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The modulational instability of two-dimensional nonlinear traveling-wave solutions of the Whitham
equation in the presence of constant vorticity is considered. It is shown that vorticity has a significant
effect on the growth rate of the perturbations and on the range of unstable wavenumbers. Waves with
kh greater than a critical value, where k is the wavenumber of the solution and h is the fluid depth, are
modulationally unstable. This critical value decreases as the vorticity increases. Additionally, it is found

that waves with large enough amplitude are always unstable, regardless of wavelength, fluid depth, and
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strength of vorticity. Furthermore, these new results are in qualitative agreement with those obtained by
considering fully nonlinear solutions of the water-wave equations.
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1. Introduction

It is well known that small-amplitude, two-dimensional, peri-
odic wave trains are stable with respect to the modulational insta-
bility when the dispersive parameter kh, where k is the wavenum-
ber and h is the mean fluid depth, is less than the critical value
1.363. Nevertheless, McLean [1] found that Stokes waves are mod-
ulationally unstable when kh =1 and ak = 0.29, where a is the
wave amplitude. We can conjecture that strongly nonlinear uni-
form wave trains are modulationally unstable with respect to in-
finitesimal perturbations in shallow water. To extend the results
of McLean [1] to shallower water, Francius and Kharif [2] investi-
gated instabilities of periodic gravity waves in shallow water us-
ing the fully nonlinear potential Euler equations. For small values
of ak, they found that the dominant instabilities are quasi-two-
dimensional whereas for moderate and large steepness, the domi-
nant instabilities are three-dimensional.

Whitham [3] proposed an extension of the KdV equation by
using the full linear dispersion instead of its third-order trun-
cated expression. Consequently, the Whitham equation presents
an improvement over the KdV equation for short waves. In fact,
Carter [4] showed that the Whitham equation provides a more
accurate model for experimental initial waves of depression than
does the KdV equation. Similarly, Moldabayev, Kalisch and Du-
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tykh [5] showed that solutions of the Whitham equation stay close
to solutions of the Euler equations, and Klein et al. [6] gave a
mathematical proof that solutions of the Euler equations are well
approximated by solutions of the Whitham equation on small to
intermediate time scales.

Ehrnstrom and Kalisch [7,8] proved rigorously that the Whitham
equation admits small and large amplitude, periodic traveling-wave
solutions and numerically computed traveling-wave solutions with
a variety of amplitudes including those close to the highest wave.
Later on, Kharif and Abid [9] computed steadily propagating pe-
riodic waves in the presence of constant vorticity. The method
of computing these solutions was developed by Ehrnstrém and
Kalisch [8] and is also found in Sanford et al. [10] and Kharif and
Abid [9]. Sanford et al. [10] studied the Whitham equation and
found that two-dimensional, periodic wave trains with kh =1 are
stable when the wave steepness, ak, is less than approximately
0.142 and are unstable when the wave steepness is larger than
this threshold. To a certain extent, this result is surprising because
the Whitham equation is valid for weakly nonlinear water waves.
The latter authors numerically corroborated the stability analysis
of Hur and Johnson [11] who found that small-amplitude waves
with kh < 1.145 are stable and are unstable when kh > 1.145. Note
that Benjamin and Feir [12] and Whitham [13] showed that Stokes
waves are unstable with respect to long wavelength perturbations
if kh > 1.363. Later on, Hur and Johnson [14] incorporated in the
Whitham equation the effect of constant vorticity which modifies
the threshold value of the dispersive parameter.
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Following Whitham [3], Kharif et al. [15] and Kharif and
Abid [9] proposed a new model derived from the Euler equa-
tions for fully nonlinear water waves propagating on a vertically
sheared current of constant vorticity in shallow water that satis-
fies the unidirectional linear dispersion relation. From this model
they derived, within the framework of weakly nonlinear waves,
a generalization of the Whitham equation which they named the
vor-Whitham equation. At the same time, Hur [16] and Bjernes-
tad and Kalisch [17] derived shallow water wave equations in the
presence of constant vorticity.

In order to extend the previous studies of Sanford et al. [10] and
Hur and Johnson [14], we consider the spectral stability of two-
dimensional, periodic traveling-wave solutions of the Whitham
equation in the presence of constant vorticity. Our study focuses
on the modulational instability. The second aim is to show that
the Whitham equation, which is an approximate equation that is
easier to work with than the fully nonlinear water wave equations,
may provide reliable stability results that are in qualitative agree-
ment with those of the full equations.

In section 2, we present the vor-Whitham equation. In sec-
tion 3, we describe how to compute the stationary solutions to
this equation. Additionally, we present the stability of these solu-
tions with respect to infinitesimal perturbations, the growth rates
of instabilities, and the ranges of unstable Floquet parameters as
functions of vorticity. Section 4 contains a conclusion of this work.

2. The vor-Whitham equation

We consider two-dimensional gravity waves that propagate on
the surface of an inviscid, incompressible fluid with a shear current
parallel to the direction of wave propagation that varies linearly in
the vertical direction. We assume that the waves travel along the
x—axis and that the z—axis is oriented upward with z =0 rep-
resenting the unperturbed free surface. In order to focus on the
effects due to vorticity, we assume that the current velocity is zero
at the free surface. In this situation, the current vorticity, €2, is con-
stant and the vor-Whitham equation is given by

Ne+c1()Nnx + K 1y =0, (1)

where n(x, t) represents the free surface displacement and t rep-
resents time. The coefficient of the nonlinear term is

3gh + h?Q?

hy/4gh + h2Q?’

where g is the gravitational constant of acceleration. The disper-
sive term is given by the convolution product, K * nx, which is the
inverse Fourier transform of the product of the Fourier transforms
of K(x) and nx(x, t). The integral kernel is

c1(§2) =

1 +o00
K(X) = — / c(kye**dk,
2w
—0Q

where the unidirectional dispersion of linear waves in the presence
of vorticity is

ck
) 2k k 4k?2

We consider traveling-wave solutions of the vor-Whitham equation

of the form n(x,t) = 1(x — cot) for a given phase velocity cg. Sub-

stituting this ansatz into equation (1) and integrating once leads to

the equation that defines ¢ and 7

_ Qtanh(kh) N \/ gtanh(kh) N Q2 tanh? (kh)

=2
—C0ﬁ+C1(Q)%+K*ﬁ=B, (2)
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Fig. 1. Plots of periodic traveling-wave solutions to the vor-Whitham equation with
L =2m, wave height, H (see captions), and (a) 2 =—1.0, (b) 2 = 1.0. Note that the
vertical scales in the two plots are different.

where B is the constant of integration. We choose B so that the
solution 7 has zero mean.

3. Stability analysis
3.1. Steady waves

In the frame of reference moving with the traveling-wave solu-
tion, the vor-Whitham equation is given by

N —conx +c1()nnx + K xnx =0, (3)

where X = x — cot and 7 = t. In this frame of reference, the
traveling-wave solution, 1(X), is stationary (independent of 7) and
satisfies equation (2). To compute these solutions, we use the nu-
merical method of Ehrnstréom and Kalisch [7]. Details of the nu-
merical method and its validation are found in Kharif and Abid [9].
However, herein we add a supplementary equation that fixes the
wave amplitude when following solutions using co as the continu-
ation parameter.

In order to put the equations in dimensionless form, h and
\/% are chosen as the reference length and reference time, re-
spectively. This choice corresponds to setting h=1 and g =1. We
consider 2 -periodic traveling-wave solutions to the vor-Whitham
equation. Consequently, the wavenumber of these solutions is k =
1.

Fig. 1 shows profiles of traveling-wave solutions to the vor-
Whitham equation for two values of 2 and four values of the
wave steepness. These plots, along with others left out for brevity,
demonstrate that: (i) solutions corresponding to different values of
Q and L are qualitatively similar, (ii) for solutions with a given
period and vorticity, increasing wave speed increases wave height
and steepness, and (iii) there appears to be a solution of maximal
height for all wave periods and values of vorticity.

Fig. 2 shows profiles of traveling-wave solutions to the vor-
Whitham equation with wave height 0.34 and four values of .
These plots, along with others left out for brevity, demonstrate
that: (i) for solutions with a given period and wave height, in-
creasing vorticity causes the width of the solution to increase and
(ii) for solutions with a given period and wave height, increasing
vorticity causes both the minima and maxima of 7 to decrease.

Fig. 3 displays the phase velocity as a function of wave steep-
ness for five values of the vorticity. These plots show that the
phase velocity decreases as the wave steepness increases. For fixed
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Fig. 2. Plots of periodic traveling-wave solutions to the vor-Whitham equation with
wave height, H =0.34, L =27, and four different values of Q.
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Fig. 3. Phase velocity of the traveling-wave solutions as a function of the wave
steepness for several values of the vorticity. Q = 0(o), —0.1 (%), 0.1 (¢), —0.2 (OJ),
0.2 ().

values of the wave steepness, cg increases as 2 increases. This fea-
ture was observed by Kharif and Abid [9] within the framework of
a fully nonlinear, generalized vor-Whitham equation, whereas the
profiles shown in Fig. 1 are weakly nonlinear.

3.2. Stability of steady solutions

In order to study the stability of these solutions with respect to
infinitesimal perturbations, let

nX,n=nX)+n' X, v), NIl (4)

where 7(X) and 1/(X, t) correspond to the 2w -periodic unper-
turbed steady solution and infinitesimal square integrable distur-
bance, respectively. Substituting equation (4) into equation (3) and
linearizing gives the following equation which governs the (linear)
evolution of the perturbations

Ny —con +c1(ny 4+ ixn’) + K «nx =0. (5)

The Fourier-Floquet-Hill method of Deconinck and Kutz [18] and
Johnson [19] establishes that all bounded solutions of this problem
have the form
+00
7' (X, 7) = exp(h7) exp(ipX) Y a;exp(ijX), (6)
j=—00

where p is a real number known as the Floquet parameter. Substi-
tuting equation (6) into equation (5) gives

+00
Y (co— c1(Q)7] — cp (P + j)aj exp(ijX)
+o00 +00
— a1 (@)ix Y_ajexp(ijX) =1 ajexp(ijX), (7)

where

. Quanhp+)) \/ tanh(p + j) Q2 tanh?(p + j)
p+i=

2(p+1J) @+ 4(p + j)?

Equation (7) is transformed into a generalized eigenvalue problem
for A, which after truncation at M Fourier modes can be written
as follows

Au = )Bu, (8)

where u= (a_p, ..., do, ...,ap)T is the corresponding eigenvector.
The 2M + 1 unknown coefficients (a_y, ..., do, ...,ay) are chosen
to satisfy (7) at 2M + 1 collocation points equally distributed along
one period of the unperturbed solution. We used M = 100 and
checked that the results are the same within seven significant fig-
ures when doubling this value. The complex-valued matrices A and
B depend on the unperturbed wave, 7, the vorticity, €2, and the
Floquet parameter, p. Once the unperturbed traveling-wave solu-
tion has been computed and p fixed, the generalized eigenvalue
problem (8) is solved by using a standard numerical eigenvalue
solver.

The eigenvalue spectrum corresponding to the flat surface (i =
0) is

Aj=i(p+ j)co—i(p+ j)Cpyjs

where the phase velocity of the flat surface is

co=Qtanh(1)/2 + \/tanh(l) + Q2 tanh?(1)/4.

All of these eigenvalues lie on the imaginary axis. Therefore, the
flat surface is spectrally stable. The corresponding eigenfunctions
are n} =ajexp(r;T)exp(i(p + j)X) which represent infinitesimal
waves of frequency (p + j)co — (p + j)Cp4j in the moving frame of
reference and wavenumber p + j.

As the amplitude of the unperturbed wave increases from zero,
the eigenvalues move on the imaginary axis and eigenvalue colli-
sions occur. A necessary, but not sufficient, condition for instability
is the collision of eigenvalues. The collision of eigenvalues can be
expressed as

Aj1(P) = Aj, (D), (9)

where the corresponding wavenumbers are k1 = p + j; and ky =
p + j2. McLean et al. [20] divided the solutions of (9) into two
classes. Depending upon whether j; — j, is even or odd, insta-
bilities belong to class I or class II, respectively. Without loss of
generality, it is convenient to assume that j, = —j; for class I and
j2 = —j1 — 1 for class Il. Herein, we focus only on class I with
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Table 1

Growth rate of the most unstable perturba-
tion as a function of the basic wave steep-
ness without vorticity.

ak p Re(A)max
0.20 0.101 1.67 x 1073
0.19 0.005 0.811 x 10~*
0.18 0.003 419 x 107
0.17 0101
0.15 0101
0.10 O(10712)
0.05 O(10712)

j1 =1 which correspond to instability of modulational type. These
assumptions allow equation (9) to be rewritten as

2co=(1+p)c14p + 1A —p)ci—p, (10)
with
2ko =k1 + ko, (11)

where ko =1, ky =1+ p and ky =1 — p. The subharmonic and
superharmonic sidebands correspond to k, and kq, respectively.
Equations (10) and (11) can be interpreted as the resonance of two
infinitesimal waves (sidebands) with the basic wave, i.e. a resonant
four-wave interaction.

3.3. Numerical results

As a check on our numerical approach, we considered the
case of Sanford et al. [10] corresponding to the 27 -periodic solu-
tion shown in their figure 3(b) with cop = 0.8002. We found that
the maximum rate of growth is 0.000356 and the frequency is
0.00751 corresponding to p = £0.04056. These values obtained
with Q =0 are very close to those of Sanford et al. [10]. Note that
we used their transformation 7 — 37n/4 in order to ensure that our
Whitham equation and solution were the same as theirs. Addition-
ally, Sanford et al. [10] showed that the traveling-wave solutions
are stable to the modulational instability if their wave steepness is
less than approximately 0.142 which corresponds to ak ~ 0.19 in
our scaling (see Table 1).

We carried out the stability computations for solutions with
steepness ak = 0.05 and ak = 0.10 for a range of Q values. We
found that they are both stable with and without vorticity. Con-
sequently, we decided to examine the stability of traveling-wave
solutions of wave steepness ak = 0.20, a value larger than the crit-
ical value in the =0 case.

Figs. 4 and 5 contain plots of Im(A) and Re()) versus p, the
wavenumber of the normal mode perturbation for three values of
the vorticity and ak = 0.20. The upper plots in these figures show
the collisions of two purely imaginary in the vicinity of the origin.
These collisions give rise to instabilities corresponding to inter-
vals of instability shown in the lower plots. These plots show that
for a fixed value of the wave steepness both the rate of growth
and the size of the interval of instability increase as €2 decreases.
These plots also show that there are no instabilities with the same
wavenumber as the unperturbed solution (i.e. p = 0) for any of the
values of vorticity we examined.

Fig. 6 shows the magnitudes of the coefficients a; for the most
unstable perturbation corresponding to €2 = 0.10 and ak = 0.20.
The two dominant components, j = —1 and j =1, correspond to
subharmonic and superharmonic sidebands typical of modulational
instability. Note that the wavenumbers of the subharmonic and su-
perharmonic sidebands are 1 — p and 1+ p, respectively. Fig. 7
shows the amplitude spectrum of the unperturbed wave of wave
steepness ak = 0.20 perturbed by its most unstable normal mode.
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p

Fig. 4. Radian frequency (top) and rate of growth (bottom) of the normal mode
perturbation against its wavenumber for € =0 and ak = 0.20.

The physical perturbation corresponds to the real part of the per-
turbation given in equation (6). The amplitude of the modes has
been normalized so that the fundamental mode, k = 1, has unit
amplitude. The magnitude of the superharmonic mode of the per-
turbation, |aq|, is one tenth of the amplitude of the fundamental
mode.

Fig. 8 contains plots of the maximum growth rate versus the
Floquet parameter for the perturbation for three values of the vor-
ticity. These plots show that the vorticity effect is twofold: (i) the
maximal growth rate increases as © decreases except for very long
unstable perturbations, (ii) the bandwidth of unstable wavenum-
bers increases as 2 decreases. Note that these features were ob-
served by Thomas et al. [21] and Francius and Kharif [22] within
the framework of the nonlinear Schrédinger equation and the fully
nonlinear Euler equations, respectively.

Hur and Johnson [11] found that small-amplitude, 27 /k-peri-
odic traveling-wave solutions of the Whitham equation are modu-
lationally unstable if kh > kh s ~ 1.146. Later on, Hur and John-
son [14] found a formula for the boundary in the (2, k)-plane that
separates stable and unstable small-amplitude, periodic, traveling-
wave solutions to the vor-Whitham equation. A plot of this bound-
ary is included in Fig. 9. We numerically corroborated this an-
alytic result for a variety of @ and k values. For example, we
considered solutions just below and just above the critical value
of (2,k) ~ (5,0.96). We found that a small-amplitude (wave
height of 4.3 % 10~3) solution to the vor-Whitham equation with
(R2,k) = (5,0.9) is spectrally stable, see Fig. 10(a) and that a small-
amplitude (wave height of 3.3 % 10~3) solution with (2, k) = (5, 1)
is unstable, see Fig. 10(b). In summary, in the absence of vortic-
ity we found a critical value in agreement with that of Hur and
Johnson [11] and Sanford et al. [10] and in the presence of vortic-
ity, we found critical values in agreement with the finding of Hur
and Johnson [14]. The modulational instability of large-amplitude
solutions in the presence of vorticity is a new finding.

4. Conclusion

The modulational instability of traveling-wave solutions of the
Whitham equation in the presence of vorticity has been investi-
gated numerically. The Whitham equation is an extension of the
KdV equation which takes into account the full range of dispersion.
We presented a sampling of our results which show the impor-
tant qualitative results related to the modulational instability of
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Fig. 10. Stability spectra for (a) a small-amplitude solution to the vor-Whitham
equation with (€2,k) = (5,0.9) and (b) a small-amplitude solution to the vor-
Whitham equation with (2,k) = (5,1). Note that the axes in the two plots are
scaled differently. The spectrum in (a) lies purely on the imaginary axis and there-
fore the corresponding solution is spectrally stable. The spectrum in (b) has values
with positive real parts and therefore the corresponding solution is unstable.

periodic, traveling-wave solutions to the vor-Whitham equation.
These results demonstrate that (i) the vorticity strongly modifies
the growth rate of the modulational instability, (ii) a critical wave
steepness above which the solutions become unstable exists what-
ever the value of the vorticity, and (iii) the critical depth under
which the solutions restabilize depends on the vorticity.
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