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Abstract
We construct bounded linear operators that map H1 conforming Lagrange finite ele-
ment spaces to H2 conforming virtual element spaces in two and three dimensions.
These operators are useful for the analysis of nonstandard finite element methods.

Keywords Virtual elements · Fourth order elliptic boundary value problems ·
Enriching operator
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1 Introduction

LetΩ ∈ R
d (d = 2, 3) be a bounded polygonal/polyhedral domain, Th be a simplicial

triangulation of Ω and Vh ⊂ H1(Ω) be the Lagrange Pk finite element space [9,15]
with k ≥ 3. The mesh dependent semi-norm ‖ · ‖h is defined by

‖v‖2h = ‖D2
hv‖2L2(Ω) + J (v, v) ∀ v ∈ Vh, (1.1)

where D2
hv is the piecewise Hessian of v with respect to Th , and

J (w, v) =
∑

e∈E i
h

h−1
e

∫

e
[[∂w/∂n]][[∂v/∂n]]ds for d = 2, (1.2)
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J (w, v) =
∑

F∈F i
h

h−1
F

∫

F
[[∂w/∂n]][[∂v/∂n]]dS for d = 3. (1.3)

Here E i
h (resp., F i

h) is the set of interior edges (resp., faces) of Th , he (resp., hF ) is the
diameter of the edge e (resp., face F), [[∂v/∂n]] is the jump of the normal derivative
across an edge e (resp., face F), and ds (resp., dS) is the infinitesimal length (resp.,
area).

Our goal is to construct a linear operator Eh : Vh −→ H2(Ω) such that

‖v − Ehv‖h ≤ C�

√
J (v, v) ∀ v ∈ Vh, (1.4)

2∑

�=0

h�|ζ − EhΠhζ |H�(Ω) ≤ C�h
k+1|ζ |Hk+1(Ω) ∀ ζ ∈ Hk+1(Ω), (1.5)

where Πh : C(Ω̄) −→ Vh is the Lagrange nodal interpolation operator, and the
positive constantsC� andC� only dependon the shape regularity ofTh and k.Moreover,
the operator Eh maps Vh ∩ H1

0 (Ω) into H2(Ω) ∩ H1
0 (Ω).

Remark 1.1 Throughout the paper we will follow the standard notation for differential
operators, functions spaces and norms that can be found for example in [1,9,15].

Enriching operators that satisfy (1.4) and (1.5) are useful for a priori and a posteriori
error analyses for fourth order elliptic problems [6–8,10,19], and they also play an
important role in fast solvers for fourth order problems [4,5,11]. A recent application
to Hamilton–Jacobi–Bellman equations can be found in [23].

In the two dimensional case, one can construct Eh through the C1 macro finite
elements in [14,16,17,24,25]. This was carried out in [8] for the quadratic element
and in [19] for higher order elements. However macro elements of order higher than 3
are not available in three dimensions and therefore this approach can only be carried
out for quadratic and cubic Lagrange elements (cf. [23]) using the three dimensional
cubic Clough–Tocher macro element from [27].

We take a different approach in this paper by connecting the k-th order Lagrange
finite element space to a k-th order H2 conforming virtual element space. In two
dimensions such spaces are already in the literature [12,13], and we will develop a
version of three dimensional H2 conforming virtual element spaces that are sufficient
for the construction of Eh .

Remark 1.2 The assumption that the order of the Lagrange finite element space is at
least 3 allows a uniform construction of Eh . For the quadratic Lagrange finite element
space we can simply take Eh to be the restriction of the cubic enriching operator.

The rest of the paper is organized as follows. The construction of Eh in two dimen-
sions is carried out in Sect. 2, followed by the construction in three dimensions in
Sect. 3 and some concluding remarks in Sect. 4. Appendix A contains some technical
results concerning inverse trace theorems that are needed for the construction of H2

conforming virtual elements.
A list of notations and conventions thatwill be used throughout the paper is provided

here for convenience.
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– A polygon/polyhedron is an open subset in R
2/R3, an edge of a poly-

gon/polyhedron does not include the endpoints and a face of a polyhedron does not
include the vertices and edges. These conventions apply in particular to triangles
and tetrahedra.

– Let G be an open line segment, a triangle or a tetrahedron, and k be an integer.
Pk(G) is the space of polynomials of total degree ≤ k restricted to G if k ≥ 0
and Pk(G) = {0} if k < 0. We say that two functions u and v defined on G have
identical moments up to order � if the integral of (u − v)q on G vanishes for
all q ∈ P�(G). The orthogonal projection from L2(G) onto Pk(G) is denoted by
QG,k .

– Vh is the set of all the vertices of the triangles/tetrahedra in Th , V i
h is the set of

vertices in Ω and Vb
h is the set of vertices on ∂Ω .

– Eh is the set of all the edges of the triangles/tetrahedra in Th , E i
h is the set of edges

in Ω and Eb
h is the set of edges that are subsets of ∂Ω .

– Fh is the set of all the faces of the tetrahedra in Th , F i
h is the set of faces in Ω and

Fb
h is the set of faces that are subsets of ∂Ω .

– Tp is the set of all the triangles/tetrahedra in Th that share p as a common vertex.
– Te is the set of all the triangles/tetrahedra in Th that share e as a common edge.
– TF is the set of all the tetrahedra in Th that share F as a common face.
– Fe is the set of the faces of the tetrahedra in Th that share e as a common edge.
– If v is a function defined on a triangle/tetrahedron, then ve (resp., vF ) is the restric-
tion of v to an edge e (resp., a face F).

– If v is a function defined on a triangle/tetrahedron, then ∂v/∂n denotes the outward
normal derivative of v along ∂T . In the case of a triangle (resp. tetrahedron), ∂v/∂n
is double-valued at the vertices (resp., edges) of T .

– If e is an edge of the triangle T , then ne,T is the unit vector orthogonal to e and
pointing towards the outside of T . If e is an edge of a face F of a tetrahedron T ,
then ne,F is the unit vector tangential to F , orthogonal to e and pointing towards
the outside of F .

– If F is a face of the tetrahedron T , then nF,T is the unit vector orthogonal to F and
pointing towards the outside of T .

2 The two dimensional case

The construction of Eh is based on the characterizations of trace spaces associated
with a triangle and the construction of polynomial data on the skeleton of Th that
satisfy these characterizations on all the triangles of Th .

2.1 Trace spaces for a triangle

Let T be a triangle with vertices p1, p2 and p3, ei be the edge of T opposite pi , ni
be the unit outer normal along ei , and t i be the counterclockwise unit tangent of ei .
Let � be a nonnegative number. A function u belongs to the piecewise Sobolev space
H �(∂T ) (resp., piecewise polynomial space P�(∂T )) if and only if ui , the restriction
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of u to ei , belongs to H �(ei ) (resp., P�(ei )) for 1 ≤ i ≤ 3. It follows from the
Sobolev Embedding Theorem [1, Theorem 4.12] that we can define a linear operator

Tr : H2(T ) −→ H
3
2 (∂T ) × H

1
2 (∂T ) by

Tr ζ = (ζ, ∂ζ/∂n)
∣∣
∂T , (2.1)

where the restrictions of ζ and ∂ζ/∂n are in the sense of trace and defined piecewise

with respect to the edges. For the subspace H
5
2 (T ) of H2(T ), we have Tr H

5
2 (T ) ⊂

H2(∂T ) × H1(∂T ). Our first task is to identify the image of H
5
2 (T ).

Definition 2.1 A pair of functions ( f , g) ∈ H2(∂T ) × H1(∂T ) belongs to the space
(H2 × H1)(∂T ) if and only if the following conditions are satisfied:

f j (pi ) = fk(pi ) for 1 ≤ i ≤ 3 and j, k ∈ {1, 2, 3}\{i}, (2.2)

and there exist w1,w2,w3 ∈ R
2 (which depend on ( f , g)) such that

(∂ f j/∂t j )(pi ) = wi · t j for 1 ≤ i ≤ 3 and j ∈ {1, 2, 3}\{i}, (2.3)

g j (pi ) = wi · n j for 1 ≤ i ≤ 3 and j ∈ {1, 2, 3}\{i}. (2.4)

Note that the compatibility conditions (2.3)–(2.4) are equivalent to

(∂ f j/∂t j )t j + g jn j = (∂ fk/∂tk)tk + gknk at pi (2.5)

for 1 ≤ i ≤ 3 and j, k ∈ {1, 2, 3}\{i}.
It follows from the Sobolev Embedding Theorem that Tr ζ ∈ (H2 × H1)(∂T ) for

ζ ∈ H
5
2 (T ), where wi = ∇ζ(pi ), and we can recover ∇ζ on ∂T from ( f , g) = Tr ζ

by
∇ζ = (∂ fi/∂ti )t i + gini on ei for 1 ≤ i ≤ 3. (2.6)

We want to show that in fact Tr H
5
2 (T ) = (H2 × H1)(∂T ). For this purpose it is

useful to construct a linear isomorphism

Φ∗ : (H2 × H1)(∂T ) −→ (H2 × H1)(∂ T̃ )

such that
Tr (ζ ◦ Φ) = Φ∗(Tr ζ ) ∀ ζ ∈ H

5
2 (T ), (2.7)

where Φ is an orientation preserving affine transformation that maps the triangle T̃
onto T . We assume that Φ maps the vertex p̃i of T̃ to the vertex pi of T and hence it
also maps the edge ẽi of T̃ to the edge ei of T .

First we note that, by the chain rule,

∇(ζ ◦ Φ) = J tΦ(∇ζ ◦ Φ) ∀ ζ ∈ H
5
2 (T ), (2.8)

where JΦ (a constant 2 × 2 matrix with a positive determinant) is the Jacobian of Φ.
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Let ( f , g) ∈ (H2 × H1)(∂T ). Motivated by (2.6)–(2.8), we define Φ∗( f , g) =
( f̃ , g̃), where

f̃ = f ◦ Φ, (2.9)

and
g̃ = J tΦ(g ◦ Φ) · ñi on ẽi for 1 ≤ i ≤ 3, (2.10)

where ñi is the outward pointing unit normal along the edge ẽi and the vector field g
on ∂T is given by

g = (∂ fi/∂ti )t i + gini on ei for 1 ≤ i ≤ 3. (2.11)

It is straightforward to check that ( f̃ , g̃) ∈ (H2 × H1)(∂ T̃ ), Φ∗ : (H2 ×
H1)(∂T ) −→ (H2 × H1)(∂ T̃ ) is a bijection, and that (2.7) follows from (2.6) and
(2.8)–(2.11).

We are now ready to characterize Tr H
5
2 (T ).

Lemma 2.1 The image of H
5
2 (T ) under Tr is the space (H2 × H1)(∂T ).

Proof We already know that Tr H
5
2 (T ) ⊂ (H2 × H1)(∂T ). In the other direction, we

want to construct ζ ∈ H
5
2 (T ) that satisfies (2.1) for a given ( f , g) ∈ (H2×H1)(∂T ).

If the functions f and g vanish near the vertices, we can use the operator L1
in Lemma A.1 and cut-off functions to obtain ζ . Therefore, by using a partition of
unity, we can reduce the construction to a neighborhood of a vertex and, by an affine
transformation [cf. (2.7)], we can further assume that the angle at the vertex is a right
angle. The existence of ζ near such a vertex then follows from Lemma A.3. 
�

2.2 Affine invariant H2 virtual element spaces

The construction of the virtual element spaces involves polynomial subspaces of (H2×
H1)(∂T ).

Definition 2.2 Let T be a triangle. We will denote the intersection of (H2 × H1)(∂T )

and Pk(∂T ) × Pk−1(∂T ) by (H2 × H1)k,k−1(∂T ).

Remark 2.1 It follows from the compatibility conditions (2.2)–(2.4) that the function
pair ( f , g) ∈ (H2×H1)k,k−1(∂T ) is determined by (i) the values of f at the vertices,
(ii) the tangential derivatives of f at the vertices, (iii) moments of f on ei up to order
k − 4 that together with (i) and (ii) determine fi ∈ Pk(ei ), and (iv) moments of g up
to order k − 3 that together with (ii) [through (2.4)] determine gi ∈ Pk−1(ei ). These
degrees of freedom (dofs) are depicted in Fig. 1 for k = 3 and 4, where (i) the values of
f at the vertices and the moments of f on the edges are represented by solid dots, and
(ii) the tangential derivatives of f at the vertices and the moments of g on the edges
are represented by arrows. Altogether we have dim(H2 × H1)k,k−1(∂T ) = 6(k − 1).

Remark 2.2 Since polynomial spaces are preserved by an affine transformation, the
map Φ∗ : (H2 × H1)(∂T ) −→ (H2 × H1)(∂ T̃ ) defined by (2.9)–(2.10) maps
(H2 × H1)k,k−1(∂T ) one-to-one and onto (H2 × H1)k,k−1(∂ T̃ ).
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Fig. 1 Degrees of freedom for (H2 × H1)3,2(∂T ) and (H2 × H1)4,3(∂T )

2.2.1 Virtual element spaces on the reference triangle

We begin with a simple well-posedness result for the biharmonic problem.

Lemma 2.2 Given any ( f , g) ∈ (H2×H1)(∂T ) and ρ ∈ L2(T ), there exists a unique
ξ ∈ H2(T ) such that

(Δξ,Δz)L2(T ) = (ρ, z)L2(T ) ∀ z ∈ H2
0 (T ) and Tr ξ = ( f , g). (2.12)

Proof Let ζ ∈ H
5
2 (T ) satisfy (2.1) and η ∈ H2

0 (T ) be defined by

(Δη,Δz)L2(T ) = (ρ − Δζ, z)L2(T ) ∀ z ∈ H2
0 (T ).

Then ξ = η + ζ is the unique solution of (2.6). 
�
Let T̂ be the reference triangle with vertices (0, 0), (1, 0) and (0, 1). In view of
Lemma 2.2 and the fact that (H2 × H1)k,k−1(∂ T̂ ) is a subspace of (H2 × H1)(∂ T̂ ),
we can now define the reference virtual element spaces V k(T̂ ), which are identical to
the virtual element spaces in [12] for the special case of the reference triangle.

Definition 2.3 A function ξ̂ ∈ H2(T̂ ) belongs to the virtual element space V k(T̂ ) if
and only if Tr ξ̂ ∈ (H2 × H1)k,k−1(∂ T̂ ) and the distributional derivative Δ2ξ̂ belongs
to Pk−4(T̂ ), i.e., there exists ρ̂ ∈ Pk−4(T̂ ) such that

(Δξ̂ ,Δẑ)L2(T̂ )
= (ρ̂, ẑ)L2(T̂ )

∀ ẑ ∈ H2
0 (T̂ ). (2.13)

Remark 2.3 According to Remark 2.1 and Lemma 2.2, we have

dim V k(T̂ ) = dim (H2 × H1)k,k−1(∂ T̂ ) + dim Pk−4(T̂ ) = k2 + 7k − 6

2
. (2.14)

The following result is well-known (cf. [12]). We provide a proof here for self-
containedness.

Lemma 2.3 A function ξ̂ in V k(T̂ ) is uniquely determined by Tr ξ̂ ∈ (H2 ×
H1)k,k−1(∂ T̂ ) and QT̂ ,k−4ξ̂ ∈ Pk−4(T̂ ).
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Proof In view of Remark 2.3, it suffices to show that ξ̂ = 0 is the only function
in V k(T̂ ) with the properties that Tr ξ̂ = (0, 0) and QT̂ ,k−4ξ̂ = 0. Indeed, using

integration by parts and the fact that the distributional derivative Δ2ξ̂ ∈ Pk−4(T̂ ), we
have

(Δξ̂ ,Δξ̂)L2(T̂ )
= (Δ2ξ̂ , ξ̂ )L2(T̂ )

= 0.

Therefore ξ̂ ∈ H2(T̂ ) is a harmonic function that vanishes on ∂ T̂ and hence ξ̂ = 0. 
�

Remark 2.4 The definition of the virtual element space V k(T̂ ) relies on the fact that

(H2 × H1)k,k−1(∂ T̂ ) is a subspace of Tr H
5
2 (T̂ ) ⊂ Tr H2(T̂ ). One can show by

using macro elements of order k that a pair ( f̂ , ĝ) ∈ Pk(∂ T̂ ) × Pk−1(∂ T̂ ) satisfying
the compatibility conditions (2.2)–(2.4) automatically belongs to Tr H2(T̂ ). Hence
Lemma2.1 is not necessary for the definition of the virtual element spaceV k(T̂ ) in two
dimensions. However, the definition of the virtual element spaces in three dimensions

requires the characterization of the trace of H
5
2 (T̂ ) for the reference tetrahedron T̂ ,

since macro elements of arbitrary order are not available. The approach here provides
a preview of the three dimensional case.

2.2.2 Virtual element spaces for a general triangle

We now define V k(T ) for an arbitrary triangle T in terms of V k(T̂ ).

Definition 2.4 Let T be an arbitrary triangle and Φ be an orientation preserving affine
transformation that maps T̂ onto T . Then ξ ∈ V k(T ) if and only if ξ ◦ Φ ∈ V k(T̂ ).

Remark 2.5 ThedefinitionofV k(T ) is independent of the choice ofΦ. Thepolynomial
space Pk(T ) is a subspace of V k(T ) since Pk(T̂ ) is obviously a subspace of V k(T̂ ).
The dimension of V k(T ) is also given by the formula in (2.14).

We have an analog of Lemma 2.3.

Lemma 2.4 A function ξ in V k(T ) is uniquely determined by Tr ξ ∈ (H2 ×
H1)k,k−1(∂T ) and QT ,k−4ξ ∈ Pk−4(T ).

Proof This is a direct consequence of (2.7), Remark 2.2, Lemma 2.3 and the relation
QT̂ ,k−4(ξ ◦ Φ) = (QT ,k−4ξ) ◦ Φ. 
�

Remark 2.6 Our definition of V k(T ), which is invariant under affine transformations,
differs from the one in [12] for a general triangle. The affine invariance simplifies the
proofs of (1.4) and (1.5) in Sect. 2.4. We note that it is also possible to use the virtual
finite element spaces from [12] in the construction of Eh . But then the proofs of (1.4)
and (1.5) will become more involved.

Remark 2.7 The definition of H2 virtual element spaces on polygons and their appli-
cations to the plate bending problem can be found in [12,13].
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2.3 Construction on the skeleton
⋃

T∈Th
@T

Given v ∈ Vh , our goal is to define fv,T representing (the desired) Ehv
∣∣
∂T and gv,T

representing (the desired) (∂Ehv/∂n)
∣∣
∂T for all T ∈ Th , such that

( fv,T , gv,T ) ∈ (H2 × H1)k,k−1(∂T ) for all T ∈ Th, (2.15)

and the following conditions are satisfied:

if T1, T2 ∈ Tp (resp., T1, T2 ∈ Te),
then fv,T1(p) = fv,T2(p) (resp., fv,T1 = fv,T2 on e), (2.16)

if two distinct T1 and T2 belong to Te, then gv,T1 + gv,T2 = 0 on e, (2.17)

if e ∈ Eb
h is an edge of T and v ∈ H1

0 (Ω), then fv,T = 0 on e. (2.18)

Note that (2.16) and (2.17) imply any piecewise H2 function ξ satisfying
(ξT , ∂ξT /∂n)

∣∣
∂T = ( fv,T , gv,T ) for all T ∈ Th will belong to H2(Ω), and (2.18)

implies that ξ ∈ H2(Ω) ∩ H1
0 (Ω) if v ∈ H1

0 (Ω).

2.3.1 Construction at the vertices

In view of the compatibility conditions (2.3) and (2.4), we need to define vectors
w p ∈ R

2 associated with the vertices p of Th . There are three cases: (i) p is an interior
vertex, (ii) p is boundary vertex that is not a corner of Ω and (iii) p is a corner of Ω .
Case (i) For an interior vertex p, we define w p to be ∇vT , where T is any triangle in
Tp.
Case (ii) For a boundary vertex p that is not a corner of Ω , we define w p to be ∇vT ,
where T is one of the triangles in Tp that has an edge on ∂Ω . This choice ensures that
w p · t = 0 if v ∈ H1

0 (Ω), where t is any vector tangential to ∂Ω at p.
Case (iii) At a corner p of Ω , we define w p by

w p · t i = (∂v/∂ti )(p) for i = 1, 2, (2.19)

where e1, e2 ∈ Eb
h are the two edges emanating from p and ∂/∂ti is the derivative

in the direction of the unit tangent t i of ei . Note that w p = 0 at a corner p of Ω if
v ∈ H1

0 (Ω).

The choices of the triangles and tangent vectors in Case (i)–Case (iii) are illustrated
in Fig. 2.

Remark 2.8 If the condition

∇vT1(p) = ∇vT2(p) ∀ T1, T2 ∈ Tp (2.20)

is satisfied at a vertex p, then obviously w p = ∇vT (p) for all T ∈ Tp.
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Fig. 2 Triangles and tangent
vectors in the definition of w p

2.3.2 Construction on the edges

On any edge e ∈ Eh , we define a polynomial ge ∈ Pk−1(e) as follows: First we choose
T ∈ Te and then we specify that

ge(p) = w p · ne,T at an endpoint p of e. (2.21)

ge and ∂vT/∂n have the same moments up to order k − 3 on e. (2.22)

2.3.3 Construction on the triangles

We are now ready to define ( fv,T , gv,T ) ∈ H2(∂T ) × H1(∂T ) for any T as follows.
Given any edge e of T , the function fv,T on e is the unique polynomial in Pk(e) with
the following properties:

fv,T agrees with v at the two endpoints of e and shares the same moments

up to order k − 4 with v, (2.23)

the directional derivative of fv,T at an endpoint p of ein the direction

of the tangent te of e is given by w p · te. (2.24)

Remark 2.9 If the condition (2.20) is satisfied at both endpoints of e, then w p =
∇vT (p) at the two endpoints p of e by Remark 2.8 and then conditions (2.23) and
(2.24) imply fv,T = v on e.

Given any edge e of T , we define

gv,T = ge if T is the triangle chosen in the definition of ge (cf. Sect. 2.3.2),

otherwise gv,T = −ge. (2.25)

Remark 2.10 If the condition (2.20) is satisfied at both endpoints of e and v is C1

across e, then Remark 2.8 and (2.21)–(2.22) imply that gv,T = ∂vT/∂n on e.

By construction, the condition (2.15) is satisfied because the compatibility condi-
tions (2.2)–(2.4) follow from (2.21) and (2.23)–(2.24). The condition (2.16) follows
from (2.23)–(2.24) and the condition (2.17) follows from (2.25). The choices we
make in the definition ofw p for p ∈ ∂Ω [cf. Case (ii) and Case (iii) in Sect. 2.3.1 and
(2.23)–(2.24)] also implies (2.18).
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2.4 The operator Eh

Let v ∈ Vh and T ∈ Th be arbitrary, and ( fv,T , gv,T ) ∈ (H2 × H1)k,k−1(∂T ) be
the function pair constructed in Sect. 2.3. We define Ehv ∈ V k(T ) by the following
conditions (cf. Lemma 2.4):

(Ehv, ∂Ehv/∂n) = ( fv,T , gv,T ) on ∂T

and QT ,k−4(Ehv) = QT ,k−4(v). (2.26)

It follows from (2.16)–(2.17) that the piecewise H2 function Ehv belongs to
H2(Ω), and (2.18) implies Ehv ∈ H1

0 (Ω) if v ∈ H1
0 (Ω). It only remains to establish

the estimates (1.4) and (1.5).
Note that Remarks 2.9 and 2.10 imply

( fv,T , gv,T ) = (vT , ∂vT /∂n) on ∂T if v is C1 on ∂T , (2.27)

and hence v = Ehv if v is C1 on ∂T , which is the rationale behind (1.4) and (1.5).

Theorem 2.1 The estimate (1.4) holds with a positive constant C� that only depends
on k and the shape regularity of Th.

Proof All the constants (explicit or hidden) that appear below will only depend on the
minimum angle of Th .

Let T ∈ Th be arbitrary. In view of Remark 2.1, Lemma 2.4 and the equivalence of
norms on finite dimensional vector spaces, we have, by scaling,

‖ξ‖2L2(T )

≈ ‖QT ,k−4ξ‖2L2(T ) +
∑

e∈ET

[
hT‖Qe,k−4ξ‖2L2(e) + h3T‖Qe,k−3(∂ξ/∂n)‖2L2(e)

]

+
∑

p∈VT

[
h2T ξ

2(p) + h4T |∇ξ(p)|2] ∀ ξ ∈ V k(T ), (2.28)

where hT is the diameter of T and VT (resp., ET ) is the set of the three vertices (resp.,
edges) of T . Moreover the affine invariance of V k(T ) (cf. Definition 2.4) together
with (2.10) and (2.11) implies that the hidden constants in (2.28) only depend on the
shape regularity of T .

It follows from (2.23), (2.26) and (2.28) that

‖v − Ehv‖2L2(T ) ≈
∑

p∈VT

h4T |∇(v − Ehv)(p)|2

+
∑

e∈ET
h3T‖Qe,k−3∂(v − Ehv)/∂n‖2L2(e), (2.29)
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and we also have, by the construction of w p in Sect. 2.3.1, (2.22), (2.24), and (2.25),

|∇(v − Ehv)(p)|2 ≤ C1

∑

e∈Ep

h−1
e ‖[[∂v/∂n]]‖2L2(e),

‖Qe,k−3∂(v − Ehv)/∂n‖2L2(e) ≤ ‖[[∂v/∂n]]‖2L2(e),

where Ep is the set of all the edges in Eh that share p as a common vertex, and hence

‖v − Ehv‖2L2(T ) ≤ C2h
3
T

∑

p∈VT

∑

e∈Ep

‖[[∂v/∂n]]‖2L2(e). (2.30)

We then deduce from (2.30) and scaling that

‖D2(v − Ehv)‖2L2(T ) ≤ C3h
−1
T

∑

p∈VT

∑

e∈Ep

‖[[∂v/∂n]]‖2L2(e). (2.31)

Note that, because of the affine invariance of V k(T ), the scaling constants behind
(2.31) only depend on the shape regularity of T .

The estimate (1.4) follows immediately from (1.1) and (2.31). 
�
Theorem 2.2 The estimate (1.5) holds with a positive constant C� that only depends
on k and the shape regularity of Th.
Proof Let T ∈ Th be arbitrary and ST (the star of T ) be the interior of the union of the
closures of all the triangles in Th that share a common vertex with T . If ζ ∈ Hk+1(Ω)

belongs to Pk(ST ), thenΠhζ = ζ in ST and hence ζ − EhΠhζ = Πhζ − EhΠhζ = 0
on T by (2.30). The estimate (1.5) can then be established through theBramble–Hilbert
lemma [3,18]. 
�

3 The three dimensional case

The construction of Eh in three dimensions follows the same strategy as in Sect. 2,
and our treatment will be brief regarding the results and arguments that are (almost)
identical with the two dimensional case.

3.1 Trace spaces for a tetrahedron

Let T be a tetrahedronwith vertices p1, p2, p3, p4, and Fi be the face of T opposite pi .
Let � be a nonnegative number. A function u belongs to the piecewise Sobolev space
H �(∂T ) (resp, piecewise polynomial space P�(∂T )) if and only if ui , the restriction
of u to Fi , belongs to H �(Fi ) (resp., P�(Fi )) for 1 ≤ i ≤ 4.

For a function φ defined on a face F of the tetrahedron T , the planar gradient ∇Fj φ

is defined by

∇Fj φ = ∇φ̃ − (∇φ̃ · nF,T )nF,T ,
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Fig. 3 Faces, normals, edge and orthogonal subspace

where φ̃ is any extension of φ to a neighborhood of F in R3.

The operator Tr : H2(T ) −→ H
3
2 (∂T ) × H

1
2 (∂T ) is again defined by (2.1) in

a piecewise sense. We want to characterize the image of H
5
2 (T ) in (H2 × H1)(∂T )

under the operator Tr , for which we will need more notations and definitions.
The common edge of Fi and Fj is denoted by ei j (= e ji ) and e⊥

i j denotes the two

dimensional subspace of R3 perpendicular to ei j . The outward unit normal on Fj is
denoted by n j , and we denote by t j,i the unit vector tangential to Fj , perpendicular
to ei j and pointing outside Fj (cf. Fig. 3).

Definition 3.1 The space H
1
2 (ei j , e⊥

i j ) consists of all vector functionsw defined on ei j

with image in e⊥
i j such that w · z ∈ H

1
2 (ei j ) for all z ∈ e⊥

i j .

Definition 3.2 A pair of functions ( f , g) ∈ H2(∂T ) × H1(∂T ) belongs to the space
(H2 × H1)(∂T ) if and only if the following conditions are satisfied :

fi = f j on ei j for 1 ≤ i �= j ≤ 4, (3.1)

and there exist wi j = w j i ∈ H
1
2 (ei j , e⊥

i j ) such that

∇Fj f j · t j,i = wi j · t j,i on ei j for 1 ≤ i �= j ≤ 4, (3.2)

g j = wi j · n j on ei j for 1 ≤ i �= j ≤ 4. (3.3)

Note that we can replace the compatibility conditions (3.2)–(3.3) by the condition

∇Fi fi + gini = ∇Fj f j + g jn j on ei j for 1 ≤ i �= j ≤ 4. (3.4)

It follows from the Sobolev Embedding Theorem that Tr ζ ∈ (H2 × H1)(∂T ) for

ζ ∈ H
5
2 (T ), wherewi j is the orthogonal projection of∇ζ along ei j onto the subspace

e⊥
i j , and we can recover ∇ζ on Fi from ( f , g) = Tr ζ through the relation

∇ζ = ∇Fi fi + gini on Fi for 1 ≤ i ≤ 4. (3.5)
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We want to show that Tr H
5
2 (T ) = (H2 × H1)(∂T ).

Again we construct a linear bijection

Φ∗ : (H2 × H1)(∂T ) −→ (H2 × H1)(∂ T̃ )

so that (2.7) is valid, where Φ is an orientation preserving affine transformation that
maps the tetrahedron T̃ onto T . Let ( f , g) ∈ (H2 × H1)(∂T ). Motivated by (2.7),
(2.8) and (3.4), we define Φ∗( f , g) = ( f̃ , g̃), where f̃ is given by (2.9), g̃ is given by
(2.10) (where ñi is the outward pointing unit normal along the face F̃i ) and the vector
field g on ∂T is given by

g = ∇Fi fi + gini on Fi for 1 ≤ i ≤ 4. (3.6)

It is straightforward to check that ( f̃ , g̃) ∈ (H2 × H1)(∂ T̃ ), Φ∗ : (H2 ×
H1)(∂T ) −→ (H2×H1)(∂ T̃ ) is a bijection, and that (2.7) follows from (2.8)–(2.10),
(3.5) and (3.6).

We can now establish the following analog of Lemma 2.1.

Lemma 3.1 The image of H
5
2 (T ) under Tr is the space (H2 × H1)(∂T ).

Proof Given ( f , g) ∈ H2(∂T )× H1(∂T ) that satisfies (3.1)–(3.3), we can reduce the
construction of ζ to the following three cases by a partition of unity. (i) f and g vanish
near the vertices of T and the edges of T , in which case we can use the operator L2
in Lemma A.2 to obtain ζ . (ii) f and g are supported in a neighborhood of an edge
and vanish near the vertices of T , in which case we can assume through an affine
transformation [cf. (2.7)] that the dihedral angle at the edge is a right angle and obtain
ζ through Lemma A.5. (iii) f and g are supported near a vertex of T , in which case
we can assume through an affine transformation that the angle at the vertex is a solid
right angle and obtain ζ through Lemma A.4. 
�

3.2 Affine invariant H2 virtual element spaces

We will use the same notation (H2 × H1)(∂T ) to denote Tr H
5
2 (T ) for a tetrahedron

T . But the definition of (H2 × H1)k,k−1(∂T ) is different.

Definition 3.3 Let T be a tetrahedron. A pair ( f , g) ∈ (H2 × H1)(∂T ) belongs to
(H2 × H1)k,k−1(∂T ) if and only if ( fi , gi ) ∈ V k(Fi ) × Pk−1(Fi ) for 1 ≤ i ≤ 4.

Remark 3.1 It follows from Remark 2.1, Lemma 2.3 and the constraints (3.1)–(3.3)
that we need the following dofs for (H2 × H1)k,k−1(∂T ): (i) The value of v at each
vertex p together with the values of the three directional derivatives along the three
edges emanating from p, which requires 4×4 dofs. (ii) The moments of v up to order
k − 4 on each edge, which together with (i) ensure the constraint (3.1). This requires
6×(k−3) dofs. (iii) The moments of order up to k−3 on each edge in order to define,
together with (i), a polynomial (vector) function of order ≤ k − 1 on e with images in
e⊥, which requires 6×2(k−2) dofs.We can then use this polynomial (vector) function
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Fig. 4 Visible degrees of freedom for (H2 × H1)3,2(∂T ) and (H2 × H1)4,3(∂T )

to define ∇FvF · ne,F on any edge e of F through (3.2) and ∂v/∂n on ∂F through
(3.3). (iv) On each face F we need to specify the moments of v and ∂v/∂n up to order
k−4 in order to complete the definition of vF ∈ V k(F) and ∂v/∂n ∈ Pk−1(F), which
requires 4 × 2 × (k−3)(k−2)

2 dofs. Altogether we have

dim (H2 × H1)k,k−1(∂T )

= 16 + 6(k − 3) + 12(k − 2) + 4(k − 3)(k − 2)2(k − 1)(2k + 1). (3.7)

The (visible) dofs of (H2 × H1)k,k−1(∂T ) for k = 3 and 4 are depicted in Fig. 4,
where (i) the values of f at the vertices and the moments of f on the edges and faces
are represented by solid dots, and (ii) the directional derivatives of f at the vertices
and the moments of g on the edges and faces are represented by arrows.

The well-posedness result in Lemma 2.2 remains valid for a tetrahedron T and the
definition of the virtual element spaceV k(T̂ ) on the reference tetrahedronwith vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) is identical to the one in Definition 2.3 for the
reference triangle. The virtual element spaceV k(T ) for an arbitrary tetrahedron is then
defined as in Definition 2.4 through an orientation preserving affine transformation Φ

that maps T̂ onto T , and Lemma 2.4 also holds for a general tetrahedron.
The dimension of V k(T ) is now given by

dim V k(T ) = dim(H2 × H1)k,k−1(∂T ) + dim Pk−4(T )

= 2(k − 1)(2k + 1) + 1

6
(k − 3)(k − 2)(k − 1)

= (k − 1)(k + 1)(k + 18)

6
. (3.8)

Remark 3.2 The definition of V k(T ) for a tetrahedron relies crucially on the fact
that boundary data satisfying the compatibility condition (3.1)–(3.3) will belong to
Tr H2(T ). Unlike the two dimensional case (cf. Remark 2.4), this cannot be taken for
granted since macro elements of arbitrary order that share the same boundary data are
yet to be developed.
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Remark 3.3 Three dimensional H2 virtual elements on arbitrary polyhedron have
recently been proposed in [2].

3.3 Construction on the skeleton
⋃

T∈Th
@T

Given any v ∈ Vh , we want to define fv,T representing (the desired) Ehv
∣∣
∂T and gv,T

representing (the desired) (∂Ehv/∂n)
∣∣
∂T for all T ∈ Th , such that

( fv,T , gv,T ) ∈ (H2 × H1)k,k−1(∂T ) ∀ T ∈ Th (3.9)

and the following conditions are satisfied:

if T1 and T2 belong to Tp (resp., Te or TF ), then fv,T1(p) = fv,T2(p)

(resp., fv,T1 = fv,T2 on e or fv,T1 = fv,T2 on F), (3.10)

if T1 and T2 are two distinct tetrahedra in TF ,

then gv,T1 + gv,T1 = 0 on F, (3.11)

if F ∈ Fb
h is a face of T and v ∈ H1

0 (Ω), then fv,T = 0 on F . (3.12)

Note that (3.10) and (3.11) imply any piecewise H2 function ξ satisfying (ξT , ∂ξT /

∂n)
∣∣
∂T = ( fv,T , gv,T ) for all T ∈ Th will belong to H2(Ω), and (3.12) implies that

ξ ∈ H2(Ω) ∩ H1
0 (Ω) if v ∈ H1

0 (Ω).

3.3.1 Construction at the vertices

As in Sect. 2.3, we first define the vectors w p associated with the vertices p of Th .
There are three cases: (i) p is an interior vertex, (ii) p is a boundary vertex that belongs
to a face of Ω , (iii) p is a boundary vertex that does not belong to any face of Ω .
Case (i) For an interior vertex p, we choose a tetrahedron T in Tp and define w p to
be ∇vT .
Case (ii) For a boundary vertex p that belongs to a face F of Ω , we define w p to be
∇vT , where T is a tetrahedron in Tp that has a face on F . This choice ensures that
w p · t = 0 if v ∈ H1

0 (Ω), where t is any vector tangential to ∂Ω at p.
Case (iii) In this case p is either a corner of Ω or p belongs to an edge of Ω . We
define w p implicitly by

w p · t i = ∂v

∂ti
(p) for i = 1, 2, 3, (3.13)

where ∂/∂t1, ∂/∂t2 and ∂/∂t3 are the tangential derivatives along three edges
e1, e2, e3 ∈ Eb

h emanating from p that are not coplanar. This choice of e1, e2, e3
implies w p = 0 if v ∈ H1

0 (Ω).

Remark 3.4 Note that Remark 2.8 is also valid here, i.e.,w p = ∇vT (p) for all T ∈ Tp

if v is C1 at the vertex p.
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3.3.2 Construction on the edges

In view of (3.2) and (3.3), we also need to define polynomial vector functions we :
e −→ e⊥ on the edges e ∈ Eh . There are three cases: (i) e is an interior edge of Th ,
(ii) e is a subset of a face of Ω and (iii) e is a subset of an edge of Ω .
Case (i) Let e belong to E i

h . We choose T ∈ Te, and then define we by the following
conditions:

at an endpoint p of e,we(p) is the projection of w p on e⊥. (3.14)

we and the projection of ∇vT on e⊥ have the same moments along e

up to order k − 3. (3.15)

Case (ii) Let e be an edge of Th that is a subset of a face F of Ω . We define we again
by (3.14)–(3.15), but with the stipulation that one of the faces of T is a subset of F .
This additional condition (together with the choices made in Cases (ii) and (iii) in
Sect. 3.3.1) implies thatwe · t = 0 on e if v ∈ H1

0 (Ω), where t is any vector tangential
to F .
Case (iii) Let e be an edge of Th that is a subset of an edge of Ω . Then there are
two distinct faces F1, F2 ∈ Fb

h ∩ Fe and we define we by (3.14) together with the
condition that

we · ne,Fj and ∇Fj vFj
· ne,Fj have identical moments up to order k − 3

for j = 1, 2. (3.16)

Our choice of F1 and F2 (together with the choices made in Cases (ii) and (iii) in
Sect. 3.3.1) ensures that we = 0 on e if v ∈ H1

0 (Ω).

Remark 3.5 In the case where v ∈ Vh isC1 across an edge e ∈ Eh and at the endpoints
of e, it follows from Remark 3.4 and (3.14)–(3.16) that the vector field we is the
projection of ∇vT on e⊥ for all T ∈ Te.

3.3.3 Construction on the faces

We define gv,F on a face F ∈ Fh as follows. We choose T ∈ TF and stipulate that

on an edge e of F, gv,F ∈ Pk−1(e) is given by we · nF,T , (3.17)

gv,F and ∂vT/∂n have the same moments up to order k − 4 on F . (3.18)

Remark 3.6 If v is C1 across e ∈ Eh and at the endpoints of e, then we have gv,F =
∂vT/∂n on e for all F ∈ Fe and T ∈ TF by Remark 3.5 and (3.17).

3.3.4 Construction on the tetrahedra

We are now ready to define ( fv,T , gv,T ) ∈ H2(∂T ) × H1(∂T ) for any T ∈ Th as
follows. On any edge e of a face F of T , fv,∂F is the unique polynomial in Pk(e) with
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the following properties:

fv,∂F agrees with v at the two endpoints of e and shares the same moments

up to order k − 4, (3.19)

the directional derivative of fv,∂F at an endpoint p of ein the direction

of the tangent te of e is given by w p · te. (3.20)

Remark 3.7 Remark 2.9 is also valid here, i.e., fv,∂F = v on e if v isC1 at the endpoints
of e.

Let F be a face of T and e be an edge of F , we define qv,∂F ∈ Pk−1(e) by

qv,∂F = we · ne,F . (3.21)

On each face F of T , the pair ( fv,∂F , qv,∂F) belongs to (H2 × H1)k,k−1(∂F) by
(3.14) and (3.19)–(3.21). Hence we can define fv,F ∈ V k(F) to be the virtual element
function (cf. Lemma 2.4) that satisfies the following conditions:

Tr fv,F = ( fv,∂F , qv,∂F) on ∂F and QF,k−4 fv,F = QF,k−4v. (3.22)

Remark 3.8 If v is C1 on ∂F , then qv,∂F = ∂vF/∂n on ∂F by Remark 3.5 and (3.21).
It then follows from Remarks 2.5, 3.7 and (3.22) that fv,F = v on F .

Given any face F of T , we define

gv,T = gv,F if T is the tetrahedron chosen in the definition of gv,F

(cf. Sect. 3.3.3), otherwise gv,T = −gv,F . (3.23)

Remark 3.9 If v isC1 on ∂T , then (3.18), Remark 3.6 and (3.23) imply gv,T = ∂vT/∂n
on ∂T .

At the end of this process, we have constructed ( fv,T , gv,T ) ∈ H2(∂T ) × H1(∂T )

for every polyhedron T ∈ Th . The pair ( fv,T , gv,T ) belongs to (H2 × H1)k,k−1(∂T )

because (i) the condition (3.1) is implied by (3.19)–(3.20), (ii) the condition (3.2) is
implied by (3.21)–(3.22), and (iii) the condition (3.3) is implied by (3.17).

It follows from (3.19)–(3.22) that (3.10) is satisfied, and the condition (3.11) follows
from (3.23). The choices we make in Sects. 3.3.1 and 3.3.2 ensure that fv,∂F defined
by (3.19)–(3.20) and qv,∂F defined by (3.21) both vanish on ∂F if the face F of T is
a subset of ∂Ω and v ∈ H1

0 (Ω). The condition (3.12) then follows from (3.22).
In view of Remark 3.8 and Remark 3.9 the relation (2.27) remains valid, i.e.,

Ehv = v if v ∈ Vh is C1 on ∂T , which is the basis for the estimates (1.4) and (1.5).

3.4 The operator Eh

We proceed as in Sect. 2.4. Let v ∈ Vh and T ∈ Th be arbitrary, and ( fv,T , gv,T ) ∈
(H2 × H1)k,k−1(∂T ) be the function pair constructed in Sect. 3.3. We define Ehv ∈
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V k(T ) again by the conditions in (2.26), i.e.,

(Ehv, ∂Ehv/∂n) = ( fv,T , gv,T ) on ∂T

and QT ,k−4(Ehv) = QT ,k−4(v). (3.24)

It follows from (3.10)–(3.11) that Ehv ∈ H2(Ω), and (3.12) implies that Ehv ∈
H1
0 (Ω) if v ∈ H1

0 (Ω).
The estimates (1.4) and (1.5) are established by similar arguments as in Sect. 2.4,

where the analog of (2.28) for a tetrahedron T (cf. Lemma 2.4 and Remark 3.1) is
given by

‖ξ‖2L2(T )

≈ ‖QT ,k−4ξ‖2L2(T ) +
∑

F∈FT

hT‖QF,k−4ξ‖2L2(F) +
∑

F∈FT

h3T‖QF,k−4(∂ξ/∂n)‖2L2(F)

+
∑

e∈ET
h2T‖Qe,k−4ξ‖2L2(e) +

∑

e∈ET
h4T‖Qe,k−3(∇ξ)e⊥‖2L2(e)

+
∑

p∈VT

[
h3T ξ

2(p) + h5T |∇ξ(p)|2] (3.25)

for all ξ ∈ V k(T ), where FT (resp., ET and VT ) is the set of the four faces (resp., six
edges and four vertices) of T and (∇ξ)e⊥ is the orthogonal projection of ∇ξ onto the
subspace of R3 perpendicular to e. The hidden constants in (3.25) only depend on the
shape regularity of Th because of the affine invariance of the virtual element spaces.

It follows from (3.19), (3.22), (3.24) and (3.25) that we have the following analog
of (2.29):

‖v − Ehv‖2L2(T )

≈
∑

p∈VT

h5T |∇(v − Ehv)(p)|2 +
∑

e∈ET
h4T‖Qe,k−3

(∇(v − Ehv)
)
e⊥‖2L2(e)

+
∑

F∈FT

h3T‖QF,k−4[[∂v/∂n]]‖2L2(F). (3.26)

We can then establish the three-dimensional analogs of Theorems 2.1 and 2.2 as in
Sect. 2.4.

4 Concluding remarks

Following the approach of this paper (and with more patience and persistence), one
can construct enriching operators Eh that maps the totally discontinuous Pk finite
element space into H2(Ω), where (1.4) and (1.5) are valid for J (w, v) given by
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Fig. 5 Boundary data for R2+ and R3+

J (w, v) =
∑

e∈E i
h

[
h−3
e

∫

e
[[w]][[v]]ds + h−1

e

∫

e
[[∂w/∂n]][[∂v/∂n]]ds

]
for d = 2,

J (w, v) =
∑

F∈F i
h

[
h−3
F

∫

e
[[w]][[v]]dS + h−1

F

∫

F
[[∂w/∂n]][[∂v/∂n]]dS

]
for d = 3.

One can also construct Eh : Vh ∩ H1
0 (Ω) −→ H2

0 (Ω) such that (1.4) and (1.5)
are valid, provided the sum in (1.2) [resp., (1.3)] is taken over Eh (resp., Fh). This can
also be carried out for the totally discontinuous Pk finite element space.

Lemma 3.1 is also of independent interest, since inverse trace theorems for poly-
hedral domains in R3 do not appear to be readily available in the literature.

A Inverse trace theorems forR2+ andR
3+

We consider inverse trace theorems for R2+ and R
3+ with data on the boundaries of

these domains (cf. Fig. 5). We will rely on the results in Lemmas A.1 and A.2 that
follow from the construction of inverse trace operators through the Fourier transform
[22,26] and the Paley–Wiener theorem [21].

Lemma A.1 There exists a bounded linear operator

L1 : H2(R) × H1(R) −→ H
5
2 (R2)

such that (i) [L1(φ,ψ)](t, 0) = φ(t), (i i) [∂L1(φ,ψ)/∂x2](t, 0) = ψ(t), and (i i i)
L1(φ,ψ)(x1, x2) vanishes on the half plane x1 < 0 if φ(t) and ψ(t) vanish on the
half line t < 0.

Lemma A.2 There exists a bounded linear operator

L2 : H2(R2) × H1(R2) −→ H
5
2 (R3)
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such that (i) [L2(φ,ψ)](x1, x2, 0) = φ(x1, x2), (i i) [∂L2(φ,ψ)/∂x3](x1, x2, 0) =
ψ(x1, x2), and (i i i) L2(φ,ψ)(x1, x2, x3) vanishes on the half space x1 < 0 (resp.,
x2 < 0) if φ(x1, x2) and ψ(x1, x2) vanish on the half plane x1 < 0 (resp., x2 < 0).

Webeginwith a two-dimensional inverse trace theorem.We note that similar results
for H2(R2+) can be found in [20, Section 1.5.2]. Our approach is simpler (since we

are considering H
5
2 (R2+)) and therefore its extension to three dimensions is easier.

Lemma A.3 Let (φ1, ψ1) and (φ2, ψ2) belong to H2(R+) × H1(R+) such that

φ1(0) = φ2(0), (A.1)

ψ1(0) = φ′
2(0), (A.2)

ψ2(0) = φ′
1(0). (A.3)

Then there exists ζ ∈ H
5
2 (R2+) such that

(ζ, ∂ζ/∂xi ) = (φi , ψi ) if xi = 0, 1 ≤ i ≤ 2. (A.4)

Proof First we extend φ1 and ψ1 to R, so that the extensions (still denoted by φ1 and
ψ1) satisfy φ1 ∈ H2(R) and ψ1 ∈ H1(R). This can be achieved by reflection (cf. [22,
Theorem 2.3.9] and [1, Theorem 5.19]). Let L1 be the lifting operator in Lemma A.1

and ζ1 = L1(φ1, ψ1) ∈ H
5
2 (R2) so that

ζ1(0, x2) = φ1(x2) and (∂ζ1/∂x1)(0, x2) = ψ1(x2). (A.5)

Then we define φ̃2(x1) = φ2(x1)−ζ1(x1, 0), ψ̃2(x1) = ψ2(x1)− (∂ζ1/∂x2)(x1, 0)
for x1 > 0.

Note that φ̃2 ∈ H2(R+), and

φ̃2(0) = φ2(0) − ζ1(0, 0) = φ2(0) − φ1(0) = 0

by (A.1) and (A.5), and

φ̃′
2(0) = φ′

2(0) − (∂ζ1/∂x1)(0, 0) = φ′
2(0) − ψ1(0) = 0

by (A.2) and (A.5). Moreover we have ψ̃2 ∈ H1(R+), and

ψ̃2(0) = ψ2(0) − (∂ζ1/∂x2)(0, 0) = ψ2(0) − φ′
1(0) = 0

by (A.3) and (A.5). Hence their trivial extensions (still denoted by φ̃2 and ψ̃2) satisfy
φ̃2 ∈ H2(R) and ψ̃2 ∈ H1(R).

Let ζ2 = L1(φ̃2, ψ̃2) ∈ H
5
2 (R2) such that ζ2(x1, 0) = ψ̃2(x1, 0) and

(∂ζ2/∂x2)(x1, 0) = ψ̃1(x1).
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Then ζ2 = 0 on the half plane x1 < 0 by Lemma A.3, which implies

ζ2(0, x2) = (∂ζ2/∂x1)(0, x2) = 0 ∀ x2 > 0.

We can now take ζ to be the restriction of ζ1 + ζ2 to R2+. 
�
Next we consider the three dimensional analog of Lemma A.3.

Lemma A.4 Let (φ1, ψ1), (φ2, ψ2) and (φ3, ψ3) belong to H2(R2+) × H1(R2+) such
that the following conditions are satisfied:

φ1(0, x3) = φ2(0, x3) ∀ x3 > 0, (A.6)

φ2(x1, 0) = φ3(x1, 0) ∀ x1 > 0, (A.7)

φ3(0, x2) = φ1(x2, 0) ∀x2 > 0, (A.8)

ψ1(0, x3) = ∂φ2

∂x1
(0, x3) ∀ x3 > 0, (A.9)

ψ1(x2, 0) = ∂φ3

∂x1
(0, x2) ∀ x2 > 0, (A.10)

ψ2(x1, 0) = ∂φ3

∂x2
(x1, 0) ∀ x1 > 0, (A.11)

ψ2(0, x3) = ∂φ1

∂x2
(0, x3) ∀ x3 > 0, (A.12)

ψ3(x1, 0) = ∂φ2

∂x3
(x1, 0) ∀ x1 > 0, (A.13)

ψ3(0, x2) = ∂φ1

∂x3
(x2, 0) ∀ x2 > 0. (A.14)

Then there exists ζ ∈ H
5
2 (R3+) such that

(ζ, ∂ζ/∂xi ) = (φi , ψi ) if xi = 0, 1 ≤ i ≤ 3. (A.15)

Proof First we extend φ1 and ψ1 to R
2 by reflection (twice) so that the extensions

(still denoted by φ1 and ψ1) satisfy φ1 ∈ H2(R2) and ψ1 ∈ H1(R2). Let L2 be the
lifting operator in Lemma A.2 and ζ1 = L2(φ1, ψ1) so that

ζ1(0, x2, x3) = φ1(x2, x3), (A.16)

(∂ζ1/∂x1)(0, x2, x3) = ψ1(x2, x3). (A.17)

Then we define, for (x1, x3) ∈ R
2+,

φ̃2(x1, x3) = φ2(x1, x3) − ζ1(x1, 0, x3), (A.18)

ψ̃2(x1, x3) = ψ2(x1, x3) − (∂ζ1/∂x2)(x1, 0, x3). (A.19)
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Note that φ̃2 belongs to H2(R2+) and

φ̃2(0, x3) = φ2(0, x3) − ζ1(0, 0, x3) = φ2(0, x3) − φ1(0, x3) = 0 for x3 > 0

by (A.6), (A.16) and (A.18), and

∂φ̃2

∂x1
(0, x3) = ∂φ2

∂x1
(0, x3) − ∂ζ1

∂x1
(0, 0, x3) = ∂φ2

∂x1
(0, x3) − ψ1(0, x3) = 0

by (A.9), (A.17) and (A.18). Furthermore ψ̃2 belongs to H1(R2+) and

ψ̃2(0, x3) = ψ2(0, x3) − ∂ζ1

∂x2
(0, 0, x3)

= ψ2(0, x3) − ∂φ1

∂x2
(0, x3) = 0 for x3 > 0

by (A.12), (A.16) and (A.19).
Hence we can extend φ̃2 and ψ̃2 to R+ × R by reflection across x3 = 0 (still

denoted by φ̃2 and ψ̃2) so that φ̃2 ∈ H2(R+ × R), ψ̃2 ∈ H2(R+ × R), φ̃2(0, x3) =
(∂φ̃2/∂x1)(0, x3) = 0 for x3 ∈ R and ψ̃2(0, x3) = 0 for x3 ∈ R. Therefore the trivial
extensions of φ̃2 and ψ̃2 to R

2 (still denoted by φ̃2 and ψ̃2) belong to H2(R2) and
H1(R2) respectively.

Let ζ2 = L2(φ̃2, ψ̃2). Then we have, by Lemma A.2,

ζ2(x1, 0, x3) = φ̃2(x1, x3), (A.20)

(∂ζ2/∂x2)(x1, 0, x3) = ψ̃2(x1, x3), (A.21)

and

ζ2(x1, x2, x3) = 0 if x1 < 0,

which implies
ζ2 = ∂ζ2/∂x1 = 0 if x1 = 0. (A.22)

We now define, for (x1, x2) ∈ R
2+,

φ̃3(x1, x2) = φ3(x1, x2) − ζ1(x1, x2, 0) − ζ2(x1, x2, 0), (A.23)

ψ̃3(x1, x2) = ψ3(x1, x2) − (∂ζ1/∂x3)(x1, x2, 0) − (∂ζ2/∂x3)(x1, x2, 0). (A.24)

Then φ̃3 (resp., ψ̃3) belongs to H2(R2+) (resp., H1(R2+)).
Moreover, it follows from (A.8), (A.16), (A.22) and (A.23) that

φ̃3(0, x2) = φ3(0, x2) − ζ1(0, x2, 0) = φ3(0, x2) − φ1(x2, 0) = 0 for x2 > 0,

123



Virtual enriching operators Page 23 of 25    44 

and (A.10), (A.17), (A.22) and (A.23) imply

∂φ̃3

∂x1
(0, x2) = ∂φ3

∂x1
(0, x2) − ∂ζ1

∂x1
(0, x2, 0)

= ∂φ3

∂x1
(0, x2) − ψ1(x2, 0) = 0 for x2 > 0.

From (A.14), (A.16), (A.22) and (A.24) we also have

ψ̃3(0, x2) = ψ3(0, x2) − ∂ζ1

∂x3
(0, x2, 0) = ψ3(0, x2) − ∂φ1

∂x3
(x2, 0) for x2 > 0.

Next we check the behavior of φ̃3 and ψ̃3 at x2 = 0. We have

φ̃3(x1, 0) = φ3(x1, 0) − ζ1(x1, 0, 0) − ζ2(x1, 0, 0)

= φ3(x1, 0) − φ2(x1, 0) = 0 for x1 > 0

by (A.7), (A.18), (A.20) and (A.23);

∂φ̃3

∂x2
(x1, 0) = ∂φ3

∂x2
(x1, 0) − ∂ζ1

∂x2
(x1, 0, 0) − ∂ζ2

∂x2
(x1, 0, 0)

= ∂φ3

∂x2
(x1, 0) − ψ2(x1, 0) = 0 for x1 > 0

by (A.11), (A.18), (A.21) and (A.23);

ψ̃3(x1, 0) = ψ3(x1, 0) − ∂ζ1

∂x3
(x1, 0, 0) − ∂ζ2

∂x3
(x1, 0, 0)

= ψ3(x1, 0) − ∂φ2

∂x3
(x1, 0) = 0 for x1 > 0

by (A.13), (A.18), (A.20) and (A.24).
The calculations above show that φ̃3 = ∂φ̃3/∂n = ψ̃3 = 0 on the boundary of R2+.

Hence their trivial extensions to R
2 (still denoted by φ̃3 and ψ̃3) belongs to H2(R2)

and H1(R2).
Let ζ3 = L2(φ̃1, ψ̃1). Then we have, by Lemma A.2, ζ3 ∈ H3(R3),

ζ3(x1, x2, 0) = φ̃3(x1, x2), (A.25)

(∂ζ3/∂x3)(x1, x2, 0) = ψ̃3(x1, x2), (A.26)

and

ζ3(x1, x2, x3) = 0 if x1 < 0 or x2 < 0,
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which implies

ζ3 = ∂ζ3

∂x1
= 0 if x1 = 0 and ζ3 = ∂ζ3

∂x2
= 0 if x2 = 0. (A.27)

We can now take ζ to be the restriction of ζ1 + ζ2 + ζ3 to R
3+, and (A.15) follows

from (A.16)–(A.27). 
�
Finally we have a three-dimensional result that is two-dimensional in nature and

which can be derived by using the arguments in the proof of either Lemma A.3 or
Lemma A.4.

Lemma A.5 Let (φ1, ψ1) and (φ2, ψ2) belong to H2(R+ × R) × H1(R+ × R) such
that

φ1(0, x3) = φ2(0, x3) ∀ x3 ∈ R,

ψ1(0, x3) = ∂φ2

∂x1
(0, x3) ∀ x3 ∈ R,

ψ2(0, x3) = ∂φ1

∂x2
(0, x3) ∀ x3 ∈ R.

Then there exists ζ ∈ H
5
2 (R3+) such that

(ζ, ∂ζ/∂xi ) = (φi , ψi ) if xi = 0, 1 ≤ i ≤ 2.
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