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Abstract—Reliable detection and accurate estimation of weak
targets and their Doppler frequencies is a challenging problem
in MIMO radar systems. Reflections from such targets are often
overpowered by those from stronger nearby targets and clutter.
Considering a 3-D data model where the coherent processing
interval comprises multiple pulses, a novel weak target detection
and estimation approach is proposed in this paper. The proposed
method is based on creating partially overlapping spatial beams,
and performing canonical correlation analysis (CCA) in the
resulting beamspace. It is shown that if a target is present
in the overlap sector, then its Doppler profile can be reliably
estimated via beamspace CCA, even if hidden under much
stronger interference from nearby targets and clutter. Numerical
results are included to validate this theoretical claim, demon-
strating that the proposed Beamspace Canonical Correlation
(BCC) method yields considerable performance improvement
over existing approaches.

Index Terms—Weak target detection, Doppler estimation,
multiple-input multiple-output (MIMO), radar, canonical cor-
relation analysis (CCA)

I. INTRODUCTION

An important problem in radar signal processing is to detect
and accurately estimate the Doppler frequency of weak targets
that evade detection and estimation using classical approaches
[1], [2]. Towards this end, multiple-input multiple-output
(MIMO) radar holds considerable promise, as it brings in new
degrees of freedom to radar engineering and signal processing
[3]-[8]. MIMO radar emits multiple orthogonal waveforms
from the different transmit antennas, resulting in diverse target
views after matched filtering, in addition to receive-diversity.
MIMO radar can also leverage parametric spectral and spatial
estimation tools, such as harmonic retrieval and direction-
of-arrival (DOA) estimation [9]-[13] techniques and their
multi-dimensional counterparts, as well as range-based target
localization [14].

Existing parametric and non-parametric radar detection and
estimation methods generally work well when the target of
interest is received at relatively good signal to interference
plus noise ratio after pulse compression (matched filtering),
but often fail otherwise — especially if the target of interest
in nearby other strong targets or clutter. The fundamental
reason for this is that existing approaches directly or indirectly
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rely on a fitting criterion (often, least squares) that naturally
pays attention to the stronger reflections. This renders reliable
detection and estimation of weak targets extremely difficult
using conventional approaches.

Breaking from the mold, we show in this paper that by
creating two partially overlapping spatial beams and judi-
ciously controlling the degree of their overlap, we can create
two views of the signal space that share only the (potential)
target of interest at a certain range-DOA cell. Using canonical
correlation analysis (CCA) on these two views, it is possible to
detect the sought target, even under strong nearby interference.
CCA is a widely-used statistical learning tool that aims
at reliably extracting highly correlated pairs of projections
(linear combinations) of two random vectors [15], [16]. We
have recently shown in [17] that CCA can be interpreted as
subspace intersection: that is, it computes the shared subspace
between a pair of matrices.

We consider the 3-D data model of [9] that assumes
multiple pulse transmissions in a bi-static MIMO radar system
where the transmit and receive arrays have co-located anten-
nas. We design two narrow partly overlapping beamformers
which, when applied to the 3-D array, yield two data matrices.
We show that if there is a target located in the overlapped
DOA region, then it can be reliably detected and its Doppler
frequency can be accurately estimated via CCA. This is
shown both theoretically and via simulations, which reveal the
superiority of the proposed Beamspace Canonical Correlation
(BCC) approach in detecting and accurately estimating the
speed of the weak target over the state-of-the-art methods.

While CCA has found several applications in the signal
processing literature, including DoA estimation [18], equal-
ization [19], radar anti-jamming [20], and more recently cell-
edge user detection [17], this paper is, to the best of our
knowledge, the first attempt to utilize CCA for weak target
detection and Doppler estimation in MIMO radar.

The rest of the paper is organized as follows. Section
IT describes the data model and defines the problem. The
problem formulation is presented in Section III, while Section
IV presents the proposed BCC method. Simulation results are
provided in Section V, and conclusions are drawn in Section
VL



II. PROBLEM STATEMENT

We consider a bistatic MIMO radar system with a trans-
mitter comprising M co-located antennas and a receiver
comprising N co-located antennas (the classical monostatic
scenario is a special case). For the simulations, we assume for
simplicity that both the transmitter and the receiver employ
a uniform linear array (ULA), but such assumption is not
needed for our method to work. We only need to know the
manifold of the receive array, so that we can beamform it
towards a direction (or sector) of interest. The rest of the
setup is as follows:

e dp and dp are the transmit and receive array element
spacing, respectively.

e K is the number of targets in a range bin of interest.

o vy is the relative speed of the k-th target.

e ( is the number of transmitted pulses in the coherent
processing interval.

o T, is the radar pulse period.

e O and ¢ are the direction of departure (DoD) and
direction of arrival (DoA) associated with the k-th target.

The transmitted baseband pulse waveform from the m-th
transmit antenna is denoted by s,, € CT*!, where T is
the number of samples per pulse duration and sf[msm2 =

T, mi=m .
! ] % for my,mg € {1,---, M}. The received
0, otherwise,

x T complex space-time baseband signal after synchro-

nization is given by [9]

K

Y, = ZakqaR(d’k)ag(@k)S +W,, ¢g=1,---,Q (1)
k=1

where Y, € C¥*T holds in its columns the 7 sam-
ples received by the N antennas for the g¢-th pulse period,
S € CM*T holds in its columns the transmitted orthogonal
pulse waveforms, and W, is the noise matrix that contains
independent identically distributed (i.i.d.) entries with zero
mean and variance o2. The term Orqg = rped2m(@=1 Ty
accounts for the Doppler frequency, fx, and the radar cross
section (RCS), 7. Throughout this work, we assume that
the RCS coefficient, ri, of the k-th target is constant across
all pulses. The vectors ar(fy) € CM and ap(¢r) € CV
represent the transmit and receive steering vectors associated
with the k-th target, respectively, where
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where A\ := & with ¢ and f,. are the speed of light and the

fL‘
carrier frequency, respectively.

The received signals in (1) are matched by %SH so the
output of the matched filters is given by

Y,=AzD, AL +W, (2)

where Y, = Y, S"/T ¢ CV*M W, = W,SH/T €

CVM o Ap = lar(dn), - ar(¢r)] € CV¥K,
D, = Diag([ang,---,akg) € CKEE Ap =
lar(61), - ,ar(0k)] € CM*E_ Assuming ULAs at both

ends, this is a 3-D harmonic retrieval model which can be
tackled using specialized algorithms, e.g., [§]-[11]. A lot is
known about its identifiability properties, algorithms, and per-
formance bounds. However, the ULA model is rather fragile
(e.g., mutual coupling), and radars often employ other kinds
of transmit and receive arrays, e.g., circular. Even without
ULAs, the model above can be viewed as low-rank canonical
polyadic tensor decomposition (CPD), and estimated as such —
CPD is unique under mild conditions. However, the difficulty
in detecting weak targets remains, because CPD works under
a least-squares fitting criterion. Our method can work with all
types of arrays, provided the manifold of the receive array is
known, and it can provably detect weak targets, as we will
see.
III. PROBLEM FORMULATION
We start by designing two narrow partially-overlapped

beamformers (assuming ULAs and Vandermonde structure
only for simplicity of exposition):

ae((ﬁ(é)) — L[l,e(jQﬂ'dTR sin¢(z))7 L )e(jZﬂdTR(N—l) sind;(f))]T
N
3)
where ¢ = 1,2. We will explain later in Section IV how

we choose the directions ¢ and #(®). Upon applying the
two beamformers at the receiver to the matrices {Y,}
we obtain the following vectors

q=1’

—H
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where x\) € CM*1 v, := AHa,(4¥) € CK*1 and
n{" = Wfag(qﬁ“)) € CM*1 for ¢ = 1,2. Let us define
the matrices X, := [xge),---,xg)] € CMx@ N, :=

m'?, ... ,ng)] € CMxQ A, = Diag(vy) € CEXK B =

[diag(Dy), -+ ,diag(Dg)]T € C¥*K and H = (AL)H.
Then, it follows that
X, =HABT + N, (5)
X, = HA,BT + N, (6)

Note that the above is a two-slab tensor model, which
can again be estimated via CPD, under certain conditions.
Furthermore, assume that there exist /K, targets with DOAs
close to the direction ¢, of the ¢-th beamformer, and one
target with DOA in the overlap sector between the two
beamformers (we refer to this target as the common target),
where K = K+ Ks+1. Then (5) and (6) can be equivalently
expressed as

X = H1A11Bf + v/Pic hcbz + H2A12BQT +N;y ()
Xy = HyA9oBY 4 \/p2c hobl + HiAy BT + Ny (8)



where h, € CM*! is the transmit steering vector of the
common target, ps. denotes the received power of the com-
mon target after beamforming with a,(¢(¥)), and b, is the
Vandermonde vector that contains the Doppler information of
the common target. Similarly, the columns of H, € CM>X:
are the transmit steering vectors of the targets within the ¢-
th beamformer’s look direction(s), the diagonal matrix Ay
accounts for the received power of these K, targets after
applying the j-th beamformer, and B, € CM*X¢ holds
in its columns the Vandermonde vectors which contain the
Doppler information of the K, targets. Upon defining N, :=
HjAngjT + Ny, (7) and (8) can be equivalently written as

X, = H,AB! + \/prc h.b? + N, 9)

We will next present a CCA method in this beamspace, which
can accurately estimate the Doppler frequency of the common
target even if this target is present at low SNR and seemingly
hidden under the interference of strong targets in the same
range gate and adjacent look directions within the “purview”
of one, but not both of the above beamformers. In practice,
all signals will be present at the output of both beamformers,
however CCA will first recover the ones that are present
at approximately the same power at the output of the two
beamformers, as we will see. The intuitive idea then is to
tune the two beamformers to have the same gain only in the
look direction of interest.

IV. PROPOSED METHOD

Our approach exploits CCA, a powerful statistical learning
tool that seeks to uncover common (strongly correlated)
information presented in two different data views — two views
of the received signals in beamspace, in our context. In an
optimization framework, the CCA problem can be posed as

min || X{'q; — X5 qo7 (10a)
q1,92
st. g X, XHq, =1, ¢=1,2 (10b)

which is referred to as the distance minimization formulation
of the two view CCA [15]. It aims at finding two canonical
vectors q; € CM and g € CM, such that the correlation
between the projections of X; and X5 onto these directions
is maximized. The correlation coefficient associated with the
canonical pair q; and q- is defined as

p=al’X;X¥q, (11)

Note that (10) admits a simple algebraic solution via eigen-
decomposition [16].

In very recent work [21], we have provided an agebraic
interpretation of CCA together with an insightful performance
analysis. Our analysis shows how CCA can recover the com-
mon signal subspace between the two views in the presence
of noise, even when the common signals are received at
very low SNR. While the analysis in [21] was performed
for a very different wireless communication setting assuming
rich scattering, the obtained result can be translated to our
present radar context. We have showed that under certain

assumptions, the correlation coefficient associated with the
optimal canonical pair (q7, g5) can be expressed as a function
of the relative received SNR of each target at different views.
In the ideal case where the noise is absent, if there exist
common components (the columns of the matrix B in (5)
and (6)), then we can find corresponding pairs of canonical
vectors with correlation coefficients equal to unity for all of
them, and hence, we can perfectly recover the column space
of the B matrix [17].

On the other hand, when noise is present, the correlation
coefficient will be affected due to the addition of different
noise terms to the different views. By translating our result
in [21] to our present context, the maximum correlation
coefficient between X qj and X g3 is given by

Ve1Vk2

Vi1 + 1) (k2 + 1)

where ¢ is the received SNR of the k-th target after applying
the /-th beamformer in (3) to obtain X,. Note that the higher
the k-th correlation coefficient, the more reliably we can
recover the signal of the k-th target. Equation (12) shows
that as long as the received SNR of the k-th target is few
dBs above the noise in both views, one can get a reasonable
value for the correlation coefficient, and hence, recovering the
k-th target signal is possible via CCA. In other words, our
analysis shows that what matters is the “power (im)balance”;
targets received at relatively equal SNR are common and can
be recovered via CCA, whereas targets received at high SNR
in one view and low SNR in the other cannot be recovered
via CCA. Now one can see from (7) and (8) that the received
power, pg., of the common target at the ¢/-th view is given by

pee = (al (¢c)ar(¢V))? (13)

where ¢. is the DOA of the common target. Notice that in
order to accurately estimate the Doppler frequency of the
common target using CCA, one needs to choose ¢*) to be
close to ¢. for ¢ = 1,2, thus obtaining high correlation
coefficient which in turn allows an accurate estimation of the
common target speed. However, since the angle of arrival, ¢,
is not known a priori, the receiver will perform a DOA scan
for weak targets, and for each scan angle ¢ set (1) = ¢ +¢
and ¢(®) = ¢, — e, with fixing e to few degrees, i.e., € € 1,3
degrees. For each value of ¢, we solve problem (10) and track
the value of the resulting correlation coefficient. Observing a
high correlation coefficient at any ¢, indicates the presence
of a target with its angle of arrival close to this ¢, thereby
enabling weak target defection. Upon defining the vector
g := X q,, we have the following result.

=1 (12)

Proposition 1. If the matrices B and H are full column rank,
then upon finding the optimal solution qi of (10), we obtain
g = \/f%bcej‘z’c + W, where . is the received SNR of the
common target, ¢. is a phase ambiguity and w . is the residual
noise with variance much smaller than that of the noise in (7).

Proof. The above result follows from the proof of Proposition
1 in [21] albeit with slight modifications to accommodate the
complex representation of the matrix B. O



Fig. 1: Power spectrum of the original and estimated weak
signal

V. EXPERIMENTAL RESULTS

To evaluate the performance of our proposed BCC method,
we consider a radar system with the following parameters;
M = N = 64, @ = 300, T = 256, f. = 5GHz,
T, = lus, dr = dg = A/2 where A = ¢/f. and
c = 3 x 108m/s. We consider K = 4 closely-spaced targets
with DODs {6} | = (—80°,—75°, —72° —70°), DOAs
{on ., = (63°,57°,55°,60°), and speeds {vi}E |, =
(200, 240, 285, 330) m/s. Additive white Gaussian noise was
added with 02 = 0 dBm, and the target steering vectors were
scaled such that the resulting SNR for each of the first three
targets is in the range [15 25] dB while the last target SNR
is —15 dB unless stated otherwise. The value of € was set
to 2° and the angle ¢, was scanned over a range of angles,
however, the reported results are for ¢; = 60°. All results
were averaged over 500 noise realizations.

In order to benchmark the performance of the proposed
method, we used a method developed in [8], which first
decomposes the 3-D tensor in (2) using CPD, and then
uses 1-D ESPRIT [11] to estimate the Doppler/speed of
all targets from one of the CPD factor matrices. Note that
neither the proposed BCC method nor this baseline exploits
the Vandermonde structure of the transmit and receive arrays
(both methods are more generally applicable to arbitrary
array geometries) so the comparison is fair. Another possible
baseline is to apply a single beamformer centered at the scan
angle, and then compute the Doppler frequency from the
resulting 2-D model in (8), and we implemented this method
as well.

In the first experiment, we plot the spectra of the estimated
Doppler signal using our proposed CCA method, the original
Doppler signal of the weak target, and the signal resulting
from applying a single narrow beamformer in (8). Figure
1 shows that our proposed method can perfectly identify
the Doppler frequency of the weak target. On the other
hand, the single beamformer method returns multiple peaks in
the frequency domain. This suggests that after applying one
beamformer we obtain a linear combination of the signals
of the strong targets. Recall that in each of the two data
views in (7) or (8), the received power of the common
target is very low compared to the strong K, targets in
the /-th view, and hence, the results in Fig. 1 suggest that
using the 2-D harmonic retrieval methods on (7) or (8) will
recover the Doppler frequencies of the strong targets and
treat the weak target as noise. This is indeed our experience
from simulations, thus we drop this baseline from further
consideration.

We carried out another experiment where we varied the
SNR of the weak target, and we observed the absolute value of
the speed error after averaging over 500 noise realizations for
each SNR value. Figure 2 demonstrates the high accuracy of
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Fig. 2: Speed error vs. SNR of the weak target

the speed estimated by the proposed BCC method compared
to the 3-D CPD method. For instance, our proposed method
attains an approximately order of magnitude improvement in
the speed estimation at SNR = —12 dB. This is in fact reflects
the power of the proposed method in accurately estimating the
Doppler of the weak target at extremely low SNR.

VI. CONCLUSIONS

We studied the problem of weak target detection and speed
estimation under strong interference from nearby targets in a
bistatic MIMO radar system. Our proposed solution is based
on creating two different beamdspace views of the received
signal space, using two judiciously misaligned beamformers.
Applying CCA to these output views, we showed that the
proposed BCC method can accurately detect and estimate the
speed weak targets buried under much stronger reflections
from nearby targets and clutter. Our method is backed up
by both analysis and experiments, revealing that BCC can
achieve an approximately order of magnitude reduction in
the relative speed error compared to other radar techniques.
Whereas our presentation focused DOA scanning and spatial
beamforming to create the two views, it is also possible to
flip the dimensions and perform Doppler-domain (slow-time)
scanning and beamforming, and thus estimate the transmit and
receive steering vectors of weak targets at a given Doppler.
This and more additional results will be included in the journal
version of this work.
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