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It is well-known that any quantum channel £ satisfies the data processing inequality
(DPI), with respect to various divergences, e.g., quantum x?2 divergences and quantum
relative entropy. More specifically, the data processing inequality states that the diver-
gence between two arbitrary quantum states p and o does not increase under the action
of any quantum channel €. For a fixed channel £ and a state o, the divergence between
output states £(p) and £(o) might be strictly smaller than the divergence between input
states p and o, which is characterized by the strong data processing inequality (SDPT).
Among various input states p, the largest value of the rate of contraction is known as
the SDPI constant. An important and widely studied property for classical channels
is that SDPI constants tensorize. In this paper, we extend the tensorization property
to the quantum regime: we establish the tensorization of SDPIs for the quantum xil/g

divergence for arbitrary quantum channels and also for a family of 2 divergences (with
K > K1/7) for arbitrary quantum-classical channels.

1 Introduction

In information theory, the data processing inequality (DPI) has been an important property
for divergence measures to possess operational meaning. For instance, DPI has been proved for
quantum x?2 divergences (see e.g., [12, Thm. I1.14] or [21, Thm. 4]), among other divergences.
More explicitly, for any quantum channel £ and for all quantum states p, o € ®,,, we have

Xz Ep) [ £(@)) <Xz (p o). (1)

In the above, k is a real-valued positive function (see (7) below); the definition of y? divergences
will be postponed to § 2.1, as it involves some technicalities.

Compared with the DPI, the strong data processing inequality (SDPI) quantitatively and more
precisely characterizes the extent that quantum states contract under the channel £ [1, 16-18].
Given any (&, o)-pair where & is any quantum channel and o € D} is any full-rank quantum state
(D;F is the space of strictly positive density matrices on a n-dimensional Hilbert space), if there is
a constant 7,2 (£,0) € [0, 1) such that

Xa (E(p) 1| E(0)) < myz (E,0) X2 (pll o), Vp € D, (2)

then the quantum channel £ is said to satisfy the strong data processing inequality (SDPI) for the
quantum x7 divergence and the smallest constant 7,2 (£, 0) such that (2) holds is called the SDPI

constant. Evidently,
2
X (€ E(o
)= ap  MEIEE)
PED,: pFo Xk (p || U)
Many applications of SDPIs can be found in e.g., [17, Sec. 2.3] and [18, Sec. V].

(3)
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It is common in quantum information theory to consider high-dimensional quantum channels,
formed by the tensor product of low-dimensional quantum channels. Except for very special
cases, in general, obtaining SDPI constants for high-dimensional quantum channels can be rather
challenging, even numerically. It is desirable if one could reduce the problem of calculating the
SDPI constant for a (global) high-dimensional quantum channel, to calculating the SDPI constants
of low-dimensional quantum channels. For a specific divergence (e.g., quantum Y2 divergence in
this work), if the SDPI constant for the high-dimensional channel is the maximum value of SDPI
constants for these low-dimensional channels, we say that the SDPI constant for this divergence
satisfies the tensorization property.

Our main result in this work is that the SDPI constant for x? tensorizes, summarized in the
following theorem.

Theorem 1. Consider N finite-dimensional quantum systems whose Hilbert spaces are H; with
dimension n; (1 < j < N) and consider any density matriz o; € 33;; and any quantum channel

E; acting on H;, such that for all1 < j < N, £;(0;) € ’ng. If either of the followings holds
(i) k= K125
(i) Kk > K12 and &; are quantum-classical (QC) channels;

then we have the tensorization of the SDPI constant for the quantum x? divergence, i.e.,

e (E10E® - ®EN,01®02® - ®oy) = max 1,2 (&,05). (4)

" 1<G<N 7"
Remark. (i) The function ky/o(z) := 271/? is a special example of weight functions. There are
some properties that only the quantum Xil/,z divergence possesses (see e.g., Lemma 7 (ii));

in addition, sz is tightly connected to the sandwiched Rényi divergence of order 2 [13].

There is a whole family of s, parameterized by « € [0, 1], satisfying the condition rq > 1 /9;
see Example 3 for details; in § 2.2, we also present other examples of x(z) such that x > /5.
The notion of QC channel will be recalled in § 2.6.

(ii) These assumptions only provide sufficient conditions for the tensorization of SDPIs to hold,
and it is an interesting open question to further investigate weaker conditions. In addition,
it is also an interesting open question whether the tensorization of SDPIs holds for (quasi)
relative entropies and the geodesic distances [8, 12]. We shall leave these questions to future
research.

The tensorization property in the classical regime has been well studied and widely used; see
e.g., [1, 18, 22]. For SDPI constants, the tensorization property was proved in [18, Thm. III.9]

for any ®-divergence, denoted by Do (v || 1) :=E, [@(g—/‘;)] — ®(1), provided that the associated
$-entropy is sub-additive and homogeneous. As a remark, the ®-divergence includes the relative
entropy (with ®(z) = xlog(x)) and the classical x? divergence (with ®(z) = (z — 1)?) as special
instances. The tensorization of SDPI constants associated with the classical relative entropy has
been applied to study the lower bounds of Bayes risk [24].

Establishing tensorization in the quantum regime seems to be more challenging and our un-
derstanding is much limited. Recently, the tensorization technique has been developed for the
quantum hypercontractivity of qubit system [11], reversed hypercontractivity [3, 7], 2-log-Sobolev
constant [3, 10], as well as the quantum maximal correlation [2|. For the tensorization of the quan-
tum (reversed) hypercontractivity and log-Sobolev constants, all existing works, as far as we know,
focus exclusively on reversible (or even more special) quantum Markov semigroups (i.e., Lindblad
equations).

We would like to briefly mention and highlight the proof techniques used for Theorem 1. The
first main ingredient is to formulate the SDPI constant as the second largest eigenvalue of a certain
operator (see Lemma 10); similar results have been obtained in e.g., [5, 8, 12, 18, 20]. This result
immediately leads into the proof of the case (i). The second main ingredient is to bound 7,2 e (&,0)

above by /1,2 (€, 0) (see Lemma 12), whose proof uses Petz recovery map [14] as the bridge. This

relation together with special properties of 7,2 , (€,0) leads into the proof of case (ii).
K1/2
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Related techniques to quantify the loss of information

Apart from the DPI and the SDPI, there are other concepts used to characterize the contraction
of quantum states under the action of noisy channels. For instance, one widely studied quantity is
the contraction coefficient

2 (€) :== sup xz (&, 0). (5)

et

The contraction coefficient is very similar to the SDPI constant. However, compared with the
SDPI constant, the contraction coefficient for various divergence measures has been much more
extensively studied in the literature, see e.g., [8, 12, 15, 20, 21| for the quantum case, and see
e.g., [6] for the classical case. The bijection maps that preserve the quantum Xia divergence (see
Example 3 about the family x,,) have been characterized in [4], which complements the study of the
contraction of quantum states. There are other tools based on the functional perspective, including
quantum (reverse) hypercontractivity and related quantum functional inequalities [3, 7, 10, 11, 19].

Contribution

We summarize new results obtained in this work, as follows:

(i) Our main result is Theorem 1, which establishes the tensorization of SDPI constants, under
certain assumptions: for the quantum le/z divergence, the tensorization of SDPI constants
holds for general quantum channels; for the quantum x?2 divergence with x > r; /2, the
tensorization holds for any quantum-classical channel.

(ii) Along the analysis of the SDPI, we also establish a connection between the SDPI constant
associated with /o and a variant of quantum maximal correlations; see Theorem 18 for
details.

(iii) To use the tensorization property, we need to understand the SDPI constants for local chan-
nels, i.e., we need to compute 7,2 (;,0;) for 1 < j < N. Motivated by this, we study the
SDPI constants for special qubit channels in § 5. We notice that there is a particular QC
channel £ associated with a fixed o € ©J such that the largest value of Nz (€,0) ~ 1 for
K = Kmin, While 7,2 (€,0) = 0 for kK = Kmax (however, o is close to a singular matrix); see
§ 5.1 for details. This extreme example shows the high dependence of SDPI constants on
the choice of k, which magnifies the difference between the quantum SDPI constant and its
classical analog, because there is only one SDPI constant for the classical x? divergence.

This paper is organized as follows. In § 2, we provide some preliminary results, in particular,
we recall the eigenvalue formalism of the SDPI constant. In § 3, we prove Theorem 1 and in § 4,
we study the connection between the SDPI constant and the quantum maximal correlation. In § 5,
we consider SDPI constants for qubit channels and study the dependence of 7,2 (€,0) on o and k.
§ 6 concludes the paper with some additional remarks.

2 Preliminaries

This section contains preliminary results that we will use to prove the tensorization of the strong
data processing inequality, Theorem 1. In particular, we will present two variational formulations
of SDPI constants, and discuss the relation between various SDPI constants.

Notations. We shall consider finite dimensional systems only, i.e., the Hilbert space H = C".
Let M,,, ©,, ©,F, H,, be the space of linear operators, density matrices, strictly positive density
matrices and Hermitian matrices on H, respectively. Let M and HY be the space of traceless
elements of M,, and H,,, respectively. Denote the n-by-n identity matrix by I,, (acting on H); let
Z, be the identity operator acting on M,,. If the Hilbert space H = H1 @ Ho ® --- ® Hy, and
H; has the dimension n; (for 1 < j < N), then the space of linear operators on # is denoted by
M, xnyx--xny; the same convention applies similarly to other spaces, e.g., Hy, xnyx--xny- AS a

reminder, following the above notation convention, HY ., # H) ®H) .
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Let {-,-) denote a generic inner product on M,,; the Hilbert-Schmidt inner product is defined
as (A, B) ¢ :="Tr (ATB). For any positive semidefinite operator 7 on M,,, define the sesquilinear
form (A, B) 5 := (A, 7(B)) ¢ and the semi-norm [|Al| , := /(4, A) , for all A, B € M,,; when
T is strictly positive, the sesquilinear form becomes an inner product and the semi-norm becomes
a norm.

For convenience, for any A, B € M,,, we denote

A#B := LRp, (6)
where L4 and Rp are left and right multiplication of A and B, respectively; in other words,
(A#B)(X) = AXB.

2 .
2.1 Quantum y: divergences

Throughout this work, we consider the quantum x?2 divergence, introduced in [21, Def. 1]. Let
us introduce a set IC,

K :={x:(0,00) = (0,00)| — £ is operator monotone, (1) = 1,zx(z) = k(z~")}. (7)

1/2

As a remark, it is easy to check that y/o(2) = 27"/ is in the family K.

Definition 2 (Quantum 2 divergence). For any k € K, define the quantum x? divergence between
quantum states p,o € ©,, by

Xa (Pl o) = (p—0,9(p—0))pys (8)
when supp(p) C supp(c); otherwise, set x2 (p || ¢) = co. The operator Q% above is given by
QO = R'W(LoR;Y) = L 'w(Ry L 1), (9)
The second equality comes from the assumption that zx(z) = k(x~!). As a remark, when o is not
a full-rank density matrix, QF can still be well-defined on the support of o.
Essentially, the operator % is a non-commutative way to multiply o~ 1.

operator Q2 will be further discussed in § 2.3.
Next, let us introduce the non-commutative way to multiply o. Define the weight operator I,

Properties of the

T, :=o'/2#c%/2, (10)
Note that the operator I, is completely positive, with the Kraus operator o'/2 and Qo"/? = (Ty)~ L.
For any k € K, let us define a generalization of the operator I',

0% :=Lok(LoR;Y) = Lok(o#o™) (11)
=I',oQrol,. (12)

Notice that U,* =T,.

2.2 Examples of k(z)

In this subsection, we provide three examples of & such that & > /5 (satisfying one of the
conditions in Theorem 1). More examples can be found in [9, Sec. 4.2] and [8, Sec. (III)].

Example 3 (Quantum Xia divergence). An important family of the quantum x?2 divergence is
the quantum Xia divergence, with the parameter « € [0,1] and

(z7*+2°7"). (13)

N =

’ia(m) =

(i) The case o = 1/2 is very special: k1 /o(x) = Y2 and Q5? = o Y24071/2 is completely
positive with the Kraus operator o~'/2. In fact, k1 is the only one in K such that for any
o, both QF and (Q%)~" are completely positive [9, Theorem 3.5].
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(ii) We can immediately verify that ko, = k1—, and for any fixed z € (0,00), kq(2) is monotoni-
cally decreasing with respect to a € [0,1/2]; thus ko (x) > K1 /2(z).

More results about this family of the quantum Xia divergence (also called mean a-divergence)
could be found in [21].

Example 4 (Wigner-Yanase-Dyson). Another family of KEVYD (see e.g., [8, 9]) corresponds to the

Wigner-Yanase-Dyson metric, and it is parameterized by 5 € [—1, 2],

WYDy, \ . 1 (1—2P)(1 —a'"F) . o
R R R e € (0,1) U (1, 00). (14)

When z = 1, k"¥P(z) is simply set as 1 or is defined by taking the limit # — 1 in the above

equation. In general, finding all possible 8 € [—1, 2] such that /{EVYD > k12 seems to be slightly
technical; however, at least, for a few special choices of 3, e.g., when 8 = 1.5 (k}VYP(z) =
k1/2(z) + %) and 8 =2 (k)Y P(z) = L££) we can easily check that ¥ > k1), for
these two cases.

Example 5 (The largest possible x). The largest & € K is Kmax = 22 (see e.g., [8, Eq. (11)]).

2x
It is obvious that kyax > Ky /2-

WYD
2

As a remark, k in the family of Wigner-Yanase-Dyson metric is exactly the maximum one.

2.3 Basic properties of operators 25 and U}

We list without proof some elementary while useful properties of the operator Q. Recall
the assumption that zx(x) = k(x~!), which is used below in the proof of % being Hermitian-
preserving.

Lemma 6. Suppose o € D} and its eigenvalue decomposition o ="

=155 1s;) (sj|. Then

(i) The operator QF can be decomposed as

2= 30w (2) L b sl o (15)

S
jm=1 m/.oom

For any Hermitian matriz A € M,

(A Ay = (425 (ADs = 3 w(2) 1)

Sm

(sl Alsm)|” = 0. (16)

jm=1 m

Thus, 25 is a strictly positive operator with respect to the Hilbert-Schmidt inner product, and
the inner product (-,-)q. is well-defined.

(ii) QF is Hermitian-preserving.
(iii) We have Q%5 (o) =1L,,. Thus for any A € M,,,
<A7 U>Q§ - <A7 Hn>HS ) <07 A>Q§ - <]1na A>HS = TI"(A). (17)
In particular, for any density matriz p € D, (p,0)gr = (T, pP)ge = 1.
Then let us consider the properties of Q27 for a composite system.

Lemma 7. (i) Consider o1 € ©} and oo € ) . Then for any A € My, and B € M,,, we
have

le®0'2 (A ® 02) = Q; (A) ® HnZ Q§1®0'2 (Ul ® B) = I[nl ® ng (B)' (18)

1
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() K1/ is the only one in K such that for all o1 € D} and oy € D}, we have
Qg1®02 le ® ng' (19)

Proof. Let us decompose 01 = Z;il A [¥5) (5] and o3 = D72 | i |m) (@], then o1 ® oo has
an eigenvalue decomposition o1 ® o2 =37, | Ajpm [15) (V] © |dm) (Dml-

(i) By the decomposition of the operator Q’(“') in (15),

Q§1®02 = Z k ()\jluml) A ! (|"/}J1><¢]1|®|¢m1><¢m1|)#(|wh> <¢]2|®|¢m2><¢m2|)

A )
J1,d2,m1,mz jo oy g2 Hmo

Then by direct calculation,
05,90, (A© 02)

Ao\ 1
= 5 () o (1) (] A1) (5l) © 1) (|
J2 Fm2 J2 2

J1,J2,m1,ma

= Z K ()\) (|w]1> <’l/)j1 | A W}J'2> <1/132|) ® |¢m1> <¢m1‘

A
J1,J2,m1 J2

= Q5 (A) ®L,,.
The other case can be similarly proved.

(i) When s = Ky /2, by the fact that Q5? = (,)~1, we can immediately see the tensorization
(19). As for the other direction, from the assumption that (19) holds and after some straight-

forward simplification, one could obtain that (;‘“&) =K (;\\A) K (“ o ), for all indices
jo Hmag j2 Hmo

J1sJ2,m1,ma. Since oq and o9 are arbitrary density matrices, we have k(zy) = k(x)k(y) for
all z,y > 0; in particular, 1 = k(1) = k(z)k(x~1). Since x € K, we also have xx(z) = k(2x™1),
which leads into k(z) = 27 1/2 = K1/2-

O

Similarly, we list without proof the following properties of Uf; all properties can be easily
verified by the definition of U% in (11).

Lemma 8 (Operator U%). Suppose o € D} and its eigenvalue decomposition o = Z?zl sj|s;) (s5]-
Then

(i) the operator U% for any k € K has a decomposition
=S esm (%) b sblon) ol (20

thus U% is strictly positive with respect to the Hilbert-Schmidt inner product;
(ii) the operator UF is Hermitian-preserving;

(iii) VE(L,) = o.

2.4 Eigenvalue formalism of SDPI constants

The eigenvalue formalism of the quantum contraction coefficient can be found in e.g. [8, 12, 20];
the classical analogous result can be found in e.g., [5, 18]. In this subsection, we concisely present
this formalism, for the sake of completeness.

Let us consider the ratio in the SDPI constant.

REQ 2 _ (=7 oW B0 ) oMoy

Xz (el o) (p—0,95(p—0))pys (p—0.p—0)qs
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where we introduce
T, = () o El o, 0. (22)
Here are some properties of the operator Tg’g.

Lemma 9. Assume that 0,E(c) € ;.

(i) The operator Y§ , is positive semidefinite with respect to the inner product (-, >Q;
(i) Yg (o) =o.
(iii) Yg , is Hermitian perserving.
(iv) For any A € M,,, we have
(AT (4)) g, < (A, A)g,

Therefore, the eigenvalue of Y¢ . is bounded above by 1.

Proof. Part (i) is obvious from (22) and Lemma 6 (i). Part (ii) can be verified directly by Lemma 6
(iii) and the fact that & is trace-preserving (or equivalently €' is unital). As for part (iii), since
the quantum channel £ is completely positive, it is thus also Hermitian-preserving; so is £f. By
Lemma 6 (ii), Q% is Hermitian-preserving, thus so is (Qg)_l. Finally, since the composition of two
Hermitian-preserving operators is also Hermitian-preserving, we conclude that Tg , is Hermitian-
preserving. Part (iv) is essentially the data processing inequality; see e.g. [12, Thm. II.14] and
[21, Thm. 4] for the proof. O

Then

2
O gy BER )
PED,: pFo Xk (P || U)
<p — 0, T’g,o(p - U)>Q§

X2 (5’ 0)

(21)

sup
p20: p£aTr(p)=1 (P = 0P = T)qs
(A, 7%, (A),,.
= Sup —U.
AcH?: A#0 <Aa A>Q;

As one might observe, the last equation is closely connected to the eigenvalue formalism of the
operator Tg ., which is stated in the following lemma.

Lemma 10. For o € ®; and k € K and for any quantum channel £ such that E(o) € D}, let
A2(T% ) be the second largest eigenvalue of Y¢ , (defined in (22)). Then

Mz (€,0) = Xa(Tg ). (24)

Proof. Since T§  is positive semidefinite with respect to the inner product (-, -)q,. from Lemma 9
(i), it admits a spectral decomposition with Yg (V;) = 0;V;, 0; > 0, where j :UL 2,---,n% and
{Vj}ﬁ1 is an orthonormal basis in the Hilbert space (Mn, (-, >Q;) Note that o is always an
eigenvector of T¢  from Lemma 9 (ii); without loss of generality, let V; = o and 6, = 1. By the
orthogonality of {V;};, we know 0 = (0,V})q,. = Tr(Vj) for j > 2. By Lemma 9 (iv), §; < 1 for
all 1 < j < n?; thus without loss of generalityf assume 0; are listed in descending order and hence
Ao(Tg ) = 0. By rewriting A = Z?; ¢;Vj in (23) where ¢; € C, we immediately know that
Mx2 (‘Sa U) < AQ(Tg,a)'

By the fact that T% , is Hermitian-preserving (see Lemma 9 (iii)), V,| is also an eigenvector
associated with the eigenvalue A(Yg ). Then we choose A € HY in (23) by VQ%V’; or V2;Z.V2T.
Note that such an A is also an eigenvector of T¢ , with the eigenvalue Ao (Tga). Then 7,2 (E,0)>
(A, Y5, (A)),,, /1A, Abgy = Aa(TE,). O

Qs
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2.5 Another variational formalism of SDPI constants

Recall the definition of the operator U% from (12). In Lemma 11 below, we provide another
variational characterization of the SDPI constant; essentially, it follows from the connection be-
tween the eigenvalue formalism (as discussed in the last subsection) and the corresponding singular
value formalism. Its classical version is well-known and can be found in e.g. the proof of [18, Thm.
I11.2]. This idea for quantum y? divergences has appeared implicitly in [21, Thm. 9]; however, we
don’t assume o to be the stationary state of the quantum channel herein, compared with [21].

Lemma 11. Assume that quantum states o,E(c) € D;F. For any k € KC,

M (€,0) = max | (H (F), Ghugy | (25)

£()
where the operator & is defined by
H =Ty 0Eol,, (26)
and the mazimum is taken over all F,G € M, such that
<]In7F>U§ = <I[n7G>Ug(U> =0, HFHUg = ||G||Ug(g) =L (27)
Proof of Lemma 11. First, we rewrite Lemma 10 in the language of the relative density (whose

classical analog is the Radon—Nikodym derivative); specifically, to get the third equality below, A
is replaced by I',(A4). By Lemma 10,

o (A TE ,(A)) g (e(4).95,)0 @)
2 ,0) = sup _— = sup
i AEMO . A#£0 <A7A>Q§ AEMO | A0 (A, 95(A) s
— sup <5 °T-(4), Qg(”) o&el, (A)>HS @ sup <%(A), Gg(a) i %/(A)>HS
A0, (1, A) =0 (Do (A), Q5 0L (A)) g AZ0, (I, A) 55 =0 (4, A5y
<A7 (CARRER AN %(A)>U
= sup Ly
A0, (In,A)ess =0 (A, A)ss

As for the operator J, it can be straightforwardly checked that
e 7 is completely positive and unital (JZ(I,,) = 1,,).
o #T=T,0&0 Fg(la) is completely positive, trace-preserving, and 7 (£(0)) = 0.
e Consider the following two Hilbert spaces 74 and 773,
= {A e M, : (L,, A)Ug = O} , equipped with the inner product (-, ~>U,; ;

I = {A e M, : (L,, A>Ug(ﬁ) = 0} , equipped with the inner product (-, .>U§<a> .

Then we can readily verify that %" is an operator from J# to J%, i.e., if (I,,, A);. = 0, then
(L, %(A))Uzw = 0. The dual operator of .#, denoted by %, maps from ./ toi%”l and it
is explicitly given by H = (U5 oo 0% (-
Then, we have
<A, H o %(A)>

2 (E,0) = sup
i (€:9) A£0, A, (A, A)se

05

Let us denote the SVD decomposition of .# by %A;() = > a;b; (@), )= Where a; > 0,
£(o)

{¢;}; and {p;}, are orthonormal basis of #1 and ./ respectively. Then, easily we know () =
2240 (5, )5 and that A o K () = 3, azo; (¢, Viss- Then nyz (€, 0) is simply the largest
value of a?; namely, \/m is the largest singular value of JZ, and the result in Lemma 11
follows immediately. O
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2.6 Comparison of SDPI constants

First, we provide a uniform lower bound of ,/n,2 (€, 0) for any x € K in terms of 7,2 ) (&,0)
r r1/2

in Lemma 12, which is a new result to the best of our knowledge. One of our corollaries in (30)
can also be derived by [8, Thm. 4.4] and [8, Thm. 5.3]. However, our approach to show (30) is
different from [8]: their result comes from comparing the contraction coefficient 7,2 (£) with 7. (€)
(the contraction coefficient for trace norm); we use the SDPI constant of the Petz recovery map
as the bridge. Second, we consider quantum-classical (QC) channels and provide the ordering of
SDPI constants for different x in Lemma 14; similar results have appeared in [8, Prop. 5.5] for
contraction coefficients.

Lemma 12. For any quantum channel & and quantum state o € D} such that E(o) € D}, we
have

e, (€,0) <0 (€00 (Re.q,£(0)) < /2 (E,0), (25)
where R , is the Petz recovery map, defined by

Reo(A) =o' PENE(a) T2 AE(0) ") 2 =T, 0 €T o T7, (A),  VAEM,  (29)

mapping E(o) to o.
The followings are immediate consequences of the lemma above.
Corollary 13. Under the same assumption as in Lemma 12,

(i) The SDPI constant associated with 1/ for the pair (€,0) equals the SDPI constant for the
recovery map pair (Re »,E(0)), that is to say,

Uxi1/2 (87 U) = nxil/2 (R5,075(0>)'

(ii) Further assume that for any o € D, we have E(c) € D}F. Then, for the contraction

n’

coefficient of the quantum channel £, we have

nxil/z (&) < \/nxi(5)~ (30)

Proof. The first part comes from letting x = k1,2 in (28) and the fact that the Petz recovery
map of Rg , is exactly the channel £; the second part comes from taking the supremum over all
ogeDS. O

Proof of Lemma 12. Tt is straightforward to verify that Re ,, defined in (29), is a bona-fide quan-
tum channel, mapping the quantum state £(o) back to 0. We can easily verify by definition (22)
and (29) that

Yel? =Reqof. (31)

Recall from Lemma 10 that there exists a Ao = Ao(Ye'/?) = 12 , (€,0) and a traceless
’ 1/2

Hermitian matrix V € HY, such that Yg',*(V) = A;V. Let V:=E&(V) e HY. Then

(e )8l (W)

(o pfe) =24 LA
1) <R5’”(‘7)’ Qg o Rg,g(f/)>HS
. V-V e
(ReolP). %, i) o ReolP)), (V95,0 (P))
(V.25, () V, V)

S Wxi (Rf,o'a 5(0)) Wxi (5a 0)'
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The inequality in the last step follows from Lemma 10. Hence, we have proved the first inequality in
(28); the second inequality follows immediately from the data processing inequality of the quantum
X2 divergence. O

Next, we consider any quantum-classical (QC) channel £, which refers to a physical process
in which one first performs a measurement according to a POVM {F;}"_, (F; € M, are positive
semidefinite and Z" F; =1,,); then based on the measurement outcome, one prepares a pure
state, selected from a bet {;}7-1 which also forms an orthonormal basis of H. More specifically,

E(A) =) Tr(FA)[gy) (¥, VA€M, (32)
j=1

Define a ratio Rg , on HO by

(84,05, 08(A)  (A,TE,(4)
<A7QU( )>HS <A’A>Qg

Lemma 14. Suppose k > K12, € is a QC channel with F; # 0 for all 1 < j < n and 0 € D}}.
Then

2 for AeHY, A#£0.  (33)

RE - (4) =

RE,(A) <RG/P(A),  VAeH), A#0. (34)
Consequently, we have
e (6,0) < 1z, (E,0). (35)

Proof. By (32) and (16), we can readily calculate that

. Tr(F;A)|
<5(A)’Qg(”) >HS Z | Tr(Fjo) ’ (36)

which is independent of x. By (16), it is straightforward to observe that when x > r;/5, one has
(A, Q5(A)) g > (A, Q25" (A)) - Thus (34) follows immediately; (35) follows from (34) by taking
the supremum over all non-zero A € HY (see (23)). O

3 Proof of Theorem 1

Setting up: First notice that it is sufficient to prove Theorem 1 for N = 2. The general case
can be straightforwardly proved by mathematical induction on N. Next, for the case N = 2, one
direction is trivial: suppose p; achieves the maximum in Ny2 2(&1,01); let pi2 = p1 @ o2 and by
direct calculation,

X2 (&1 @ E(p12) || €1 ® Ex(01 ® 03))
Xz (p12 || o1 ® 02)
2
as Xz (E1(p1) || E1(01))
= = 2 g, .
R oy - haEno)

Ny (€1 ® E,010 ®a2) >

Similarly, by choosing p12 = 01 ® p2 where py achieves the maximum in 7,2 (E2,09), we have
Mx2 (&1 ® &, 01®09) 2 % (€2,02). Therefore,

Nz (€1 ® E2,01 ® 03) > max (nxi (E1,01) 02 (£2,02)) .
In the below, we shall prove the other direction, i.e.,

e (61 ® E2,01 © 09) < max (nyz (£1,01) 12 (E2,02)) = M- (37)
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Notations:
Since we fix states oy, and channels &, for m = 1, 2 throughout this section, let us denote Y}, =

o
j=1

K
Em Om

for simplicity of notation. By Lemma 10, Y7, has an eigen-basis {V;*"} " associated

2
with eigenvalue {Gf’m}?gl with respect to the inner product (-,-),. such that

T (V) =07mveEm 1< <,

where V/"™ = 0y, 67" = 1 and V;*™ are Hermitian for all 1 < j < n7,, since from Lemma 9

m>

Tr are both Hermitian-preserving positive semidefinite operators. In addition, we know from
Lemma 10 (or say Lemma 9 (iv)) that for both m = 1,2,

9;”” < Uxi(gm’am) < M axs forany 2 < j < nfn

For convenience, let 0 = 01 @02 and £ = £ ®&; let Y™ = Tg . For any index pair J = (41, J2)s
define

K. 7Rl K2 k. pgrilpk,2
Vi =V, eV.", 05 :=0;70,".

J1
Case (I): For x = K ,2 and any quantum channel. From Lemma 7 part (ii), Q% tensorizes,
thus T = T§ ® T5. Next, we can straightforwardly verify that {Vy'}; (for J = (j1,7j2)) is
an orthonormal eigenbasis of T* with respect to the inner product (-, ~>Q§, and the associated
eigenvalues are {05};. The largest eigenvalue of T* on the domain span(c)™ = M . be-
comes maxy.(1,1){05} = NMhax- Therefore, by Lemma 10, we have n,2 (£,0) = maxy.1,1){05} =
max (ny2 (£1,01), 752 (E2,02)) . Thus we complete the proof of (37) for the case 1 o.

Case (II): For k > Ky and QC channels. Let us decompose A € HJ by A =5 ycsVy

ni1 Xng
where ¢y € R. From the constraint that Tr(A) = 0, we know c(;,1) = 0. Thus, we can rewrite A

by
A201®A2+A1®02+g, (38)

— K2,
A2 - Z C_]ij )

J: j1=1, 2<j2<n3

K,1,
> Vi’ (39)

J: 2<51<n?, ja=1
g = Z CJVJ.
J: j1#1, jo#l
To prove (37), by (23), it is equivalent to prove that for all A € H%lmz and A # 0, we have
(A, T5(A))qx
a7 < Mhax (40)
A A,

where

Ay

The next lemma shows that it is sufficient to consider A as A.
Lemma 15. If (40) holds for any A € H), @ HY , then (40) holds for any A € HY

ng? n1Xnz’

Notice that HY @ HS C HY ,,,. The proof of this lemma is postponed to the end of this
section and let us continue to complete the proof of Theorem 1. It is straightforward to verify that
when &; and & are QC channels, £ = & ® & is also a QC channel for the composite system. By

Lemma 14, for any A € H) ®HY , we have

<Av T (A)>Q; (2) <Av Yrz (A)>Q:1/2
<A7 A>Qg B <A7 A>Q;1/2

<, (Enonme  (€2,02)

< max ((nXiI/Q (&1, 01))2’ (nxil/z (&2, 02))2)
(28)

< max (Uxi (51701)7%& (&, 02)) = Nmax-
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The second inequality comes from the observation that Y*1/2 is a positive semidefinite operator
on the space HO ® HO with eigenvalues 9;1/ %; for j; # 1 and j3 # 1, recall from previous results

1 :
that 05'/° = 9;11/2 9;21/2 =, , (51,01)77Xi1/2 (&2,02). The last equation means (40) holds for

all Hermitian A € H) ® HY_  and by Lemma 15, (40) holds for all Hermitian A € H, . . This
completes the proof of Theorem 1.

Proof of Lemma 15. For any Hermitian A in (38), we claim that
(A, T(A)) s = (01 ® A2, T"(01 © A2)) g + (A1 © 02, T"(A1 @ 02)) s

+ <Z, T“(ﬁ)> (41

Q5

To prove this, we need to show that all cross product terms in the expansion of (A, T*(A))q.
vanish. For instance, consider any B € M,,, ® M,,,,

(B, Y"(01 ® Az)) s
2B, 00, 0 (0 ®A2)>HS

(18)

{
<B et ° Q) 81(01)®52(A2))>HS
=(B.2

(Hm ® Qo) OgQ(AQ))>Hs

- <B,]In1 (5* 0 O, (1) © 52(A2))>HS .

IfB=A;®0s 0or B= /1 by plugging the expression of Ay or A into the last equation and after
expanding all terms, it is straightforward to verify that (B, T" (01 ® A2))q. = 0 for both choices of
B. We can apply similar arguments to (B, T"(A4; ® 02))q. for B=0; ® Ay or B = A. Similarly,
we have (or let £ =7, ® Z,, in (41))

(A, A)gy = (01 ® Ag,01 ® Ag) g + (A1 ® 02, A1 @ 02)q + @ ﬁ>gg
(18><A2,A2>Q~ + <A1,A1>Q~ + <A A>m "
Let us simplify the term on the right hand side of (41). For instance,
(01 ® Az, T"(01 ® A2))

5 g1 ®A2 Qg(o) 05(01 ®A2)>HS

Iz

(e
2(£1(01) ® Ea(Az), Ty © 9y 0 Ea(A2))
(050500,
= (A2, T5(A2))qn

< 12 (€2, 02) <A2’A2>Q§2

< Max (A2, A2>952 :

Similarly,
<A1 & g2, TH(Al ® 02)>Q§ S nrl;ax <A17 A1>Qg

Therefore, we have

(A, T(A))or <Miax ((AQ, A2>Q;2 + (As, A1>Q;1) + <Z, T“(g)>m . (43)

o

Accepted in {Yuantum 2019-10-20, click title to verify. Published under CC-BY 4.0. 12



By comparing (42) and (43), to prove (40), it is sufficient to show

(A1), < (A4) (44)

Thus we complete the proof of Lemma 15.

4 Connection to the quantum maximal correlation

The SDPI constant for the classical 2 divergence is closely connected to the classical maximal
correlation (see e.g., [18, Theorem II1.2]). In the proposition below, we provide a quantum analog
of this relation when k = x13.

To begin with, we need to define the quantum maximal correlation. This concept was previously
proposed and studied in [2]. Since there is a whole family of quantum x?2 divergences, it is natural
to imagine that there could also exist a whole family of quantum maximal correlations, as a
straightforward generalization of [2].

Definition 16 (x-quantum maximal correlation). Consider any fixed x € K and Hilbert spaces
‘Hi and Hy with dimensions n; and ny respectively. For any bipartite quantum state p; 2 on the
composite system H; ® Ho, denote the reduced density matrices by p; and ps respectively (i.e.,
Tra(p1,2) = p1, Tr1(p1,2) = p2). Define the x-quantum maximal correlation p(p1.2) by

tir(p1,2) = max |Tr (p1 2F @ GT)| , (45)
where the maximum is taken over all F' € M,,,, G € M,,, such that

<Hn1ﬂF>U;§l = <Hn2ﬂG>U;2 =0, HF”U;1 = HG”Ug2 =1 (46)

Technically, when p; is not a full-rank density matrix, the notation (-,-);. should be under-
P

stood as a sesquilinear form, as we explained at the beginning of § 2 and the operator Uy, is still well-

defined on the support of p; via (20). By Lemma 8, we easily verify that (I,,,, F);. = Tr(p1F)
P1
and (I,,,,G);e = Tr(p2G). When k(x) =1 is a constant function, we recover the quantum maxi-
P2
@=1 _ L ; however, notice that this choice of « is
(z)=1

mal correlation defined in [2]; in this case, Uy

not included in the set /C and the corresponding operator Uy is not Hermitian-preserving.

Lemma 17 (Invariance of the x-quantum maximal correlation under local isometries). Suppose
U:Hy — Hy and V : Hy — Ha are two isometries (i.e., UTU = Igim(3,) and Vv = Tdim(242) )

where dim(H,) < dim(H;) and dim(Hy) < dim(Hy). For any bipartite quantum state py o on
H1 ® Ha, define pro:= (U V)p(U @ V). We have

1 (pr,2) = b (P12). (47)
Proof. By definition,
fir(p1,2) = max ‘TY (51,2 Fe éT))
F.G

= max ‘Tr (91,2 (UTFU) ® (VT(?TV))‘ = max |Tr (p12F ® GT)| ;
F.G F.G

where we define F := U'FU and G := VIGV. Denote the reduced density matrices of p; o as
p1 and pa respectively. Then the reduced density matrices of p1 o are given by p1 := Up U and

p2 := Vpo VT respectively. From (46), the condition in the maximization is given by

Tr (ﬁlﬁ) = Tv (,’62@) =0, Tr (ﬁ*zsgl (f«“)) " (CNJTUSQ (é)) =1
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By (20), it could be readily shown that U% () = (U#UT) o U% o (UT#U) and similarly for US ().
1 2
As a remark, in this case, p; and ps might not be strictly positive, then the decomposition in (20)

only considers eigenstates with respect to non-zero eigenvalues (i.e., U% is only defined on the
1

support of p1). Then, with direct calculation, one could verify that the above four conditions are
equivalent to

Tr (p1 F) = Tr (p2G) = 0, Tr (FT05, (F)) = Tr (GTU5,(G)) = 1.

Therefore, we know p.(p1,2) < pe(p1,2). Since F is a linear operator on a higher-dimensional
Hilbert space H; than F on H;, for any such F, there exists F such that UTFU = F (similarly
for G); therefore the equality can be achieved and g, (p1,2) = pw(p1,2)- O

Theorem 18. For a Hilbert space H with dimension n, suppose o € D} and £ is any quantum
channel on H such that the quantum state (o) € D;F. Thus, o has an eigenvalue decomposition
o =3 7_18jlsj) (s;|. For the choice k = 3,

nxil/z (€,0)= oy /o (p1,2)s (48)

where the bipartite quantum state p12 = (I, ® &) (|¢) (¥|) and the wave function |¢) is any
purification of o on the system H ® H.

Recall that a pure state [p) on H ® H is a purification of o if Try (|¢) (¥|) = o (see [23, Chap.
5]). The canonical choice of the purification |¢) of o is

[e) == /55 185,85 - (49)
j=1

Proof. In the first step, we prove it for the choice |1} = |¢.); in the second step, we extend the
result to the general purification.
Step (I). By Lemma 11, we have

)

Nz (€,0) = max ’<5 o I‘U(F),é>

’ = max
F.G HS F,G

’<C~;,€OFU(F)>

HS

where G := (FE(U))_l o U’E(U)(G). Let us decompose £ o I',(F') based on the eigenstates of o,

Eol,(F) = Z V/S5mS; (Sm| F'|s5) E(Ism) (s5])-

j,m=1

Hence,

e (€:0) = max| S /5w (sl Flss) (G E(sm) (s5]))

HS
7,m=1

inax | Y 5 {551 F o) (Gl (1))

HS
jym=1

= max |Tr (plgﬁ' ® éT>

)

where F = FT and the superscript 1" means transpose with respect to the eigenstates of o, i.e.,
(sj] F'|$m) 1= (Sm| F'|s;) for all 1 < j,m < n. The last equality above can be verified directly by
prz = (To @ E)(1) ().

Notice that from Lemma 11, the maximum is taken over all F, G given in (27). Hence, to prove
Theorem 18, it remains to verify that conditions (27) for F' and G are equivalent to conditions (46)
for F and G. More specifically, we need to verify the following four relations.
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(i) <LL7F>UK = <Hn,ﬁ>0 . Note that

<I[n,F>Ug =Tr(oF) = Z’sj (5] F'|sj) = Zsﬂ' <5j|ﬁ|sj> = Ti(oF) = <H"’ﬁ>zsn '

(i) [[Flly. = HﬁHU Note that

K 20 S5
P =T (P52 Y s () syl Lo

7m
54 - 2 4 Sm - 2
=S () sl s 2 X s (2 ) [t )
J,m m 7m J
Toek =2
=Tx ((F)'ws(F)) = |[F .
(i) (L, Gesy, | = <Hn,G> = Note that

(L.G), = (E0).T5,) 0 U5 (@), = (E0).C) g = 10,y -

. Note that
B¢y

() Gz, = €|

E(o)

]

ng = <é %) (é) >HS - <Fg(1g) 0 U (G), By 0 T5l 0 Ug(a)(G)>H
_ <G, (Tsl o U'g(a)>2 (G)>

When x = k1, Fg(la) o Ug(g) = 7,. Thus the relation holds for this special choice of k¥ and
this is the only place we employ this assumption.

S

O (o)

Step (II): We then extend the result from the canonical purification [i.) to any purification |¢))
on the bipartite quantum system H ® H. By [23, Theorem 5.1.1], there exists a unitary (thus
also isometry) U : H — H such that |[¢) = U ® I, |¢.). Hence, (Z,, ® E)(|¥) @]) = (U ®
I,) (Z, ® E)(|e) (¥e]) (U @ 1,)T. By Lemma 17, the conclusion follows immediately. O

5 SDPI constants for special qubit channels

In this section, we will illustrate the dependence of SDPI constants on the reference state
o and the weight function k, for several special qubit channels. The dependence on o is one
major difference between the quantum SDPI framework and the quantum contraction coefficient
approach. The dependence on x is one major difference between the quantum SDPI framework
and its classical version: all quantum x?2 divergences coincide for classical states p and o (i.e.,
p and o commute) and simply reduce to the classical x? divergence; in particular, classical x?
divergence, as well as the associated classical SDPI constant, does not depend on k; however, the
SDPI constant for quantum 2 divergences might fluctuate significantly between approximately 0
and 1 for various k, in a special example that we provide below.

Three Pauli matrices are denoted by ox,o0y,0z. Without loss of generality, assume o =
LIy + soz) = [F? (172)/2] with s € [0, 1), because one can always choose the eigenbasis of o
as the computational basis; of course, the matrix representation of the quantum channel is changed,
by choosing such a specific computational basis.
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5.1 QC channel
By the expression of QC channel (32) and by (36), we have for any A € H9 that

B} |Te(FA))° 2 1 1
<€(A)7Q£(o') >HS Z Tr(Fjo) = [Tr(F14)| Tr(Fio) + 1—Tr(Fo)) "

The second equality comes from the fact that Fy» = Iy — F; and Tr(A) = 0. Let us decompose

A =a,0x +ayoy + a0z and Fy = fols + foox + fyoy + f.0z; notice that all coeflicients for A

and Fj are real numbers. Next, rewrite the above equation by
B 4

s Tr(Fio) (1 —Tr(Fio))

(£(4), 9%, (E(A)) (frts + fyay + f-0:)°.

From (16), we also have

4 2
1_52 z)

1+s 2 1—s 2 n 4 1+s\»n 4 1—s
Cs =K +K = K = K . (50)
1—s/1—s 14+s/1+s 1—s 1—s 1+s 14+s

By the Cauchy-Schwarz inequality and the fact that 1 — s2 > 0 and ¢, > 0, we have

(4,97(4)) s = cslaf +a) +

where

2 2 2
(fﬂfa’x + fyay + fZa‘Z)Q < (fx + f7y + 4:/(1'}62_82)) <Cs(ai + a32/) + 1:4826@) .

S CS

Hence, we know that

_ 4 f2 f2
1 (60) = TR - o) ( e >> 6

_ 4 i 2
a (f0+sfz)(1_f0_3fz) ( Cs * Cs +4/(1—3 ))

As we can observe, the SDPI constant 7,2 (€,0) depends on k and the parameter s in a complicated
way; however, it does not depend on the choice of pure states in the post-measurement preparation
n (32). In the following, let us consider a few special choices of the POVM {Fy, 1, — F}.

(High dependence on o, for the quantum implementation of BSC)

It i, = [1 8 ¢ (j (thus Fy = [8 106}) with e € [0,1], then the channel £ is exactly a

quantum implementation of the binary symmetric channel with crossover probability € (or BSC(e)
in short). Easily, we know fy = %, f.= 1;26, fe = fy = 0 and thus the SDPI constant can be
simplified as

1—s2

M (€0) = (1- QG)QW S

(1 —2¢)2. (52)
Notice that the SDPI constant in this case is independent of the choice of k; the upper bound
comes from the fact that € € [0,1]. When we further let s = 0, i.e., the reference state o has the
distribution Bern(1), the SDPI constant achieves the upper bound (1 — 2¢)2, which recovers |18,
Example IIL.1]. In Figure 1, we show 7,2 (£,0) with respect to the parameter s in o, for fixed
€ = 0.05; the high dependence of 7,2 on s (i.e., on o) can be clearly seen, for this particular case.
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Figure 1: The SDPI constant 7,2 (€, o) with respect to s, for BSC(0.05).

08l S 081 — kWY
0.6 - Kmax 0.6 - Kmax
0.4 Al
0.2/\ 02}
02 04 os 08 TR R— 0s 10 15 20 °
(a) n,2 (€, 0) for the family of kq in (13). (b) ny2 (€, 0) for the family of kp P in (14).

Figure 2: The SDPI constant 7,2 (€,0) with respect to various choices of x for the QC channel £ with
Fir =3Iz +&ox), £ =0.95, and s = 0.95.

(High dependence on k).
If Fy = 1 (I + éox) with € € [-1,1], then fo = L, f, = § and f, = f. = 0. Hence,

462 ) (1 + )¢

2(E,0) = <& 53
,’7X,€( ) Cs H',( %;z) £ ( )
The inequality comes from the fact for any x € K, we have k(x) > Kmin(z) = 1%3 (see [8, Eq.

(11)]). As one could observe, even for this simple example, the dependence of 7,2 (€,0) on s
and k is nonlinear and slightly complicated. Similarly, by the fact that for any k € I, we have
K(2) < Kmax(®) = L2 (see [8, Eq. (11)]), one could immediately show that

M (£.0) > (1 )6 (54)

Notice that both upper and lower bounds in the above can be achieved for some x € K. When
s~ 1 and { = 1, the largest value of 7,2 (€, ) is approximately 1, while the smallest value is
approximately 0, which illustrates the high dependence of 7,2 (£,0) on the choice of «, for this
extreme case. In Figure 2, we visualize the SDPI constant 7,2 (£, o) with respect to various choices
of K, for £ = s = 0.95; the high dependence of 7,2 (£, o) on k can be clearly observed.

5.2 Depolarizing channel
The depolarizing channel on a qubit has the following form

I,

E(p) = ep+ (1 - ) Tr(p),

for € € [0, 1]. It refers to a physical process in which for a given input state p, one prepares p with

probability ¢ and prepares the maximal mixed state %2 with probability 1 — e. Easily, we know
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that £(0) = 2 + 50, and £(A) = €A for any A € HY. Hence,

<5(A)7 Qg(”)(g(A))>Hs _ 2 <A’ Qg(‘f)(A)>Hs @ 2 Tz @2 + Cse(al + aj)
(A, Q5(4) s (A, 95(A)) 1 L 02 + coa2 + a2)
o[ 1-s e — e

= 6
1 — s2€2 * 4 _az +c
1—s2 aiJra% s

2
If cse — 11:5735205 >0, then

K (%fzz) /(1 — se)
2(E,0) =225 = ¢2 .
e w(22) /01— 9)

For fixed s and €, 1,2 (€, 0) might be largely affected by » as well.

6 Conclusion and outlook

In this paper, we provide a partial solution to the problem of the tensorization of SDPIs for
quantum channels in Theorem 1. In addition, we extend the connection between the SDPI constant
for classical y? divergence and the maximal correlation to the quantum region in Theorem 18. For
a particular QC channel £ and a special quantum state o, we observe an extreme scenario, in
which the SDPI constant 7,2 (£,0) ranges approximately from 0 to 1 for different x € K. This
implies that choosing different x might largely affect the rate of contraction of quantum channels.
Our numerical experiments (not presented in the paper) conducted for both qubit (i.e., n = 2) and
qudit (with n = 3) systems show that the tensorization property (4) seems to hold for any quantum
channel £, any reference state ¢ € D and at least a few weight functions x being tested (e.g.,
RKmin = H%’ Kmax = 12'; L and the family k., with o = i and o = %) Proving such tensorization
properties is an interesting future work.

Finally, let us comment on the potential generalization of our approach, as well as the limita-
tion. As one might observe, provided that one could show (34), the tensorization of SDPIs is an
immediate consequence. However, it seems to be challenging to characterize the class of quantum
channels that satisfy (34) in general and this is the reason why we restrict to QC channels and
the case K > £y /o in Theorem 1. In terms of the validity of (34), we notice that when x < kq/9
(e.8., Kmin), (34) does not hold even for QC channels. As mentioned above, numerical experiments
seem to suggest that the tensorization also holds for k. Therefore, further understanding of the
properties of quantum 2 divergences is needed to extend our results.
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