
Selector-Actor-Critic and Tuner-Actor-Critic

Algorithms for Reinforcement Learning

Ala’eddin Masadeh, Zhengdao Wang, Ahmed E. Kamal

Iowa State University (ISU), Ames, IA 50011, USA,

emails: {amasadeh,zhengdao,kamal}@iastate.edu

Abstract—This work presents two reinforcement learning (RL)
architectures, which mimic rational humans in the way of
analyzing the available information and making decisions. The
proposed algorithms are called selector-actor-critic (SAC) and
tuner-actor-critic (TAC). They are obtained by modifying the
well known actor-critic (AC) algorithm. SAC is equipped with
an actor, a critic, and a selector. The role of the selector is to
determine the most promising action at the current state based
on the last estimate from the critic. TAC is model based, and
consists of a tuner, a model-learner, an actor, and a critic. After
receiving the approximated value of the current state-action pair
from the critic and the learned model from the model-learner,
the tuner uses the Bellman equation to tune the value of the
current state-action pair. Then, this tuned value is used by the
actor to optimize the policy. We investigate the performance of
the proposed algorithms, and compare with AC algorithm to
show the advantages of the proposed algorithms using numerical
simulations.

Index Terms—Reinforcement learning, model-based learning,
model-free learning, actor-critic

I. INTRODUCTION

In the framework of artificial intelligence (AI), one of the

main goals is to implement intelligent agents with high level

of understanding and making correct decisions. These agents

should have the capability to interact with their environments,

collect data, process it, and improve their performance with

time. Implementing autonomous agents capable of learning

effectively has been a challenge for a long time. One of the

milestones that have contributed in this field is reinforcement

learning (RL). It is considered as a principled mathematical

framework for learning experience-driven autonomous agents

[1]. RL has been widely used to implement autonomous

agents, e.g., [2]–[5].

RL refers to algorithms enable the agents to optimize

their behaviors and improve their performance over time. The

agents work in unknown environments, and learns from trial

and error [6]. RL methods are categorized into two classes,

which are model-free learning and model-based learning.

Model-free learning updates the value function after inter-

acting with the environment without learning the underlying

model. On the other hand, model-based learning estimates the

dynamics (the model) of an environment, which is used later

to optimize the policy [7]. Each learning class has its own

advantages, and suffers from a number of weaknesses. Model-

based learning is characterized by its efficiency in learning [8],

but at the same time, it struggles in complex problems [9]. On

the other hand, model-free learning has strong convergence

guarantees under certain situations [1], but the value functions

change slowly over time [10], especially, when the learning

rate is small.

In this work, we present two RL algorithms, which aim at

providing efficient learning methods that utilize the available

information efficiently. These architectures are called selector-

actor-critic (SAC) and tuner-actor-critic (TAC). The main idea

is to combine methods from the two learning classes to

implement intelligent agents and to overcome the weaknesses

of these two classes.

A. Related Work

Combining methods from both learning classes has been

discussed in many works, e.g., [2], [3], [11]–[14].

In [2], a method called model-guided exploration is pre-

sented. This method integrates a learned model with an

off-policy learning. The learned model is used to generate

good trajectories using trajectory optimization, and then, these

trajectories are mixed with on-policy experience to learn the

agent. To overcome the weaknesses of the model-guided ex-

ploration approach, another method called imagination rollout

was designed [2]. It was proposed for applications that need

large amounts of experience, or when undesirable actions are

expensive. In this approach, synthetic samples are generated

from the learned model that are called the imagination rollouts.

These rollouts, the on-policy samples, and the optimized

trajectories from the learned model are used with various

mixing coefficients to evaluate each experiment.

In [11], an algorithm called approximate model-assisted

neural fitted Q-iteration was proposed. Using this algorithm,

virtual trajectories are generated from a learned model to be

used for updating the Q function. This work mainly aims at

reducing the amount of real trajectories required to learn a

good policy.

Actor-critic (AC) is a model-free RL method, where the

actor learns a policy that is modeled by a parameterized dis-

tribution, while the critic learns a value function and evaluates

the performance of the policy optimized by the actor. In [3],

the framework of human-machine nonverbal communication

was discussed. The goal is to enable machines to understand

people intention from their behavior. The idea of integrating

AC with model-based learning was proposed. The learned

dynamics of the underlying model are used to control over

Authorized licensed use limited to: Iowa State University. Downloaded on July 28,2020 at 14:52:29 UTC from IEEE Xplore. Restrictions apply.

the temporal difference (TD) error learned by the critic, and

the actor uses the TD error to optimize the policy for exploring

different actions.

In [12], two learning algorithms were designed. The first one

is called model learning actor-critic (MLAC), while the second

one is called reference model actor-critic (RMAC). The MLAC

is an algorithm that combines AC with model-based learning.

In this algorithm, the gradient of the approximated state-value

function V̂ (s) with respect to the state s, and the gradient

of the approximated model s′ = f(s, a) with respect to the

action a are calculated. The actor is updated by calculating

the gradient of V̂ (s) with respect to a using the chain rule

and the previously mentioned two gradients. However, using

RMAC, two functions are learned. The first function is the

underlying model. The second one is the reference model

s′ = R(s), which maps state s to the desired next state s′

with the highest possible value. Then, using the inverse of

the approximated underlying model, the desired action can be

found. The integrated paradigm of the reference model and

the approximated underlying model serves as an actor, which

maps states to actions.

Off-policy learning has been investigated in many works

[15], [16], [17], [18]. Q-learning is considered as the most well

known off-policy RL method [16]. This method evaluates an

action at a state using its current value, the received immediate

reward resulting from this action, and the value of the best

action at the next state. This expected best action at the next

state is selected independently of the currently executed policy,

which is the reason for classifying this method as an off-policy

learning method.

Combining off-policy learning with AC was studied in

[17]. Using this algorithm, a stream of data (a sequence

of states, rewards, and actions) is generated according to a

fixed behavior policy. The critic learns off-policy estimates

of the value function for the current actor policy. Then, these

estimates are used by the actor for updating the weights of the

actor policy, and so on. Using off-policy data (generated data

from past interaction with the environment) to estimate the

policy gradient accurately was investigated in [15]. In [19], an

analytic expression for the optimal behavior policy (off-policy)

is derived. This expression is used to generate trajectories with

low variance estimates to improve the learning process by

estimating the direction of the policy gradient efficiently.

B. Contributions

The main contribution in this paper is to introduce two new

algorithms for RL, namely SAC and TAC:

1) In SAC, the newly added component, compared to the

vanilla AC, is a selector. In conventional AC architec-

ture, the actor uses the action selected by the current

policy at the current state to optimize the policy’s

parameters. However, the selector in SAC determines

the most promising action at the current state, which is

used by the actor to optimize the policy’s parameters.

2) TAC has two more elements added to AC, which are

a model learner and a tuner. The model learner ap-

proximates the dynamics of the underlying environment,

while the tuner tunes the value of the current state-action

pair using the Bellman equation, the learned model,

and the learned value function by the critic. The actor

uses the tuned value of the current state-action pair to

optimize the policy’s parameters.

Our SAC method uses the idea of off-policy greedy action

selection of Q-learning, and apply it to the AC algorithm to

yield an off-policy AC algorithm.

The main differences between TAC and the most-related

model based algorithm in [3] are summarized as follows:

• In [3], the critic approximates the state-value function to

evaluate the system performance, while the critic in TAC

approximates the action-value function.

• In [3], the policy uses a preference function for selecting

actions, which indicates the preference of taking an action

at a state. The preference function of the current state-

action pair is updated by adding its old value to the

current TD error learned by the critic. On the other hand,

the actor in TAC uses stochastic parameterized policies to

select actions, and uses policy gradient to optimize these

policies.

• TAC uses the approximated underlying model, the ap-

proximated action-value function learned by the critic,

and the Bellman equation to tune the value of the current

state-action pair. In contrast, [3] uses the approximated

underlying model to find the expected TD error for the

current state. The value of the current state is updated by

adding its previous value to the expected TD error.

The remainder of the paper is organized as follows. The

formulated problem and the actor-critic architecture are pre-

sented in Section II. The proposed architectures are described

in Section III. Numerical simulation results are presented in

Section IV. Finally, the paper is concluded in Section V.

II. ACTOR-CRITIC

This part reviews the basic AC algorithm for RL. We use

standard notation that is consistent with that used in e.g., [7].

Specifically, s and s′ denote states, a and a′ denote actions,

Q(s, a) denotes the action-value function, and V (s) denote

the state-value function. The function π(a|s,θ) denotes a

stochastic policy function, parameterized by θ.

In AC, the actor generates stochastic actions, and the critic

estimates the value function and evaluate the policy optimized

by the actor. Figure 1 shows the interaction between the actor

and the critic in the AC architecture, e.g., [20].

In this context, the critic approximates the action-value

function qπ(s, a) ≈ Q(s, a), and evaluates the currently opti-

mized policy using state-action-reward-state-action (SARSA),

which is given by

Q(s, a)← Q(s, a)+α[r(s, a, s′)+γQ(s′, a′)−Q(s, a)] (1)

where α is the learning rate used to update Q(s, a), γ is

the discount factor, and r(s, a, s′) is the expected immediate

reward resulting from taking action a at state s and transiting

to state s′.

Authorized licensed use limited to: Iowa State University. Downloaded on July 28,2020 at 14:52:29 UTC from IEEE Xplore. Restrictions apply.

Actor

Critic

(r(s; a; s0); s0)

Q(s; a)

a

Environment

s0
s s0

θ θ + α ln(π)Q(s; a)

a ∼ π(·js; θ)

Fig. 1. Actor-critic architecture.

The actor uses policy gradient to optimize a parameterized

stochastic policy π(a|s,θ). Using policy gradient, the policy

objective function J(θ) takes one of three forms, which are

• The value of the start state in episodic environments

J1(θ) = V π(s1) (2)

• The average value in continuing environments

JavV(θ) =
∑

s

dπ(s)V π(s) (3)

• The average reward per time-step in continuing environ-

ments also

JavR(θ) =
∑

s

dπ(s)
∑

a

π(a|s,θ)r(s, a) (4)

where dπ(s) is the steady-state distribution of the underlying

Markov Decision Process (MDP) using policy π, and r(s, a)
is the expected immediate reward resulting from taking action

a at state s. The goal is to maximize J(θ) [7]. The updating

rule for θ is given by

θ ← θ + β∇θJ(θ) (5)

where ∇θJ(θ) is the gradient of J(θ) with respect to θ, and

β is the step-size used to update the gradient of the policy.

One of the main challenges in this optimization problem

is to ensure improvement during changing θ. This is because

changing θ changes two functions at the same time, which

are the policy and the states’ distribution. The other challenge

is that the effect of θ on the states’ distribution is unknown,

which makes it difficult to find the gradient of J(θ). Fortu-

nately, policy gradient theorem provides an expression for the

gradient of J(θ) that does not involve the derivative of the

states’ distribution with respect to θ [7]. According to policy

gradient theorem, for any differentiable policy and for any of

the policy objective function, the policy gradient is

∇θJ(θ) ≈ Eπ[∇θ ln(π(a|s,θ))Q(s, a)] (6)

Due to the difficulty of finding the expectation, a stochastic

estimate ∇̂θJ(θ) is used to approximate ∇θJ(θ) [7], [21].

The new updating rule of θ is given by

θ ← θ + β∇̂θJ(θ) (7)

where

∇̂θJ(θ) = ∇θ ln(π(a|s,θ))Q(s, a) (8)

III. THE PROPOSED ALGORITHMS

A. Selector-Actor-Critic

We present a proposed off-policy policy-gradient method,

where the policy being followed is optimized using the most

promising action at state s. The idea is to approximate the

most promising action (i.e., the optimal action) at state s by the

greedy action ag . To the best of our knowledge, it is the first

work using the most promising action ag to optimize stochastic

parameterized policies using policy gradient methods. The

goal is to optimize the policy in the direction that maximizes

the probability of selecting ag , and increase the speed of

learning a suboptimal θ.

Actor

Critic

(r(s; a; s0); s0)

Q(s; a)

a

Environment

s0

ag = argmax
b

Q(s; b)

Selector

θ θ + α ln(π)Q(s; ag)

s s0

a ∼ π(·js; θ)

Fig. 2. Selector-actor-critic architecture.

To achieve this goal, a selector is added to the conventional

AC. Figure 2 depicts the SAC model, and the interaction

between its components. The selector determines ag at the

current state greedily according to

ag = argmax
b

Q(s, b), ∀b at s, (9)

where b indicates each possible action at state s. After deter-

mining ag by the selector, it is used by the actor to optimize

the policy. The action a selected by the policy being followed

in (8) is replaced by ag . The new updating rule of θ is given

by

θ ← θ + β∇θ ln(π(ag|s,θ)) [Q(s, ag)]. (10)

Authorized licensed use limited to: Iowa State University. Downloaded on July 28,2020 at 14:52:29 UTC from IEEE Xplore. Restrictions apply.

After selecting an action by the actor and interacting with

the environment, the critic updates the action-value function

according to

Q(s, a)← Q(s, a)+α[r(s, a, s′)+γQ(s′, a′)−Q(s, a)]. (11)

B. Tuner-Actor-Critic

The TAC algorithm aims at improving the learning process

through integrating a tuner and a model-learner with AC.

Tuner (DP)

Actor

Critic
Underlying Model

Learner

(r(s; a; s0); s0)

QDP(s; a)

Q(s; a) p̂(s0js; a)

a

Environment
s0

θ θ + α ln(π)QDP(s; a)

s s0

a ∼ π(·js; θ)

Fig. 3. Tuner-actor-critic architecture.

As shown in Figure 3, the newly added components to AC

architecture are the tuner and the model learner. Starting from

the values received from the critic and the model learner, the

tuner uses the Bellman equation to tune the value of the state-

action pair received from the critic. The tuner tunes the value

of (s, a) state-action pair according to

QDP(s, a) =
∑

s′

p̂(s′|s, a){r(s, a, s′) + γV (s′)}, (12)

where p̂(s′|s, a) is the approximated probability for transiting

from the current state s to next possible state s′ given action

a is taken, and V (s′) =
∑

a′ π(a′|s′,θ)Q(s′, a′) is the

approximated value of s′. The critic replaces the value of the

current state-action pair, (s, a), by the value computed by the

tuner

Q(s, a)← QDP(s, a). (13)

The actor updates θ using

θ ← θ + β∇θ ln(π(a|s,θ)) [QDP(s, a)]. (14)

After selecting an action and interacting with the environment,

the critic evaluates the current policy using

Q(s, a)← Q(s, a)+α[r(s, a, s′)+γQ(s′, a′)−Q(s, a)]. (15)

IV. EXPERIMENTAL RESULTS

This section evaluates the proposed architectures. To evalu-

ate these architectures, we use Value iteration (VI) to find the

optimal solution as a benchmark when possible using the true

underlying model [22]. AC algorithms from [3], [7] are also

compared with.

A. Experimental Set-up

Two scenarios are considered in the simulation; a simple

scenario with small number of states, and a scenario with

large number of states. The simple scenario is used to evaluate

and compare the proposed architectures with the optimal

performance and AC. For the large scenario, the proposed

models are only compared with AC, where it is difficult to

find the optimal solution.

In all scenarios, the discount factor γ is set to 0.9. The

learning rate α used by the critic is set to 0.1. The step-

size learning parameter β used in policy gradient is set to

0.1. All the simulations started with an initial policy selecting

the available actions uniformly. The approximated transition

model was initialized with zero transition probabilities.

To evaluate the performance of the considered architec-

tures, a number of MDP problems with different number of

states and different dynamics were considered. The goal is to

maximize the discounted return, where the discounted return

following time t, Gt, is given by

Gt =
T−1∑

i=t

γi−tRi+1 (16)

where t is the starting time for collecting a sequence of

rewards, T is a final time step of an episode.

In the simulated environments, the simple scenario is mod-

eled by an MDP with 18 states. Three actions are available

with different immediate rewards and random transition prob-

abilities. The second scenario is modeled using 354 states. The

available actions are 7 with different immediate rewards and

random transition probabilities. All the results were averaged

over 500 runs. The starting state is selected randomly, where

all the states have equal probability to be the starting state.

All mentioned parameters were used in all experiments unless

otherwise stated.

B. Exponential Softmax Distribution

The exponential softmax distribution [7] is used as a

stochastic policy to select actions. The policy is given by

π(a|s,θs
a) =

exp(h(s, a,θs
a))∑

b exp(h(s, b,θ
s
b))

(17)

where exp(x) is the base of the natural logarithm,

h(s, a,θs
a) ∈ R is the parameterized preference for (s, a)

pair, and θs
a is the policy’s parameter related to action a at

state s. For discrete and small action spaces, the parameterized

preferences can be allocated for each state-action pair [7].

The parameterized preferences are functions of feature func-

tions φ(s, a) and the vector θs
a, which are used to determine

the preference of each action at each state. The action with the

Authorized licensed use limited to: Iowa State University. Downloaded on July 28,2020 at 14:52:29 UTC from IEEE Xplore. Restrictions apply.

highest preference at a state will be selected with the highest

probability, and so on [7]. These preferences can take different

forms. One of the simple forms is that when the preference is

a linear function of the weighted features, which is given by

h(s, a,θs
a) = θs⊤

a φ(s, a) (18)

The ∇θs

a

ln(π(a|s,θs
a)) is given by

∇θs

a

ln(π(a|s,θs
a)) =

∇π(a|s,θs
a)

π(a|s,θs
a)

(19)

= φ(s, a)− π(a|s,θs
a)φ(s, a)

The feature function φ(s, a) for (s, a) pair is used for

representing the states and actions in an environment. Feature

functions should correspond to aspects of the state and action

spaces, where the generalization can be implemented properly

[7]. This work uses binary feature functions. Feature function

for a state-action pair is set to one if action a satisfies the

feasibility condition at state s, otherwise, it is set to zero.

C. Comparisons

In this experiment, the discounted return Gt of each ar-

chitecture was evaluated. The optimal performance uses the

optimal policy from the first time slot. It requires a priori sta-

tistical knowledge about the environment, which is unavailable

to the remaining architectures. Value iteration was used to find

the optimal policy to find the upper-bound [22].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4

10

12

14

16

18

20

22

24

26

28

The optimal policy

AC

SAC

TAC

Fig. 4. The discounted return Gt versus t for 18-state system

Figure 4 shows the discounted return Gt versus t for the

considered architectures. As expected, the discounted return

of the optimal policy takes a near-constant pattern from the

first time slot. This is due to using one policy all the time, and

the discount factor γ which restricts the discounted return to a

certain value. The discounted returns of the RL architectures

increase with experience significantly, in the beginning. As the

time increases, they start taking a near-constant pattern, which

results from learning policies that could not be improved

any more, and γ that restricts the discounted return of the

architectures to certain values.

AC experiences an action at the current state, and then,

it optimizes the policy based on the approximated value of

the current state-action pair. TAC just tunes the approximated

value of the experienced action using the learned underlying

model, then, this tuned value is used by the actor to optimize

the policy. It is clear that both AC and TAC do not exploit

the available information about the remaining actions at the

current state to optimize the policy. SAC experiences an action

at the current state, and then, based on its approximated value

and the approximated values of other actions, it optimizes the

policy. It is observed that for the simulated scenario, SAC

is able to converge faster to a high return value, and TAC

converges more slowly compared to AC and AC.

0 0.5 1 1.5 2 2.5

10
4

14

15

16

17

18

19

20

21

22

23

AC

SAC

TAC

Fig. 5. The discounted return Gt versus t.

Fig. 5 shows the performances of AC, SAC, and TAC when

there are 364 states. It can be observed that TAC has a faster

initial learning rate, and SAC converges to a higher return,

both compared to AC.

D. Rarely visited states

We investigate the performance of different models in the

case of having rarely visited good states. For such cases, the

opportunity to increase the cumulative reward is small. Also,

experiencing bad actions would be very expensive. Optimizing

the policy and selecting an optimal action at rarely visited

states is difficult due to lack of experience at these states.

So, the available information should be utilized efficiently to

make correct decisions. This leaves room for improving the

performance based on previous experience.

Fig. 6 and Fig. 7 show the performance of different ar-

chitectures when good states are visited rarely, for 18- and

364-state systems, respectively. Regarding to the quality and

the speed of finding a suboptimal policy, the results show the

superiority of SAC compared to regular AC. Also TAC has

slight advantage in the beginning of the learning.

V. CONCLUSIONS

In this paper, two new RL algorithms, named selector-actor-

critic and tuner-actor-critic are proposed by adding compo-

Authorized licensed use limited to: Iowa State University. Downloaded on July 28,2020 at 14:52:29 UTC from IEEE Xplore. Restrictions apply.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

The optimal policy

AC

SAC

TAC

Fig. 6. The discounted return Gt versus t for 18-state system with rarely
visited states.

0 0.5 1 1.5 2 2.5

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

AC

SAC

TAC

Fig. 7. The discounted return Gt versus t for 364-state system with rarely
visited states.

nents to the conventional AC algorithm. Instead of using on-

policy policy gradient as in AC, SAC uses off-policy policy

gradient. TAC aims at improving the learned value function

by adding a model-learner and a tuner to improve the learning

process. The tuner tunes the approximated value of the current

state-action pair using the learned underlying model and the

Bellman equation. AC, SAC, and TAC experience an action,

and then, they optimize their policies based on the value of

the experienced action. Based on numerical simulations, SAC

seems to offer higher converged returns, and TAC is preferred

if faster initial learning rate is desirable.

ACKNOWLEDGEMENT

This work was supported in part by NSF Grant 1711922

and NSF Grant 1827211.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT Press, 1998.

[2] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in Proc. of the International

Conference on Machine Learning, New York, NY, USA, June 2016, pp.
2829–2838.

[3] M. A. T. Ho, Y. Yamada, and Y. Umetani, “An HMM-based temporal
difference learning with model-updating capability for visual tracking of
human communicational behaviors,” in Proc. of the IEEE International

Conference on Automatic Face and Gesture Recognition, Washington,
DC, USA, May 2002, pp. 170–175.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, Oct. 2017.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, Jan. 2016.

[6] T. Mannucci, E.-J. van Kampen, C. de Visser, and Q. Chu, “Safe
exploration algorithms for reinforcement learning controllers,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 29, no. 4,
pp. 1069 – 1081, Apr. 2018.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT Press, 2018.

[8] M. P. Deisenroth, G. Neumann, J. Peters et al., “A survey on policy
search for robotics,” Foundations and Trends in Robotics, vol. 2, no.
1–2, pp. 1–142, Aug. 2013.

[9] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-
free fine-tuning,” in Proc. of the IEEE International Conference on

Robotics and Automation (ICRA), Brisbane, QLD, Australia, May 2018,
pp. 7559–7566.

[10] Q. J. Huys, A. Cruickshank, and P. Seriès, “Reward-based learning,
model-based and model-free,” in Encyclopedia of Computational Neu-

roscience, Mar. 2015, pp. 2634–2641.
[11] T. Lampe and M. Riedmiller, “Approximate model-assisted neural fitted

q-iteration,” in Proc. of the International Joint Conference on Neural

Networks (IJCNN), Beijing, China, July 2014, pp. 2698–2704.
[12] I. Grondman, M. Vaandrager, L. Busoniu, R. Babuska, and E. Schuitema,

“Efficient model learning methods for actor–critic control,” IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42,
no. 3, pp. 591–602, June 2012.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] R. S. Sutton, “Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming,” in Machine

Learning Proceedings, Austin, Texas, USA, June 1990, pp. 216–224.
[15] J. P. Hanna and P. Stone, “Towards a data efficient off-policy policy

gradient,” in Proc. of the AAAI Spring Symposium on Data Efficient

Reinforcement Learning, Palo Alto, CA, Mar. 2018, pp. 320–323.
[16] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.

3-4, pp. 279–292, May 1992.
[17] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” arXiv

preprint arXiv:1205.4839, 2012.
[18] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton, “Toward

off-policy learning control with function approximation,” in Proc. of the

International Conference on Machine Learning (ICML), Haifa, Israel,
June 2010, pp. 719–726.

[19] J. P. Hanna, P. S. Thomas, P. Stone, and S. Niekum, “Data-efficient
policy evaluation through behavior policy search,” arXiv preprint

arXiv:1706.03469, 2017.
[20] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration

for reinforcement learning,” IEEE Transactions on Neural Networks,
vol. 18, no. 4, pp. 973–992, July 2007.

[21] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural
actor–critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482,
Nov. 2009.

[22] T. Wang, C. Jiang, and Y. Ren, “Access points selection in super wifi
network powered by solar energy harvesting,” in Proc. of the IEEE

Wireless Communications and Networking Conference (WCNC), Doha,
Qatar, Apr. 2016, pp. 1–5.

Authorized licensed use limited to: Iowa State University. Downloaded on July 28,2020 at 14:52:29 UTC from IEEE Xplore. Restrictions apply.

