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Abstract—A key challenge in 4G and emerging 5G systems
is that of reliably detecting the uplink transmissions of users
close to the edge between cells. These users are subject to
significant signal attenuation due to path loss, and frequent
hand-off from one cell to the other, making channel estimation
very challenging. Even multiuser detection using base station
cooperation often fails to detect such users, due to channel
estimation errors and the sensitivity of multiuser detection to
near-far power imbalance. Is it even possible to reliably decode
the cell-edge users’ signals under these circumstances? This
paper shows, perhaps surprisingly, that with a suitable base
station ‘interferometry’ strategy, the cell-edge users’ signals
can be reliably decoded at low SNR under mild conditions.
Exploiting the fact that cell-edge users’ signals are weak but
common to both base stations, while users close to a base station
are unique to that base station, reliable detection is enabled by
Canonical Correlation Analysis (CCA) – a machine learning
technique that reliably estimates a common subspace, even in
the presence of strong individual interference. Free from cell-
center interference, the resulting mixture of cell-edge signals can
then be unraveled using well-known algebraic signal processing
techniques. Simulations demonstrate that the proposed detector
achieves order of magnitude BER improvement compared to
an ‘oracle’ zero-forcing with successive interference cancellation
that assumes perfect knowledge of all channels. The paper
also includes proof of common subspace identifiability for the
assumed generative model, which was curiously missing from
the machine learning / CCA literature.

I. INTRODUCTION

Multi-user (MU) MIMO detection for uplink reception
aims at demodulating multiple users’ signals in the presence
of multi-access interference [1], [2]. The optimum maximum
likelihood detector (MLD) requires solving an NP-Hard com-
binatorial problem of complexity that grows exponentially
with the number of users [1]. Sphere decoding offers MLD
performance at lower complexity, especially in the high
signal to noise regime [3], however its complexity is still
exponential [4]. Minimum mean square error (MMSE) [5] and
zero-forcing (ZF) are low-complexity linear detectors, whose
performance can be improved by successively removing the
strong users’ signals once they are decoded – a technique re-
ferred to as decision feedback (DF) or successive interference
cancellation (SIC) [6]. All of the aforementioned detectors
have been successful in many applications as long as accurate
channel estimates are available, and power control is used to
mitigate near-far power imbalances.
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In cellular systems, accurate channel estimation can be
accomplished for cell-center (strong) users, however, cell-
edge (weak) user signals are received at low signal-to-noise
ratio (SNR) because attenuation follows an inverse power law
as a function of distance. This also degrades their channel
estimates [7], [8], and hence, their detection performance.
Whereas power control can be used to mitigate path loss [8],
[26], this comes at the expense of significantly reducing the
rate of the users that are close to the base station. Cell-edge
users are also subject to frequent hand-offs, which further
aggrevate the situation.

The situation begs the question whether it is possible to
reliably decode weak cell-edge users’ signals under such
circumstances? This paper shows that with a suitable base sta-
tion ‘interferometry’ strategy inspired from machine learning,
together with a well-known algebraic signal processing tool,
the cell-edge users’ signals can be reliably decoded under
mild conditions, even at low SNR and when buried under
heavy cell-specific interference from the cell-center users.
Exploiting the fact that cell-edge users’ signals are weak
but common to both base stations, while users close to a
base station are unique to that base station, reliable detection
is enabled by Canonical Correlation Analysis (CCA) [9],
[10] – a machine learning technique that reliably estimates
a common subspace using eigendecomposition, even in the
presence of strong individual-cell interference. We show that
CCA yields the correct subspace containing the cell-edge
users’ signals. Free from cell-center interference, the result-
ing mixture of cell-edge signals can then be unraveled by
exploiting their finite-alphabet structure using RACMA [11].
The paper includes an algebraic proof of the main claim in
the case where thermal noise and adjacent-cell interference
from non-cell-edge users can be neglected (i.e., users close
to base station B are not overhead at base station A).

With a realistic path-loss model (that includes interference
from all users) the proposed detector achieves order of magni-
tude BER improvement compared to an ‘oracle’ cooperative
zero-forcing with successive interference cancellation that
assumes perfect knowledge of all channels. Intuitively, this
is because the concept of common versus individual signals
translates to equipowered versus imbalanced signals in that
case. The more the power imbalance, the more a given signal
tends to ‘belong’ to one base station (and hence become



‘individual’). The idealized case considered in our proof
emerges in the limit.

Our approach is very different from multiuser detection
using base station cooperation [12], as it capitalizes on CCA.
In the signal processing literature, CCA has been used in
direction-of-arrival (DoA) estimation [13], equalization [14],
[15], array processing [16], blind source separation [17]–[19],
and multi-view learning [20], to name a few applications;
but not anywhere close to our present context. Scalable
algorithms for generalized (multi-view) CCA were recently
developed by the authors’ group [21]–[23], also incorporating
various constraints. From a methodological point of view,
the key contribution of this paper is the proof of common
subspace identifiability for the assumed generative model,
which was – surprisingly – missing from the machine learning
/ CCA literature. From the application point of view, the main
contribution is to showcase the power of CCA in solving
a practical engineering problem that seems insurmountable
otherwise.

Matrices (vectors) are denoted by upper- (lower-) case
boldface letters, and (·)T transpose. Scalars are represented
in the normal face. ‖.‖2 and ‖.‖F denote the `2-norm and the
frobenius norm, respectively. Finally, IN and 0N×M denote
the N × N identity matrix and the N × M zero matrix,
respectively.

II. PRELIMINARIES

A. System Model

Consider an uplink wireless transmission in a MU-MIMO
system with two cells, as shown in Figure 1. The base station
(BS) in each cell is equipped with M antennas and serves K
single-antenna users. Our approach works for different K for
each base station, but we assume common K for simplicity
of exposition. Let Kc = Ke1 +Ke2 denotes the total number
of cell-edge users located around the common edge between
the two cells, where Ke` < K represents the number of cell-
edge users served by the `-th BS, for ` ∈ {1, 2}. Let skj ∈
RT×1 be the vector containing symbols transmitted by the
k-th user in cell j, where each entry of skj belongs to the
finite alphabet Ω = {±1} (our approach works for general
PSK and other alphabets, with some changes in the second
stage). The received signal, Y` ∈ CM×T , at the `-th BS can
be expressed as

Y` =
2∑
j=1

K∑
k=1

√
βh`kjs

T
kj + W` (1)

where W` ∈ CM×T contains independent identically dis-
tributed (i.i.d) entries with each element drawn from a
complex Gaussian distribution with zero mean and variance
σ2, and β models the transmitted signal power. The term
h`kj models independent small scale fading and path-loss
attenuation between the k-th user in the j-th cell and the `-th
BS, and is given by

h`kj =
√
α`kjg`kj (2)

where g`kj ∈ CM×1 represents the small scale fading be-
tween user k in cell j and BS `. In our simulations, its entries

BS-1 BS-2

Fig. 1: System Model

are assumed to be i.i.d complex zero-mean Gaussian random
variables. On the other hand, α`kj ∈ C is the large scale
fading coefficient that accounts for the channel attenuation
(path-loss) between user k in cell j and BS `. It is assumed
that h`kj’s is not known apriori at the `-th BS.

B. Cell-Edge Users Detection

Let us collect the signals of cell-edge users and cell-center
users served by BS ` in the matrices Sc ∈ RT×Kc and
Sp` ∈ RT×(K−Ke`

), respectively, for ` ∈ {1, 2}. Further-
more, let W̃` represent the noise at the `-th BS plus the
interference caused by the cell-center users in cell j, where
j 6= `. Therefore, (2) can be expressed as follows

Y` = H`p`S
T
p`

+ H`cS
T
c + W̃` (3)

where the matrices H`c ∈ CM×Kc and H`p` ∈ CM×(K−Ke`
)

hold on their columns all the channel vectors from cell-edge
users to the `-th BS, and the channel vectors from cell-center
users to their serving BS, respectively. Note that the subscripts
c and p stand for ‘common’ and ‘private’, respectively. In
addition, absorb the transmitted signal power, β, of each user
in the respective channel vectors.

One possible approach to detect cell-edge users’ signals
is to apply zero-forcing successive interference cancellation
(ZF-SIC) [6], which is based on successively removing the
cell-center (strong) users’ signals once they are detected using
ZF. Afterwards, the approach applies ZF to detect the cell-
edge (weak) users. However, ZF requires accurate channel
estimates to provide reliable detection performance. Although
this can be guaranteed for cell-center users, cell-edge users’
signals are received intermittently at low SNR which results
in poor channel estimates [7], [8]. In what follows, we present
a novel detector that can reliably decode cell-edge users’
signals at low received SNR and strong interference, without
the availability of CSI.

III. CELL-EDGE USERS DETECTION USING CCA

In this section, the signals received by both base stations
are jointly processed by a central signal processing unit.
The goal of the proposed detector is to detect the cell-
edge users’ signals Sc from the received signals Y1 and
Y2. First, the signals are transformed to the real domain by
forming the matrix Y` := [Y

(r)
` ;Y

(i)
` ] ∈ R2M×T , where

Y
(r)
` = IRe{Y`} and Y

(i)
` = IIm{Yl} represent the real



and imaginary components of the `-th BS signal. Similarly,
denote by A`p` := [H

(r)
`p`

;H
(i)
`p`

] ∈ R2M×(K−Ke`
), A`c :=

[H
(r)
`c ;H

(i)
lc ] ∈ R2M×Kc and W = [W̃

(r)
l ;W̃

(i)
l ] ∈ R2M×T .

Therefore, (3) can be equivalently written as

Y` = A`p`S
T
p`

+ A`cS
T
c + W`. (4)

Next, the two-view CCA formulation [10] is utilized to
estimate the subspace containing the cell-edge users’ signals.
For the sake of brevity, we refer to this subspace as the
common subspace. The two-view CCA seeks to find a com-
mon structure of the views through a linear transformation
of the data received at each view (BS) [24]. In other words,
it finds two matrices Q1 ∈ R2M×N and Q2 ∈ R2M×N ,
with N < min{M,T}, such that the correlation between the
projections of Y1 and Y2 onto these matrices is maximized.
In an optimization framework, this can be mathematically
expressed as [25]

min
Q1,Q2

‖YT

1 Q1 −Y
T

2 Q2‖2F (5a)

s.t. QT
` Y`Y

T

` Q` = I, ` ∈ {1, 2} (5b)

Note that the n-th column of Q` represents the n-th canonical
component of view Y`, for n ∈ {1, · · · , N}, and the corre-
lation coefficient ρn of the n-th pair of columns (one from
each matrix) is computed. The number of components (pairs)
extracted, (N ), depends on the minimum value of ρ that
needs to be considered. Problem (5) can be optimally solved
using generalized eigenvalue decomposition [9], [25]. An
alternative formulation of (5) is to search for an orthogonal
representation G ∈ RT×N that is maximally correlated
after the linear projections of Y1 and Y2 on Q1 and Q2,
respectively. This can be written as

min
Q1,Q2,G

2∑
`=1

‖YT

` Q` −G‖2F (6a)

s.t. GTG = I (6b)

Problem (6) is known as the MAX-VAR formulation of the
CCA [24] and, in the case of two views considered here, it
is equivalent to (5) in the sense that both problems yield the
same solutions Q?

` . In this work, we focus on the formulation
in (6) as it facilitates our proof.

Assume that we are interested in the first Kc canonical
components of the matrices Q1 and Q2, i.e., N = Kc. We
have the following result.
Theorem: In the noiseless case, if matrix B :=
[Sc,Sp1 ,Sp2 ] ∈ RT×2K is full column rank, and A` =
[A`c,A`p` ] ∈ R2M×(Kc+K−Ke`

) is a full column rank for
` ∈ {1, 2}, then the optimal solution G? of problem (6) is
given by G? = ScP, where P is a Kc × Kc non-singular
matrix.

Remark. The full column rank condition on B requires
T ≥ 2K, and the transmitted sequences from the different
users to be linearly independent. For finite-alphabet signals,
this happens with very high probability for moderate T ,
since the different user transmissions are independent. The
more restrictive condition is full column rank of A`, which

relates the number of base station antennas and signals
impinging on each base station. We thus need two times
the number of antennas in each base station to be ≥ the
number of users assigned to that base station, plus any cell-
edge users assigned to the other base station. Other than
this dimensionality constraint though, if the channel vectors
are drawn from a jointly continuous distribution, the latter
condition will be satisfied with probability one.

Proof: First, let us start with the single cell-edge user case,
i.e., Kc = 1 and each of Sc,G and Q` is a vector. In such
setting (6) relaxes to the following

min
q1,q2,g

2∑
`=1

‖YT

` q` − g‖22 (7a)

s.t. ‖g‖22 = 1 (7b)

To solve the above problem, we need to find (q?1,q
?
2,g

?) that
can together attain a zero-cost. In other words, we need the
following two conditions to be satisfied simultaneously

Y
T

1 q1 = g (8a)

Y
T

2 q2 = g (8b)

Without loss of generality, we can let q` = A`(A
T

` A`)
−1u`,

where u` is any vector in RKc+K−Ke` . The reason is that
we can always decompose q` into a component in the
subspace spanned by A` and one orthogonal to it. The latter is
annihilated anyway after multiplication with A

T

` . Substituting
in (8a) and (8b) and taking their difference, we obtain

Bu = 0, (9)

where B = [sc,Sp1 ,Sp2 ] ∈ RT×2K and u = [u1(1) −
u2(1),u1(2 : end),−u2(2 : end)]T ∈ R2K , where u1(2 :
end) is the vector containing all except the first element of
u. It can be easily seen that if B is full column rank, then
u = 02K×1 is the only possible solution of (9). This means
that u1 = u2 = ce1, where c is any constant and e1 is the
first column of the identity matrix. Consequently, from (8),
g? = αsc/‖sc‖2, with α = ±1, will be the only possible
solution for problem (7).

The generalization to Kc > 1 now follows naturally.
Letting Q` = A`(A

T

` A`)
−1U`, and defining

U :=


U1(1 : Kc, :)−U2(1 : Kc, :)

U1(Kc + 1 : end, :)

− U2(Kc + 1 : end, :)

 ∈ R2K×Kc ,

where U1(1 : Kc, :) means rows 1 to Kc and all columns of
U1, we obtain

BU = 0, (10)

and when B is full column rank the solution is unique:
U = 0, and therefore U1(1 : Kc, :) = U2(1 : Kc, :) =: P,
U1(Kc + 1 : end, :) = 0, U2(Kc + 1 : end, :) = 0, and
therefore G? = ScP, where P is Kc × Kc non-singular
such that the orthonormality constraint (6b) is satisfied. Note
that if the signals themselves are (approximately) orthogonal,
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Fig. 2: BER vs. SNR of cell-edge users, with M = 12, K =
10 and Kc = 2, distance of cell-center users < 0.6R

then P will be orthogonal as well, which helps with the next
(RACMA) stage. �

The next step is to extract the cell-edge users’ sequences
Sc from G? = ScP. This problem can be viewed as a
bilinear factorization of the matrix G? to its factors P and
Sc under the constraint that the entries of Sc belong to the
finite alphabet Ω = ±1. This can be mathematically posed as
an optimization problem as follows

min
Sc,P

‖G? − ScP‖2F (11a)

s.t. Sc(i, j) ∈ Ω (11b)

In [11], van der Veen proposed an algebraic algorithm called
Real Analytical Constant Modulus Algorithm (RACMA) for
this problem. RACMA does not claim to optimally solve
(11), which is NP-hard even if P is known. Instead, RACMA
assumes that noise is small, and reduces (11) to a generalized
eigenvalue problem. The solution is subject to sign and user
permutation ambiguity This means that the original Sc can be
identified up to permutations and columnwise (user) scaling
by ±1. From the practical point of view, each user has its
unique identification sequence, so once the users’ signals are
received correctly each BS can identify each user’s signal
(and sign) via correlation with the identification sequence.

Remark. It is important to emphasize that, in the noisy case
and if the cell-center users in each cell are randomly dropped
up to a certain distance from their serving BS, it turns out
that our method can still identify the common subspace at
low SNR values as we will see in the next section.

IV. EXPERIMENTAL RESULTS

To assess the performance of our proposed method, we
consider a scenario with two hexagonal cells; each with radius
R = 500 meter. Cell-edge users’ locations were generated
randomly by following a uniform distribution, however, they
were confined to be around the common edge between the
two cells, i.e., the locations of cell-edge users were chosen
between 0.95R and 1.05R. On the other hand, the distance
between each cell-center user and its serving BS is at most
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Fig. 3: BER vs. SNR of cell-edge users, with M = 20, K =
15 and Kc = 3, distance of cell-center users < 0.75R

0.6R. The transmitted power β was set to 25dBm for all
users. Furthermore, the transmitted sequence’s length T was
fixed to 800. Additive white Gaussian noise is assumed with
variance σ2 so that the SNR is Pe/σ2, where Pe is the average
received signal received power of cell-edge users. In fact, this
enables us to see what values of SNR should cell-edge users
have to achieve a specific BER. Furthermore, all results were
averaged over 500 Monte-Carlo trials. The uplink channels
{hHlkj} are modeled as

hHlkj =

√
1

M

L∑
n=1

√
α
(n)
lkjar(θ

(n))H (12)

where L is the number of paths between the l-th BS and the
k-th user in cell j, ∀{l, j} ∈ {1, 2} and k ∈ {1, · · · ,K}. We
use the path-loss model of the urban macro (UMa) scenario
from 3GPP 38.901 standard to compute the complex path gain
α
(n)
lkj , ∀n, l, j, k. The term ar(.) is the array response vector

at the BS, and θ(n) ∼ U [−π, π] denotes the azimuth angle of
arrival of the n-th path. Assuming the BS is equipped with a
uniform linear array, then

ar(θ) = [1, expikd cos(θ), · · · , expikd(M−1) cos(θ)] (13)

where k = 2π/λ, λ is the carrier wavelength and d = λ/2 is
the spacing between antenna elements.

In order to benchmark the performance of our proposed
method, we implemented the zero-forcing successive inter-
ference cancellation (ZF-SIC) where the channels of cell-
center users were assumed to be perfectly known at their
serving BSs. Note that after canceling the interference of cell-
center users from the received signal, we pass on the residual
signals to RACMA [11] to identify cell-edge users’ signals.
Afterwards, the bit error rate (BER) of cell-edge users was
computed at both BSs and the best was reported. Furthermore,
in order to guarantee fairness, since we have assumed that
both BSs’ signals are received at the processing center, both
residual signals from both BSs were sent simultaneously to
RACMA and the combined BER was reported. Similarly, due
to the presence of noise and inter-cell interference that can



affect the estimation of the common subspace, we sent Y
T

1 Q1

and Y
T

2 Q2 simultaneously to RACMA to solve for the cell-
edge signals and compute the BER.

The performance of BER versus SNR of cell-edge users,
for M = 12, K = 10 and Kc = 2, is depicted in Figure 2.
It is obvious that our blind method achieves a considerable
improvement in the BER compared to the ZF-SIC with full
CSI for cell-center users. For instance, more than one order
of magnitude improvement using our blind learning method
was observed. Furthermore, Figure 2 shows that our approach
attained a zero BER when the SNR of cell-edge users exceeds
7dB.

Moreover, we carried out another experiment with M =
20,K = 15,Kc = 3 and cell-center users were randomly
located at distance less than 0.75R from their serving BS. Fig-
ure 3 shows that injecting more users and allowing them to be
more spreaded, affected the BER of cell-edge users obtained
by both methods. This makes sense because, for ZF-SIC,
there exists a higher chance that the detection performance
of some cell-center users will be affected by the interference
of cell-edge users resulting in cancellation errors from SIC,
while our method also exhibits some degradation in the
performance because adding more users creates more inter-
cell interference that can contaminate the common subspace
estimated by CCA. However, our approach can still achieve
much better performance to that obtained by ZF-SIC with
perfect CSI. For example, our method still has more than an
order of magnitude enhancement in the BER at different SNR
values.

V. CONCLUSIONS

In this work, cell-edge user detection in the uplink of a
multi-cell multiuser MIMO system was considered. The goal
is to design a detector that can reliably demodulate cell-edge
user signals in the presence of strong in-cell interference
from users close to the base station, without resorting on
power control that throttles the users that are close to the
base station. This paper proposed a two-stage based approach
that managed to reliably identify cell-edge users’ signals at
low SNR, without even knowing their channels. First, two-
view CCA was brought in to estimate the subspace containing
the cell-edge users’ signals shared by both base stations.
Then, an efficient analytical method called RACMA that
guarantees the identifiability of binary signals from well-
conditioned mixtures was exploited to extract the cell-edge
users’ signals from the subspace. Simulations revealed that
our blind method achieves more than an order of magnitude
improvement in the BER compared to the ‘oracle’ zero forc-
ing successive interference cancellation with perfect channel
state information.
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