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Abstract—Use of mobile phones today has become pervasive
throughout society. A common use of a phone involves calling
another person using VoIP apps. However the OSes on mobile
devices are prone to compromise creating a risk for users
who want to have private conversations when calling someone.
Mobile devices today provide a hardware-protected mode called
trusted execution environment (TEE) to protect users from a
compromised OS. In this paper we propose a design to allow
a user to make a secure end-to-end protected VoIP call from a
compromised mobile phone. We implemented our design, Truz-
Call using Android OS and TrustZone TEE running OP-TEE
OS. We built a prototype using the TrustZone-enabled Hikey
development board and tested our design using the open source
VoIP app Linphone. Our testing utilizes a simulation based
environment that allows a Hikey board to use a real phone for
audio hardware.

Index Terms—Security, Mobile Computing, Voice I/O

I. INTRODUCTION

Mobile phones are one of the most common devices used by
people today, with the basic function of calling another person.
In recent years, VoIP apps such as Signal [1] and Whatsapp [2]
have become popular ways for making a call. Unfortunately
the mobile OS platforms on which these apps run have made
the use of VoIP apps more risky in terms of user privacy. One
of the popular mobile OS Android now has a majority market
share [3], [4]. At the same time, CVE numbers show that the
number of disclosed vulnerabilities in Android has remained
high (more than 500) from 2015 to 2018 [5], [6]. A recent
attack on Android could achieve arbitrary code execution in
a privileged process by using a crafted image file [7]. The
problem is also compounded by the fact that various actors are
trying to compromise Android OS including hacking groups
[8] and nation states [9]. The ever present risk of mobile OS
compromise can limit one of the important rights in human
society i.e. freedom of speech. In context of mobile phones,
this translates to being able to call anyone and talk on any
subject without fear of someone else listening on the call.
Today different types of users need to have a secure means of
calling, including activists, journalists, government employees
etc.

Most ARM based smartphones today have a security feature
called TrustZone which provides a trusted execution en-
vironment (TEE) called secure world which is isolated from

the environment where normal apps are installed, called the
normal world. In this paper we ask the following question:
How can we enable a VoIP app to leverage ARM TrustZone
to protect user’s conversation from an untrusted OS during a
VoIP call while using existing OS APIs and VoIP protocol ?
In this paper, we present a design called TruzCall that allows
an Android user to make a secure end-to-end encrypted VoIP
call from a compromised mobile phone. Using TruzCall a
compromised Android OS cannot listen to user’s conversation
during a VoIP call. In comparison to existing work, TruzCall’s
goal is to be transparent to developers and to the existing VoIP
infrastructure. We want to allow developers to be able to use
existing OS APIs and VoIP protocols to write VoIP apps, while
being able to secure the user’s conversation using TEE. At the
same time, the use of TruzCall should not require any change
to the VoIP infrastructure in place.

One of the challenges that is encountered in designing a
system like TruzCall is latency. Since VoIP is a real time
system, if the normal world stack invokes TEE at one or more
points, it will add computation time to the VoIP call. Any
additional time will add latency and will thus affect voice
quality. The design should reduce latency. Another challenge
is the hardware setup to do prototype evaluation. In TEE
research, interfacing hardware peripherals like mic and speaker
with the TEE OS on a development board can be challenging
for non-hardware experts with limited resources. In order to
evaluate the design, we want to use a hardware setup that
allows easier prototyping.

II. PROBLEM AND IDEA

In this section we discuss the threat model for the secure
VoIP problem. We further elaborate the problem and how our
main idea differs from the existing work.

A. Threat Model and Assumptions

The normal world OS (including Android and the VoIP
app) is not trusted. The secure world, including the TEE OS
and trusted applications (TA), is trusted. The user using the
device is trusted. The device hardware, including the audio
peripherals (mic and speaker), is trusted. The VoIP network is
not trusted, although this work does not try to protect against
network based attacks. This work is targeted for users who



want to securely call friends, family or someone they know
personally or have met before. This work does not cover key
exchange done by VoIP apps (at the beginning of the call),
which is why it cannot be used to call an unknown person.
To use the design discussed in this paper, two users need to
exchange a secret phrase using a secure side channel (this
will be used to derive the key). This work can be extended
to add key exchange using the TEE by splitting protocols like
DTLS [10]. We also assume that the user wants to use TruzCall
for a one-to-one call, and not conference calling.

B. Problem

When user initiates a call using a VoIP app, the app uses
OS APIs to fetch audio, processes the audio, and sends out the
packet over the network (reverse flow for incoming packets).
The app uses a VoIP protocol like SRTP to encrypt and
calculate HMAC for the audio payload (in RTP packets), and
send the encrypted payload to the callee device. In order
for the VoIP app to use TrustZone to protect the user’s
conversation, the app should still be able to use the existing
OS APIs and existing VoIP protocols. The user should be able
to have the conversation using the existing audio hardware and
the conversation audio should not be leaked to the normal-
world OS. The problem of having a secure VoIP call on
an untrusted OS has been covered in a previous work [11].
However there is no existing work that addresses this problem
and satisfies our design constraints. VoIP apps consist of some
essential stages in their control flow and we want to preserve
the relative structure of the VoIP software stack. We focus on
the essential layers of audio I/O, RTP packet construction /
parsing, SRTP, and network I/O. We also want to minimize
the TCB as TruzCall leverages the TEE.

C. Existing Work on Secure VoIP

The idea of having a secure VoIP call on an untrusted
OS has been discussed before in the work ”A Hardware-
Assisted Proof-of-Concept for Secure VoIP Clients on Un-
trusted Operating Systems” [11]. In this section we discuss
the differences between TruzCall and this related work. The
existing work is done on a Xilinx board, which includes a PS
section and PL section (FPGA). The PS and PL sections are
analogous to normal and secure world respectively. The work
is intended for devices like VoIP phones (handset). They used
the Linphone app [12] for testing and modified it such that for
incoming SRTP packet, the header information and payload
is forwarded to secure hardware, and for outgoing packet the
SRTP header and encrypted payload are sent from secure
hardware to the normal world. There are several differences
between the existing work and TruzCall: (1) Commercial
mobile phones don’t rely on FPGA; instead they ship with
ARM boards that have TrustZone. The existing work does
not address any challenges related to leveraging TrustZone
for secure VoIP. (2) Xillinux OS does not reflect mainstream
mobile OS like Android. The existing work does not address
leveraging TrustZone in mobile OS audio stacks to allow
existing Audio APIs to be used. (3) A VoIP app has a flow for

handling audio packets. In the existing work the RTP layer has
been eliminated from the normal-world app flow as the design
forwards header/payload with secure hardware at the SRTP
layer. This breaks the relative structure of the software stack
used to implement a VoIP app. The design does not utilize
Audio APIs in the normal world to record/play audio data
which changes the way developers write VoIP apps. Moving
header generation/parsing functionality into the secure world
increases the TCB as only part of the SRTP layer remains in
the normal world. TruzCall’s goal is to maintain the relative
structure of the essential parts of the software stack for a VoIP
app and avoid moving unnecessary components into the TEE.

D. Main Idea

Figure 1 shows the main idea of TruzCall. The various
stages in a VoIP stack work in parallel as a pipeline, each stage
feeding data to the next. The audio pipeline in the VoIP app
consists of some essential stages. To allow the VoIP pipeline
to maintain its existing flow while keeping user’s conversation
audio in the TEE, we invoke TEE at the stages for audio API
usage and SRTP. This allows the use of the existing relative
structure of the software stack.

Fig. 1. TruzCall Main Idea

At the beginning of the call, TEE takes control of the audio
peripherals. This can be done using TrustZone hardware
features and has been done in other works like SeCloak [13].
In order for the TEE invocation at several stages of the VoIP
stack to work together, we use a reference design pattern.
When the VoIP app asks for audio using existing APIs, the
TEE invocation provides it a reference to the real audio data
(saved in TEE) via the existing normal-world OS audio APIs.
The app then proceeds with preparing the RTP packet. When
the flow reaches the SRTP layer and it needs to encrypt the
data in the RTP payload (which is a reference), we invoke the
TEE and pass the audio data reference. The TEE encrypts the
data corresponding to the reference and returns the encrypted
payload and HMAC to the SRTP layer to allow the VoIP
app flow to continue. This way only essential cryptography
operations for SRTP are moved into the TEE. The reverse
flow happens for packets received by the device for playback.

E. TEE Integration Using References

Reference is an abstract concept and is used in TEE related
designs when the normal world has multiple stages. References



have been used in the DRM media pipeline [14] and in the
recent work TruzDroid [15]. A reference also implies some
type of associated data in the TEE and its management.
The application of references and its data management in
any use case requires insight into the problem. In DRM,
TEE is used with normal world pipeline stages to provide
secure decryption of media like audio and video. On a mobile
device, DRM commonly handles received data [16], while
TruzCall has to secure audio to be sent and received. The
approach of handling data and the integration of TEE with
normal world stages makes TruzCall’s handling of secure
audio different from DRM. In DRM as data arrives into a
buffer, it can be decrypted and queued to be played out [17].
As we will see in Section III-C, due to packetization and
jitter handling in VoIP, the data is collected or played out
in smaller chunks compared to the buffer to be sent out or
received. This requires a different design for how data is
managed in the TEE in order to reduce latency (Section III-E).
Also the way TEE is integrated in normal world stages in
DRM and TruzCall have different implications. For example,
in DRM implementation [18], TEE can be used with every
normal world stage of the pipeline. If the same approach was
applied to VoIP, it would increase the overall latency of the
solution. The structure of a reference is also problem specific.
In the case of DRM [14] [19], a reference can represent a
native handle containing a file descriptor to represent a secure
buffer. In TruzCall, the reference is designed to reflect the
size of audio data in usage, as well as a cache index in the
secure TEE memory for audio data organized in ring buffers.
Coincidentally, in TruzDroid [15] references are used to carry
length and TEE memory location information.

F. VoIP Call Flow

Fig. 2. VoIP Call Flow

A comparison of protocols used by VoIP software using
end-to-end encryption can be found at [20]. From the data
available for protocols used by apps, a common protocol for
VoIP with open source implementation is SRTP [21] using
SIP [22] for call initiation. Figure 2 gives a high level view
of the flow involved in connecting a VoIP call. If a caller wants
to call a callee, they will first use the SIP application-layer
protocol [22], [23] to exchange information. The information
is exchanged using SDP messages [24] enclosed within SIP

messages. The SIP protocol does not carry any audio data;
it is used to initiate a session between the two end points.
Once the connection is established, protocols like RTP [25]
are used to deliver audio between the two end points. RTP
is used alongside the RTP Control Protocol (RTCP). RTP is
used to carry media streams, while RTCP is used to monitor
transmission statistics and quality of service. In context of
the TruzCall design, we need to point out the sequence
number field of the RTP header, which increments by one
for each RTP packet sent and can be used by the receiver
to detect packet loss and to restore packet sequence. SRTP
is a profile of RTP that provides confidentiality, message
authentication, and replay protection to RTP traffic. A sister
protocol SRTCP provides the same features for RTCP. SRTP
resides between the RTP application and the transport layer.
It intercepts RTP packets and then forwards an SRTP packet
containing encrypted payload and HMAC on the sending side,
and intercepts SRTP packets and verifies HMAC and decrypts
payload to provide an RTP packet up the stack on the receiving
side. SRTP and SRTCP need keys for encryption and HMAC.
These keys are derived from master keys which are set up
using a key exchange mechanism. Protocols used by VoIP to
setup master keys include DTLS [10] and ZRTP [26].

III. TRUZCALL DESIGN

In this section, we discuss how the TruzCall design achieves
a secure VoIP call. We want to emphasize that the changes
we made to the Linphone app are within the various libraries
used by Linphone. The app is composed of several modules,
including libraries for SRTP, RTP [27], SIP [28] and audio
I/O [29]. A different VoIP app using the same libraries should
be able to use TruzCall’s design. The changes made in the
audio framework would be applicable to any VoIP app.

Fig. 3. Android Audio Architecture

A. TEE Invocation and Data Encoding

In this section we discuss how TEE is leveraged by various
stages of the normal-world VoIP audio pipeline. We also
discuss what encoding is used by the TEE to convey the
audio data to the normal-world pipeline. Figure 3 shows the
architecture of Android’s audio stack [30]. An Android app
can use various Java APIs for Audio I/O, all of which use the
same underlying native framework. This communicates with
the underlying AudioFlinger service (Android’s sound



server [31]). In order to protect the user’s conversation during
a VoIP call, we need to leverage TEE to provide the VoIP app
the user’s audio without ever releasing the plain text audio
from the secure world. This means user’s audio can only enter
the normal world in an encoded form. The question becomes at
which layer in the normal-world stack should TEE be invoked
for audio. In Figure 3, Audioflinger (3) is responsible for
resampling [32] and mixing audio streams [31], as well as
applying effects. If we use TEE at this layer, we would have
to make sure that there is a path that doesn’t alter the data
obtained by or to be given to the TEE, in order not to break
the audio encoding. Using TEE at (4) or (5) will incur the
same issue as data will pass through the AudioFlinger. Layer
(1) provides the app with several APIs to read/write audio. To
allow the VoIP app developer to use any API for Audio I/O,
our decision was to use TEE at layer (2).

Fig. 4. TEE Invocation by Audio Framework and SRTP

1) Audio Data Encoding: Once the TEE invocation point
for the audio framework has been identified, we have to decide
an encoding to provide audio data to the normal world. The
data provided to the native audio framework can be encrypted
by the TEE. In this case, the cryptographic operations done in
the app’s SRTP layer will become redundant; the audio data
will be encrypted twice. It will also add latency to the VoIP
flow because of the additional time spent encrypting the audio
data again. One way to handle this design option would be to
disable the operations done in the normal world SRTP layer,
but this would disable an essential stage of the app flow. The
goal of TruzCall is to preserve the relative structure of the
essential layers in the VoIP app, including the SRTP layer.
In order to allow the app to still use the SRTP library for
encryption and HMAC, we don’t provide encrypted data to the
native audio framework. When the app requests audio data, the
native audio framework gets a reference for the audio. The
reference is a string with the same length as the requested
audio data. The RTP layer prepares a packet containing audio
reference(s) as the payload. When the SRTP layer needs to

encrypt the packet, it invokes the TEE which encrypts the
audio data corresponding to the audio reference(s) in the RTP
payload and calculates the HMAC for the RTP packet. Once
the TEE returns the result, the SRTP flow can continue to
send the packet out. On the receiving device the reverse will
happen. The SRTP library will invoke the TEE to get an audio
reference corresponding to the RTP encrypted payload, with
the decrypted audio staying in the TEE. When the native audio
framework needs to play the audio, the reference is given to the
TEE which plays the corresponding audio. Figure 4 shows the
TEE invocation points (the RTP layer is omitted). To improve
audio quality and reduce bandwidth requirements, a VoIP
app performs additional audio computation (e.g. resampling,
compression) between stages Audio API and RTP packet
generation/parsing (Figure 1). We disabled these stages in
order for reference data to not to altered.

2) Independent Audio Pipeline Stages: Given two types
of TEE invocations (by the native audio framework and by
the SRTP library), TruzCall needs to make sure that the TA
logic and corresponding data for these invocations is handled
in a way such that there is no bottleneck created in the
normal-world audio pipeline. To handle the two types of TEE
invocations, the design needs to allow sharing of data via a
common memory space between the corresponding TA logic.
The plain text audio in TEE must be accessible to the crypto-
graphic logic when SRTP library provides it a reference and
conversely the audio data decrypted must be accessible to the
TEE audio playback logic when it is provided with a reference
by the native audio framework. When a TA is invoked, it
can access three types of memory including stack, heap and
shared memory. Only data in heap and shared memory can
retain its value across multiple TEE invocations. TEE provides
two types of shared memory, namely unsecure shared memory
(used by normal world to pass arguments) and secure shared
memory (not visible to normal world, but visible to TEE
components). The two candidates to keep plain text audio in
common memory are heap and secure shared memory. Heap
cannot be used for this design because our design constraint
demands reduced latency. In order to use heap as a common
memory, the TEE logic corresponding to different normal-
world stages will need to belong to the same TA because
the TEE OS provides isolated heaps for different TAs. This
would require multiple normal-world pipeline stages to invoke
the same TA, which would require the TA to be configured
with TA_FLAG_MULTI_SESSION [33]. This would make
the TA invocations serialized i.e. different normal-world stages
won’t be able to call the TA simultaneously (the call from one
stage will have to wait for the call from the other stage to
finish). This would create a performance bottleneck and add
latency. Therefore we use the secure shared memory to provide
common memory for plain text audio in the TEE. OP-TEE
provides this feature via secure data path (SDP) [34]. It allows
a secure pool of memory to be allocated in the TEE with
normal world having a reference to this memory. The SDP
reference is made available to the TEE bridges in the normal
world. The normal-world bridges pass the reference when



invoking corresponding TAs so that the common memory
containing the plain text audio is accessible in the TA logic.

3) TEE Bridges and TAs: Figure 4 shows three TEE
bridges and four TAs inside the TEE. The TEE bridges
are native daemons (running with root privilege) that allow
normal world components to invoke the TAs. The App TEE
Bridge allows the SRTP layer (Java code) to invoke the
Record Crypto & Playback Crypto TAs responsi-
ble for cryptographic operations (encryption and HMAC) in the
TEE. The Framework TEE Bridge allows the native au-
dio framework to invoke the Record Data TA responsible
for collecting audio data and providing reference for audio
data, and Playback Data TA responsible for playing out
audio data corresponding to the provided references. The
Simulation TEE Bridge allows the design to record &
play audio using a simulation environment by using a real
phone to provide the audio hardware (discussed in Section V).

TruzCall sends and receives audio references to/from the
TEE, which means each time the normal world needs audio
or wants to play audio a TEE invocation will be needed. Each
invocation from the normal world involves opening a session
with the TEE OS. Each TEE invocation session consumes
some memory in the TEE OS due to saved state. At the same
time the TEE environment is only assigned a limited amount
of memory [35]. If the normal world keeps opening sessions
based on the requirements of an on-going VoIP call, the TEE
OS will exhaust its memory and deny any more TA invocations
which will stop the secure call. Closing a session and opening
it again for each TEE invocation will contribute to latency.
To solve this issue we make our TEE bridges persistent by
reusing TEE sessions. A bridge only initiates one TA session
(with each TA that needs to be used) at the beginning of
the call. All other TEE invocations via the bridge reuse the
persistent session. This way the VoIP call can use TEE without
exhausting its memory and can go on for any duration.

B. VoIP Call Initiation

In this section we will discuss how TruzCall handles the
VoIP call setup. As mentioned in Section II-A, we assume that
the user wants to call a known person as we do not handle
the key exchange using the TEE. Before a secure call is setup,
the caller and callee need to exchange a secret phrase using a
text entry that will be input using a secure UI. This has been
addressed in other works [15], [36]–[38]. When the user types
in this secret phrase, the user also enters the SIP address of
the callee. The secret phrase and the associated SIP address
are saved in the TEE trusted storage [39].

The user will initiate the VoIP call using the app’s UI in the
normal world. The call will need to first establish a connection
using SIP using a SIP INVITE packet to the Linphone
server. Before sending this packet, we invoke a TA and pass the
callee’s SIP address. The user will be shown a confirmation
UI asking whether a secure call should be initiated. Once the
user approves, the TA will lookup the secret phrase associated
with the SIP address. Both the SRTP and SRTCP protocols
need two sets of master key and salt (for send and receive

directions). The TA concatenates the secret phrase with a
random string generated using the TEE random device. The
TA calculates the master keys and salts by concatenating this
new string with four fixed values and generating SHA-256
hashes. Each master key needs to be 16 byte and master salt
needs to be 14 byte, so each key + salt pair is 30 bytes (we
use first 240 bits of the hash). The TA keeps the master keys
and salts in memory. Next the TEE would take control of the
audio peripherals on the device so that normal world cannot
access the user’s conversation audio during the VoIP call (in
our testing we use a simulation based environment, but in an
actual product TEE will need to control the audio hardware).
A secure LED light (only accessible to the TEE) will be turned
on which allows the user to know whether the audio hardware
is under TEE’s control. The TA returns control to the normal
world and returns the random string that was concatenated
to the secret phrase. The SIP flow continues and uses this
random string as its CALL-ID [22]. The CALL-ID will be
conveyed to the receiving device when it receives the SIP
INVITE so that it can generate the corresponding master keys
and salts. Once SIP has established a connection, the app will
use the RTP protocol to communicate with the other device
on the call. RTP RFC [25] dictates that the initial value of the
sequence number should be random. After SIP has established
a connection, a TA is invoked which generates a random
number using TEE random device. This number is returned to
the normal world and is used as the initial sequence number.
In Section III-D we discuss how the TEE checks whether the
normal world has obeyed to use the sequence number given
by the TEE.

As shown in Figure 2, after an RTP channel is setup, a
key exchange needs to take place to obtain master keys and
salts to secure RTP and RTCP. Instead of using protocols like
DTLS [10] and ZRTP [26], the app invokes the TA which
has the master keys and salts in memory. Instead of returning
the master keys and salts, the TA returns references (random
strings with same length as key/salt and mapped to these data
in the TA memory) to the normal world. For secure RTP
/ RTCP channel to be setup the app uses a key derivation
function (KDF). This derives a session encryption key, session
HMAC key and a session salt based on a master key and salt. We
use the TA to generate the session keys and salts, by passing
it the references for master keys and salts. We use the same
approach to generate the keys in the TA as the normal world
does in the non-secure case. The keys are generated using
AES-CTR. The counter and plain text are fixed in the app for
individual cases of key calculation; only variable involved is
the master key and salt. The KDF passes the counters and plain
texts to the TA. The TA returns references for session keys and
salts to secure RTP. The TA returns the sessions keys & salts
to secure RTCP in plain text, because we don’t handle RTCP
in the TEE for the TruzCall design as RTCP does not carry
audio payload. It should be noted that the TEE invocation by
KDF is only utilized once (at the beginning of call). It does
not add any latency to user’s conversation once the secure call
is setup. Once the session keys and salts are setup, RTP and



RTCP can be secured using SRTP and SRTCP.
So far, we have described the call setup flow on the caller’s

device. The flow on the callee device will be similar. When the
SIP INVITE is received, before handling it, a TA is invoked
and is passed the caller’s SIP address and the CALL-ID. The
control of the audio hardware will be taken over by the TEE.
The TA looks up the secret phrase corresponding to the SIP
address. The TA will calculate the master keys and salts. The
KDF in normal world will invoke the TA in a similar manner
to generate session keys and salts to secure RTP and RTCP.

C. TEE Invocation by Audio Framework

Android native framework consists of AudioRecord
and AudioTrack, which contain the functions
obtainBuffer() and releaseBuffer(). All Audio
I/O utilizes these functions. TruzCall invokes TEE in these
native framework functions. In this section we discuss how
these invocations work. In Android’s implementation (AOSP),
these native functions interact with the Audio Flinger,
which provides the app process a buffer to either read data
from or write data to. In TruzCall, the native functions
interact with the TAs to either get audio reference from
or send audio reference to the TEE. The native framework
allows reading and writing audio in different modes [40],
[41], including a callback mode using which the audio
data is fetched from or provided to a callback function.
Linphone’s native mediastreamer library [29] uses the
callback mechanism for audio I/O. The native framework runs
native threads (AudioRecordThread and AudioTrack
Thread) which use obtainBuffer(), the callback and
releaseBuffer() in a while loop (Figure 5). The
threadloop() function containing this while loop is
executed periodically based native Thread class [42], [43].

Fig. 5. Use of TEE in Native AudioRecord

1) TEE Invocation by AudioRecord: VoIP apps using RTP
buffer audio data before sending it out (packetization [44]).
In case of Linphone, 640 bytes is buffered. In AOSP’s im-
plementation, to construct 640 bytes of audio data, at the
call initiation the app instructs the audio framework that it
should be notified each time 640 bytes of audio data is
available. As the call progresses, the AudioRecordThread

attempts to get the requested amount of audio from the
AudioFlinger via obtainBuffer(). If enough audio
data is not available, the framework notifies the app with the
available amount via the callback and makes up for the re-
mainder by continuing the loop. TruzCall emulates this behav-
ior as the AudioRecordThread uses obtainBuffer()
to allocate a buffer and ask the Record Data TA for
a reference based on the size requested by the app. If
the requested amount of audio data is not available, the
Record Data TA returns a reference of the same length
as the available amount. The AudioRecordThread sends
the reference to the mediastreamer library via a call-
back. The releaseBuffer() call frees the buffer. The
AudioRecordThread makes up for the remainder by con-
tinuing the loop.

2) TEE Invocation by AudioTrack: VoIP apps using RTP
use a jitter buffer. The RTP library [27] uses this buffer
to hold packets as they arrive because of the possible vari-
able delay involved. This allows the packets to be played
in sequence. When the call is in progress, the amount of
audio played by the app varies based on how much data
the app wants to make available. When using Android’s
AOSP implementation, at call initiation the app instructs the
native audio framework to request a certain number of bytes
from the app during the call. The AudioTrackThread is
constrained by the amount of audio data the AudioFlinger
can take based on the obtainBuffer() call. The
AudioTrackThread requests the app based on the buffer
size available from AudioFlinger. The app responds
with a size equal to the minimum of size asked and
size available. The AudioTrackThread sends the au-
dio data to AudioFlinger using releaseBuffer().
The AudioTrackThread handles the remainder by con-
tinuing the loop. TruzCall’s design emulates this behavior.
Initially AudioTrackThread requests the app based on
the configured size via the callback. The callback gets the
audio reference from mediastreamer. The reference re-
ceived from the app is sent to the Playback Data TA
in releaseBuffer(). The TA responds with the available
size in TEE. If there is a remainder from the configured size
(set at call initiation), then the loop is continued, and the
AudioTrackThread requests a size from the app based
on the buffer size available in the TEE.

D. TEE Invocation by SRTP

In this section we discuss how SRTP leverages the TEE
for encryption and HMAC. The SRTP library does replay
detection [21], which we do not move into the TEE. The
SRTP library in Linphone uses AES-CTR for encryption using
128 bit keys and uses SHA-128 when calculating HMAC. For
AES-CTR, the SRTP library calculates the counter from four
values: packet index, SSRC, salt and a block counter [45].
Packet index is a combination of the sequence number and a
rollover counter (counts sequence number rollover of 65535).
Packet index is distinct for each packet. The salt is calculated
at the beginning of the call and is kept in the TEE. SSRC is an



identifier for a source of RTP packets involved in a VoIP call
and is given to TEE at the beginning of the call. The block
counter increments from zero for each packet. As mentioned
in Section III-C, the native audio framework provides audio
references to the app based on the size of available audio. This
results in the RTP packet eventually constructed in the app
consisting of a set of references in the payload. For each RTP
packet, the SRTP layer sends the entire packet and session
encryption & HMAC key references to the Record Crypto
TA. The TA calculates the counter for AES-CTR using the
sequence number in the RTP header. For the first packet
the TA compares the sequence number against the initial
sequence number to ensure that the normal world is using
the sequence number specified by the TEE. For subsequent
packets the sequence number is expected to increment by one
each time and the TA verifies this (in case of rollover TA
verifies that the packet index is increasing). The TA encrypts
the audio data corresponding to the set of references in the
RTP payload (further discussed in Section III-E). Once the
encrypted payload is in place in the packet, the TA computes
the HMAC and returns the result to the normal world. The SRTP
library can then continue with sending the packet out. On the
receiver device, the reverse steps happen. The Playback
Crypto TA is given the received packet. The TA verifies
the HMAC. If the verification fails, the TA informs the normal
world. Otherwise, the TA calculates the counter from the
sequence number and SSRC in the packet, the salt (from call
setup) and the block counter. The TA decrypts the payload,
replaces it with a reference and returns the result to the normal
world. The SRTP layer forwards the packet containing the
reference to the RTP handling layer to continue playback.

E. Reference Data Management

In this section we explain how TruzCall manages the plain
text audio data in the TEE memory, and how it translates
references to audio data or generates references for audio data.
To manage audio data in the TEE, we utilize ring buffers
similar to the normal world. Android follows the standard
practice of using FIFO buffers to manage audio data. This
is done in the AudioFlinger [46] and in Linux’s ALSA
driver [47]. We use two ring buffers inside TEE’s SDP
memory, one for record data and other for playback data.

1) Data Management for Record: The VoIP app buffers a
certain number of bytes before constructing an RTP packet.
The native audio framework may send multiple requests to
TEE to provide the required number of bytes to the app. As
shown in Figure 6, each time the native audio framework
requests a certain number of bytes, the Record Data TA
moves the requested (or available) number of bytes from the
ring buffer to a separate cache in the SDP memory. The
data in the ring buffer is provided by the Simulation
TEE Bridge which gets it from our simulation hardware
setup. The cache is necessary because by the time the SRTP
layer invokes TEE, the data corresponding to the reference(s)
may have been overwritten in the ring buffer (the overwriting
behavior is similar to how audio drivers in Linux buffer

Fig. 6. Reference Data Management for Record

data [48]). The TEE needs to give the audio framework a
reference corresponding to the audio data moved into the
cache. As discussed in Section III-D, when the SRTP library
invokes the Record Crypto TA, it needs to encrypt the
RTP payload, for which it needs a buffer containing all the
audio data corresponding to the set of references.

One of the design constraints of TruzCall is to reduce la-
tency. A simple implementation would be to lookup the audio
data corresponding to each reference, assemble the buffer and
then proceed to encryption and HMAC. This would add latency
because of the time spent in the TEE to assemble the buffer
before actually starting the encryption (data corresponding to
each reference would require two memcpy() operations).
In order to reduce latency we need an approach that uses
less time in the TEE to prepare the buffer to be encrypted.
When the SRTP library invokes TEE, the buffer corresponding
to the RTP payload should already be setup ready to be
used. To achieve this, we organize the cache in the SDP
memory holding plain text audio in multiples of packetization
buffer size (configurable at call initiation). Whenever the native
audio framework asks TEE for audio data, before returning
a reference we copy the corresponding (or available) bytes
of audio into the cache. The cache is always preparing the
next buffer for RTP. Since the reference to be returned by
TEE is supposed to be the same length as requested (or
available) number of bytes, the TA returns a string which is
generated by using memset() and repeating the index in
the cache (e.g. in Figure 6, string returned is 0x01..0x01).
This string is the reference for the normal world. When the
SRTP library invokes TEE, the first byte in the RTP payload
is the index in the cache for the next buffer to be encrypted.
This approach results in one memcpy() needed for data per
reference. The difference between two vs one memcpy() may
appear insignificant, but it should be noted that TEE invocation
happens several times per second during a call, and all that
latency adds up to affect voice quality.

2) Data Management for Playback: Similar to how a
cache is maintained to prepare RTP payload for encryption,



a separate cache is used in the SDP memory to keep the
playback RTP payload decrypted in the TEE. As shown in
Figure 7, when the SRTP library receives a packet from the
network, it forwards it to the Playback Crypto TA for
HMAC verification and decryption. Once decrypted the buffer
is added to the next index in the cache. The reference returned
to the SRTP library is of the same length as the RTP payload,
and is assigned the cache index value (using memset()).
When the native audio framework requests playback data from
the app, the size can vary (discussed in Section III-C). As the
Playback Data TA gets requests to play audio, it copies
data from the cache index into the playback ring buffer and
keeps track of how much data has been played from the index.
Once a certain cache index is exhausted the next one is used
(as specified by the passed reference). Figure 7 shows a case
when the playback request spans audio data from two indexes
0x01 and 0x02 (the passed reference string had 0x01 40
times and 0x02 460 times). The data in the playback ring
buffer is played out by the Simulation TEE Bridge.

Fig. 7. Reference Data Management for Playback

A question that can be asked is why can’t one just make
the ring buffers large enough so that enough data is always
available for record or enough space is available for playback
? TEE environments operate with limited amount of memory.
In a production environment, severals TAs can be present in
the TEE for various use cases, which can reduce the amount
of memory available. In addition, the amount of audio data
available in TEE at any time depends on the type of audio
hardware and the type of interface used. Also, we use 640
bytes to organize the cache based on the packet size used by
Linphone. A different VoIP app may ask more or less bytes
per packet. The goal of TruzCall’s design is to be generic such
that it can help reduce latency in different scenarios for VoIP.

IV. SECURITY ANALYSIS

In this section, we present the security analysis of the
TruzCall design. We assume side channel attacks, hardware
related attacks and attacks related to VoIP network are out
of scope. The goal of the malicious normal-world OS is to

obtain the plain text audio for a VoIP call. The OS can attempt
to do this at various phases of the VoIP call. In each phase,
the described scenarios won’t work because of the various
properties of the design. The OS may try to obtain the secret
phrase typed by the user. During the secret phrase entry, TEE
controls the UI and input, and user is informed of this using
a secure LED. This has been discussed in existing work [15],
[36]–[38]. The OS may try to fool the user that the secure
call is initiated, but not give control to the TEE and mimic the
secure UI for call initiation as shown by the TEE. The OS will
not be able to access the secure LED, which is used to inform
the user whether the audio peripherals are indeed in control of
the TEE. Due to this, the OS cannot fool the user regarding
secure call initiation. The OS may try to obtain the master
key. The OS won’t know the master key calculated during
call initiation as the secret phrase used for its calculation is
protected and the TEE gives the normal world only a reference
to the master key. The encryption and decryption for SRTP
in the TEE uses AES-CTR, which is a stream cipher and
can be subjected to various attacks [49], including keystream
reuse, bit-flipping and chosen-IV attacks. The normal-world
OS can influence the counter because the sequence number
is sent by the normal world. If the same key and counter are
used, the XOR of cipher text can give XOR of plain text.
In TruzCall, the counter is not allowed to be repeated. As
mentioned in Section III-D, the counter calculated in TEE is
derived from packet index, which is derived from sequence
number and rollover counter. The TA verifies that the packet
index is increasing each time. Bit-flipping requires knowledge
of part of the plain text. The normal-world OS does not have
access to the plain text audio. Chosen-IV attack relies on
choosing certain IVs and analyzing the generated keystreams.
The normal-world OS cannot observe the keystream as it
resides in TEE memory.

As mentioned in Section III-D, the SRTP library does replay
detection. It does this based on packet index and uses a replay
list & window to detect replay attacks. We do not move this
functionality into the TEE. The normal-world OS may attempt
to replay received packets. This is countered as the TA checks
to ensure that the packet index handled is always increasing.
The normal-world OS can attempt to replay voice payload for
outgoing packets by holding onto references seen before. The
size of the audio cache in the SDP memory provides a brief
time gap before same index is used again due to index roll
over. The TA zeros out the memory once the data at a certain
index has been used. Reuse of an older index won’t result in
re-sending of data.

V. SIMULATION TEST ENVIRONMENT

In this section we discuss the simulation based approach
used for building the hardware environment for testing Truz-
Call. As far as we know, this is the first time a simulation based
approach has been applied to the area of TEE research. Similar
approach is used in other areas like embedded system testing
where it is referred to as hardware-in-the-loop simulation [50].
In TEE research one often needs to interface hardware periph-



erals with the TEE OS. This task can be challenging for non-
hardware experts, depending on the available support from
the hardware vendor and available driver support from the
TEE OS vendor. In our prototype, we use the Hikey 620
development board [51]. The OP-TEE OS provides different
driver support [52] for different boards, and for the Hikey it
provides the UART driver. Common audio hardware [53] used
in prototyping rely on I2S for which no driver is provided
by OP-TEE. Given the lack of support from the hardware
vendor and the community, with limited resources it would not
be efficient to develop a board specific driver stack to make
I2S work on Hikey. The board has USB interface available,
but using it with TEE would require introducing the USB
stack in the TEE OS. UART could be used to get audio into
TEE, but it would require audio compression techniques like
DPCM [54] and ADPCM [55] with sample rate limited by
the UART bandwidth. To build the hardware test environment
to demonstrate TruzCall, we want to use an approach that
does not depend on the support from the hardware vendor,
the driver support available from the TEE OS vendor, and
can best retain the quality of data needed for the experiment.
To meet this requirement, we introduce a simulation based
testing environment, in which we use a real phone to provide
the audio hardware and stream audio data from the phone to
the TA in the TEE OS via our Simulation TEE bridge.
The bridge is considered part of the secure world.

To setup the environment, we use a Nexus 5X phone with
each of two Hikey 620 development boards (two ends of VoIP
call during evaluation). Both Hikeys run Android OS version
7.1.2 in the normal world and OP-TEE OS version 2.5 in
the secure world. The Hikeys use USB ethernet adapters for
internet access. Both Hikeys are connected to the same switch
and can reach the internet via a connected router. The internet
access is needed because the VoIP app needs to connect to
its server for call initiation. We use the open source Linphone
app [12] (version v3.3.2). In Figures 6 and 7, we showed how
the Simulation TEE bridge provides data for record
and gets data for playback. The bridge communicates with an
Android app on the Nexus phone over TCP to send / receive
audio data. The combination of the bridge and the external
phone replaces the need for drivers inside the TEE OS for
audio hardware access by the TAs. The simulation bridge
does send/receive plain text audio between the external phone
and the TEE Data TAs, but this component is used for easier
prototyping. If a vendor adopted TruzCall, the simulation
bridge would no longer be needed as TAs would directly use
audio drivers provided by the vendor in TEE. In that case
user’s conversation plain text audio would never be returned
to the normal world. The app on the Nexus phone records and
plays audio in 16-bit PCM format (mono) at a sample rate of
16 KHz. The app continuously sends recorded audio to the
bridge which makes it available to the ring buffer for record
data in the TEE. The bridge periodically gets available audio
in the TEE playback ring buffer and sends it to the app for
playback on the phone. Although the simulation environment
provides the benefit of making hardware setup easier for

prototyping, it does add latency because of the time taken
to send/receive audio data to/from the external phone.

VI. EVALUATION

In this section we discuss the evaluation done for TruzCall
using the Linphone app and our simulation test environment.
From the point a call is established TruzCall uses existing
VoIP protocols. Any additional delay added is on the end
device. The design doesn’t change the delay on the network.
The evaluation focuses on measuring modifications for secure
VoIP on the end device. Network delay can vary as it does in
everyday usage of VoIP. Since both Hikey boards act as sender
and receiver during a VoIP call, we report metrics collected
on one of the devices. The reported metrics are based on three
VoIP app configurations: (1) C-Off, (2) C-On and (3) Secure.
In the first two cases, the VoIP app does not use TruzCall,
but the additional audio computation stages are turned off vs
on respectively. In the third case, the VoIP app uses TruzCall
and the additional stages are turned off. Comparing the non-
secure cases with USB audio (hardware attached to normal
world) against secure case with simulation setup would be
unfair because the simulation would add some latency. In all
cases, we use the simulation environment for audio data. In the
non-secure cases, audio data obtained by the Simulation
Bridge is passed directly to the native audio framework.

A. Performance

In this section, we compare the impact of TruzCall on the
time taken during a VoIP call. TruzCall impacts the amount
of time the app uses between getting audio data and sending
out a packet (and vice versa for received audio). We report the
time taken in the SRTP layer as that involves the use of TEE
in the secure case. Once a call is established, the time taken
for a spoken word to be heard at the other end of the call will
change when TruzCall is used (end-to-end time). We also
report the time it takes the app to get audio data for record or
send audio data for playback using our simulation setup. We
focus here on the time taken between native audio framework
and the Simulation Bridge (we exclude the time taken
by the daemon to send/receive audio data to/from the external
phone over the network). The reported results are the average
from 20 measurements. The overhead added in SRTP is 0.48
ms for outgoing packets and 0.54 ms for incoming packets.
This has little impact on overall performance as TruzCall adds
a quarter second average overhead compared to C-off for end-
to-end time during a call. The end-to-end time for C-on is
higher because it uses additional computation stages in the
VoIP pipeline, which are not used by the secure case.

Non-Secure Secure
SRTP Time per Outgoing packet (ms) 0.16 0.64
SRTP Time per Incoming packet (ms) 0.12 0.66
End-to-End Time (seconds) C-off: 4.27 4.51

C-on: 5.6
Audio Input Time (ms / KB) 16.95 18.45
Audio Output Time (ms / KB) 14.31 32.96



B. VoIP Quality

VoIP call quality can be affected by several factors [44],
[56], [57], including packet loss, voice quality, delay and delay
variation (jitter). For VoIP, 1-2.5% of packet loss is considered
acceptable [58]. We include measurements for 2% packet loss
in the test for voice quality. To test packet loss, we use the
Linux iptables tool. Mean opinion score (MOS) is a well-
known measure of voice quality [59]. It is a subjective test
wherein participants judge the quality of a voice transmission
system by rating the voice quality on a scale of 1 to 5. We
used Amazon Mechanical Turk [60] to gather the data from 60
participants (US-based). We provided audio recordings from
calls using non-secure (C-on) and secure cases. The recordings
were audio data received on one of the Nexus phones in our
simulation setup. We also asked the participants to answer a
question based on each recording to check if they understand
the content and to ensure survey quality. The survey and
the recordings can be found at [61]–[65]. We report the
MOS scores and percentage of participants that answered the
questions correctly. The MOS scores were expected to be low
because of the additional latency from the simulation setup.
MOS scores provide user perceived quality difference between
the non-secure and secure cases. The participants were able to
comprehend the contents of the secure call at least 81% of
the time. This result would be better if an audio driver was
available in the TEE, as simulation makes prototyping easier
but adds latency during testing.

C-on Secure
MOS (no packet loss) 2.1 1.3
MOS (2% packet loss) 2.0 1.2
Correct Answer (no loss) 95% 95%
Correct Answer (2% loss) 98% 81%

C-off C-on Secure
JBM (ms) 55 211 207
IAJ (average) 26.41 27.38 26.12
IAJ (median) 26.5 27.3 26.6
JB (ms) 67.5 89.06 79.26

There are several types of delay [44], [66] involved in VoIP.
In our evaluation of TruzCall, the relevant delays include pro-
cessing delay and packetization delay. Processing delay relates
to the audio codec algorithm which is used for compression.
Since we disabled additional audio computation stages in the
secure case, we do not measure the delay incurred for this
stage. The packetization delay relates to buffering of audio by
the RTP library before sending out a packet. TruzCall does
not change the amount of audio buffered for each packet. We
measure the time taken to prepare each RTP packet before
it is handed off to the SRTP layer. The average time taken
for each case was as follows: (1) C-On: 19.98 ms, (2) C-
off: 18.08 ms, (3) Secure: 21.23 ms. During a VoIP call,
RTP packets may arrive out of sequence and/or at varying
intervals [56], [67], [68]. VoIP apps like Linphone use a jitter
buffer [69] to hold incoming packets before the corresponding
audio is played out, which adds some delay. Since TruzCall
uses TEE at different layers of the VoIP stack, TEE invocations
can add timing irregularity and contribute to jitter. We report

three metrics related to jitter: (1) JBM: maximum jitter buffer
delay obtained from RTCP XR [70], (2) IAJ: inter-arrival jitter
obtained from RTCP SR [25], (3) JB: jitter buffer size. Metric
(1) is the maximum delay applied to received packets by the
jitter buffer. Metric (2) is mean deviation of the difference in
packet spacing at the receiver compared to the sender for a pair
of packets (we report the average and median). For metric (3),
we report the average value. The values correspond to a 15
minute call. The secure case adds average 1.25 ms overhead
in RTP packet construction, but adds less jitter compared to
C-on, due to less number of stages in the VoIP pipeline. When
compared to equal number of pipeline stages in C-off, secure
case does add jitter overhead, but still results in a quarter
second average end-to-end time overhead.

VII. RELATED WORK

The closest work to TruzCall is [11] and we have presented
a comparison against this work in Section II-C. In this section
we discuss related work in the area of secure calling and TEE.

1) Secure Calling: Balasubramaniyan et al. [71] apply
machine learning on audio features to identify a call source.
Shirvanian et al. [72] investigate the security and usability
of crypto phones and present an improved crypto phone
in [73] by removing human user from the loop for checksum
comparison. Reaves et al. [74] propose an authentication
protocol over the audio channel. Marx et al. [75] apply VoIP
signatures for non-repudiation and integrity protection. Rohloff
et al. [76] apply homomorphic encryption for secure VoIP
teleconferencing. Ashok et al. [77] apply ECDH algorithm to
strengthen the key for VoIP encryption and decryption. Heuser
et al. [78] protect metadata by providing call unlinkability.
Kohls et al. [79] apply steganography to hide information in
VoIP communication. In all these works, it is assumed that the
device being used to make the call is trusted, while in TruzCall
it is assumed the OS of the user device is compromised.

2) Trusted Execution Environment: SeCloak [13] allows
the user to turn device peripherals on or off using TEE.
TrustOTP [80] integrates hardware-based one-time password
solution with TrustZone. AdAttester [81] uses TrustZone to
provide attested click and display for android advertisements.
vTZ [82] virtualizes TrustZone in the VM. CacheKit [83]
enhances TrustZone’s memory privacy against physical at-
tack. Cho et al. [84] show cross-world covert channels on
TrustZone using Prime+Count technique. Zhang et al. [85]
show how to steal secrets from TEE using timing-based cache
side-channel.

VIII. SUMMARY

In this paper, we proposed a design to allow a user to make
a secure end-to-end protected VoIP call from a compromised
mobile phone. We implemented our design by modifying
Android OS and OP-TEE OS. We tested the design using
the open source app Linphone on the TrustZone-enabled
Hikey development board utilizing a simulation based test
environment. We evaluated the design’s performance and VoIP
quality during a real call. This project was supported in part
by the NSF grant 1718086.
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