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A group of industry, academic, and
government experts convene in Philadelphia
to explore the roots of algorithmic bias.

| BY ALEXANDRA CHOULDECHOVA AND AARON ROTH

A Snapshot of
the Frontiers
of Fairness

In Machine
Learning

THE LAST DECADE has seen a vast increase both in the
diversity of applications to which machine learning

is applied, and to the import of those applications.
Machine learning is no longer just the engine behind
ad placements and spam filters; it is now used to filter
loan applicants, deploy police officers, and inform
bail and parole decisions, among other things. The
result has been a major concern for the potential for
data-driven methods to introduce and perpetuate
discriminatory practices, and to otherwise be unfair.
And this concern has not been without reason: a
steady stream of empirical findings has shown that
data-driven methods can unintentionally both encode
existing human biases and introduce new ones.”*!"%
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At the same time, the last two years
have seen an unprecedented explo-
sion in interest from the academic
community in studying fairness and
machine learning. “Fairness and
transparency” transformed from a
niche topic with a trickle of papers
produced every year (at least since the
work of Pedresh®® to a major subfield
of machine learning, complete with a
dedicated archival conference—ACM
FAT*). But despite the volume and
velocity of published work, our un-
derstanding of the fundamental ques-
tions related to fairness and machine
learning remain in its infancy. What
should fairness mean? What are the
causes that introduce unfairness in
machine learning? How best should
we modify our algorithms to avoid
unfairness? And what are the corre-
sponding trade offs with which we
must grapple?

In March 2018, we convened a
group of about 50 experts in Philadel-
phia, drawn from academia, industry,
and government, to assess the state of
our understanding of the fundamen-
tals of the nascent science of fairness
in machine learning, and to identify
the unanswered questions that seem
the most pressing. By necessity, the
aim of the workshop was not to com-
prehensively cover the vast growing
field, much of which is empirical. In-
stead, the focus was on theoretical
work aimed at providing a scientific
foundation for understanding algo-

key insights

m The algorithmic fairness literature
is enormous and growing quickly, but
our understanding of basic questions
remains nascent.

B Researchers have yet to find entirely
compelling definitions, and current work
focuses mostly on supervised learning
in static settings.

B There are many compelling open
questions related to robustly accounting
for the effects of interventions in
dynamic settings, learning in
the presence of data contaminated
with human bias, and finding definitions
of fairness that guarantee individual-level
semantics while remaining actionable.

ILLUSTRATION BY JUSTIN METZ
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rithmic bias. This document captures
several of the key ideas and directions
discussed. It is not an exhaustive ac-
count of work in the area.

What We Know

Even before we precisely specify what
we mean by “fairness,” we can iden-
tify common distortions that can lead
off-the-shelf machine learning tech-
niques to produce behavior that is in-
tuitively unfair. These include:

1. Bias encoded in data. Often, the
training data we have on hand already
includes human biases. For example,
in the problem of recidivism predic-
tion used to inform bail and parole de-
cisions, the goal is to predict whether
an inmate, if released, will go on to
commit another crime within a fixed
period of time. But we do not have
data on who commits crimes—we
have data on who is arrested. There is
reason to believe that arrest data—es-
pecially for drug crimes—is skewed
toward minority populations that are
policed at a higher rate.” Of course,
machine learning techniques are de-
signed to fit the data, and so will natu-
rally replicate any bias already present
in the data. There is no reason to ex-
pect them to remove existing bias.

2. Minimizing average error fits ma-
Jjority populations. Different popula-
tions of people have different distribu-
tions over features, and those features
have different relationships to the
label that we are trying to predict. As
an example, consider the task of pre-
dicting college performance based
on high school data. Suppose there
is a majority population and a minor-
ity population. The majority popula-
tion employs SAT tutors and takes the
exam multiple times, reporting only
the highest score. The minority popu-
lation does not. We should naturally
expect both that SAT scores are high-
er among the majority population,
and that their relationship to college
performance is differently calibrated
compared to the minority population.
But if we train a group-blind classi-
fier to minimize overall error, if it can-
not simultaneously fit both popula-
tions optimally, it will fit the majority
population. This is because—simply
by virtue of their numbers—the fit to
the majority population is more im-
portant to overall error than the fit to
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Given the limitations
of extant notions
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is there a way

to get some
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the minority population. This leads to
a different (and higher) distribution
of errors in the minority population.
This effect can be quantified and can
be partially alleviated via concerted
data gathering effort.**

3. The need to explore. In many im-
portant problems, including recidi-
vism prediction and drug trials, the
data fed into the prediction algorithm
depends on the actions that algorithm
has taken in the past. We only observe
whether an inmate will recidivate if we
release him. We only observe the effi-
cacy of adrug on patients towhom itis
assigned. Learning theory tells us that
in order to effectively learn in such
scenarios, we need to explore—that
is, sometimes take actions we believe
to be sub-optimal in order to gather
more data. This leads to at least two
distinct ethical questions. First, when
are the individual costs of exploration
borne disproportionately by a certain
sub-population? Second, if in certain
(for example, medical) scenarios, we
view it as immoral to take actions we
believe to be sub-optimal for any par-
ticular patient, how much does this
slow learning, and does this lead to
other sorts of unfairness?

Definitions of fairness. With a few
exceptions, the vast majority of work
to date on fairness in machine learn-
ing has focused on the task of batch
classification. At a high level, this lit-
erature has focused on two main fami-
lies of definitions:* statistical notions
of fairness and individual notions
of fairness. We briefly review what
is known about these approaches to
fairness, their advantages, and their
shortcomings.

Statistical definitions of fairness.
Most of the literature on fair classifica-
tion focuses on statistical definitions
of fairness. This family of definitions
fixes a small number of protected
demographic groups G (such as ra-
cial groups), and then ask for (ap-
proximate) parity of some statistical
measure across all of these groups.
Popular measures include raw posi-
tive classification rate, considered in

a There is also an emerging line of work that
considers causal notions of fairness (for exam-
ple, see Kilbertus,” Kusner," Nabi**). We in-
tentionally avoided discussions of this poten-
tially important direction because it will be the
subject of its own CCC visioning workshop.



work such as Calders,' Dwork,' Feld-
man,>® Kamishima,*¢ (also sometimes
known as statistical parity,'® false pos-
itive and false negative rates!*?1¢63
(also sometimes known as equal-
ized odds*), and positive predictive
value®>*¢ (closely related to equalized
calibration when working with real
valued risk scores). There are others—
see, for example, Berk* for a more ex-
haustive enumeration.

This family of fairness definitions
is attractive because it is simple, and
definitions from this family can be
achieved without making any assump-
tions on the data and can be easily ver-
ified. However, statistical definitions
of fairness do not on their own give
meaningful guarantees to individuals
or structured subgroups of the pro-
tected demographic groups. Instead
they give guarantees to “average”
members of the protected groups.
(See Dwork"™ for a litany of ways in
which statistical parity and similar
notions can fail to provide meaning-
ful guarantees, and Kearns* for exam-
ples of how some of these weaknesses
carry over to definitions that equalize
false positive and negative rates.) Dif-
ferent statistical measures of fairness
can be at odds with one another. For
example, Chouldechova®® and Klein-
berg* prove a fundamental impossi-
bility result: except in trivial settings,
it is impossible to simultaneously
equalize false positive rates, false
negative rates, and positive predictive
value across protected groups. Learn-
ing subject to statistical fairness con-
straints can also be computationally
hard,® although practical algorithms
of various sorts are known.?%3

Individual definitions of fairness.
Individual notions of fairness, on the
other hand, ask for constraints that
bind on specific pairs of individu-
als, rather than on a quantity that is
averaged over groups. For example,
Dwork" gives a definition which
roughly corresponds to the constraint
that “similar individuals should be
treated similarly,” where similarity is
defined with respect to a task-specific
metric that must be determined on a
case by case basis. Joseph®® suggests a
definition that corresponds approxi-
mately to “less qualified individuals
should not be favored over more qual-
ified individuals,” where quality is de-

fined with respect to the true underly-
ing label (unknown to the algorithm).
However, although the semantics of
these kinds of definitions can be more
meaningful than statistical approach-
es to fairness, the major stumbling
block is that they seem to require
making significant assumptions. For
example, the approach of Dwork® pre-
supposes the existence of an agreed
upon similarity metric, whose defini-
tion would itself seemingly require
solving a non-trivial problem in fair-
ness, and the approach of Joseph®
seems to require strong assumptions
on the functional form of the relation-
ship between features and labels in
order to be usefully put into practice.
These obstacles are serious enough
that it remains unclear whether in-
dividual notions of fairness can be
made practical—although attempting
to bridge this gap is an important and
ongoing research agenda.

Questions at the Research Frontier
Given the limitations of extant no-
tions of fairness, is there a way to get
some of the “best of both worlds?”
In other words, constraints that are
practically implementable without
the need for making strong assump-
tions on the data or the knowledge
of the algorithm designer, but which
nevertheless provide more meaning-
ful guarantees to individuals? Two
recent papers, Kearns' and Hebert-
Johnson* (see also Kearns** and
Kim* for empirical evaluations of
the algorithms proposed in these pa-
pers), attempt to do this by asking for
statistical fairness definitions to hold
not just on a small number of pro-
tected groups, but on an exponential
or infinite class of groups defined by
some class of functions of bounded
complexity. This approach seems
promising—because, ultimately, they
are asking for statistical notions of
fairness—the approaches proposed
by these papers enjoy the benefits of
statistical fairness: that no assump-
tions need be made about the data,
nor is any external knowledge (like a
fairness metric) needed. It also bet-
ter addresses concerns about “inter-
sectionality,” a term used to describe
how different kinds of discrimination
can compound and interact for indi-
viduals who fall at the intersection of
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several protected classes.

At the same time, the approach
raises a number of additional ques-
tions: What function classes are rea-
sonable, and once one is decided
upon (for example, conjunctions of
protected attributes), what features
should be “protected?” Should these
only be attributes that are sensitive
on their own, like race and gender, or
might attributes that are innocuous
on their own correspond to groups we
wish to protect once we consider their
intersection with protected attributes
(for example clothing styles inter-
sected with race or gender)? Finally,
this family of approaches significantly
mitigates some of the weaknesses of
statistical notions of fairness by ask-
ing for the constraints to hold on av-
erage not just over a small number
of coarsely defined groups, but over
very finely defined groups as well. Ulti-
mately, however, it inherits the weak-
nesses of statistical fairness as well,
just on a more limited scale.

Another recent line of work aims
to weaken the strongest assumption
needed for the notion of individual
fairness from Dwork:'* namely the al-
gorithm designer has perfect knowl-
edge of a “fairness metric.” Kim* as-
sumes the algorithm has access to an
oracle which can return an unbiased
estimator for the distance between
two randomly drawn individuals ac-
cording to an unknown fairness met-
ric, and show how to use this to ensure
a statistical notion of fairness related
to Hebert-Johnson*® and Kearns,*
which informally state that “on aver-
age, individuals in two groups should
be treated similarly if on average the
individuals in the two groups are simi-
lar” and this can be achieved with re-
spect to an exponentially or infinitely
large set of groups. Similarly, Gillen®®
assumes the existence of an oracle,
which can identify fairness violations
when they are made in an online set-
ting but cannot quantify the extent of
the violation (with respect to the un-
known metric). It is shown that when
the metric is from a specific learn-
able family, this kind of feedback is
sufficient to obtain an optimal regret
bound to the best fair classifier while
having only a bounded number of vio-
lations of the fairness metric. Roth-
blum®® considers the case in which
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the metric is known and show that
a PAC-inspired approximate variant
of metric fairness generalizes to new
data drawn from the same underly-
ing distribution. Ultimately, however,
these approaches all assume fairness
is perfectly defined with respect to
some metric, and that there is some
sort of direct access to it. Can these
approaches be generalized to a more
“agnostic” setting, in which fairness
feedback is given by human beings
who may not be responding in a way
that is consistent with any metric?

Data evolution and dynamics of
fairness. The vast majority of work
in computer science on algorithmic
fairness has focused on one-shot clas-
sification tasks. But real algorithmic
systems consist of many different
components combined together, and
operate in complex environments
that are dynamically changing, some-
times because of the actions of the
learning algorithm itself. For the field
to progress, we need to understand
the dynamics of fairness in more com-
plex systems.

Perhaps the simplest aspect of dy-
namics that remains poorly under-
stood is how and when components
that may individually satisfy notions
of fairness compose into larger con-
structs that still satisfy fairness guar-
antees. For example, if the bidders in
an advertising auction individually
are fair with respect to their bidding
decisions, when will the allocation of
advertisements be fair, and when will
it not? Bower® and Dwork* have made
a preliminary foray in this direction.
These papers embark on a systematic
study of fairness under composition
and find that often the composition
of multiple fair components will not
satisfy any fairness constraint at all.
Similarly, the individual components
of a fair system may appear to be un-
fair in isolation. There are certain
special settings, for example, the “fil-
tering pipeline” scenario of Bower®—
modeling a scenario in which a job
applicant is selected only if she is se-
lected at every stage of the pipeline—
in which (multiplicative approxima-
tions of) statistical fairness notions
compose in a well behaved way. But
the high-level message from these
works is that our current notions of
fairness compose poorly. Experience
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from differential privacy*'** suggests
that graceful degradation under com-
position is key to designing compli-
cated algorithms satisfying desirabl
e statistical properties, because it al-
lows algorithm design and analysis to
be modular. Thus, it seems important
to find satisfying fairness definitions
and richer frameworks that behave
well under composition.

In dealing with socio-technical
systems, it is also important to under-
stand how algorithms dynamically ef-
fect their environment, and the incen-
tives of human actors. For example, if
the bar (for example, college admis-
sion) is lowered for a group of indi-
viduals, this might increase the aver-
age qualifications for this group over
time because of at least two effects:
a larger proportion of children in the
next generation grow up in house-
holds with college educated parents
(and the opportunities this provides),
and the fact that a college education
is achievable can incentivize effort to
prepare academically. These kinds
of effects are not considered when
considering either statistical or indi-
vidual notions of fairness in one-shot
learning settings.

The economics literature on af-
firmative action has long considered
such effects—although not with the
specifics of machine learning in mind:
see, for example, Becker,® Coat,'® Fos-
ter.”® More recently, there have been
some preliminary attempts to model
these kinds of effects in machine
learning settings—for example, by
modeling the environment as a Mar-
kov decision process,** considering
the equilibrium effects of imposing
statistical definitions of fairness in a
model of a labor market,* specifying
the functional relationship between
classification outcomes and quality,*
or by considering the effect of a clas-
sifier on a downstream Bayesian de-
cision maker.** However, the specific
predictions of most of the models
of this sort are brittle to the specific
modeling assumptions made—they
point to the need to consider long
term dynamics, but do not provide
robust guidance for how to navigate
them. More work is needed here.

Finally, decision making is often
distributed between a large number
of actors who share different goals
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and do not necessarily coordinate. In
settings like this, in which we do not
have direct control over the decision-
making process, it is important to
think about how to incentivize ratio-
nal agents to behave in a way that we
view as fair. Kannan®” takes a prelimi-
nary stab at this task, showing how to
incentivize a particular notion of in-
dividual fairness in a simple, stylized
setting, using small monetary pay-
ments. But how should this work for
other notions of fairness, and in more
complex settings? Can this be done by
controlling the flow of information,
rather than by making monetary pay-
ments (monetary payments might be
distasteful in various fairness-rele-
vant settings)? More work is needed
here as well. Finally, Corbett-Davies'’
take a welfare maximization view of
fairness in classification and charac-
terize the cost of imposing additional
statistical fairness constraints as well.
But this is done in a static environ-
ment. How would the conclusions
change under a dynamic model?

Modeling and correcting bias in
the data. Fairness concerns typically
surface precisely in settings where
the available training data is already
contaminated by bias. The data itself
is often a product of social and his-
torical process that operated to the
disadvantage of certain groups. When
trained in such data, off-the-shelf ma-
chine learning techniques may repro-
duce, reinforce, and potentially exac-
erbate existing biases. Understanding
how bias arises in the data, and how
to correct for it, are fundamental chal-
lenges in the study of fairness in ma-
chine learning.

Bolukbasi’ demonstrate how ma-
chine learning can reproduce biases
in their analysis of the popular word-
2vec embedding trained on a corpus
of Google News texts (parallel effects
were independently discovered by Ca-
liskan'!). The authors show that the
trained embedding exhibit female/
male gender stereotypes, learning
that “doctor” is more similar to man
than to woman, along with analogies
such as “man is to computer program-
mer as woman is to homemaker.”
Even if such learned associations ac-
curately reflect patterns in the source
text corpus, their use in automated
systems may exacerbate existing bi-



ases. For instance, it might result in
male applicants being ranked more
highly than equally qualified female
applicants in queries related to jobs
that the embedding identifies as
male-associated.

Similar risks arise whenever there
is potential for feedback loops. These
are situations where the trained ma-
chine learning model informs deci-
sions that then affect the data collect-
ed for future iterations of the training
process. Lum® demonstrate how feed-
back loops might arise in predictive
policing if arrest data were used to
train the model.” In a nutshell, since
police are likely to make more arrests
in more heavily policed areas, using
arrest data to predict crime hotspots
will disproportionately concentrate
policing efforts on already over-po-
liced communities. Expanding on this
analysis, Ensign* finds that incorpo-
rating community-driven data, such
as crime reporting, helps to attenu-
ate the biasing feedback effects. The
authors also propose a strategy for
accounting for feedback by adjusting
arrest counts for policing intensity.
The success of the mitigation strat-
egy, of course, depends on how well
the simple theoretical model reflects
the true relationships between crime
intensity, policing, and arrests. Prob-
lematically, such relationships are of-
ten unknown, and are very difficult to
infer from data. This situation is by no
means specific to predictive policing.

Correcting for data bias generally
seems to require knowledge of how
the measurement process is biased,
or judgments about properties the
data would satisfy in an “unbiased”
world. Friedler” formalize this as
a disconnect between the observed
space—features that are observed in
the data, such as SAT scores—and
the unobservable construct space—
features that form the desired basis
for decision making, such as intel-
ligence. Within this framework, data
correction efforts attempt to undo the
effects of biasing mechanisms that
drive discrepancies between these
spaces. To the extent that the biasing

b Predictive policing models are generally pro-
prietary, and so it is not clear whether arrest
data is used to train the model in any de-
ployed system.

Fairness
concerns typically
surface precisely
in settings where
the available
training data

is already
contaminated

by bias.
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mechanism cannot be inferred em-
pirically, any correction effort must
make explicit its underlying assump-
tions about this mechanism. What
precisely is being assumed about the
construct space? When can the map-
ping between the construct space and
the observed space be learned and
inverted? What form of fairness does
the correction promote, and at what
cost? The costs are often immediately
realized, whereas the benefits are less
tangible. We will directly observe re-
ductions in prediction accuracy, but
any gains hinge on a belief that the
observed world is not one we should
seek to replicate accurately in the
first place. This is an area where tools
from causality may offer a principled
approach for drawing valid inference
with respect to unobserved counter-
factually ‘fair’ worlds.

Fair representations. Fair repre-
sentation learning is a data debiasing
process that produces transforma-
tions (intermediate representations)
of the original data that retain as
much of the task-relevant informa-
tion as possible while removing infor-
mation about sensitive or protected
attributes. This is one approach to
transforming biased observational
data in which group membership may
be inferred from other features, to a
construct space where protected attri-
butes are statistically independent of
other features.

First introduced in the work of
Zemel® fair representation learning
produces a debiased data set that
may in principle be used by other par-
ties without any risk of disparate out-
comes. Feldman® and McNamara®
formalize this idea by showing how
the disparate impact of a decision rule
is bounded in terms of its balanced er-
ror rate as a predictor of the sensitive
attribute.

Several recent papers have intro-
duced new approaches for construct-
ing fair representations. Feldman®
propose rank-preserving procedures
for repairing features to reduce or re-
move pairwise dependence with the
protected attribute. Johndrow?® build
upon this work, introducing a likeli-
hood-based approach that can addi-
tionally handle continuous protected
attributes, discrete features, and
which promotes joint independence
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between the transformed features
and the protected attributes. There
is also a growing literature on using
adversarial learning to achieve group
fairness in the form of statistical par-
ity or false positive/false negative rate
balance.>?35265

Existing theory shows the fairness-
promoting benefits of fair-represen-
tation learning rely critically on the
extent to which existing associations
between the transformed features
and the protected characteristics are
removed. Adversarial downstream us-
ers may be able to recover protected
attribute information if their models
are more powerful than those used
initially to obfuscate the data. This
presents a challenge both to the gen-
erators of fair representations as well
as to auditors and regulators tasked
with certifying that the resulting data
is fair for use. More work is needed to
understand the implications of fair
representation learning for promot-
ing fairness in the real world.

Beyond classification. Although
the majority of the work on fairness
in machine learning focuses on batch
classification, it is but one aspect of
how machine learning is used. Much
of machine learning—for example,
online learning, bandit learning, and
reinforcement learning—focuses
on dynamic settings in which the ac-
tions of the algorithm feed back into
the data it observes. These dynamic
settings capture many problems for
which fairness is a concern. For ex-
ample, lending, criminal recidivism
prediction, and sequential drug trials
are so-called bandit learning prob-
lems, in which the algorithm cannot
observe data corresponding to coun-
terfactuals. We cannot see whether
someone not granted a loan would
have paid it back. We cannot see
whether an inmate not released on
parole would have gone on to commit
another crime. We cannot see how a
patient would have responded to a dif-
ferent drug.

The theory of learning in bandit
settings is well understood, and it is
characterized by a need to trade-off
exploration with exploitation. Rather
than always making a myopically op-
timal decision, when counterfactuals
cannot be observed, it is necessary
for algorithms to sometimes take ac-

Much of machine
learning focuses

on dynamic settings
in which the actions
of the algorithm
feed back into

the data it observes.
These dynamic
settings capture
many problems

for which fairness

is a concern.
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tions that appear to be sub-optimal so
as to gather more data. But in settings
in which decisions correspond to in-
dividuals, this means sacrificing the
well-being of a particular person for
the potential benefit of future individ-
uals. This can sometimes be unethi-
cal, and a source of unfairness.® Sever-
al recent papers explore this issue. For
example, Bastani* and Kannan* give
conditions under which linear learn-
ers need not explore at all in bandit
settings, thereby allowing for best-ef-
fort service to each arriving individual,
obviating the tension between ethical
treatment of individuals and learn-
ing. Raghavan®” show the costs associ-
ated with exploration can be unfairly
bourn by a structured sub-population,
and that counter-intuitively, those
costs can actually increase when they
are included with a majority popula-
tion, even though more data increases
the rate of learning overall. However,
these results are all preliminary: they
are restricted to settings in which the
learner is learning a linear policy, and
the data really is governed by a linear
model. While illustrative, more work
is needed to understand real-world
learning in online settings, and the
ethics of exploration.

There is also some work on fair-
ness in machine learning in other
settings—for example, ranking,'* se-
lection,**” personalization,” bandit
learning,**° human-classifier hybrid
decision systems,” and reinforce-
ment learning.'®*? But outside of clas-
sification, the literature is relatively
sparse. This should be rectified, be-
cause there are interesting and im-
portant fairness issues that arise in
other settings—especially when there
are combinatorial constraints on the
set of individuals that can be selected
for a task, or when there is a temporal
aspect to learning.
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