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Abstract
The nonlinear Schrödinger equation is well known as a universal equation in the study
of wave motion. In the context of wave motion at the free surface of an incompressible
fluid, the equation accurately predicts the evolution of modulated wave trains with low
to moderate wave steepness. While there is an abundance of studies investigating the
reconstruction of the surface profile η, and the fidelity of such profiles provided by
the nonlinear Schrödinger equation as predictions of real surface water waves, very
few works have focused on the associated flow field in the fluid. In the current work,
it is shown that the velocity potential φ can be reconstructed in a similar way as the
free surface profile. This observation opens up a range of potential applications since
the nonlinear Schrödinger equation features fairly simple closed-form solutions and
can be solved numerically with comparatively little effort. In particular, it is shown
that particle trajectories in the fluid can be described with relative ease not only in the
context of the nonlinear Schrödinger equation, but also in higher-order models such
as the Dysthe equation, and in models incorporating certain types of viscous effects.
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1 Introduction

Recent years have seen a flurry of activity aimed at understanding the motion of fluid
particles in free surface flows. The problem has been studied from various point of
view, including field campaigns, wave flume experiments, asymptotics, and rigorous
mathematical analysis. One of the most well known results about particle trajectories
in free surface flows is Stokes’s finding that the particle motion associated to small-
amplitude (linear) periodic waves features a net forward drift which is attributed to
the decrease of the Eulerian particle velocity with increasing depth.

Recent advances in laboratory technology, in particular those relating to particle
image velocimitry (PIV) and particle tracking velocimitry (PTV) have led to rapid
improvements of our understanding of the motion of fluid particles in free surface
flow. The influence of the boundary layers on the particle drift in a regular wave train
was studied in the seminal paper [23] which was in part inspired by experiments
reported in [3]. In essence, particle drift will be positive near the bottom and near
the free surface but negative in an intermediate region. In recent works, experimental
measurements are coupled with high-performance data analysis techniques to paint
a rather complete picture of particle motion in highly nonlinear waves created in a
wave flume [8,17,18]. The findings presented in these works are also related to the
importance of the effect of the boundary layer both at the bed and at the free surface.
Indeed, it is observed that the Stokes drift may take a very different form than what
was originally found by Stokes [28]. In particular, these recent studies confirm and
extend the results of [23].

However, depending on the motion of the wave maker, these results may vary. For
example, the experiments reported in [9] seem to confirm the essence of Stokes’s
original work. Indeed, using both experiments and high-order asymptotics, a strong
case is made in [9] that there is a net forward drift throughout the fluid column. These
results are also in line with mathematical advances in the understanding of particle
motion in free surface flow (see [16] for a review). In particular, a firm mathematical
proof was given that particle trajectories in Stokes waves are not closed [10].

In the case of finite depth, even if viscosity is not taken into account, mass conser-
vation during the creation phase may lead to zero drift when averaged over the fluid
column [23,25]. On the other hand, in the current analysis, the case of (infinitely)
deep water is investigated and the bottom boundary layer is ignored. In some stud-
ies, in particular in the presence of a background current in deep water, it has been
observed that there is no (Lagrangian) particle drift either in the average, or even in
the pointwise sense [21]. Some reports of field campaigns also point to the absence of
the Stokes drift in wave trains in the open ocean [27]. With these partially conflicting
pieces of evidence, it appears that there is a need for being able to describe particle
paths as accurately as possible using theoretical models. Recent work has focused on
the numerical description of particle trajectories based on approximating solutions of
the inviscid Euler equations [27,32].

In the current contribution, we study particle trajectories due to wave motion
described in the narrow-banded spectrum approximation in an idealized infinitely
deep fluid. We focus on irrotational flow which is described in terms of a potential
function, φ(x, z, t), satisfying Laplace’s equation, φxx +φzz = 0, in the fluid domain.
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In general terms, if (ξ(t), ζ(t)) denotes the position of a fluid particle in the (x, z)-
plane at a time t , then the particle motion is described by the ordinary differential
equations

dξ

dt
= ∂φ

∂x
(ξ(t), ζ(t), t) , (1a)

dζ

dt
= ∂φ

∂z
(ξ(t), ζ(t), t) . (1b)

The corresponding initial conditions are given by (ξ(0), ζ(0)) = (ξ0, ζ0) where
(ξ0, ζ0) represents the initial coordinates of the particle in the (x, z)-plane. In this
paper, all variables are dimensional with standard SI units.

As stated above, the focus of this paper is to examine particle trajectories associated
with wavemotionwhich can be approximately described by the nonlinear Schrödinger
(NLS) equation and a few of its generalizations. This equation arises in the case where
a carrier wave of a certain frequency is modulated slowly. In terms of the dimensional
slow variables X = εx and T = εt , the NLS equation is written as

2iω0

(
BT + g

2ω0
BX

)
+ ε

(
g

4k0
BXX + 4gk30 |B|2B

)
= 0, (2)

where g = 9.8 m/s2 is the gravitational acceleration, B describes the dimensional
amplitude envelope of the oscillations of the carrier wave, k0 > 0 represents the
dimensional wave number of the carrier wave, ω0 = √

gk0 represents the dimensional
frequency of the carrier wave, and ε = 2|a0|k0 represents the (dimensionless) wave
steepness. This equation has been well studiedmathematically (see, for example, [29])
and has been shown to favorably predict experimental measurements of modulated
wave trains when ε < 0.1 (see, for example, [22]).

Given a solution, B(X , T ), the free surface is reconstructed by

η(x, t) = ε3η̄ + εBeiω0t−ik0x + ε2B2e
2(iω0t−ik0x) + · · · + c.c., (3)

where η̄ is a dimensional average term and B2 is the dimensional amplitude of the
first harmonic. These quantities are defined in terms of B and are examined in detail
in Sect. 2.1. The abbreviation c.c. stands for complex conjugate. Additionally, in the
derivation of the NLS equation, the following ansatz is used for the velocity potential

φ(x, z, t) = ε2φ̄ + εAek0z+iω0t−ik0x + · · · + c.c., (4)

where φ̄ = φ̄(X , Z , T ), A = A(X , Z , T ), and Z = εz is the dimensional slow vertical
variable. Substituting this expression into the Laplace equation leads to the following
transport equation with imaginary speed

AZ − i AX = 0, (5)
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at leading order in ε. In addition, at leading order in ε the Bernoulli condition gives

A = iω0

k0
B, at Z = 0. (6)

Solving this boundary-value problem for A yields the first-order approximation to the
velocity field everywhere in the fluid. It is then possible to compute the particle trajec-
tories associated to any given surface profile numerically. A number of examples for
particle paths that result fromNLS solutions are given in the remainder of this section.
Examples of particle paths that result from solutions to higher-order and dissipative
generalizations of NLS are examined in the following sections. Similar considerations
regarding particle paths and the potential function have been introduced for a variety of
long-wave equations in [1,2]. In particular, particle paths and streamlines for waves in
the KdV regime were described in detail in [4,19,20]. Somewhat different procedures
have also recently been used to understand properties of particle motion in the context
of the narrow-banded spectrum approximation in the presence of shear flows [12] and
in the presence of point vortices [11].

1.1 NLS Plane-Wave Solutions

The plane-wave solutions of NLS are given by

B(X , T ) = B0e
ikX−iλNLST , (7)

where

λNLS =
(

k

2k0
+ εk2

8k20
− 2εB2

0k
2
0

)
ω0, (8)

and B0 and k are real constants. Closed-form expressions for the corresponding sur-
face displacement and velocity potential are included in Appendix A.1. The surface
displacement corresponding to this solution has a (temporal) period of

t∗
NLS

= 2π

ω0 − ελNLS

= 16k20π

(8k20 − 4εkk0 − ε2k2 + 16ε2B2
0k

4
0)ω0

. (9)

For demonstrative purposes, we select ε = 0.1, B0 = 1, k0 = 1 and k = 0 as
parameter values for the plane-wave solution. For these parameter values, the period
of the surface is given by t∗

NLS
= 100π

√
5/357=̇1.968, the crest height is 0.223, the

trough height is −0.183, and the wave profile has mean zero. The crest and trough
heights are not symmetric about z = 0 even though the mean term is zero because
η(x, t) is comprised of six (complex) Fourier modes. See Fig. 1 for time-series plots
of one period of this NLS plane-wave solution and one period of the corresponding
surface displacement.

The paths of NLS plane-wave particles are determined using (7) to determine
asymptotic expressions for φ and η that are valid up to O(ε3) (the details of this
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(a) (b)

Fig. 1 Time-series plots of a the real (–) and imaginary (- -) parts of the NLS plane-wave solution at X = 0
and b the corresponding surface displacement at x = 0 for one period of the carrier wave for ε = 0.1,
k0 = 1, B0 = 1, and k = 0

Fig. 2 Evolution of the free surface and a particle located in the surface as described by a plane-wave
solution of the NLS equation with ε = 0.1 , k0 = 1, B0 = 1, k = 0, and (ξ0, ζ0) = (0, 0.223)

process are described in detail in Sect. 2) and then numerically integrating the system
of ODEs given in Eq. (1). Figure 2 includes a waterfall plot showing the path of a
particle that starts on the surface. Figure 3a shows the fluid surface and the position of
a NLS plane-wave particle that starts on the surface at four different t values. Figure
3b shows the paths of three NLS plane-wave particles corresponding to different ζ0.
The top particle starts on the fluid surface while the other two start (and remain) inside
the fluid.

Let tNLS(ζ0) represent the period of the vertical motion of a particle with initial
z coordinate ζ0. Values for tNLS(ζ0) were computed by numerically solving Eq. (1)
and determining the period of the resulting solution for a range of ζ0 values. A plot
showing how tNLS(ζ0) and ζ0 are related is included in Fig. 4a. Note that

tNLS(ζ0) > t∗
NLS

, when ζ0 > −∞, (10a)

lim
ζ0→−∞ tNLS(ζ0) = t∗

NLS
. (10b)

The horizontal motion of the particles is not periodic because ξ(tNLS(ζ0)) > ξ0 regard-
less of the initial position of the particle. (Note that this does not mean the particle
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(a) (b)

Fig. 3 a The fluid surfaces (four solid curves) and positions (dots) of a NLS plane-wave particle that starts
on the surface at four equally spaced times in t ∈ [0, 1

2 tNLS (0.223)]. The dashed curve represents the
path of a particle over an entire period. The black circle and star represent the initial and final positions of
the particle respectively. b The paths of three NLS plane-wave particles with initial positions (0, 0.223),
(0, −0.5), and (0, −1) on the interval t ∈ [0, 5tNLS (0.223)]

(a) (b)

Fig. 4 Plots showing how a tNLS and b uNLS change as ζ0 changes for NLS plane-wave particles with
ε = 0.1, k0 = 1, B0 = 1, and k = 0

alwaysmoves to the right.) The difference between the final and initial horizontal posi-
tions during one period of vertical motion, ξ(tNLS(ζ0))−ξ0, is known as the horizontal
Lagrangian drift. Figure 4b contains a plot relating the average horizontal Lagrangian
velocity,

uNLS(ζ0) = ξ(tNLS(ζ0)) − ξ0

tNLS(ζ0)
, (11)

and ζ0. As expected from Eq. (18d), both uNLS(ζ0) and the horizontal Lagrangian drift
limit to zero as ζ0 → −∞.

Additional simulations (not shown) establish that increasing B0 increases tNLS , uNLS

and the horizontal Lagrangian drift in roughly exponential manners. Increasing the
wave number of the solution, k, increases tNLS , and decreases uNLS and the drift in
approximately linear manners.

Equation (18c), the kinematic boundary condition, implies that a particle that starts
on the surface stays on the surface. This equation is only approximately satisfied by
NLS since NLS is an asymptotic approximation to the Euler equations. Therefore NLS
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Fig. 5 A plot of D(t) for a NLS plane-wave solution with ε = 0.1, B0 = 1, k0 = 1 and k = 0 on
t ∈ [0, 5tNLS (0.223)]
Table 1 Table of E(ε) for eight
values of ε = 1/2 j+1 for the
plane-wave solutions of NLS
with k0 = 1, B0 = 1, and k = 0

j ε E j
E j

E j−1

1 1/4 6.05 ∗ 10−2 –

2 1/8 2.89 ∗ 10−3 20.9

3 1/16 1.51 ∗ 10−4 19.1

4 1/32 8.78 ∗ 10−6 17.2

6 1/64 5.32 ∗ 10−7 16.5

7 1/128 3.27 ∗ 10−8 16.2

8 1/256 2.03 ∗ 10−9 16.1

particles that start on the surface of the fluid do not necessarily remain on the surface.
A plot of the difference between the particle’s vertical position and the fluid surface,

D(t) = ∣∣ζ(t) − η
(
ξ(t), t

)∣∣, (12)

is included in Fig. 5. As an additional check on our work, we computed

E(ε) =
∫ tNLS

0
D(t) dt, (13)

for a variety of values of ε ∈ (0, 1
4 ]. Table 1 contains a summary of these results that

establish E(ε) ∼ O(ε4) for plane-wave solutions of NLS (as expected because NLS
is an O(ε3) approximation).

1.2 Cnoidal-Wave Solutions of NLS

The cnoidal-wave solutions of NLS are given by

B(X , T ) = B0 cn
(2√2 B0k20

κ

(
X − ω0

2k0
T

)
, κ

)
eiεB

2
0 k

2
0ω0(2κ2−1)T /κ2 , (14)
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(a) (b)

Fig. 6 Time-series plots of one period of the NLS cnoidal-wave solution and b one period of the corre-
sponding surface displacement for κ = 1/

√
2, ε = 0.1, k0 = 1, and B0 = K (1/

√
2)/π . Note that the

imaginary part of B is zero in this case

where B0 and κ ∈ [0, 1) are real parameters. Here cn(·, κ) is a Jacobi elliptic function
with elliptic modulus κ and period 4K (κ) where K is the complete elliptic integral of
the first kind [5]. Formulas for the corresponding surface displacement and velocity
potential are included in Appendix A.2. There are two situations in which B is periodic

in T . First, if κ = 1/
√
2, then B is real for all X and T and has a T -period of 2K (1/

√
2)

B0k0ω0
.

In this case, if B0 = K (1/
√
2)

πk0
, then the solution corresponds to a periodic surface

displacement with t-period

t∗
CN

= 2π

εω0
. (15)

Plots of the NLS cnoidal-wave solution and the corresponding surface displacement
for κ = 1/

√
2, ε = 0.1, k0 = 1, and B0 = K (1/

√
2)/π are included in Fig. 6. Plots of

the paths of three particles are included in Figs. 7 and 8. Unlike plane-wave solutions,
cnoidal-wave solutions do not have constant magnitude. This means that the vertical
motion of the particles (except in rare cases) is quasiperiodic rather than periodic. For
example, the particle that starts at a peak on the surface has an initial elevation of ζ0 =
0.1248. The verticalmotion of this particle has a quasiperiod of t = 20.2047.After one
quasiperiod, the particle reaches an elevation of ζ(20.2047) = 0.1246, slightly lower
than its initial height. This is caused by the fact that the particle experienced a horizontal
drift of 0.4140 during this interval. Due to this quasiperiodicity, the Lagrangian drift
and average Lagrangian velocity are not well defined.

The second situation in which a T -periodic solution is obtained is if B0 and κ �= 1√
2

satisfy

B0 =
√
2 κπ

ε(2κ2 − 1)k0K (κ)
. (16)

In order for this solution to correspond to a t-periodic surface displacement, the period
of this solutionmust alignwith the period of the carrier wave. Enforcing this restriction
leads to large-amplitude surface displacements that are well outside of the regime
where NLS is expected to be valid. Therefore, for demonstrative purposes, we select
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Fig. 7 A plot showing the paths of three particles at different levels on the interval t ∈ [0, 30] during the
propagation of a NLS cnoidal-wave solution with κ = 1/

√
2, ε = 0.1, k0 = 1, and B0 = K (1/

√
2)/π .

The initial particle positions are (0, 0.1248), (0, −0.25), and (0, −0.5)

(a) (b)

Fig. 8 Plots of a ξ(t) and b ζ(t) for the three NLS cnoidal-wave particles in Fig. 7

ε = 0.1, k0 = 1, κ = 0.999 and B0 = 1 (parameters that lead to a non-periodic
surface displacement in the NLS regime). Plots of this solution and the corresponding
surface displacement are included in Fig. 9. Figures 10 and 11 show how three of these
NLS cnoidal-wave particles move in t . Just as in the previous case, the vertical motion
of the particles is quasiperiodic even though the solution is periodic.

For the cnoidal-wave solutions of NLS, increasing B0 increases the horizontal drift
for particles that start on the surface.
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(a) (b)

Fig. 9 Time-series plots of a the real (–) and imaginary (- -) parts of the cnoidal-wave solution to NLS and
b the corresponding surface displacement corresponding to κ = 0.999, ε = 0.1, k0 = 1, and B0 = 1

Fig. 10 A plot showing how three NLS cnoidal-wave solutions with ε = 0.1, κ = 0.999, k0 = 1, and
B0 = 1 evolve over t ∈ [0, 50]. The initial positions are (0, 0.220), (0, −0.333), and (0, −0.666)

(a) (b)

Fig. 11 Plots of a ξ(t) and b ζ(t) for the three NLS cnoidal-wave particles in Fig. 10

1.3 Solitary-Wave Solutions of NLS

The solitary-wave solutions of NLS,

B(X , T ) = B0 sech

(
2
√
2 B0k

2
0

(
X − ω0

2k0
T

))
eiεB

2
0 k

2
0ω0T , (17)
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(a) (b)

Fig. 12 Time-series plots of a the real (–) and imaginary (- -) parts of the solitary-wave solution to NLS
and b the corresponding surface displacement for ε = 0.1, k0 = 1, and B0 = 1

are obtained from the cnoidal-wave solutions via the limit κ → 1−. Formulas for the
corresponding surface displacement and velocity potential are included in Appendix
A.3. This solution is not periodic in X or T and therefore does not lead to a periodic
surface displacement. We select the parameter values ε = 0.1, k0 = 1, and B0 = 1 for
demonstrative purposes. Figure 12 contains plots of this solution and the corresponding
surface displacement. Figures 13 and 14 show the paths of three NLS solitary-wave
particles on the interval t ∈ [0, 50]. During t ∈ [0, 50], the horizontal drift for the
particle that starts on the surface is approximately 0.6170.

In the next section, we present the full derivation of the velocity potential in the
more general case of the higher-order NLS (Dysthe) equation and the viscous models.
Then in Sect. 3, we describe particle paths for a number of examples.

2 Construction of the Velocity Potential

We now give the full details of the reconstruction of the velocity potential in terms of
the unknown B(X , T ) of the nonlinear Schrödinger equations. In fact, we will take a
slightly more general view by including viscous effects, and higher-order terms. To
explain how to find the potential φ, it is convenient to first review the derivation of the
evolution equation.

2.1 Derivation of the Viscous Dysthe System

Wu et al. [31] proposed the following system for a two-dimensional, infinitely deep,
weakly dissipative fluid

φxx + φzz = 0, for − ∞ < z < η, (18a)

φt + 1

2

(
φ2
x + φ2

z

) + gη = −4ᾱφzz, at z = η, (18b)

ηt + ηxφx = φz, at z = η, (18c)

φx , φz → 0, as z → −∞. (18d)
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Fig. 13 A plot showing the paths
of three particles at different
levels on the interval t ∈ [0, 50]
during the propagation of a NLS
solitary-wave solution with
ε = 0.1, k0 = 1, and B0 = 1.
The initial particle positions are
(20, 6.33 ∗ 10−4) (a point on the
surface), (20, −0.333), and
(20, −0.666)

(a) (b)

Fig. 14 Plots of a ξ(t) and b ζ(t) for the three NLS solitary-wave particles in Fig. 13

Here φ = φ(x, z, t) represents the velocity potential of the fluid, η = η(x, t) repre-
sents the free surface displacement, g represents the acceleration due to gravity, and
ᾱ > 0 represents dissipation from all sources. The classical Euler equations (see, for
example, Debnath [13]) are recovered from this system by setting ᾱ = 0. Following
the work of Zakharov [32] and Dysthe [15], we make the following modulated wave
train ansatz

η(x, t) = ε3η̄ + εBeiω0t−ik0x + ε2B2e
2(iω0t−ik0x) + · · · + c.c., (19a)

φ(x, z, t) = ε2φ̄ + εA1e
k0z+iω0t−ik0x

+ ε2A2e
2(k0z+iω0t−ik0x) + · · · + c.c., (19b)
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whereω0 represents the frequencyof the carrierwave, k0 > 0 represents thewavenum-
ber of the carrier wave, ε = 2|a0|k0 represents the (dimensionless) wave steepness, a0
represents a typical amplitude, and c.c. represents complex conjugate. Further assume

η̄ = η̄(X , T ) = η̄0(X , T ) + εη̄1(X , T ) + ε2η̄2(X , T ) + · · · , (20a)

B = B(X , T ), (20b)

Bj = Bj (X , T ) = Bj0(X , T ) + εBj1(X , T )

+ε2Bj2(X , T ) + · · · , for j = 2, 3, . . . , (20c)

φ̄ = φ̄(X , Z , T ) = φ̄0(X , Z , T ) + εφ̄1(X , Z , T )

+ε2φ̄2(X , Z , T ) + · · · . (20d)

A j = A j (X , Z , T ) = A j0(X , Z , T ) + εA j1(X , Z , T )

+ ε2A j2(X , Z , T ) + · · · , for j = 1, 2, . . . . (20e)

The slow space and time variables are defined by X = εx , Z = εz, and T = εt .
Assuming that ᾱ = ε2α and carrying out the perturbation analysis through O(ε4)

leads to (see [6,7] for details)

2iω0

(
BT + g

2ω0
BX

)
+ ε

(
g

4k0
BXX + 4gk30 |B|2 + 4ik20ω0αB

)

+ ε2

(
− ig

8k20
BXXX + 2igk20B

2B∗
X + 12igk20 |B|2BX

+ 2k0ω0Bφ̄0X − 8k0ω0αBX
) = 0, at Z = 0, (21a)

φ̄0Z = 2ω0
(|B|2)X , at Z = 0, (21b)

φ̄0XX + φ̄0Z Z = 0, for − ∞ < Z < 0, (21c)

φ̄0X , φ̄0Z → 0, as Z → −∞, (21d)

where ω2
0 = gk0 and B∗ represents the complex conjugate of B. If the Hilbert trans-

form,H, is defined by

H(
f (x)

) = F−1( − isgn(k) f̂ (k)
)
,

where the Fourier transform and its inverse are defined by

f̂ (k) = F(
f (x)

) =
∫
R

f (x)e−ikxdx,

f (x) = F−1( f̂ (k)) = 1

2π

∫
R

f̂ (k)eikxdk,
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then the system (21) can be rewritten as

2iω0

(
BT + g

2ω0
BX

)
+ ε

(
g

4k0
BXX + 4gk30 |B|2B + 4ik20ω0αB

)

+ ε2

(
− ig

8k20
BXXX +2igk20B

2B∗
X + 12igk20 |B|2BX

−4gk20B
(
H(|B|2)

)
X
−8k0ω0αBX

)
= 0,

(22)

with

φ̄0(X , Z , T ) = ω0

π

∫
R

isgn(k)F
(
|B|2

)
eikx+|k|zdk.

We refer to this system as the viscous Dysthe (vDysthe) system. The NLS equation
is obtained from this system by setting α = 0 and disregarding terms of order ε2 and
higher. The Dysthe system, also known as the modified NLS system, is obtained from
Eq. (22) by setting α = 0. The dissipative NLS equation (dNLS) is obtained by setting
ε2 = 0.

Given a solution to Eq. (22), obtaining the corresponding surface displacement is
straightforward but tedious. Determining the velocity potential is more complicated
(and more tedious) because partial differential equations (PDEs) must be solved to
determine each A jk . To this order, the surface displacement and velocity potential are
given by (see Sect. 2.2 for more detail)

η(x, t) = εBE + ε2k0B
2E2 + ε3

(
3

2
k20B

3E3 + i BBX E
2 + 2ω0

g

(H(|B|2))T
)

+ε4

(
4ik20ω0α

g
B2E2 + 17k30

3
|B|2B2E2 + 8k30

3
B4E4 + 3ik0B

2BX E
3

− 1

4k0
|BX |2 − 1

4k0
BB∗

XX − 1

g
φ̄1T

)
+ O(ε5) + c.c., (23a)

φ(x, z, t) =
{
iεω0

k0
B̌ + ε2ω0

2k20
B̌X + ε3

(
− ik0ω0

2
|B̌|2 B̌ − 3iω0

8k30
B̌X X

)

+ε4

(
−ω0

4
B̌2 B̌∗

X + ω0

2
|B̌|2 B̌X − 5ω0

16k40
B̌X X X

−2ik0 B̌
(H(|B̌|2))T

) }
Eek0z

+ε4
(
−2k20α B̌

2 + 4ik20ω0|B̌|2 B̌2
)
E2e2k0z + O(ε5) + c.c., (23b)

where B̌ = B(X + i Z , T ), B̌∗ = B∗(X + i Z , T ), E = eiω0t−ik0x , and c.c. represents
the complex conjugate. Unfortunately, a simple, general formula for φ̄1 does not exist.
However, we include formulas for φ̄1 for the particular solutions we examine below.
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2.2 Derivation of the Velocity Potential

To determine the Z dependence of each of the terms in the expansion for the velocity
potential, PDEs must be solved at each order. AtO(ε) the PDE and surface boundary
condition are

A10Z − i A10X = 0, (24a)

A10 = iω0

k0
B, at Z = 0. (24b)

At O(ε2) the PDEs and surface boundary conditions are

A20Z − i A20X = 0, (25a)

A11Z − i A11X = − 1

2k0

A10, (25b)

A20 = 0, at Z = 0, (25c)

A11 = ω0

2k20
BX , at Z = 0. (25d)

At O(ε3) the PDEs and surface boundary conditions are

A30Z − i A30X = 0, (26a)

A21Z − i A21X = − 1

4k0

A20, (26b)

A12Z − i A12X = − 1

2k0

A11, (26c)

A30 = 0, at Z = 0, (26d)

A21 = 0, at Z = 0, (26e)

A12 = −2k0αB + 3

2
ik0ω0|B|2B − iω0

4k30
BXX , at Z = 0. (26f)

At O(ε4)

A40Z − i A40X = 0 (27a)

A31Z − i A31X = − 1

6k0

A30 (27b)

A22Z − i A22X = − 1

4k0

A21 (27c)

A13Z − i A13X = − 1

2k0

A12 (27d)

A40 = 0, at Z = 0, (27e)

A31 = 0, at Z = 0, (27f)

A22 = −6k20αB
2 + 8ik20ω0|B|2B2 + iω0

4k20
BBXX , at Z = 0, (27g)
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A13 = 3

4
ω0B

2B∗
X − 2iαBX

−3ω0

2
|B|2BX − ω0

8k40
BXXX + iω0

g
Bφ̄0T + i Bφ̄0X , at Z = 0. (27h)

Here 
 is the two-dimensional Laplacian operator, 
F = FXX + FZZ . The first of
the PDEs listed at each order can be solved as an advection equation with a complex
velocity. The remaining PDEs are complex advection equationswith nonhomogeneous
terms that can be solved using variation of parameters. For brevity, the details have
been omitted, but the solutions to these systems are included in the Eq. (23).

3 Particle Paths for Generalizations of NLS

We now present particle paths associated with three generalizations of the NLS equa-
tion. We start with the higher-order non-viscous model, the Dysthe equation. Then we
continue with the dissipative nonlinear Schrödinger equation (dNLS) and finally with
the viscous Dysthe equation.

3.1 The Dysthe System

The Dysthe system is obtained from Eq. (22) by setting α = 0. This system has been
shown to provide accurate predictions for the evolution of modulated wave trains for a
wider range of ε values than NLS (see, for example, Lo and Mei [22]). Its plane-wave
solutions are given by

B(X , T ) = B0e
ikX−iλDys T , (28)

where

λDys = ω0

(
k

2k0
+ εk2

8k20
− 2εB2

0k
2
0 + ε2k3

16k30
+ 5ε2B2

0kk0

)
, (29)

and B0, k are real constants. The formulas for the corresponding surface displacement
and velocity potential are included in Appendix A.4. For demonstrative purposes, we
select ε = 0.1, B0 = 1, k0 = 1 and k = 0. These parameters lead to a surface
displacement with crest height of 0.2247, trough height of −0.1813, and a t-period
of

t∗
Dys

= 2π

ω0 − ελDys
= 100π

√
5

357
=̇1.968. (30)

This particular period is the same as in the NLS example examined above because
we selected k = 0 in both cases. Figure 15 contains time-series plots of one period
of the real and imaginary parts of the Dysthe plane-wave solution and one period of
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(a) (b)

Fig. 15 Time-series plots of a the real (–) and imaginary (- -) parts of the plane-wave solution to the Dysthe
system, B(0, T ), and b the corresponding surface displacement η(0, t) for one period of the carrier wave
for ε = 0.1, k0 = 1, B0 = 1, and k = 0

Fig. 16 The paths of three Dysthe plane-wave particles with ε = 0.1, k0 = 1, B0 = 1, and k = 0 on
t ∈ [0, 5T ∗

Dys
]. The initial positions are (0, 0.2247), (0, −0.5), and (0, −1)

(a) (b)

Fig. 17 Plots showing how a tDys and b uDys change for Dysthe plane-wave solutions as ζ0 changes

the corresponding surface displacement. Figure 16 shows the paths followed by three
Dysthe plane-wave particles. One starts on the surface and two start inside the fluid.
Figure 17 contains plots demonstrating how the period and mean horizontal velocity
depend on ζ0 for this Dysthe plane-wave solution.

For a given surface amplitude and ζ0, the periods, horizontal drifts, and average
horizontal velocities of the Dysthe particles are all greater than the corresponding NLS
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quantities. The differences between the NLS and Dysthe results are small due to the
orders of the equations, and these differences go to zero as z → ∞. Finally, for these
Dysthe plane-wave solutions, the difference between the particle’s vertical position
and the fluid surface, as defined in Eq. (13), decreases like O(ε5).

3.2 The dNLS Equation

The dissipative nonlinear Schrödinger equation is obtained from (22) by setting ε2 =
0. The dNLS equation was first derived as a model of water waves by Dias et al.
[14]. However, Lo and Mei [22] and Segur et al. [26] had previously studied it and
had shown that it accurately models the evolution of modulated wave trains. The
plane-wave solutions of dNLS are given by

B(X , T ) = B0exp (ikX + ωr (T ) + iωi (T )) , (31)

where

ωr (T ) = −2εαk20T , (32a)

ωi (T ) = ω0

(
− kT

2k0
− εk2T

8k20
+ B2

0

2α
(1 − e−4εαk20T )

)
, (32b)

and B0 and k are real constants. These solutions were chosen so that they limit to
the plane-wave solutions of NLS as α → 0. Formulas for the corresponding surface
displacement and velocity potential are included in Appendix A.4. The plane-wave
solutions of dNLS are not periodic in T , so the corresponding surface displacements
are not periodic in t . For demonstrative purposes, we selected ε = 0.10, B0 = 1,
k0 = 1, k = 0, and α = 4. This value of α is roughly an order of magnitude larger
than the experimentally determined parameters used by Segur et al. [26] and Carter
and Govan [6]. We used a relatively large value for α so that viscous effects could be
seen on relatively short time scales. Figures 18 and 19 show the paths of three dNLS
plane-wave particles on the interval t ∈ [0, 75]. The top particle starts on the surface
and the other two start and stay inside the fluid. Although the motion of the particles
is not periodic, a number of comments can still be made. Due to dissipative effects,
the motion, both horizontal and vertical, of all particles decreases as time increases.
Each particle eventually spirals in toward a fixed point. The “period”, the average
horizontal Lagrangian velocity, and the horizontal drift all decrease as t increases.
This is consistent with the NLS results where smaller-amplitude solutions lead to
smaller periods, velocities, and drifts.

Figure 20 contains a plot ofD(t) versus t for this plane-wave solution of dNLS.Note
that D(t) does not limit to zero as t → ∞. This is because the particle that starts on
the surface ends up inside the fluid. This is due to two facts: (i) dNLS is an asymptotic
model and (ii) the weakly viscous Euler equations are only an approximation to the
true viscous system. However, dNLS remains valid in the small viscosity, ᾱ → 0
limit. Both D(t) and E(ε) limit to zero as ε → 0.
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Fig. 18 The paths of three dNLS
plane-wave particles with
ε = 0.10, B0 = 1, k0 = 1,
k = 0, and α = 4. The initial
positions are (0, 0.223),
(0, −0.333), and (0, −0.666)

(a) (b)

Fig. 19 Plots of a ξ(t) and b ζ(t) for the three dNLS plane-wave particles in Fig. 18

3.3 TheViscous Dysthe Equation

The viscous Dysthe system is given in Eq. (22). The plane-wave solutions of this
system are given by

B(X , T ) = B0exp (ikX + ωr (T ) + iωi (T )) , (33)

where

ωr (T ) = −2εαk0(k0 − 2εk)T , (34a)

ωi (T ) = ω0

(
kT

2k0
+ εk2T

8k20
+ ε2k3T

16k30
− B2

0 (2k0 − 5εk)

4α(k0 − 2εk)

(
1 − e2ωr (T )

))
, (34b)
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Fig. 20 A plot of D(t) versus t corresponding to a dNLS plane-wave solution with ε = 0.1, k0 = 1,
B0 = 1, k = 0, and (ξ0, ζ0) = (0, 0.223) on the interval t ∈ [0, 75]

Fig. 21 The paths of three vDysthe plane-wave particles with ε = 0.10, B0 = 1, k0 = 1, k = 0, and α = 4.
The initial positions are (0, 0.223), (0, −0.333), and (0, −0.666) on the interval t ∈ [0, 75]
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(a) (b)

Fig. 22 Plots of a ξ(t) and b ζ(t) for the three viscous Dysthe plane-wave particles in Fig. 21

Fig. 23 A plot of D(t) versus t corresponding to a vDysthe plane-wave solution with ε = 0.1, k0 = 1,
B0 = 1, k = 0, α = 4, and (ξ0, ζ0) = (0, 0.223) over t ∈ [0, 75]

where B0 and k are real constants. These solutions limit to the plane-wave solutions
of the Dysthe system as α → 0. The plane-wave solutions of vDysthe are not periodic
in T . For demonstrative purposes, we selected ε = 0.1, B0 = 1, k0 = 1, k = 0, and
α = 4. This value of α is roughly an order of magnitude larger than the experimentally
determined parameters used by Segur et al. [26] and Carter and Govan [6]. We used a
relatively large value for α so that viscous effects could be seen on relatively short time
scales. Figures 21 and 22 show the paths of three vDysthe plane-wave particles on the
interval t ∈ [0, 75]. There are many similarities with the dNLS case. As t increases,
the “period”, the average horizontal Lagrangian velocity, and the horizontal drift all
decrease. The horizontal drift and average horizontal velocity limit to zero as t → ∞.
The particles spiral in toward a fixed point.

Figure 23 shows that the error termD(t) is not smaller in the viscousDysthe context
than in the dNLS context. This observation further demonstrates the limitation that
Eq. (18c) is only valid in the small α limit. Using a higher-order approximation to Eq.
(18) does not provide a more accurate approximation to Eq. (18c) because Eq. (18c)
with viscosity is only an approximation to the true viscous system.
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4 Conclusion

In this paper,weused the classical derivation of theNLSequation to derive formulas for
the velocity potential throughout the fluid. Using these formulas, we numerically com-
puted and examined the paths of fluid particles corresponding to plane-, cnoidal, and
solitary-wave solutions to the NLS equation. Following a similar procedure, we exam-
ined the paths of particles subject to the motion of plane-wave solutions to the Dysthe,
dissipative NLS, and viscous Dysthe equations. We showed that dissipative/viscous
effects decrease particle speed and displacement. Finally, we showed that the bound-
ary conditions of the full water wave problem are only asymptotically satisfied by the
solutions to these equations.
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A Explicit Formulas for Surface Displacement and Velocity Potential

A.1 NLS Plane-Wave Solutions

The surface displacement and velocity potential for theNLSplane-wave solution given
in Eq. (7) are

η(x, t) = εB0 Ē + ε2B2
0k0 Ē

2 + ε3
(
3

2
B3
0k

2
0 Ē

3 − B2
0k Ē

2
)

+ c.c., (35a)

φ(x, z, t) = iεB0ω0

k0

(
1 + εk

2k0
+ 3ε2k2

8k20
− 1

2
ε2B2

0k
2
0

)
Ẽ + c.c., (35b)

where

Ē = exp
(
i
(
ω0 − ελNLS

)
t − i (k0 − εk) x

)
, (36a)

Ẽ = Ē exp ((k0 − εk)z) . (36b)

Note that both the mean terms, η̄ and φ̄, are zero for these solutions.

http://creativecommons.org/licenses/by/4.0/
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A.2 NLS Cnoidal-Wave Solutions

The surface displacement and velocity potential for the NLS cnoidal-wave solution
given in Eq. (14) are

η(x, t) = εB0cn(r , κ)Ē + ε2B2
0k0cn(r , κ)2 Ē2

+ε3
(
3

2
B3
0k

2
0cn(r , κ)3 Ē3

−2
√
2i

κ
B3
0k

2
0cn(r , κ)dn(r , κ)sn(r , κ)Ē2

)

+ε3
ω0

g

(
H(|B|2)

)
T

+ c.c., (37a)

φ(x, z, t) = i

k0
εB0ω0cn(s, κ)Ẽ + ε2

(
−

√
2

κ
B2
0ω0dn(s, κ)sn(s, κ)Ẽ

+ω0

π

∫
R

isgn(k)F(cn2(s, κ))eikx+|k|zdk
)

+ε3
((

3i

κ2 B
3
0k0ω0 − 6i B3

0k0ω0

)
cn(s, κ)Ẽ

+11i

2
B3
0k0ω0cn

3(s, κ)Ẽ

+
√
2ω0B3

0gk0
κ∫

R

F (cn(s, κ)dn(s, κ)sn(s, κ)) eikx+|k|zdk
)

+ c.c., (37b)

where

r =
√
2

κ
εB0k0 (2k0x − ω0t) , (38a)

s = r + 2
√
2i

κ
εB0k

2
0z, (38b)

Ē = exp

(
iω0

(
1 + 2ε2B2

0k
2
0 − ε2B2

0k
2
0

κ2

)
t − ik0x

)
, (38c)

Ẽ = Ē exp(k0z). (38d)

Note that the mean terms are nonzero, and that the velocity potential for this solution
has poles at z = O(ε−1) because the Jacobi elliptic function is evaluated with a
complex argument. These poles occur well below the surface of the fluid. Therefore,
we do not consider them. The particle paths we consider in Sect. 1.2 are sufficiently
close to the fluid surface (and are far from the poles).
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A.3 NLS Solitary-Wave Solutions

The surface displacement and velocity potential for the NLS solitary-wave solution
given in Eq. (17) are

η(x, t) = εB0 sech(p)Ē + ε2B2
0k0 sech

2(p)Ē2

+ε3
(
3

2
B3
0k

2
0 sech

3(s)Ē3

+2
√
2i B3

0k
2
0 sech

2(p) tanh(p)Ē2

+ω0

g

(
H(sech2(p)

)
T

)
+ c.c., (39a)

φ(x, z, t) = i

k0
εB0ω0 sech(q)Ẽ

+ε2
(√

2B2
0ω0 sech(q) tanh(q)Ẽ

−ω0

π

∫
R

isgn(k)F(
sech2(q)

)
e−ikx+|k|zdk

)

+ε3
(11i

2
B3
0k0ω0 sech

3(q)Ẽ − 3i B3
0k0ω0 sech(q)Ẽ

+√
2ω0B

3
0gk0

∫
R

F(
sech2(q)tanh(q)

)
eikx+|k|zdk

)
+ c.c.,

(39b)

where

p = √
2εB0k0

(
2k0x − ω0t

)
, (40a)

q = p − 2
√
2iεB0k

2
0z, (40b)

Ē = exp
(
iω0

(
1 + ε2B2

0k
2
0

)
t − ik0x

)
, (40c)

Ẽ = Ē exp(k0z). (40d)

Note that the mean terms are nonzero, and that the velocity potential for this solution
has poles at z = O(ε−1) because the hyperbolic secant is evaluated with a complex
argument. These poles occur well below the surface of the fluid. The particle paths
we consider in Sect. 1.3 are sufficiently close to the fluid surface, and are far from the
poles.

A.4 Dysthe plane-wave solutions

η(x, t) = εB0 Ē + ε2B2
0k0 Ē

2 + ε3
(3
2
B3
0k

2
0 Ē

3 − B0k Ē
2
)

+ε4
(
17

3
B4
0k

3
0 Ē

2 − 3B3
0kk0 Ē

3 + 8

3
B4
0k

3
0 Ē

4
)

+ c.c., (41a)
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φ(x, z, t) = iεB0ω0

k0

(
1 + εk

2k0
+ 3ε2k2

8k20
− 1

2
ε2B2

0k
2
0 + 3

4
ε3B2

0kk0 + 5ε3k3

16k30

)
Ẽ

+4ε4i B4
0ω0 Ẽ

2k20 + c.c., (41b)

where

Ē = exp
(
i
(
ω0 − λDys

)
t − i

(
k0 − εk

)
x
)
, (42a)

Ẽ = Ē exp
((
k0 − εk

)
z
)
. (42b)

As expected, the Dysthe surface displacement and velocity potential up to O(ε3) are
the same as those in NLS.

A.5 dNLS Plane-Wave Solutions

η(x, t) = εB0 Ē + ε2B2
0k0 Ē

2 + ε3
(
3

2
B3
0k

2
0 Ē

3 − B2
0k Ē

2
)

+ c.c., (43a)

φ(x, z, t) = iεB0ω0

k0

(
1 + εk

2k0
+ 3ε2k2

8k20

)
Ẽ

−1

2
iε3B3

0k0ω0 Ẽe
−4ε2αk20 t + c.c., (43b)

where

Ē = exp (iω0t + ωr (εt) + iωi (εt) − i (k0 − εk) x) . (44a)

Ẽ = Ē exp
((
k0 − εk

)
x
)
, (44b)

where ωr and ωi are given in Eq. (32). Note that the mean terms are nonzero. Note in
addition that the nonlinear term in dNLS causes some portions of the velocity potential
to decay faster than others.

A.6 Viscous Dysthe Plane-Wave Solutions

η(x, t) = εB0 Ē + ε2B2
0k0 Ē

2 + ε3
(3
2
B3
0k

2
0 Ē

3 − B0k Ē
2
)

+ε4
(4i
g
B2
0αk

2
0ω0 Ē

2 − 3B3
0kk0 Ē

3
)

+ε4
(17
3
B4
0k

3
0 Ē

2e−4ε2k0α(k0−2εk)t

+8

3
B4
0k

3
0 Ē

4e−8ε2k0α(k0−2εk)t +
)

+ c.c., (45a)
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φ(x, z, t) = iεB0ω0

k0

(
1 + εk

2k0
+ 3ε2k2

8k20
+ 5ε3k3

16k30

)
Ẽ

+ε4
(

− 1

2
iε3B3

0k0ω0 + 3

4
iε4B3

0kω0

)
Ẽe−4ε2k0(k0−2εk)t

+4ε4i B4
0k

2
0ω0 Ẽ

2e−8ε2k0(k0−2εk)t − 2ε4B2
0αk

2
0 Ẽ

2 + c.c., (45b)

where

Ē = exp
(
iω0t + ωr (εt) + iωi (εt) − i

(
k0 − εk

)
x
)
. (46a)

Ẽ = Ē exp
((
k0 − εk

)
x
)
, (46b)

where ωr and ωi are given in Equation (34). Just as with all the other plane-wave
solutions, the mean terms here are zero.
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