke` is a diagonal matrix whose entries
model the received signal power (product of path loss and
transmitted signal power) for each of the cell-center users
served by the `-th BS, and likewise for H`c and H`pj .
Therefore, (26) can be equivalently written as

Y` = Z`p`P
1/2
`p`

STp` +Z`cP
1/2
`pc

STc +Z`pjP
1/2
`pj

STpj +W` (27)

Let us first consider a simple scenario with two cell-center
users (one at each BS) and one cell-edge user located at the
common edge between the two BSs. We define βp, βe and
βf as the received signal power (RSP) of the `-th cell-center
user at the `-th BS, the RSP of the cell-edge user at the `-th
BS, and the RSP of the j-th cell-center user at the `-th BS,
respectively, for ` 6= j. Furthermore, for the sake of simplicity,
we assume here that the cell-edge user signal is received with
equal power at both BSs, i.e., the cell-edge user is exactly on
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the edge between the two BSs. Then (27) can be expressed
as

Y` = Z`P
1/2
` BT + W` (28)

where B = [se, sp1 , sp2 ] holds in its columns the temporal
signals of the three users, P1 = Diag([βe, βp, βf ]), P2 =
Diag([βe, βf , βp]) and B = [se, sp1 , sp2 ], where D = Diag(d)
is a diagonal matrix with the vector d on its diagonal.
The entries of Z` represent the small scale fading between
each user and the antennas at BS `. Z` is modeled as i.i.d.
circularly symmetric zero-mean Gaussian with variance 1/M`

(corresponding to a rich scattering scenario).
We will now compute the cross- and auto-correlation ma-

trices Ry1y2 , Ry`y`
as follows. Since the cross correlation

matrix, Ry1y2 , is given by 1
T Y1Y

H
2 , then it follows that

Ry1y2
is given by

Ry1y2 =
1

T
(Z1P

1/2
1 BT + W1)(Z2P

1/2
2 B + W2)H

= Z1P12H
H
2

(29)

where P12 = (P2P1)1/2. Note that, in (29), in addition to the
assumption that 1

T BTB = I, we exploited the fact that, for
large T , 1

T W`W
H
j ≈ 0 and 1

T BTWH
j ≈ 0, for j, ` ∈ {1, 2}.

Similarly, the auto-correlation matrix of the received signal of
the `-th BS can be expressed as

Ry`y`
= Z`P`Z

H
` + σ2I (30)

Now, we substitute with (29) and (30) in (9) to obtain

Z1P12Z
H
2 (Z2P2Z

H
2 + σ2I)−1Z2P12Z

H
1 q1

= λ2(Z1P1Z
H
1 + σ2I)q1

(31)
which can be equivalently written as

Z1Γ12Z
H
2 (Z2Γ2Z

H
2 + I)−1Z2Γ12Z

H
1 q1

= λ2(Z1Γ1Z
H
1 + I)q1

(32)

where Γ1 = Diag([γe, γp, γf ]), Γ2 = Diag([γe, γf , γp]) and
Γ12 = (Γ2Γ1)1/2, with γe = βe/σ

2 be the received SNR of
the cell-edge user, γp = βp/σ

2 be the received SNR of each
cell-center user at its serving BS, and γf = βf/σ

2 be the
received SNR of each cell-center at the other (non-serving)
BS. By left multiplying the two sides of (32) by H†1, we obtain

Γ12Z
H
2 (Z2Γ2Z

H
2 + I)−1Z2Γ12Z

H
1 q1

= λ2(Γ1Z
H
1 + Z†1)q1

(33)

By substituting with Z†1 = (ZH1 Z1)−1ZH1 , and by letting v =
ZH1 q1, (33) can be expressed as

Γ12Z
H
2 (Z2Γ2Z

H
2 + I)−1Z2Γ12v = λ2(Γ1 + (ZH1 Z1)−1)v

(34)
By defining the matrix Z := ZH2 (Z2Γ2Z

H
2 + I)−1Z2, it then

follows that Z can be simplified as

Z = ZH2 (Z2Γ2Z
H
2 + I)−1Z2 (35a)

= ZH2 (Z†2(Z2Γ2Z
H
2 + I))† (35b)

= ZH2 (ZH2 )†(Γ2 + (ZH2 Z2)−1)−1 (35c)

= (Γ2 + (ZH2 Z2)−1)−1 (35d)

Note that in (35b) and (35c), we have exploited the following
two properties of the pseudoinverse
P 1. For any square matrix A, if A is invertible, its pseu-

doinverse is its inverse, i.e., A† = A−1

P 2. (BA)† = A†B†

By substituting with (35d) in (34), we obtain

Γ12(Γ2 +(ZH2 Z2)−1)−1Γ12v = λ2(Γ1+(ZH1 Z1)−1)v (36)

which can be equivalently expressed as

Fv = λ2v (37)

where F:=(Γ1+(ZH1 Z1)−1)−1Γ12(Γ2+(ZH2 Z2)−1)−1Γ12 is
an Ks ×Ks matrix, and Ks = 3 for the particular scenario
considered here. For ease of exposition, we will assume here
that the number of antennas M` is large enough so that
(ZH` Z`)

−1 is approximately identity. Thus, matrix F can be
expressed as

F :=


( γe
γe+1 )2 0 0

0
γfγc

(γf+1)(γc+1) 0

0 0
γfγc

(γf+1)(γc+1)

 ∈ RKs×Ks ,

If each cell-center user is close to its serving BS, then γf <<
1 and γc >> 1. Therefore, the term γfγc

(γf+1)(γc+1) will be
approximately equal to γf . Then, it can be easily seen that
the maximum eigenvalue of the matrix F is equal to ( γe

γe+1 )2

and the other two eigenvalues will be approximately equal to
γf . Since the maximum eigenvalue of the matrix F is nothing
but the square of the correlation coefficient that is associated
with the vectors YT

1 q1 and YT
2 q2. Then, it turns out that the

maximum correlation coefficient is given by

ρmax =
γe

γe + 1
(38)

Now, we need to compute the eigenvectors q1 and q2. Since
the maximum eigenvector of the diagonal matrix F is given
by

v = [±1, 0, 0]T (39)

the eigenvector q1 can be obtained by solving the following
system of linear equations

v = ZH1 q1 (40)

Without loss of generality, we can let q∗1 = Z1(ZH1 Z1)−1v.
The reason is that we can always find two components to
the vector q∗1; one in the subspace spanned by Z1 and one
orthogonal to it, however, the latter will vanish after multi-
plication with ZH1 . By substituting with q∗1 in (8), it can be
easily proved that the corresponding canonical component of
the second view q∗2 = Z2(ZH2 Z2)−1v. Define ŝ`c := YH

` q∗`
and substitute with q∗` , we get the following

ŝ`c =
√
βecsc + n` (41)

where n` = WH
` q∗` ∈ CT and c = ±1. This means that, in

the case of single cell-edge user, the proposed detector can
efficiently recover cell-edge user signals at low SNR even in
the presence of inter-cell interference.
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The generalization to Ke > 1 and K` − Ke > 1 now
follows directly. In that case, the matrix F will have the vector
f ∈ RKs on its diagonal, where

f(j) =

(
γej
γej+1 )2, j ∈ {1, · · · ,Ke}

γfj γpj
(γfj+1)(γpj+1) j ∈ {Ke + 1, · · · ,Ks}

Assume that γfj << 1,∀j ∈ {Ke + 1, · · · ,Ks}. Then it can
be easily seen that the largest Ke eigen vectors are the first
Ke columns of an Ks×Ks identity matrix. Upon letting V =
I(:, 1 : Ke), the optimal solution Q∗` = H`(Z

H
` Z`)

−1VM`,
where M` is any Ke×Ke non singular matrix that satisfies the
`-th orthonormality constraint in (13). Define Ŝ`c := YH

` Q∗`
and substitute in (27), we obtain

Ŝ`c = ScP
1/2
c M` + N` (42)

where Pc = Diag([βe1 , · · · , βeKe
]), and N` = WH

` Q∗` . Note
that, after obtaining Ŝ`c, we pass it to RACMA to identify
the cell-edge user signals Sc.
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