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Abstract

We construct bounded linear operators that map H' conforming Lagrange finite ele-
ment spaces to H> conforming virtual element spaces in two and three dimensions.
These operators are useful for the analysis of nonstandard finite element methods.
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1 Introduction

Let 2 € R? (d = 2, 3) be a bounded polygonal/polyhedral domain, 7}, be a simplicial
triangulation of £2 and V, C H 1(£2) be the Lagrange Py finite element space [9,15]
with k > 3. The mesh dependent semi-norm || - ||, is defined by

Ivll; = IDFvll7 @) + T v) Vv eV, (1.1

where D%v is the piecewise Hessian of v with respect to 7, and

J(w,v) = Z he_1 f[[&w/an]]llav/an]]ds ford = 2, (1.2)
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Jwov) =Y h;‘/[[aw/an]][[av/an]]ds ford = 3. (1.3)

. F
FeF,

Here 8,’; (resp., ]—";;) is the set of interior edges (resp., faces) of 7}, h, (resp., hy) is the
diameter of the edge e (resp., face F), [dv/dn] is the jump of the normal derivative
across an edge e (resp., face F'), and ds (resp., dS) is the infinitesimal length (resp.,
area).

Our goal is to construct a linear operator Ej, : V;, —> H?(£2) such that

lv— Epvllp < Cey/ J (v, v) YveV,, (1.4)
2
D hE = EnlTng | ooy < G gy Vo e HYY(2),  (1.5)
=0

where T, : C(2) —> Vj, is the Lagrange nodal interpolation operator, and the
positive constants Cy and C}, only depend on the shape regularity of 7, and k. Moreover,
the operator Ej, maps V;, N HO1 (£2) into H2(.Q) N HO1 (£2).

Remark 1.1 Throughout the paper we will follow the standard notation for differential
operators, functions spaces and norms that can be found for example in [1,9,15].

Enriching operators that satisfy (1.4) and (1.5) are useful for a priori and a posteriori
error analyses for fourth order elliptic problems [6-8,10,19], and they also play an
important role in fast solvers for fourth order problems [4,5,11]. A recent application
to Hamilton—Jacobi—Bellman equations can be found in [23].

In the two dimensional case, one can construct £ through the C I macro finite
elements in [14,16,17,24,25]. This was carried out in [8] for the quadratic element
and in [19] for higher order elements. However macro elements of order higher than 3
are not available in three dimensions and therefore this approach can only be carried
out for quadratic and cubic Lagrange elements (cf. [23]) using the three dimensional
cubic Clough-Tocher macro element from [27].

We take a different approach in this paper by connecting the k-th order Lagrange
finite element space to a k-th order H? conforming virtual element space. In two
dimensions such spaces are already in the literature [12,13], and we will develop a
version of three dimensional H? conforming virtual element spaces that are sufficient
for the construction of Ej,.

Remark 1.2 The assumption that the order of the Lagrange finite element space is at
least 3 allows a uniform construction of Ej,. For the quadratic Lagrange finite element
space we can simply take Ej, to be the restriction of the cubic enriching operator.

The rest of the paper is organized as follows. The construction of Ej, in two dimen-
sions is carried out in Sect. 2, followed by the construction in three dimensions in
Sect. 3 and some concluding remarks in Sect. 4. Appendix A contains some technical
results concerning inverse trace theorems that are needed for the construction of H?
conforming virtual elements.

A list of notations and conventions that will be used throughout the paper is provided
here for convenience.
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— A polygon/polyhedron is an open subset in R?/R3, an edge of a poly-
gon/polyhedron does not include the endpoints and a face of a polyhedron does not
include the vertices and edges. These conventions apply in particular to triangles
and tetrahedra.

— Let G be an open line segment, a triangle or a tetrahedron, and k be an integer.
Py (G) is the space of polynomials of total degree < k restricted to G if k > 0
and Py (G) = {0} if £ < 0. We say that two functions u and v defined on G have
identical moments up to order £ if the integral of (v — v)g on G vanishes for
all g € P¢(G). The orthogonal projection from L>(G) onto P, (G) is denoted by
QG k-

— V) is the set of all the vertices of the triangles/tetrahedra in 7j, V,’; is the set of
vertices in £2 and V,Il’ is the set of vertices on 952.

— &, is the set of all the edges of the triangles/tetrahedra in 7, E;l is the set of edges
in £2 and Sfl’ is the set of edges that are subsets of 952.

— Fj is the set of all the faces of the tetrahedra in 7j,, F, ;l is the set of faces in 2 and
]—';l’ is the set of faces that are subsets of 952.

— 7T, is the set of all the triangles/tetrahedra in 7}, that share p as a common vertex.

— 7T, is the set of all the triangles/tetrahedra in 7}, that share e as a common edge.

— TF is the set of all the tetrahedra in 7, that share F as a common face.

— F. is the set of the faces of the tetrahedra in 7, that share e as a common edge.

— If v is a function defined on a triangle/tetrahedron, then v, (resp., v;) is the restric-
tion of v to an edge e (resp., a face F).

— Ifvisafunction defined on a triangle/tetrahedron, then dv/dn denotes the outward
normal derivative of v along d7 . In the case of a triangle (resp. tetrahedron), dv/dn
is double-valued at the vertices (resp., edges) of T'.

— If e is an edge of the triangle 7', then n,  is the unit vector orthogonal to e and
pointing towards the outside of 7. If e is an edge of a face F of a tetrahedron T,
then n,  is the unit vector tangential to F, orthogonal to e and pointing towards
the outside of F.

— If F is a face of the tetrahedron 7', then n - ; is the unit vector orthogonal to F' and
pointing towards the outside of T'.

2 The two dimensional case

The construction of Ej, is based on the characterizations of trace spaces associated
with a triangle and the construction of polynomial data on the skeleton of 7}, that
satisfy these characterizations on all the triangles of 7},.

2.1 Trace spaces for a triangle

Let T be a triangle with vertices pi, p> and p3, e; be the edge of T opposite p;, n;
be the unit outer normal along e;, and £; be the counterclockwise unit tangent of e;.
Let ¢ be a nonnegative number. A function u belongs to the piecewise Sobolev space
H(dT) (resp., piecewise polynomial space P (dT)) if and only if u;, the restriction
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of u to e;, belongs to Hep) (resp., Pe(ej)) for 1 < i < 3. It follows from the
Sobolev Embedding Theorem [1, Theorem 4.12] that we can define a linear operator

Tr : HX(T) — H3>(T) x H>(3T) by
Tr¢ = (£.0¢/0n)| ;. 2.1)

where the restrictions of ¢ and d¢/dn are in the sense of trace and defined piecewise
with respect to the edges. For the subspace H% (T) of H*(T), we have Tr H% (T) C
H2(T) x H'(3T). Our first task is to identify the image of H% (T).

Definition 2.1 A pair of functions (f, g) € H2*T) x H'(3T) belongs to the space
(H% x HY)(dT) if and only if the following conditions are satisfied:

fitpi) = fi(pi) forl <i <3andj, kel{l,2,3}\{i}, (2.2)
and there exist w;, wy, w3 € R? (which depend on ( f, g)) such that

(0f;/0t))(pi) =w; -t; forl<i<3and;je (1,230}, (2.3)
gi(p)=w;-n; forl<i<3andje{l,2,30\li}. (24

Note that the compatibility conditions (2.3)—(2.4) are equivalent to
0 fj/otp)tj+ gjn; = (3 fi/0t)tk + gknk  at p; (2.5)

forl <i <3andj,ke{l,2,3}\{i}.
It follows from the Sobolev Embedding Theorem that Tr { € (H 2 x HHY(@T) for

¢ € H%(T), where w; = V¢ (p;), and we can recover V¢ on 97T from (f, g) = Tr¢
by
V¢ = (0f;i/ot)t; + gin; one; forl <i <3. (2.6)

We want to show that in fact Tr H% (T) = (H? x H")(3dT). For this purpose it is
useful to construct a linear isomorphism

@ (H> x HHYT) — (H?> x HY)(OT)

such that s
Tr( o®)=®*(Tr¢) V¢ e H2(T), 2.7

where @ is an orientation preserving affine transformation that maps the triangle T
onto 7. We assume that @ maps the vertex p; of T to the vertex pi of T and hence it
also maps the edge e; of T to the edgee; of T.

First we note that, by the chain rule,

Vio®)=JL(Vio®) V(e H%(T), (2.8)
where Jp (a constant 2 x 2 matrix with a positive determinant) is the Jacobian of @.
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Let (f,g) € (H* x H")(3T). Motivated by (2.6)~(2.8), we define @*(f,g) =
(f. &), where 3
f=fo®, (2.9)

and
g=Js(go®@)-n; on ¢ forl<i<3, (2.10)

where 7; is the outward pointing unit normal along the edge ¢; and the vector field g
on d7 is given by

g=(0fi/ot)t;i + gin; on ¢ for 1 <i <3. (2.11)

It is straightforward to check that (f, g) € (H* x HYHY(d T), &* : (H? x
HYOT) — (H?> x HHY(T) is a bijection, and that (2.7) follows from (2.6) and
(2.8)—(2.11).

We are now ready to characterize Tr H 3 (T).

Lemma 2.1 The image ofH% (T) under Tr is the space (H2 x HHY(@AT).

Proof We already know that Tr H 5 (T) C (H?* x H"(3T). In the other direction, we

want to construct ¢ € H% (T) that satisfies (2.1) for a given (f, g) € (H*x HYT).

If the functions f and g vanish near the vertices, we can use the operator L
in Lemma A.1 and cut-off functions to obtain ¢. Therefore, by using a partition of
unity, we can reduce the construction to a neighborhood of a vertex and, by an affine
transformation [cf. (2.7)], we can further assume that the angle at the vertex is a right
angle. The existence of ¢ near such a vertex then follows from Lemma A.3. O

2.2 Affine invariant H? virtual element spaces

The construction of the virtual element spaces involves polynomial subspaces of (H? x
HY@OT).

Definition 2.2 Let T be a triangle. We will denote the intersection of (H 2x HYOT)
and P (3T) x Pr_1(dT) by (H?> x H") 1_1(3T).

Remark 2.1 1t follows from the compatibility conditions (2.2)—(2.4) that the function
pair (f, g) € (H? x H])k,k_l (0T) is determined by (i) the values of f at the vertices,
(ii) the tangential derivatives of f at the vertices, (iii) moments of f on e; up to order
k — 4 that together with (i) and (ii) determine f; € P(e;), and (iv) moments of g up
to order k — 3 that together with (ii) [through (2.4)] determine g; € Pr—_1(e;). These
degrees of freedom (dofs) are depicted in Fig. 1 for k = 3 and 4, where (i) the values of
f at the vertices and the moments of f on the edges are represented by solid dots, and
(ii) the tangential derivatives of f at the vertices and the moments of g on the edges
are represented by arrows. Altogether we have dim(H? x Hl)k,k,l OT) =6(k—1).

Remark 2.2 Since polynomial spaces are preserved by an affine transformation, the

map ®* : (H? x H)(T) — (H?> x H')(3T) defined by (2.9)(2.10) maps
(H? x H'); x_1(3T) one-to-one and onto (H? x H") x_1(3T).
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T N TN

Fig. 1 Degrees of freedom for (H2 x H')3 2(3T) and (H? x H')43(37T)

2.2.1 Virtual element spaces on the reference triangle

We begin with a simple well-posedness result for the biharmonic problem.

Lemma 2.2 Givenany (f,g) € (H>x H')(dT) and p € Ly(T), there exists a unique
& € H*(T) such that

(A&, Ay = (0, Dipry Yz e HY(T) and Tré = (f, g). (2.12)
Proof Let ¢ € H% (T) satisfy (2.1) and n € H&(T) be defined by

(AN, AD ) = (p — AL, D1y Yz € HE(T).

Then & = n + ¢ is the unique solution of (2.6). O

Let T be the reference triangle with vertices (AO, 0), (1,0) and (0, 1). In view Aof
Lemma 2.2 and the fact that (H? x Hl)k,k,l(BT) is a subspace of (H? x HHYdT),

we can now define the reference virtual element spaces vk (f), which are identical to
the virtual element spaces in [12] for the special case of the reference triangle.

Definition 2.3 A function é e H 2(7A‘)Abelongs to the virtual element space j// k (f) if
and only if Tr& € (H? x H'); 11 (dT) and the distributional derivative A%£ belongs
to Pr_4(T), i.e., there exists p € Pr_4(T) such that

(AE, A2), 3= (5, B)y, 3 VZeHF(D). (2.13)
Remark 2.3 According to Remark 2.1 and Lemma 2.2, we have

. . .~ kK>+Tk—6
dim ¥*(T) = dim (H? x H") 4x_1(dT) + dim P,_4(T) = % (2.14)

The following result is well-known (cf. [12]). We provide a proof here for self-
containedness.

Lemma 2.3 A function é in YR(T) is uniquely determined by TrS € (H? x
HY—1(3T) and O & € Pea(T).
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Proof II} view of Remark 2.3, it sufﬁges to show that é = Q is the only function
in ¥*(T) with the properties that Tré = (0, 0) and Qﬁk%é = 0. Indeed, using

integration by parts and the fact that the distributional derivative A% € Pi_a(T), we
have

(Aé, Aé)Lz(f) = (AZ%A-’ é)Lz(f) =0.
Therefore é e H 2(YA‘) is a harmonic function that vanishes on 7 and hence é =0.0

Remark 2.4 The definition of the virtual element space vk (f") relies on the fact that
(H? x H! Vi k— l(af) is a subspace of Tr H%(f") Cc Tr Hz(f") One can show by
using macro elements of order & that a pair ( f g) € Pr(d T) X Pr_1(0 T) satisfying
the compatibility conditions (2.2)—(2.4) automatically belongs to Tr H 2(T) Hence
Lemma 2.1 is not necessary for the definition of the virtual element space ¥ (T) intwo
dimensions. However, the definition of the virtual element spaces in three dimensions
requires the characterization of the trace of H 3 (f") for the reference tetrahedron 7,
since macro elements of arbitrary order are not available. The approach here provides
a preview of the three dimensional case.

2.2.2 Virtual element spaces for a general triangle

We now define % (T') for an arbitrary triangle T in terms of yk (f‘).

Definition 2.4 Let 7' be an arbitrary triangle and @ be an orientation preserving affine
transformation that maps 7 onto 7. Then £ € #*(T) if and only if £ o @ € ¥*(T).

Remark 2.5 The definition of 7% (T') is independent of the choice of ®. The polynomial
space P (T) is a subspace of ”//k(T) since Py (T) is obviously a subspace of “I/k(T).
The dimension of ¥*(T) is also given by the formula in (2.14).

We have an analog of Lemma 2.3.

Lemma2.4 A function & in ¥*(T) is uniquely determined by Tré € (H?> x
HY)x—10T) and QO j—4§ € Pr—a(T).

Proof This is a direct consequence of (2.7), Remark 2.2, Lemma 2.3 and the relation

Q1 4E0®@) = (01 k-45) 0. o

Remark 2.6 Our definition of ¥* (T), which is invariant under affine transformations,
differs from the one in [12] for a general triangle. The affine invariance simplifies the
proofs of (1.4) and (1.5) in Sect. 2.4. We note that it is also possible to use the virtual
finite element spaces from [12] in the construction of Ej,. But then the proofs of (1.4)
and (1.5) will become more involved.

Remark 2.7 The definition of H? virtual element spaces on polygons and their appli-
cations to the plate bending problem can be found in [12,13].
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2.3 Construction on the skeleton ., 8T

Given v € Vj,, our goal is to define f, r representing (the desired) Eh”‘ar and gy 7
representing (the desired) (0 E,v/0on) |8T for all T € 7y, such that

(forgur) € (H? x HDgo1OT) forall T € Ty, (2.15)
and the following conditions are satisfied:

itT\, T, € T, (resp., T1, T» € 1o),

then fy. 7, (p) = fo,n, (p) (resp., fo,r, = fu,r, OneE), (2.16)
if two distinct 77 and 7> belong to 7,, then gv,r; + &vr, =0one, 2.17)
ife € 5;; isanedge of T and v € H&(.Q), then f, r =0 one. (2.18)

Note that (2.16) and (2.17) imply any piecewise H? function £ satisfying
7, agT/an)|aT = (fv.r, gu.r) for all T € 7, will belong to H2(£2), and (2.18)
implies that & € H*(2) N Hy () if v € Hy (2).

2.3.1 Construction at the vertices

In view of the compatibility conditions (2.3) and (2.4), we need to define vectors
w), € R? associated with the vertices p of 7j,. There are three cases: (i) p is an interior
vertex, (ii) p is boundary vertex that is not a corner of £2 and (iii) p is a corner of £2.
Case (i) For an interior vertex p, we define w, to be Vv;, where T is any triangle in
Tp.

Case (ii) For a boundary vertex p that is not a corner of §2, we define w, to be Vv,
where T is one of the triangles in 7, that has an edge on 9£2. This choice ensures that
w,-t=0ifv e Hé (£2), where ¢ is any vector tangential to 952 at p.

Case (iii) At a corner p of 2, we define w, by

wy -t = (3v/34)(p) fori =1,2, (2.19)
where e, ey € é’ﬁ are the two edges emanating from p and d/9¢; is the derivative

in the direction of the unit tangent ¢; of ¢;. Note that w, = 0 at a corner p of §2 if
v e Hj(R).

The choices of the triangles and tangent vectors in Case (i)—Case (iii) are illustrated
in Fig. 2.

Remark 2.8 If the condition
Vg, (p) =V, (p) VT, T €7, (2.20)

is satisfied at a vertex p, then obviously w, = Vvy(p) forall T € 7.
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Fig.2 Triangles and tangent
vectors in the definition of w

2.3.2 Construction on the edges

On any edge e € &, we define a polynomial g, € Px—1(e) as follows: First we choose
T € 7, and then we specify that

g.(p) = w,, - n, ; at an endpoint p of e. (2.21)

g and dvy/dn have the same moments up to order k — 3 on e. (2.22)

2.3.3 Construction on the triangles

We are now ready to define (fy, 7, gv.r) € H2(8T) x HY(OT) for any T as follows.
Given any edge e of T, the function f, r on e is the unique polynomial in Py (e) with
the following properties:

fv.r agrees with v at the two endpoints of e and shares the same moments
up to order k — 4 with v, (2.23)
the directional derivative of f, r at an endpoint p of ein the direction

of the tangent £, of e is given by w, - £. (2.24)

Remark 2.9 1f the condition (2.20) is satisfied at both endpoints of e, then w, =
Vur(p) at the two endpoints p of e by Remark 2.8 and then conditions (2.23) and
(2.24) imply fy.r =vone.

Given any edge e of T, we define

gv.r = 8¢ If T is the triangle chosen in the definition of g, (cf. Sect. 2.3.2),
otherwise g, r = —g.. (2.25)

Remark 2.10 1If the condition (2.20) is satisfied at both endpoints of ¢ and v is C 1
across e, then Remark 2.8 and (2.21)—(2.22) imply that g, = dvy/0n on e.

By construction, the condition (2.15) is satisfied because the compatibility condi-
tions (2.2)—(2.4) follow from (2.21) and (2.23)—(2.24). The condition (2.16) follows
from (2.23)—(2.24) and the condition (2.17) follows from (2.25). The choices we
make in the definition of w, for p € 9£2 [cf. Case (ii) and Case (iii) in Sect. 2.3.1 and
(2.23)—(2.24)] also implies (2.18).
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2.4 The operator Ej,

Letv € V, and T € 7, be arbitrary, and (fy.7, gv.r) € (H2 X Hl)k,k_l(BT) be
the function pair constructed in Sect. 2.3. We define E,v € #*(T) by the following
conditions (cf. Lemma 2.4):

(Epv, 0Epv/0n) = (fo,r, u,r) ondT
and Q7 4(Epv) = Or 1—4(v). (2.26)

It follows from (2.16)—(2.17) that the piecewise H? function Ejv belongs to
H?(£2), and (2.18) implies Ejv € H} (2) if v € HJ(£2). It only remains to establish
the estimates (1.4) and (1.5).

Note that Remarks 2.9 and 2.10 imply

(fo.rs &u.r) = (vr, dvp/dn) on T ifvis Cl ondT, (2.27)

and hence v = Ejv if v is C! on 37T, which is the rationale behind (1.4) and (1.5).

Theorem 2.1 The estimate (1.4) holds with a positive constant Cy that only depends
on k and the shape regularity of T,

Proof All the constants (explicit or hidden) that appear below will only depend on the
minimum angle of 7j,.

Let T € 7;, be arbitrary. In view of Remark 2.1, Lemma 2.4 and the equivalence of
norms on finite dimensional vector spaces, we have, by scaling,

IEN, 7
~ Q1 a—4E T,y + Y [PrllQen—aE I o) + 1311 Qek—3(BE /01T 10|
eGgT
+ Y [mE () + hIvEpIP] Ve e 7R, (2.28)
PEVY

where A7 is the diameter of T and Vr (resp., £7) is the set of the three vertices (resp.,
edges) of T. Moreover the affine invariance of #*(T') (cf. Definition 2.4) together
with (2.10) and (2.11) implies that the hidden constants in (2.28) only depend on the
shape regularity of T'.

It follows from (2.23), (2.26) and (2.28) that

lv = Envllg, iy ~ Y W3V — Ep)(p)?
PEVr

+ 3 B Qex-30(w — Eyv)/onl} . (229)

EGST
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and we also have, by the construction of w, in Sect. 2.3.1, (2.22), (2.24), and (2.25),

IV — Ep)(p)* < C1 Y hy ' [0v/0nllll7, .-

ee)

1Qek—30(w — Epv)/0nl|7, ) < I180/0n1117,c)-

where &), is the set of all the edges in &, that share p as a common vertex, and hence

v — EnvllT, iy < Cah3 > Y l9v/onll] - (2.30)
peVr ec&)p

We then deduce from (2.30) and scaling that

ID*(v = Exv)l 7,y < Cahy' Y- > llI0v/0nTl17, - (2.31)
peVr ek,

Note that, because of the affine invariance of ¥*(T), the scaling constants behind
(2.31) only depend on the shape regularity of T'.
The estimate (1.4) follows immediately from (1.1) and (2.31). O

Theorem 2.2 The estimate (1.5) holds with a positive constant C, that only depends
on k and the shape regularity of T,

Proof Let T € 7, be arbitrary and St (the star of 7') be the interior of the union of the
closures of all the triangles in 7}, that share a common vertex with 7. If { € H k102
belongs to Py (S7), then IT,{ = ¢ in St and hence ¢ — Ej I[1j,¢ = [Ty — EpIlp¢ =0
on T by (2.30). The estimate (1.5) can then be established through the Bramble—Hilbert
lemma [3,18]. m|

3 The three dimensional case

The construction of Ej, in three dimensions follows the same strategy as in Sect. 2,
and our treatment will be brief regarding the results and arguments that are (almost)
identical with the two dimensional case.

3.1 Trace spaces for a tetrahedron

Let T be a tetrahedron with vertices p1, p2, p3, p4, and F; be the face of T opposite p;.
Let ¢ be a nonnegative number. A function u belongs to the piecewise Sobolev space
HY(AT) (resp, piecewise polynomial space P¢(d7)) if and only if u;, the restriction
of u to F;, belongs to HY(F) (resp., Pe(F;)) for 1 <i <4.

For a function ¢ defined on a face F of the tetrahedron 7', the planar gradient Vr; ¢
is defined by

Vi =Vé — (Vo -nppnpr,
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Fig.3 Faces, normals, edge and orthogonal subspace

where ¢ is any extension of ¢ to a neighborhood of F in R3.
The operator Tr : H>(T) —s H?2(9T) x H?(3T) is again defined by (2.1) in
a piecewise sense. We want to characterize the image of H 3 (T) in (H? x HY)(OT)

under the operator Tr, for which we will need more notations and definitions.
The common edge of F; and F; is denoted by ¢;;(= ¢;;) and el# denotes the two

dimensional subspace of R perpendicular to e;j. The outward unit normal on Fj; is
denoted by n, and we denote by £ ; the unit vector tangential to F;, perpendicular
to ¢;; and pointing outside F; (cf. Fig. 3).

Definition 3.1 The space H > (eij, eiJ]-.) consists of all vector functions w defined on e;;

L

o . 1
with image in efj-. such that w - z € H2(e¢;;) forall z € e

Definition 3.2 A pair of functions (f, g) € H2(OT) x H'(3T) belongs to the space
(H% x HY)(OT) if and only if the following conditions are satisfied :

fi=1f; onejfor 1 <i#j<4, 3.1
and there exist w;; = wj; € H%(eij, efl.) such that

ijfj “tji=wij-t;; one;j for 1 <i #j<4, 3.2)

gj =WwW;j-n; one,-jfor 15175]54 (3.3)
Note that we can replace the compatibility conditions (3.2)—(3.3) by the condition
VE fi +g,'n,~=ijfj+gjnj onejj forl <i#j<4. 3.4

It follows from the Sobolev Embedding Theorem that Tr ¢ € (H? x H')(dT) for

teH 3 (T), where w;; is the orthogonal projection of V¢ along e;; onto the subspace
eiJ]-., and we can recover V¢ on F; from (f, g) = Tr ¢ through the relation

V¢ =Vpg fi+gmn; onF; forl <i<4. 3.5)
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We want to show that Tr H% (T) = (H2 x HHY@OT).
Again we construct a linear bijection

@* : (H?> x HYOT) — (H?> x HY)(OT)

so that (2.7) is valid, where @ is an orientation preserving affine transformation that
maps the tetrahedron T onto T. Let (f,g) € (H? x Hl)(aT). Motivated by (2.7),
(2.8) and (3.4), we define @*(f, g) = (f, ), where f is given by (2.9), g is given by
(2.10) (where n; is the outward pointing unit normal along the face I:}-) and the vector
field g on 9T is given by

g=Vpg fi+gn;, on F; forl <i <4 (3.6)

It is straightforward to check that (f, g) € (H* x HYOT), @* : (H? x
HY(OT) — (H?x H")(dT) is a bijection, and that (2.7) follows from (2.8)—(2.10),
(3.5) and (3.6).

We can now establish the following analog of Lemma 2.1.

Lemma 3.1 The image ofH% (T) under Tr is the space (H2 x HYHY@T).

Proof Given (f, g) € H*(dT) x H'(dT) that satisfies (3.1)—(3.3), we can reduce the
construction of ¢ to the following three cases by a partition of unity. (i) f and g vanish
near the vertices of 7 and the edges of T', in which case we can use the operator Lj
in Lemma A.2 to obtain ¢. (ii) f and g are supported in a neighborhood of an edge
and vanish near the vertices of 7', in which case we can assume through an affine
transformation [cf. (2.7)] that the dihedral angle at the edge is a right angle and obtain
¢ through Lemma A.5. (iii) f and g are supported near a vertex of 7', in which case
we can assume through an affine transformation that the angle at the vertex is a solid
right angle and obtain ¢ through Lemma A 4. O

3.2 Affine invariant H? virtual element spaces

We will use the same notation (H* x H')(3T) to denote Tr H 3 (T) for a tetrahedron
T. But the definition of (H? x Hl)k,k_l (0T) is different.

Definition 3.3 Let 7 be a tetrahedron. A pair (f, g) € (H? x HY)(T) belongs to
(H? x HY) 1 1(3T) if and only if (f;, g;) € ¥V*(F;) x Pr_1(F;) for1 <i < 4.

Remark 3.1 1t follows from Remark 2.1, Lemma 2.3 and the constraints (3.1)—(3.3)
that we need the following dofs for (H> x H' Vi k—1(0T): (i) The value of v at each
vertex p together with the values of the three directional derivatives along the three
edges emanating from p, which requires 4 x 4 dofs. (ii) The moments of v up to order
k — 4 on each edge, which together with (i) ensure the constraint (3.1). This requires
6 x (k —3) dofs. (iii) The moments of order up to k — 3 on each edge in order to define,
together with (i), a polynomial (vector) function of order < k — 1 on e with images in
e, which requires 6 x 2(k —2) dofs. We can then use this polynomial (vector) function
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Fig.4 Visible degrees of freedom for (H> x H')32(3T) and (H? x H')43(3T)

to define Vpvr - n. r on any edge e of F through (3.2) and dv/dn on 9 F through
(3.3). (iv) On each face F we need to specify the moments of v and dv/dn up to order
k —4 in order to complete the definition of v, € 7/k(F) and dv/dn € Px—1(F), which
requires 4 x 2 x W dofs. Altogether we have

dim (H? x H') x_1(37)
=164+ 6(k —3) + 12(k —2) +4(k = 3)(k —2)2(k — D2k +1).  (3.7)

The (visible) dofs of (H? x Hl)k,k_l(Z)T) for k = 3 and 4 are depicted in Fig. 4,
where (i) the values of f at the vertices and the moments of f on the edges and faces
are represented by solid dots, and (ii) the directional derivatives of f at the vertices
and the moments of g on the edges and faces are represented by arrows.

The well-posedness result in Lemma 2.2 remains valid for a tetrahedron 7" and the
definition of the virtual element space #* k (f") on the reference tetrahedron with vertices
0,0,0),(1,0,0), (0, 1,0) and (0, 0, 1) is identical to the one in Definition 2.3 for the
reference triangle. The virtual element space 7 (T') for an arbitrary tetrahedron is then
defined as in Definition 2.4 through an orientation preserving affine transformation @
that maps T onto T, and Lemma 2.4 also holds for a general tetrahedron.

The dimension of #*(T') is now given by

dim ¥*(T) = dim(H? x H'); 11 (8T) + dim P;_4(T)
=2k —DQk+ 1)+ %(k —3)k—2)(k — 1)

(k — 1)(k + 1)(k + 18)
g .

(3.8)

Remark 3.2 The definition of #*(T) for a tetrahedron relies crucially on the fact
that boundary data satisfying the compatibility condition (3.1)—(3.3) will belong to
Tr H2(T). Unlike the two dimensional case (cf. Remark 2.4), this cannot be taken for
granted since macro elements of arbitrary order that share the same boundary data are
yet to be developed.
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Remark 3.3 Three dimensional H? virtual elements on arbitrary polyhedron have
recently been proposed in [2].

3.3 Construction on the skeleton ., 8T

Given any v € Vj,, we want to define f, r representing (the desired) Ehv| oT and gy 7
representing (the desired) (0 E,v/ 8n)|8T for all T € 7y, such that

(for-gur) € (H? x HDgo1T) VT €7, 3.9)
and the following conditions are satisfied:

if Ty and T3 belong to 7, (resp., 7. or 7r), then f, 7, (p) = fo,1,(P)

(resp., fu,r, = fo., Oneor fy 7, = fyr, onF), (3.10)
if T} and T» are two distinct tetrahedra in 7,

then gy, 7, + gu,r, =0o0n F, (3.11)
if Fe .7-";,’ isafaceof T and v € Hol(.Q), then f, r =0on F. (3.12)

Note that (3.10) and (3.11) imply any piecewise H?> function & satisfying (£7, d&7/
8n)|aT = (fv.r, gv.r) for all T € 7, will belong to H?(£2), and (3.12) implies that
€ € H*(2)NH () if v e H} ().

3.3.1 Construction at the vertices

As in Sect. 2.3, we first define the vectors w, associated with the vertices p of 7j,.
There are three cases: (i) p is an interior vertex, (ii) p is aboundary vertex that belongs
to a face of £2, (iii) p is a boundary vertex that does not belong to any face of £2.
Case (i) For an interior vertex p, we choose a tetrahedron T in 7, and define w, to
be Vuy.

Case (ii) For a boundary vertex p that belongs to a face F of £2, we define w, to be
Vv, where T is a tetrahedron in Tp that has a face on F. This choice ensures that
w,-t=0ifv e H(} (£2), where ¢ is any vector tangential to 92 at p.

Case (iii) In this case p is either a corner of §2 or p belongs to an edge of £2. We
define w, implicitly by

9
wp-t[:a—:(p) for i=1,2,3, (3.13)
l

where 0/0t;, 0/0t, and 0/dt3 are the tangential derivatives along three edges
e1,er,e3 € Sfl’ emanating from p that are not coplanar. This choice of ey, e2, e3
impliesw, =0ifv e HO] (£2).

Remark 3.4 Note that Remark 2.8 is also valid here, i.e., w, = Vur(p) forall T € 7,
if vis C! at the vertex p.
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3.3.2 Construction on the edges

In view of (3.2) and (3.3), we also need to define polynomial vector functions w, :

e —> et on the edges e € &,. There are three cases: (i) e is an interior edge of 7j,

(i1) e is a subset of a face Qf £2 and (iii) e is a subset of an edge of £2.
Case (i) Let e belong to &;. We choose T' € 7., and then define w, by the following
conditions:

at an endpoint p of e, w.(p) is the projection of w, on et (3.14)

w, and the projection of Vv, on e® have the same moments along e
up to order k — 3. (3.15)

Case (ii) Let e be an edge of 7, that is a subset of a face F' of £2. We define w, again
by (3.14)—(3.15), but with the stipulation that one of the faces of T is a subset of F.
This additional condition (together with the choices made in Cases (ii) and (iii) in
Sect. 3.3.1) implies that w, -t = Ooneifv € HO1 (£2), where ¢ is any vector tangential
to F.

Case (iii) Let e be an edge of 7, that is a subset of an edge of £2. Then there are
two distinct faces Fi, Fp € .7-';1’ N F, and we define w, by (3.14) together with the
condition that

We - Re, and VF; UF; - e, have identical moments up to order k — 3

for j =1,2. (3.16)

Our choice of F and F; (together with the choices made in Cases (ii) and (iii) in
Sect. 3.3.1) ensures that w, = Ooneifv € HO1 (£2).

Remark 3.5 In the case where v € Vj, is C! across an edge e € &, and at the endpoints
of e, it follows from Remark 3.4 and (3.14)—(3.16) that the vector field w, is the
projection of Vv, on et forall T € 7,.

3.3.3 Construction on the faces

We define g, » on a face F € F, as follows. We choose T € 7 and stipulate that

on an edge e of F', g, r € Py_1(e) is given by w, - nr r, (3.17)

gv,r and dvr/0n have the same moments up to order k — 4 on F. (3.18)

Remark 3.6 If v is C! across e € &y and at the endpoints of e, then we have g, r =
dvp/ononeforall F € F, and T € 7r by Remark 3.5 and (3.17).

3.3.4 Construction on the tetrahedra

We are now ready to define (fy.r, uv.r) € H2(8T) x HY(3T) for any T € 7j as
follows. On any edge e of aface F of T, f, 5 is the unique polynomial in Py (e) with
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the following properties:

Jv.ar agrees with v at the two endpoints of e and shares the same moments
up to order k — 4, (3.19)
the directional derivative of f, ,r at an endpoint p of ein the direction

of the tangent ¢, of eis given by w, - £. (3.20)

Remark 3.7 Remark 2.9 is also valid here, i.e., f,, - = voneifvis Clatthe endpoints
of e.

Let F be a face of T and e be an edge of F, we define g, 5 € Pr—1(e) by

Gu,or = We * Re f. (3.21)

On each face F of T, the pair (fy 57, qv.ar) belongs to (H? x H])kyk_l(aF) by
(3.14) and (3.19)—(3.21). Hence we can define f, r € ¥k (F) to be the virtual element
function (cf. Lemma 2.4) that satisfies the following conditions:

Tr fv,F = (fv,aF, QU,aF) on 0 F and QF,k—4fv,F = QF,k—4U- (3.22)

Remark 3.8 If vis C! on 3 F, then Gv,sr = 0vp/0n on 0 F by Remark 3.5 and (3.21).
It then follows from Remarks 2.5, 3.7 and (3.22) that f, r = von F.

Given any face F of T, we define

8v.r = &u,r If T is the tetrahedron chosen in the definition of g, »
(cf. Sect. 3.3.3), otherwise gy,r = —gu.r- (3.23)

Remark 3.9 Ifvis Cl on 97T, then (3.18), Remark 3.6 and (3.23) imply g, r = dvr/0n
ondT.

At the end of this process, we have constructed (fy.r, gv.r) € H2(T) x HYT)
for every polyhedron 7' € 7. The pair ( fy.r, gu.r) belongs to (H2 X Hl)k,k_l(aT)
because (i) the condition (3.1) is implied by (3.19)—(3.20), (ii) the condition (3.2) is
implied by (3.21)—(3.22), and (iii) the condition (3.3) is implied by (3.17).

It follows from (3.19)—(3.22) that (3.10) is satisfied, and the condition (3.11) follows
from (3.23). The choices we make in Sects. 3.3.1 and 3.3.2 ensure that f, ,» defined
by (3.19)—(3.20) and g, ,r defined by (3.21) both vanish on 9 F if the face F of T is
asubset of 92 and v € HO1 (£2). The condition (3.12) then follows from (3.22).

In view of Remark 3.8 and Remark 3.9 the relation (2.27) remains valid, i.e.,
Epv =vifv e V, is C! on 8T, which is the basis for the estimates (1.4) and (1.5).

3.4 The operator Ej,

We proceed as in Sect. 2.4. Let v € Vj, and T € 7}, be arbitrary, and (fy 7, gu.r) €
(H? x H")x—1(dT) be the function pair constructed in Sect. 3.3. We define E,v €
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vk(T) again by the conditions in (2.26), i.e.,

(Epv, 0Epv/0n) = (fy,r» gv,r) onadT
and Ot k—4(Epv) = Or 1—4(v). (3.24)

It follows from (3.10)—(3.11) that E,v € H%(£2), and (3.12) implies that Epv €
Hi(R)ifv e H} (2).

The estimates (1.4) and (1.5) are established by similar arguments as in Sect. 2.4,
where the analog of (2.28) for a tetrahedron 7' (cf. Lemma 2.4 and Remark 3.1) is
given by

[
~ N7 k-a€ T,y + D hel Qr a4,y + Y WIQF k-4 (BE/IM)T, (1)
FE]:T FE]:T
+ Y BHIQek—4E 7,00 + D hil Qek—3(VE) L1170
eegT EEET
+ 3 [BEX(p) + 3 IVE(P) ] (3.25)
PeEVr

forall¢ € ¥ k(T), where Fr (resp., &7 and Vr) is the set of the four faces (resp., six
edges and four vertices) of 7" and (V§),. is the orthogonal projection of V& onto the
subspace of R3 perpendicular to e. The hidden constants in (3.25) only depend on the
shape regularity of 7;, because of the affine invariance of the virtual element spaces.

It follows from (3.19), (3.22), (3.24) and (3.25) that we have the following analog
of (2.29):

2
lv— EhU||L2(T)

~ Y BIVO = En) (PP + Y B Qes—3(V W — Exv)) 11 10

pEVT eeET
+ Y B Qrk-alldv/onll7, - (3.26)
FeFr

We can then establish the three-dimensional analogs of Theorems 2.1 and 2.2 as in
Sect. 2.4.

4 Concluding remarks
Following the approach of this paper (and with more patience and persistence), one
can construct enriching operators Ej that maps the totally discontinuous Py finite

element space into H 2(£2), where (1.4) and (1.5) are valid for J(w, v) given by

@ Springer



Virtual enriching operators Page190f25 44

z3

(¢p1,91)

x2

T2

(¢1,91) (¢2,%2)
(¢3,%3)

1 1

(¢2,v2)
Fig.5 Boundary data for Ri and Rz_

Jw,vy =Y [hj fﬂwl][[v]]ds +h;! f[[aw/an]]llav/anﬂds] ford =2,

668;;
Jww =3 [h;3[|1w]]|[u]]ds+h;1/F[[aw/an]]uav/an]]ds] ford = 3.

Fe]—',",

One can also construct Ej, : V; N HJ (82) —> HZ(£2) such that (1.4) and (1.5)
are valid, provided the sum in (1.2) [resp., (1.3)] is taken over &, (resp., F},). This can
also be carried out for the totally discontinuous Py finite element space.

Lemma 3.1 is also of independent interest, since inverse trace theorems for poly-
hedral domains in R? do not appear to be readily available in the literature.

A Inverse trace theorems for R2 and R3
We consider inverse trace theorems for Ri and ]R%r with data on the boundaries of
these domains (cf. Fig. 5). We will rely on the results in Lemmas A.1 and A.2 that

follow from the construction of inverse trace operators through the Fourier transform
[22,26] and the Paley—Wiener theorem [21].

Lemma A.1 There exists a bounded linear operator
2 1 3 w2
Ly: H* R) x H' (R) — H2(R")

such that (i) [L1(¢, ¥)1(t,0) = ¢ (1), (ii) [0L1(P, ¥)/0x2](2,0) = ¥ (1), and (iii)
L1(¢p, ¥)(x1, x2) vanishes on the half plane x1 < 0 if ¢ (t) and  (t) vanish on the
halfline t < 0.

Lemma A.2 There exists a bounded linear operator
L, : H*(R?) x H'(R?) — H3 (R
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such that (i) [L2(¢, ¥)1(x1, x2,0) = ¢ (x1, x2), (ii) [0L2(¢, ¥)/x3](x1, x2,0) =
Y (x1, x2), and (iii) Lo(¢p, ) (x1, X2, x3) vanishes on the half space x1 < 0 (resp.,
x3 < 0) if ¢(x1, x2) and Y (x1, x2) vanish on the half plane x1 < 0 (resp., xa < 0).

We begin with a two-dimensional inverse trace theorem. We note that similar results
for H 2(]Ri) can be found in [20, Section 1.5.2]. Our approach is simpler (since we

are considering H 2 (Ri)) and therefore its extension to three dimensions is easier.

LemmaA.3 Ler (¢1, Y1) and (¢2, ¥2) belong to H>(R,) x H'(Ry.) such that

$1(0) = ¢2(0), (A.D
Y1(0) = $5(0), (A.2)
¥2(0) = ¢1(0). (A3)

Then there exists { € H 3 (Ri) such that
(£,0¢/0xi) = (¢i, ¥i) ifxi =0,1=<i <2 (A4)
Proof First we extend ¢ and v to R, so that the extensions (still denoted by ¢; and

Y1) satisfy ¢ € H 2(R) and Y1 € H 1 (R). This can be achieved by reflection (cf. [22,
Theorem 2.3.9] and [1, Theorem 5.19]). Let L be the lifting operator in Lemma A.1

and ] = Li(¢1, V1) € H3 (R?) so that
€100, x2) = ¢1(x2) and (8¢1/9x1)(0, x2) = Y1(x2). (A.5)
Then we define ¢ (x1) = ¢2(x1) — {1 (x1, 0), Yo (x1) = Y2 (x1) — (3¢1/3x2) (x1, 0)
for x; > 0. ~
Note that ¢» € H?(R,), and
$2(0) = $2(0) — ¢1(0,0) = $2(0) — ¢1(0) =0
by (A.1) and (A.5), and
$5(0) = ¢5(0) — (3¢1/3x1)(0, 0) = ¢5(0) — 91 (0) =0
by (A.2) and (A.5). Moreover we have 1}2 e H'(R,), and
¥2(0) = ¥2(0) — (3¢1/3x2)(0, 0) = ¥2(0) — ¢} (0) =0
by (A.3) and (A.5). Hence their trivial extensions (still denoted by é> and V) satisfy
¢ € H*(R) and Y, € H'(R).
Let & = Ly (¢, ¥2) € H3 (R?) such that & (x1, 0) = 2 (x1, 0) and

(822/3x2) (x1,0) = ¥y (x1).
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Then ¢, = 0 on the half plane x; < 0 by Lemma A.3, which implies
02(0,x2) = (952/9x1)(0, x2) =0 V2 > 0.

We can now take ¢ to be the restriction of ¢1 + 3 to Ri. O

Next we consider the three dimensional analog of Lemma A.3.

Lemma A4 Let (¢1, V1), (¢, ¥2) and (¢3, ¥r3) belong to H*(R%) x H'(R%) such
that the following conditions are satisfied.:

6100, x3) = ¢2(0,x3) Vx3 >0, (A.6)
$2(x1,0) = ¢3(x1,0) Vx>0, (A7)
¢3(0, x2) = ¢1(x2,0) Vx>0, (A.8)
0
¥1(0, x3) = ai’z(o,m) Vs> 0, (A.9)
X1
03
Y1(x2,0) = E(O’ x2) Vx>0, (A.10)
03
Ya(x1,0) = —(x1,0) Vx>0, (A.11)
dx2
Y (0, x3) = %(0, x3) Va3 >0, (A.12)
dx2
Y3(x1,0) = %(xl, 0) Vx>0, (A.13)
B)C3
¥3(0, xp) = %(xz, 0) Vx>0. (A.14)
0x3

Then there exists { € H 3 (Ri) such that
(¢, 08/0xi) = (¢, ¥i) if xi =0, 1 <i <3. (A.15)
Proof First we extend ¢; and | to R? by reflection (twice) so that the extensions

(still denoted by ¢ and V) satisfy ¢; € H>(R?) and v, € H'(R?). Let L» be the
lifting operator in Lemma A.2 and {1 = L2 (¢1, Y1) so that

21(0, x2, x3) = ¢1(x2, X3), (A.16)
(021/0x1)(0, x2, x3) = ¥1(x2, X3). (A.17)

Then we define, for (x1, x3) € R2,

2 (x1,x3) = Pa(x1, x3) — ¢1(x1, 0, x3), (A.18)
U (x1, x3) = Ya(x1, x3) — (31 /8x2) (x1, 0, X3). (A.19)

@ Springer



44 Page22of25 S.C.Brenner, L.-Y. Sung

Note that q~52 belongs to H 2(Ri) and

$2(0, x3) = $2(0, x3) — £1(0, 0, x3) = ¢2(0, x3) — $1(0, x3) =0 for x3 > 0

by (A.6), (A.16) and (A.18), and

Ry 9 9 9
312@, = 222059 = 00,0, x3) = 2220, x3) = y10.x3) = 0
X1 0x1 0x1 x|

by (A.9), (A.17) and (A.18). Furthermore &2 belongs to H' (Rﬁ) and

= 91
¥2(0, x3) = ¥2(0, x3) — N (0,0, x3)
x2

991
=20, x3) — —(0,x3) =0 forx; >0
0X2

by (A.12), (A.16) and (A.19).

Hence we can extend ¢, and ¥ to R4 x R by reflection across x3 = 0 (still
denoted by ¢ and V1) so that ¢ € H*(Ry x R), Y2 € H*(Ry x R), $2(0, x3) =
(8¢ /9x1)(0, x3) =0 for x3 € R and ¥ (0, x3) = 0 for x3 € R. Therefore the trivial
extensions of ¢, and ¥ to R? (still denoted by &> and V) belong to H%(R?) and
H'(R?) respectively.

Let & = Ly(¢, ¥2). Then we have, by Lemma A.2,

0 (x1,0, x3) = ¢ (x1, x3), (A.20)
(822/3x2)(x1, 0, x3) = P2 (x1, x3), (A.21)

and
Co(x1,x2,x3) =0 ifx; <O,

which implies
L =00/0x1 =0 ifx; =0. (A.22)

We now define, for (x, xp) € R%_,

$3(x1, x2) = 3(x1, x2) — {1 (x1, X2, 0) — L2(x1, x2, 0), (A.23)
W3 (x1, x2) = Y3 (x1, x2) — (31 /0x3)(x1, x2,0) — (382/0x3)(x1, x2,0).  (A.24)

Then ¢3 (resp., ¥3) belongs to H>(R2) (resp., H'(R2)).
Moreover, it follows from (A.8), (A.16), (A.22) and (A.23) that

$3(0, x2) = $3(0, x2) — £1(0, x2, 0) = $3(0, x2) — $1(x2,0) =0 for xp > 0,
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and (A.10), (A.17), (A.22) and (A.23) imply

Ry 9 0
995 0, x2) = 2230, 1) — 200, %2, 0)
0x1 0x1 0x]

a3

= —(0,x2) — ¥1(x2,0) =0 for x > 0.
dx1
From (A.14), (A.16), (A.22) and (A.24) we also have
~ 8 a
¥3(0, x2) = ¥3(0, x2) — 9 (0, x2,0) = ¥3(0, x2) — ﬂ()cz, 0) forx; > 0.
dx3 dx3

Next we check the behavior of d;g and 1/}3 at xo = 0. We have

¢3(x1,0) = ¢3(x1,0) — ¢1(x1,0,0) — £2(x1,0, 0)
= ¢3(x1,0) — ¢p2(x1,0) =0 forx; >0

by (A.7), (A.18), (A.20) and (A.23);

Ry 9 9 9
99 10y = 22 0y = 200 0,00 — 22,0, 0)
ax2 dx2 ax2 dx2

093

= —(x1,0) — ¥2(x1,0) =0 forx; >0
axz

by (A.11), (A.18), (A.21) and (A.23);

~ 96 il
Y3(x1, 0) = ¥3(x1,0) — a—(xl,O, 0) — —(x1,0,0)
X3 0x3

d
= ¥3(x1,0) — ﬁ()ﬂ,O) =0 forx; >0
0x3

by (A.13), (A.18), (A.20) and (A.24). 5 3
The calculations above show that ¢3 = d¢3/9n = 3 = 0 on the boundary of R%r.

Hence their trivial extensions to R? (still denoted by q33 and 1&3) belongs to H 2(R?)
and H'(R?).
Let &3 = Ly(¢1, ¥1). Then we have, by Lemma A2, &3 € H3(R3),

G (x1, x2,0) = g3(x1, x2), (A.25)
(3¢3/8x3)(x1, x2, 0) = P3(x1, X2), (A.26)

and
23(x1,x2,x3) =0 ifx; <Oorx <0,
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which implies

_da 0z

0= =0 ifx;=0 and 3=—==0 ifx; =0. (A.27)
3)(1 3)62

We can now take ¢ to be the restriction of | + £ + ¢3 to R3., and (A.15) follows
from (A.16)—(A.27). m]

Finally we have a three-dimensional result that is two-dimensional in nature and
which can be derived by using the arguments in the proof of either Lemma A.3 or
Lemma A.4.

LemmaA.5 Let (¢1, V1) and (¢2, ¥2) belong to H*(R4. x R) x H' (R4 x R) such
that

$1(0,x3) = ¢2(0,x3) Vx3€R,

ilo%)
Y10, x3) = —(0,x3) Vx3eR,
8)61

0
00,5 = 2210, x) Vs eR.
3)(2

Then there exists ¢ € H 3 (Ri) such that

(¢,0¢/0x;) = (@i, ¥i) ifxi=0,1<i<2.
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