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Abstract—This work presents two reinforcement learning (RL)
architectures, which mimic rational humans in the way of
analyzing the available information and making decisions. The
proposed algorithms are called selector-actor-critic (SAC) and
tuner-actor-critic (TAC). They are obtained by modifying the
well known actor-critic (AC) algorithm. SAC is equipped with
an actor, a critic, and a selector. The role of the selector is to
determine the most promising action at the current state based
on the last estimate from the critic. TAC is model based, and
consists of a tuner, a model-learner, an actor, and a critic. After
receiving the approximated value of the current state-action pair
from the critic and the learned model from the model-learner,
the tuner uses the Bellman equation to tune the value of the
current state-action pair. Then, this tuned value is used by the
actor to optimize the policy. We investigate the performance of
the proposed algorithms, and compare with AC algorithm to
show the advantages of the proposed algorithms using numerical
simulations.

Index Terms—Reinforcement learning, model-based learning,
model-free learning, actor-critic

I. INTRODUCTION

In the framework of artificial intelligence (Al), one of the
main goals is to implement intelligent agents with high level
of understanding and making correct decisions. These agents
should have the capability to interact with their environments,
collect data, process it, and improve their performance with
time. Implementing autonomous agents capable of learning
effectively has been a challenge for a long time. One of the
milestones that have contributed in this field is reinforcement
learning (RL). It is considered as a principled mathematical
framework for learning experience-driven autonomous agents
[1]. RL has been widely used to implement autonomous
agents, e.g., [2]-[5].

RL refers to algorithms enable the agents to optimize
their behaviors and improve their performance over time. The
agents work in unknown environments, and learns from trial
and error [6]. RL methods are categorized into two classes,
which are model-free learning and model-based learning.
Model-free learning updates the value function after inter-
acting with the environment without learning the underlying
model. On the other hand, model-based learning estimates the
dynamics (the model) of an environment, which is used later
to optimize the policy [7]. Each learning class has its own
advantages, and suffers from a number of weaknesses. Model-
based learning is characterized by its efficiency in learning [8],
but at the same time, it struggles in complex problems [9]. On

the other hand, model-free learning has strong convergence
guarantees under certain situations [1], but the value functions
change slowly over time [10], especially, when the learning
rate is small.

In this work, we present two RL algorithms, which aim at
providing efficient learning methods that utilize the available
information efficiently. These architectures are called selector-
actor-critic (SAC) and tuner-actor-critic (TAC). The main idea
is to combine methods from the two learning classes to
implement intelligent agents and to overcome the weaknesses
of these two classes.

A. Related Work

Combining methods from both learning classes has been
discussed in many works, e.g., [2], [3], [11]-[14].

In [2], a method called model-guided exploration is pre-
sented. This method integrates a learned model with an
off-policy learning. The learned model is used to generate
good trajectories using trajectory optimization, and then, these
trajectories are mixed with on-policy experience to learn the
agent. To overcome the weaknesses of the model-guided ex-
ploration approach, another method called imagination rollout
was designed [2]. It was proposed for applications that need
large amounts of experience, or when undesirable actions are
expensive. In this approach, synthetic samples are generated
from the learned model that are called the imagination rollouts.
These rollouts, the on-policy samples, and the optimized
trajectories from the learned model are used with various
mixing coefficients to evaluate each experiment.

In [11], an algorithm called approximate model-assisted
neural fitted Q-iteration was proposed. Using this algorithm,
virtual trajectories are generated from a learned model to be
used for updating the Q function. This work mainly aims at
reducing the amount of real trajectories required to learn a
good policy.

Actor-critic (AC) is a model-free RL method, where the
actor learns a policy that is modeled by a parameterized dis-
tribution, while the critic learns a value function and evaluates
the performance of the policy optimized by the actor. In [3],
the framework of human-machine nonverbal communication
was discussed. The goal is to enable machines to understand
people intention from their behavior. The idea of integrating
AC with model-based learning was proposed. The learned
dynamics of the underlying model are used to control over
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the temporal difference (TD) error learned by the critic, and
the actor uses the TD error to optimize the policy for exploring
different actions.

In [12], two learning algorithms were designed. The first one
is called model learning actor-critic (MLAC), while the second
one is called reference model actor-critic (RMAC). The MLAC
is an algorithm that combines AC with model-based learning.
In this algorithm, the gradient of the approximated state-value
function V(s) with respect to the state s, and the gradient
of the approximated model s’ = f(s,a) with respect to the
action a are calculated. The actor is updated by calculating
the gradient of V(s) with respect to @ using the chain rule
and the previously mentioned two gradients. However, using
RMAC, two functions are learned. The first function is the
underlying model. The second one is the reference model
s’ = R(s), which maps state s to the desired next state s’
with the highest possible value. Then, using the inverse of
the approximated underlying model, the desired action can be
found. The integrated paradigm of the reference model and
the approximated underlying model serves as an actor, which
maps states to actions.

Off-policy learning has been investigated in many works
[15], [16], [17], [18]. Q-learning is considered as the most well
known off-policy RL method [16]. This method evaluates an
action at a state using its current value, the received immediate
reward resulting from this action, and the value of the best
action at the next state. This expected best action at the next
state is selected independently of the currently executed policy,
which is the reason for classifying this method as an off-policy
learning method.

Combining off-policy learning with AC was studied in
[17]. Using this algorithm, a stream of data (a sequence
of states, rewards, and actions) is generated according to a
fixed behavior policy. The critic learns off-policy estimates
of the value function for the current actor policy. Then, these
estimates are used by the actor for updating the weights of the
actor policy, and so on. Using off-policy data (generated data
from past interaction with the environment) to estimate the
policy gradient accurately was investigated in [15]. In [19], an
analytic expression for the optimal behavior policy (off-policy)
is derived. This expression is used to generate trajectories with
low variance estimates to improve the learning process by
estimating the direction of the policy gradient efficiently.

B. Contributions

The main contribution in this paper is to introduce two new
algorithms for RL, namely SAC and TAC:

1) In SAC, the newly added component, compared to the
vanilla AC, is a selector. In conventional AC architec-
ture, the actor uses the action selected by the current
policy at the current state to optimize the policy’s
parameters. However, the selector in SAC determines
the most promising action at the current state, which is
used by the actor to optimize the policy’s parameters.

2) TAC has two more elements added to AC, which are
a model learner and a tuner. The model learner ap-

proximates the dynamics of the underlying environment,
while the tuner tunes the value of the current state-action
pair using the Bellman equation, the learned model,
and the learned value function by the critic. The actor
uses the tuned value of the current state-action pair to
optimize the policy’s parameters.

Our SAC method uses the idea of off-policy greedy action
selection of Q-learning, and apply it to the AC algorithm to
yield an off-policy AC algorithm.

The main differences between TAC and the most-related
model based algorithm in [3] are summarized as follows:

o In [3], the critic approximates the state-value function to
evaluate the system performance, while the critic in TAC
approximates the action-value function.

« In [3], the policy uses a preference function for selecting
actions, which indicates the preference of taking an action
at a state. The preference function of the current state-
action pair is updated by adding its old value to the
current TD error learned by the critic. On the other hand,
the actor in TAC uses stochastic parameterized policies to
select actions, and uses policy gradient to optimize these
policies.

o TAC uses the approximated underlying model, the ap-
proximated action-value function learned by the critic,
and the Bellman equation to tune the value of the current
state-action pair. In contrast, [3] uses the approximated
underlying model to find the expected TD error for the
current state. The value of the current state is updated by
adding its previous value to the expected TD error.

The remainder of the paper is organized as follows. The
formulated problem and the actor-critic architecture are pre-
sented in Section II. The proposed architectures are described
in Section III. Numerical simulation results are presented in
Section IV. Finally, the paper is concluded in Section V.

II. ACTOR-CRITIC

This part reviews the basic AC algorithm for RL. We use
standard notation that is consistent with that used in e.g., [7].
Specifically, s and s’ denote states, a and a’ denote actions,
Q(s,a) denotes the action-value function, and V'(s) denote
the state-value function. The function 7(als,@) denotes a
stochastic policy function, parameterized by 6.

In AC, the actor generates stochastic actions, and the critic
estimates the value function and evaluate the policy optimized
by the actor. Figure 1 shows the interaction between the actor
and the critic in the AC architecture, e.g., [20].

In this context, the critic approximates the action-value
function ¢™ (s, a) = Q(s,a), and evaluates the currently opti-
mized policy using state-action-reward-state-action (SARSA),
which is given by

Q(s,a) < Q(s,a)+alr(s,a,8") +7Q(s',a") — Q(s,a)] (1)

where « is the learning rate used to update Q(s,a), v is
the discount factor, and 7(s,a, s) is the expected immediate
reward resulting from taking action a at state s and transiting
to state s’
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Fig. 1. Actor-critic architecture.

The actor uses policy gradient to optimize a parameterized
stochastic policy 7(als, 8). Using policy gradient, the policy
objective function J(8) takes one of three forms, which are

o The value of the start state in episodic environments

J1(0) = V™ (s1) ()
o The average value in continuing environments
Tav(0) =Y d™(s)V7(s) (3)

o The average reward per time-step in continuing environ-
ments also

Jur(0) = Zd”(s) Z7r(a|s7 0)r(s,a) 4)

where d7(s) is the steady-state distribution of the underlying
Markov Decision Process (MDP) using policy =, and 7 (s, a)
is the expected immediate reward resulting from taking action
a at state s. The goal is to maximize J(@) [7]. The updating
rule for 0 is given by

0 60+ [VeJ(0) )

where Vg J(0) is the gradient of J(6) with respect to 6, and
B is the step-size used to update the gradient of the policy.

One of the main challenges in this optimization problem
is to ensure improvement during changing 6. This is because
changing 6 changes two functions at the same time, which
are the policy and the states’ distribution. The other challenge
is that the effect of @ on the states’ distribution is unknown,
which makes it difficult to find the gradient of .J(8). Fortu-
nately, policy gradient theorem provides an expression for the
gradient of J(@) that does not involve the derivative of the
states’ distribution with respect to € [7]. According to policy
gradient theorem, for any differentiable policy and for any of
the policy objective function, the policy gradient is

VoJ(0) = E;[Vegln(r(als,0)) Q(s,a)] (6)

Due to the difficulty of finding the expectation, a stochastic
estimate VgJ(0) is used to approximate VgJ(0) [7], [21].
The new updating rule of € is given by

0+ 6+ 5V (0) (7
where o
Vo J(6) = Vo In(r(als, 8)) Q(s, a) (8)

III. THE PROPOSED ALGORITHMS
A. Selector-Actor-Critic

We present a proposed off-policy policy-gradient method,
where the policy being followed is optimized using the most
promising action at state s. The idea is to approximate the
most promising action (i.e., the optimal action) at state s by the
greedy action ag4. To the best of our knowledge, it is the first
work using the most promising action a, to optimize stochastic
parameterized policies using policy gradient methods. The
goal is to optimize the policy in the direction that maximizes
the probability of selecting ag4, and increase the speed of
learning a suboptimal 6.

}

Selector
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Actor
0 0+ aln(m)Q(s, ay)
s 8 /
@~ n(-]s.0) s

Environment

(r(s,a,s),s)
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Fig. 2. Selector-actor-critic architecture.

To achieve this goal, a selector is added to the conventional
AC. Figure 2 depicts the SAC model, and the interaction
between its components. The selector determines a, at the
current state greedily according to

ag = argmax Q(s,b), Vb ats, 9)
b

where b indicates each possible action at state s. After deter-
mining a4 by the selector, it is used by the actor to optimize
the policy. The action a selected by the policy being followed
in (8) is replaced by a,. The new updating rule of 8 is given
by

6 < 0 + Vg In(7(ayls,0)) [Q(s, ag)]- (10)
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After selecting an action by the actor and interacting with
the environment, the critic updates the action-value function
according to

Q(s,a) < Q(s,a)+alr(s,a,s")+yQ(s',a’)—Q(s,a)]. (11)
B. Tuner-Actor-Critic

The TAC algorithm aims at improving the learning process
through integrating a tuner and a model-learner with AC.

|
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Actor
0+ 0+ aln(r)Qpp(s,a)

s+ s
an~(]s,0)

(r(s.0.8),8)|
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Underlying Model

Critic Learner
Q(s,a) IM

Fig. 3. Tuner-actor-critic architecture.

As shown in Figure 3, the newly added components to AC
architecture are the tuner and the model learner. Starting from
the values received from the critic and the model learner, the
tuner uses the Bellman equation to tune the value of the state-
action pair received from the critic. The tuner tunes the value
of (s,a) state-action pair according to

Qop(s,a) = > _p(s'|s,a){r(s,a,s") +7V(s)},  (12)

where p(s’|s, a) is the approximated probability for transiting
from the current state s to next possible state s’ given action
a is taken, and V(s') = > m(d'|s',0)Q(s',a’) is the
approximated value of s’. The critic replaces the value of the
current state-action pair, (s, a), by the value computed by the
tuner

Q(s,a) < Qor(s,a).
The actor updates 0 using
0 +— 0+ 5Vgln(r(als,8)) [Qpp(s,a)].

After selecting an action and interacting with the environment,
the critic evaluates the current policy using

Q(s,a) < Q(s,a)+alr(s,a,s)+7vQ(s',a')—Q(s,a)]. (15)

13)

(14)

IV. EXPERIMENTAL RESULTS

This section evaluates the proposed architectures. To evalu-
ate these architectures, we use Value iteration (VI) to find the
optimal solution as a benchmark when possible using the true
underlying model [22]. AC algorithms from [3], [7] are also
compared with.

A. Experimental Set-up

Two scenarios are considered in the simulation; a simple
scenario with small number of states, and a scenario with
large number of states. The simple scenario is used to evaluate
and compare the proposed architectures with the optimal
performance and AC. For the large scenario, the proposed
models are only compared with AC, where it is difficult to
find the optimal solution.

In all scenarios, the discount factor v is set to 0.9. The
learning rate o used by the critic is set to 0.1. The step-
size learning parameter $ used in policy gradient is set to
0.1. All the simulations started with an initial policy selecting
the available actions uniformly. The approximated transition
model was initialized with zero transition probabilities.

To evaluate the performance of the considered architec-
tures, a number of MDP problems with different number of
states and different dynamics were considered. The goal is to
maximize the discounted return, where the discounted return
following time ¢, G, is given by

T-1
G = Z Y R
i=t

where t is the starting time for collecting a sequence of
rewards, T is a final time step of an episode.

In the simulated environments, the simple scenario is mod-
eled by an MDP with 18 states. Three actions are available
with different immediate rewards and random transition prob-
abilities. The second scenario is modeled using 354 states. The
available actions are 7 with different immediate rewards and
random transition probabilities. All the results were averaged
over 500 runs. The starting state is selected randomly, where
all the states have equal probability to be the starting state.
All mentioned parameters were used in all experiments unless
otherwise stated.

(16)

B. Exponential Softmax Distribution

The exponential softmax distribution [7] is used as a
stochastic policy to select actions. The policy is given by

sy exp(h(s, a, 0;))
’/T(Q‘S ) ea) - s
Eb eXp(h(S, bv eb))
where exp(z) is the base of the natural logarithm,
h(s,a,0;) € R is the parameterized preference for (s,a)
pair, and 0. is the policy’s parameter related to action a at
state s. For discrete and small action spaces, the parameterized
preferences can be allocated for each state-action pair [7].
The parameterized preferences are functions of feature func-
tions ¢(s,a) and the vector 8, which are used to determine
the preference of each action at each state. The action with the

a7
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highest preference at a state will be selected with the highest
probability, and so on [7]. These preferences can take different
forms. One of the simple forms is that when the preference is
a linear function of the weighted features, which is given by

h(s,a,07) = 05 ¢(s, ) (18)
The Vg: In(n(als, 8;)) is given by
s Vr(als,6;)
Vo: In(7(als, 6;)) = (a]s.07) 19)

= ¢(87 a) - ’/T(G,lS, 92) (]5(8, a)

The feature function ¢(s,a) for (s,a) pair is used for
representing the states and actions in an environment. Feature
functions should correspond to aspects of the state and action
spaces, where the generalization can be implemented properly
[7]. This work uses binary feature functions. Feature function
for a state-action pair is set to one if action a satisfies the
feasibility condition at state s, otherwise, it is set to zero.

C. Comparisons

In this experiment, the discounted return G; of each ar-
chitecture was evaluated. The optimal performance uses the
optimal policy from the first time slot. It requires a priori sta-
tistical knowledge about the environment, which is unavailable
to the remaining architectures. Value iteration was used to find
the optimal policy to find the upper-bound [22].
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Fig. 4. The discounted return G versus t for 18-state system

Figure 4 shows the discounted return G; versus ¢ for the
considered architectures. As expected, the discounted return
of the optimal policy takes a near-constant pattern from the
first time slot. This is due to using one policy all the time, and
the discount factor v which restricts the discounted return to a
certain value. The discounted returns of the RL architectures
increase with experience significantly, in the beginning. As the
time increases, they start taking a near-constant pattern, which
results from learning policies that could not be improved
any more, and +y that restricts the discounted return of the
architectures to certain values.

AC experiences an action at the current state, and then,
it optimizes the policy based on the approximated value of
the current state-action pair. TAC just tunes the approximated
value of the experienced action using the learned underlying
model, then, this tuned value is used by the actor to optimize
the policy. It is clear that both AC and TAC do not exploit
the available information about the remaining actions at the
current state to optimize the policy. SAC experiences an action
at the current state, and then, based on its approximated value
and the approximated values of other actions, it optimizes the
policy. It is observed that for the simulated scenario, SAC
is able to converge faster to a high return value, and TAC
converges more slowly compared to AC and AC.

23

22 -

N
T

A

n
o
T

ﬂ

wl \
-

' W il \

The discounted return Gy

—AC
——SAC|
TAC

t %104
Fig. 5. The discounted return G versus t.

Fig. 5 shows the performances of AC, SAC, and TAC when
there are 364 states. It can be observed that TAC has a faster
initial learning rate, and SAC converges to a higher return,
both compared to AC.

D. Rarely visited states

We investigate the performance of different models in the
case of having rarely visited good states. For such cases, the
opportunity to increase the cumulative reward is small. Also,
experiencing bad actions would be very expensive. Optimizing
the policy and selecting an optimal action at rarely visited
states is difficult due to lack of experience at these states.
So, the available information should be utilized efficiently to
make correct decisions. This leaves room for improving the
performance based on previous experience.

Fig. 6 and Fig. 7 show the performance of different ar-
chitectures when good states are visited rarely, for 18- and
364-state systems, respectively. Regarding to the quality and
the speed of finding a suboptimal policy, the results show the
superiority of SAC compared to regular AC. Also TAC has
slight advantage in the beginning of the learning.

V. CONCLUSIONS

In this paper, two new RL algorithms, named selector-actor-
critic and tuner-actor-critic are proposed by adding compo-
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nents to the conventional AC algorithm. Instead of using on-
policy policy gradient as in AC, SAC uses off-policy policy
gradient. TAC aims at improving the learned value function
by adding a model-learner and a tuner to improve the learning
process. The tuner tunes the approximated value of the current
state-action pair using the learned underlying model and the
Bellman equation. AC, SAC, and TAC experience an action,
and then, they optimize their policies based on the value of
the experienced action. Based on numerical simulations, SAC
seems to offer higher converged returns, and TAC is preferred
if faster initial learning rate is desirable.
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