
An Actor-Critic Reinforcement Learning Approach

for Energy Harvesting Communications Systems

Ala’eddin Masadeh, Zhengdao Wang, Ahmed E. Kamal

Iowa State University (ISU), Ames, IA 50011, USA,

emails: {amasadeh,zhengdao,kamal}@iastate.edu

(Invited Paper)

Abstract—Energy harvesting communications systems are able
to provide high quality communications services using green
energy sources. This paper presents an autonomous energy
harvesting communications system that is able to adapt to
any environment, and optimize its behavior with experience to
maximize the valuable received data. The considered system
is a point-to-point energy harvesting communications system
consisting of a source and a destination, and working in an
unknown and uncertain environment. The source is an energy
harvesting node capable of harvesting solar energy and storing
it in a finite capacity battery. Energy can be harvested, stored,
and used from continuous ranges of energy values. Channel
gains can take any value within a continuous range. Since exact
information about future channel gains and harvested energy is
unavailable, an architecture based on actor-critic reinforcement
learning is proposed to learn a close-to-optimal transmission
power allocation policy. The actor uses a stochastic parameterized
policy to select actions at states stochastically. The policy is
modeled by a normal distribution with a parameterized mean and
standard deviation. The actor uses policy gradient to optimize
the policy’s parameters. The critic uses a three layer neural
network to approximate the action-value function, and to evaluate
the optimized policy. Simulation results evaluate the proposed
architecture for actor-critic learning, and shows its ability to
improve its performance with experience.

Index Terms—Energy harvesting, Markov decision process,
actor-critic, reinforcement learning, neural networks.

I. INTRODUCTION

Recently, energy harvesting (EH) has been considered as

one of the promising technologies used to implement sus-

tainable wireless communications devices. EH is defined as

a technology converting ambient energy into usable electric

energy [1]. Some attractive properties of EH communications

are summarized as follows. The lifetimes of EH devices are

determined by their hardware lifetimes due to their ability

to recharge their batteries. In addition, the possibility of

deploying these devices in hard-to-reach places [2].

Implementing efficient EH communications networks

should consider the main challenges facing this type of net-

works, such as limited amount of energy that can be harvested,

and changing harvestable energy and channel gain with time.

To overcome such challenges, especially when the underlying

EH and channel gain processes change in unknown patterns,

autonomous EH devices can be deployed, which have the

capability of managing the use of harvested energy efficiently.

These devices are supported by algorithms enabling them to

adapt with any environment, and to improve their performance

with experience.

Implementing autonomous EH devices in environments with

unknown EH and channel gain processes has been discussed

in [3]–[9]. One of the promising approaches used in the

management of harvested energy autonomously is reinforce-

ment learning (RL). RL is known as algorithms enabling an

autonomous agent to optimize its performance in unknown

environments [10], [11]. RL methods can be categorized into

value-based RL methods and policy gradient RL methods.

Value-based RL is defined as methods learning a value func-

tion, and then, select actions according to the approximated

value function. Policy gradient RL is defined as methods

that learns a parameterized policy, which is able to select

actions without consulting a value function. Using this type

of learning, value functions may be used to learn the policy’s

parameters, but they are not needed for actions selection [10].

In [5], an EH point-to-point communications system is

investigated. The EH and channel gain processes are Markov

processes. Value-based RL is used to learn a transmission

power allocation policy that maximizes the valuable received

data (i.e., the data that can be utilized when it is received).

The values of actions (transmission power levels) are approxi-

mated using state-action-state-action-reward (SARSA) predic-

tion method. The approximated values of actions are used by

an exploration algorithm called convergence-based algorithm

to select actions at states.

In [6], an EH point-to-point communications system is

discussed. The energy and data arrivals are formulated as

Markov processes. Value-based RL is used to find the optimal

transmission policy that maximizes the expected total transmit-

ted data when the transmitter is active. Q-learning prediction

method is used to estimate the values of actions (to transmit

or to drop a packet). The ǫ-greedy exploration algorithm uses

the approximated values of actions to select actions at states.

In [7]–[9], value-based RL and policy gradient are combined

to implement what is called actor-critic RL. The actor uses a

stochastic policy to select actions at states, and uses policy

gradient to optimize the policy’s parameters to maximize a

performance measure. The critic approximates a value function

and evaluates the policy optimized by the actor. In [7], user

scheduling and resource allocation in heterogeneous networks

powered by hybrid energy is studied, where part of the used
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energy is harvested renewable energy and the other part is

from conventional resources. The goal is to maximize energy

efficiency of the overall network. The problem is formulated

as an RL problem with continuous state and action spaces.

An actor-critic algorithm is proposed to obtain the optimal

policy for the formulated problem. This algorithm assumes

that the state distribution function under a policy is known.

The actor uses policy gradient to optimize the policy, while

the critic uses linear feature-based function approximation to

approximate the action-value function.

In [8], the problem of energy management for EH wireless

sensor nodes is considered, and formulated as an RL problem

with continuous state and action spaces. An algorithm based

on actor-critic learning, called RLMan, is introduced. The

policy is modeled by a normal distribution with parameterized

mean and fixed standard deviation to select actions stochasti-

cally at states. The actor uses policy gradient to optimize the

policy’s parameters. The critic uses linear function approx-

imation to approximate the value function and evaluate the

optimized policy by the actor.

In this paper, we investigate the problem of maximizing the

valuable received data for a point-to-point EH communications

system working in unknown and uncertain environments. The

problem is formulated as an RL problem with continuous

state and action spaces. An architecture based on actor-critic

learning is proposed to optimize the performance of the

considered system without knowing the steady state distribu-

tion under a policy. The actor optimizes a stochastic policy

modeled by a normal distribution with parameterized mean

and standard deviation. The critic uses a three layer neural

network to approximate the action-value function and evaluate

the optimized policy.

The remainder of the paper is organized as follows. Sec-

tion II describes the proposed system. The problem formu-

lation is given in Section III. Then, the proposed solution

is discussed in Section IV. Numerical simulation results are

presented in Section V. Finally, the paper is concluded in

Section VI.

II. SYSTEM MODEL

A point-to-point EH communication system consisting of a

source (S) and a destination (D), and working in an uncertain

and unknown environment is investigated. As illustrated in

Fig. 1, each of S and D is capable of storing data in an infinite

buffer. S is an EH node that is able to harvest solar energy

and store it in a finite capacity battery. Time is slotted into

equal length slots, where each slot has a duration of Tc. The

maximum capacity of the used battery is Bmax J. Bi is the

battery level of S at the beginning of time slot i, where Bi ∈
B � [0, Bmax].

The EH and channel gain between slots are governed by

Markov processes. During time slot i, S is harvesting Ei J from

solar sources, where Ei ∈ En � [Emin, Emax]. fEn
(e′|e) is the

transition probability density function for transiting from en-

ergy level e to energy level e′. Let Hi be the channel gain from

S to D during time slot i, where Hi ∈ H � [Hmin, Hmax].

Battery

Bmax
Bi

Data BufferData Buffer

DS
P Tx
i

Ei

Hi

Fig. 1. Point-to-point communication system with an energy harvesting
source.

fH(h′|h) is the transition probability density function for

transiting from channel gain h to channel gain h′. The channel

gain at time i, Hi, is estimated using pilot signals known to

both S and D. By measuring the received pilot signals, the

channel gain can be estimated.

Let PTx
i be the transmission power during time slot i.

PTx
i ∈ PTx � [0, pTx

max
]. In this work, energy consumption

is considered only due to data transmission, and it does not

consider any other energy consumption, such as processing,

circuitry, etc. PTx
i is the decision variable that will be deter-

mined in order to maximize the amount of data transmitted

from S to D. This system uses harvest-store-use scheme to

manage the harvested energy [12], [13].

III. PROBLEM FORMULATION

Since the exact values of harvested energy levels and

channel gains are unknown in the future, the decision making

problem is formulated as a Markov decision process (MDP)

with continuous state and action spaces. The mathematical

model of an MDP with continuous state and action spaces

is defined by the following principles:

• A continuous set of states S .

• A continuous set of actions A.

• f(s′|s, a) is the transition probability density function

defining the transition from state s to state s′ given action

a is taken at state s.

• The immediate reward, r(s, a, s′), is attained by taking

action a at state s and then transiting to state s′.

• The discount factor γ.

The formulated MDP of our decision making problem is

described as follows. Each state s is defined by the battery

level b, channel gain h, and amount of harvested energy e,

where s = (b, h, e). The action a is the transmission power

pTx. Each state s has a subset of actions PTx
s such that PTx

s ⊆
PTx. Battery levels evolve according to

b′ = min{b+ e,Bmax} − Tc p
Tx. (1)

The transition probability density function f(s′|s, pTx) is

given by

f(s′|s, pTx) =

{

fEn
(e′|e) · fH(h′|h), if (1) is satisfied

0, otherwise
(2)
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where the channel gain and EH processes are independent.

The immediate reward, which is the amount of transmitted

data from S to R resulting from taking action pTx at state s

is given by

r(s, pTx) = Tc log2

(

1 +
pTx |h|2

σ2
n

)

. (3)

In this context, the immediate reward is a function of the

current state s and the selected action pTx only, and it is

independent of the next state s′.

A stochastic parameterized policy π(pTx|s,θ) maps states

to actions stochastically, where the goal is to find the opti-

mal policy’s parameter vector that maximizes a performance

measure J(θ).

IV. PROPOSED SOLUTION

Due to unavailability of the transition probability density

functions, and having a continuous state and action spaces,

RL is used. RL Methods used for learning an optimal policy

can be categorized into two classes, which are value-based

RL methods, and policy gradient RL methods. Value-based

RL methods learn the values of actions, and then, actions

are selected according to their estimated values (i.e., policies

are extracted from the estimated actions’ values). Value-based

methods use a sequence of policy evaluation and policy

improvement cycles. Policy evaluation is used to estimate a

value function for the agent’s current policy, while policy

improvement is used to improve the policy based on the new

estimated value function [10].

Policy gradient RL methods optimize the parameters of a

parameterized stochastic policy, which selects actions without

consulting a value function. Value functions may be used

to learn the policy’s parameters, but they are not needed

to select actions at states [10]. Policy gradient methods are

characterized by a number advantages, which are summarized

as follows. The first one is the ability to learn mixed strategies,

which are balanced stochastically. The second one is their

convergence properties, which are better than those of value-

based methods. They are able to converge to at least a local op-

timal policy. The third advantage is their capability of learning

in problems with continuous action spaces [14]. Actor-critic

methods are learning algorithms combining value-based and

policy gradient RL methods. Actor-critic algorithms mainly

consist of an actor and a critic. The actor estimates a value

function, while the critic optimizes the policy’s parameters.

Fig. 2 [15] shows the interaction between the actor and the

critic in the actor-critic architecture.

In this paper, we proposed an actor-critic algorithm to

maximize the valuable received data, and below, we describe

our proposed implementation of the critic and the actor phases.

A. Actor

In this context, the actor uses policy gradient to optimize

a parameterized stochastic policy π(pTx|s,θ). Policy gradient

aims at maximizing the average value of the states

Actor

Critic

r(s; a; s0)

Q(s; a)

a

Environment

s0

Fig. 2. Actor-critic architecture.

J(θ) =

∫

S

dπ(s)

∫

PTx

π(pTx|s,θ) qπ(s, p
Tx)dpTx ds. (4)

where transmitting data from S to D is a continuing task, dπ(s)
is the steady-state distribution of the underlying MDP using

the policy π(pTx|s,θ), and qπ(s, p
Tx) is the action-value of

state-action pair (s, pTx) under policy π(pTx|s,θ). Tasks can

be classified into to episodic tasks and continuing tasks. In

episodic tasks, the agent-environment interaction breaks into

subsequences called episodes, such as plays in a game. On

the other hand, continuing tasks refer to tasks where the

agent-environment interaction does not break into episodes

and continues without limit [10]. In continuing tasks, average

value of the states or the average reward per time-step are

used to evaluate stochastic parameterized policies when policy

gradient is used [10], [16]. The policy’s parameter vector θ is

updated according to

θ ← θ + β∇θJ(θ), (5)

where ∇θJ(θ) is the gradient of J(θ) with respect to θ, and

β is the learning rate.

One of the main challenges in finding ∇θJ(θ) is to ensure

improvement during changing θ, since changing θ will change

the policy and the states’ distribution at the same time. The

other challenge is that the effect of θ on the states’ distribution

is unknown. Policy gradient theorem provides an expression

for ∇θJ(θ) that does not involve the derivative of the states’

distribution with respect to θ [10]. According to this theorem,

for any differentiable policy, ∇θJ(θ) is approximated by [16]

∇θJ(θ) ≈ Eπ [∇θ ln(π(pTx|s,θ))Q(s, pTx,w)], (6)

where Q(s, pTx,w) is the approximated action-value function

by the critic.

Due to the difficulty of finding ∇θJ(θ), the stochastic

estimate ∇̂θJ(θ) that approximates ∇θJ(θ) is used [10], [16],

and θ is updated according to

θ ← θ + β∇̂θJ(θ), (7)
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where
∇̂θJ(θ) = ∇θ ln(π(pTx|s,θ))Q(s, pTx,w). (8)

In this work, the parameterized policy π(pTx|s,θ) is

modeled by a normal distribution with parameterized mean

μ(s,θμ) and standard deviation σ(s,θσ). π(p
Tx|s,θ) is given

by

π(pTx|s,θ) =
1

√

2 ∗ π ∗ (σ(s,θσ))2
exp

(

−
(Tc p

Tx − μ(s,θμ))2

2 ∗ (σ(s,θσ))2

)

,

(9)

where θ = [θμ,θσ]
⊤, and π is the number π ≈ 3.14159.

The mean μ(s,θμ) should be within the range of minimum

and maximum values at each state. Due to this constraint, the

hyperbolic tangent function, which restricts the output between

-1 and 1, is used to model the parameterized mean

μ(s,θμ) = [μmax(s)−μmin(s)]

(

1 + tanh(θ⊺

μ φ(s))

2

)

+μmin(s), (10)

where μmax(s) = b is the maximum value that can be assigned

to the mean at state s, which is the current battery level,

μmin(s) = 0 is the minimum value that can be assigned to

the mean at state s, and φ(s) is a vector of features at state

s. φ(s) is a vector of two binary feature functions. The first

feature is related to energy availability at state s. It is set to

one if the available energy is more than zero; otherwise it is

set to zero. The second feature function is related to energy

overflow at state s. If the current energy level is the maximum

capacity of the battery, it is set to one, otherwise, it is set to

zero.

The standard deviation should be positive, so, it is modeled

by an exponential with a linear exponent [10]

σ(s,θσ) = exp(θ⊺

σ φ(s)). (11)

θ is updated according to

θμ ← θμ + β[∇θμ
ln(π(pTx|s,θ))Q(s, pTx,w)], (12)

θσ ← θσ + β[∇θσ
ln(π(pTx|s,θ))Q(s, pTx,w)], (13)

which can be rewritten as

θμ ← θμ + β

[(

(Tc p
Tx − μ(s,θμ))

σ(s,θσ)
2

∇θμ
μ(s,θμ)

)

· Q(s, pTx,w)

]

,

(14)

θσ ← θσ + β

[((

(Tc p
Tx − μ(s,θμ))2

σ(s,θσ)
3

− σ(s,θσ)
−1

)

∇θσ
σ(s,θσ)

)

·

Q(s, pTx,w)

]

,

(15)

where

∇θμ
μ(s,θμ) =

(

μmax(s)− μmin(s)

2

)

[1− tanh2(θ⊺

μ φ(s))]φ(s),

(16)

and

∇θσ
σ(s,θσ) = exp(θ⊺

σ φ(s))φ(s). (17)

B. Critic

The critic part of RL agent is used to approximate the

action-value function and evaluate the policy optimized by

the actor. A neural network of three layers is used to

approximate the action-value function, which is given by

Q(s, pTx,w), where w is the weight vector used by the neural

network. Backpropagation is used to minimize the squared

temporal-difference (TD) error, r(s, pTx)+γ Q(s′, pTx′

,w)−
Q(s, pTx,w), which is the difference between the target

r(s, pTx) + γ Q(s′, pTx′

,w) and the old estimate Q(s, pTx).

V. SIMULATION RESULTS

In this section, the proposed algorithm is evaluated. In the

numerical analysis, it is assumed that each time slot is 1 second

in duration. The available bandwidth BW is 1 MHz, and the

noise spectral density is N0 = 4× 10−21 W/Hz.

It is also assumed that the S is equipped with a solar panel

with an area of 25 cm2 and 10% harvesting efficiency. An

outdoor solar panel can get the benefit of 100 mW/cm2 solar

irradiance under standard conditions, and harvesting efficiency

between 5% and 30%, depending on the material used in

manufacturing the panel [17].

The used parameters are as follows. The discount factor γ

is set to 0.9, and the learning rate β is selected to be 0.0002.

The used battery has a maximum capacity of 3 J. All results

are averaged over 300 runs. The starting state is selected

randomly using a uniform distribution. The EH and channel

gain processes are Markov processes. Ei ∈ En � [0, 0.25]
J is a continuous random variable with a normal distribution

fEn
with standard deviation 0.1 and mean equals to Ei−1.

Hi ∈ H � [0.1, 1] is a continuous random variable with a

normal distribution fH with standard deviation 0.1 and mean

equals to Hi−1.

A. The cumulative discounted return for actor-critic versus

hasty

In this experiment, the implemented actor-critic is compared

with the hasty policy. The proposed actor-critic model uses a

critic that is implemented from a 3 layer neural network. The

first and second layers have 10 and 5 neurons respectively,

with ReLU activation function. The third layer has one linear

neuron. Using hasty policy, all available energy is allocated for

data transmission each time, regardless of previous experience

(i.e., using a greedy approach). The goal is to avoid energy

overflow situations [3].

Fig. 3 shows the discounted return Gt (i.e., the cumulative

discounted received data starting from time t). The cumulative

discounted received data refers to the amount of valuable data

received within a given period of time. The discounted return

Gt of the hasty algorithm takes a near-constant shape all the

time, since this algorithm uses one policy all the time, and

the discount factor γ which restricts the discounted return to

a certain value. For the actor-critic, it starts from a random

policy. At the beginning, its discounted return increases sig-

nificantly with experience. As time increases, the discounted

return starts taking a near-constant pattern, which is due to
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Fig. 3. The cumulative discounted return Gt versus t.

learning a suboptimal policy that can not be further improved,

and the discount factor γ that restricts the discounted return

to a particular value.

B. The effect of the approximated value function on the

cumulative discounted return

In this part, different architectures of the neural network

used by the critic are considered. The goal is to investigate

the effect of the approximated action-value function on the

cumulative discounted return. The considered architectures of

the neural network are, three layer neural network with 3 and 2

neurons at the first and second layers, respectively, three layer

network with 5 and 3 neurons at the first and second layers,

respectively, and three layer network with 10 and 5 neurons

at the first and second layers, respectively. The neurons in

the first and second layers are neurons with ReLU activation

function, while the neuron at the third layer is a neuron with

a linear activation function.

Fig. 4 shows the performance of the considered architec-

tures, which depends on their accuracy in approximating the

action-value function. As the accuracy of the estimated action-

value function increases, the actor will be able to optimize its

policy more precisely in a direction that maximizes the cumu-

lative discounted return. The best performance is achieved by

a three layer neural network with 10 and 5 neurons at the first

and second layers, respectively. This figure also shows that

the performance of the other two neural networks degrades

over time. As time increases, the numbers of visited states

and selected actions increase, which increases the complexity

of the action-value function to be approximated. Increasing

number of neurons in the first and second layers handles

the problem of increasing the complexity of the action-value

function, and improves the accuracy of the approximated

function.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
200
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240

260
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320

340
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3 layer network - 10-5-1

Fig. 4. The cumulative discounted return Gt versus t.

C. Solar cell efficiency

In this experiment, some semiconductors used in manu-

facturing solar cells [18] are evaluated using our proposed

algorithm, and compared with the theoretical upper bound

(100% harvesting efficiency). The following results are for

singlejunction cells, where the efficiencies are measured for

(100 mW/cm2) solar irradiance at 25◦C. The considered

materials are silicon (Si) (thin film minimodule) with 10.5±
0.3% efficiency, gallium arsenide (GaAs) (thin film cell)

with 28.8 ± 0.9% efficiency, and cadmium telluride (CdTe)

(cell) with 21.0 ± 0.4% efficiency. The critic uses a 3 layer

neural network to approximate the action-value function. The

numbers of neurons in the first and second layers are 10 and

5, respectively, with ReLU activation function. The third layer

has one linear neuron.

0 2000 4000 6000 8000 10000 12000 14000
200

250

300

350

400

450

Theoretical upper bound (100% harvesting efficiency)

GaAs (thin film cell)

CdTe (cell)

Si (thin film minimodule)

Fig. 5. The cumulative discounted return Gt versus t.

Fig. 5 shows the effect of the material used in manufacturing
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solar cells. The performance patterns of all considered mate-

rials are improved with experience, and then, they become

nearly constant. This is due to learning policies that cannot

be further improved, and the discount factor that restricts the

returns of different materials to certain values. As expected,

GaAs (thin film cell) has the best performance compared with

the other two materials.

As shown, increasing the harvesting efficiency increases the

transmission power, which increases the discounted return. As

the experience increases and the policies are optimized, the

effect of increasing the harvesting efficiency on the discounted

return gets smaller. At the beginning of learning, the used

policies are random and the data transmission occurs randomly

regardless of the channel states, which might be bad. As the

experience increases, good channel states are learned. Using

random policies, the data is transmitted at relatively low SNRs

compared with the learned policies. The effect of increasing

the transmission power at low SNRs is more significant

compared with the effect of increasing the transmission power

using the same values at high SNRs, which explains the

reduction of the harvesting efficiency effect on the discounted

return as the experience increases.

VI. CONCLUSIONS

In this work, a point-to-point EH communications system

is investigated. This system consists of a source and a desti-

nation. The source is capable of harvesting solar energy and

storing it in a finite capacity battery. The EH and channel

gain processes are Markov processes with continuous spaces.

The agent-environment interaction is modeled by an MDP

with continuous state and action spaces. Actor-critic was used

to optimize the performance of the considered system. The

critic used a neural network of three layers to approximate

the action-value function and evaluate the policy optimized

by actor. The actor used a parameterized stochastic policy to

map states to actions stochastically. The policy is modeled by

a normal distribution with parameterized mean and standard

deviation. The mean is modeled by the hyperbolic tangent

function to restrict the mean by available actions at each

state. The standard deviation is modeled by an exponential

function with a linear exponent to guarantee positive values for

the standard deviation. Policy gradient was used to optimize

the policy’s parameters to maximize the system throughput.

The system performance was compared to hasty algorithm,

where the results showed the ability of actor-critic learning

to improve the performance of EH communications systems

with experience, when these systems work in unknown and

uncertain environments, and the state and action spaces are

continuous. Then, the system performance was evaluated using

different neural networks, and different materials used in

manufacturing solar cells. Due to dealing with continuous state

and action spaces, the probability of visiting new states and

selecting new actions increases over time, which increases the

complexity of the action-value function to be approximated.

It was noticed that increasing the number of used neurons

in the neural network handles the problem of increasing the

complexity of the action-value function.
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