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ABSTRACT: At present, the strongest upper limit on > m,, the sum of neutrino masses,
is from cosmological measurements. However, this bound assumes that the neutrinos are
stable on cosmological timescales, and is not valid if the neutrino lifetime is less than
the age of the universe. In this paper, we explore the cosmological signals of theories in
which the neutrinos decay into invisible dark radiation on timescales of order the age of
the universe, and determine the bound on the sum of neutrino masses in this scenario. We
focus on the case in which the neutrinos decay after becoming non-relativistic. We derive
the Boltzmann equations that govern the cosmological evolution of density perturbations
in the case of unstable neutrinos, and solve them numerically to determine the effects on
the matter power spectrum and lensing of the cosmic microwave background. We find
that the results admit a simple analytic understanding. We then use these results to
perform a Monte Carlo analysis based on the current data to determine the limit on the
sum of neutrino masses as a function of the neutrino lifetime. We show that in the case of
decaying neutrinos, values of > m, as large as 0.9 eV are still allowed by the data. Our
results have important implications for laboratory experiments that have been designed to
detect neutrino masses, such as KATRIN and KamLAND-ZEN.
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1 Introduction

Over the last few decades, a series of oscillation experiments have convincingly established
that the neutrinos have masses, and determined their mass splittings. However, the actual
values of the masses of the three neutrino species continue to remain a mystery. In partic-
ular, it is still not known whether the spectrum of neutrino masses is hierarchical, inverse
hierarchical or quasi-degenerate. The question of whether the neutrino masses are Dirac
or Majorana also remains unanswered.

At present, the strongest limit on the sum of neutrino masses, Y m, < 0.12eV, is from
cosmological observations [1]. These measurements are sensitive to the neutrino masses
through the gravitational effects of the relic neutrinos left over from the Big Bang. In
determining the size of this effect [2, 3], (reviews with additional references may be found
in [4-7]), it is assumed that the neutrinos are stable on timescales of order the age of the
universe. In particular, if the neutrino lifetime is less than the age of the universe [8, 9],
or if the neutrinos have annihilated away into lighter states [10, 11], this bound on the
neutrino masses is no longer valid and must be reconsidered. In this paper, we explore the
cosmological signals that arise from a general framework in which the neutrinos decay into



dark radiation on timescales shorter than the age of the universe, and determine the bound
on the sum of neutrino masses as a function of the neutrino lifetime in this scenario. Our
focus is on the case in which neutrinos decay after becoming non-relativistic.

The case for neutrino decay is theoretically extremely well-motivated. Neutrino decay
is in fact a characteristic feature of models in which neutrinos have masses. Even in the
minimal extensions of the Standard Model (SM) that incorporate Dirac neutrino masses by
adding right-handed neutrinos, or Majorana masses by including the non-renormalizable
Weinberg operator, the heavier neutrinos undergo two-body decays at one loop into a
lighter neutrino and a photon [12-16], (useful discussions may also be found in [17, 18]). In
these scenarios, the lifetime of the massive neutrino is given by 7, ~ 105 (0.05eV/ m,,)5,
assuming the daughter neutrino mass is negligible. This is much longer than the age
of the universe, and therefore these minimal frameworks do not give rise to observable
cosmological signals from neutrino decay. However, in more general extensions of the SM
that incorporate neutrino masses, the neutrino lifetime can be much shorter. In particular,
this includes theories in which the generation of neutrino masses is associated with the
spontaneous breaking of global symmetries in the neutrino sector [19-23], (see also [24, 25]).
In this framework, the heavier neutrinos can decay into a lighter neutrino and one of the
Goldstone bosons associated with the spontaneous breaking of the global symmetry. The
timescale for this process can be shorter than or comparable to the age of the universe,
giving rise to cosmological signals. In general, neutrinos that are unstable on cosmological
timescales remain an intriguing possibility due to the strong motivations for new physics
that explains the smallness of neutrino masses.

In the past, the decaying neutrino scenario has been explored as a solution to the solar
and atmospheric neutrino problems [26-29]. However, the resulting predictions for the
energy spectrum of the solar neutrinos and the decay lengths required for this proposal are
now disfavored by the data [30-32]. There has also been earlier work studying the impact
of the decay of massive neutrinos on structure formation [33, 34]. However the range of
parameter space that was considered is much above the current limits on the masses of the
neutrinos. More recently, radiative neutrino decays have been proposed as an explanation
of the 21 cm signal observed by the EDGES experiment [35].

The current limits on the neutrino lifetime are rather weak, except in the case of decays
to final states involving photons. In this specific case, the absence of spectral distortions in
the cosmic microwave background (CMB) places strong bounds on radiative decays from
a heavier neutrino mass eigenstate to a lighter one, 7, 2 10's for the larger mass splitting
and 7, 2 4 x 10%'s for the smaller one [36]. There are also very strong, albeit indirect,
limits on radiative neutrino decays based on the tight laboratory and astrophysical bounds
on the neutrino dipole moment operators that induce this process [37-41].

In contrast, the decay of neutrinos into dark radiation that does not possess electro-
magnetic interactions is only weakly constrained by current cosmological, astrophysical,
and terrestrial data. The most stringent bound on this scenario arises from CMB mea-
surements. If neutrino decay and inverse decay processes are effective during the CMB
epoch, they prevent the neutrinos from free streaming, leading to observable effects on
the CMB [42-44]. Current measurements of the CMB power spectra require neutrinos to



free stream from redshifts z ~ 8000 until recombination, z ~ 1100 [45-48].! This can be
used to set a lower bound on the neutrino lifetime 7, > 4 x 1085 (m,,/0.05eV)? for SM
neutrinos decaying into massless dark radiation [48]. Several astrophysical observations
have also been used to set limits on the neutrino lifetime. However, the resulting bounds
are much weaker. The observation that the neutrinos emitted by Supernova 1987A did
not decay prior to reaching the earth can be used to set a bound on the lifetime of the
electron-neutrino, 7, /m,, > 5.7 x 10°s/eV [50]. Similarly, the detection of solar neu-
trinos at the earth can be used to place a bound on the lifetime of the mass eigenstate
va, /My, 2 1074 s/eV [32, 51, 52]. Limits on the neutrino lifetime can also be obtained
from atmospheric neutrinos and long-baseline experiments, but the resulting constraints
are even weaker (see e.g. [53-56]). Therefore, at present there is no evidence that neutrinos
are stable on cosmological timescales, and that the cosmic neutrino background (CvB) has
not decayed away into dark radiation.

The impact of non-vanishing neutrino masses on cosmological structure formation is
well understood, (see [4, 5] for useful reviews).

e Sub-eV neutrinos constitute radiation at the time of matter-radiation equality. There-
fore, fluctuations about the background neutrino number density do not contribute
significantly to the growth of structure until after neutrinos have become non-
relativistic. Consequently, perturbations on scales that enter the horizon prior to
neutrinos becoming non-relativistic evolve differently than scales that enter after-
wards, thereby affecting the matter power spectrum.

e After neutrinos become non-relativistic, their overall contribution to the energy den-
sity redshifts away less slowly than that of a relativistic species of the same abundance.
This results in a larger Hubble expansion, reducing the time available for structure
formation. This leads to an overall suppression of large scale structure (LSS).

Then the leading effect of non-vanishing neutrino masses is to suppress the growth of
structure on scales that entered the horizon prior to the neutrinos becoming non-relativistic.
The extent of this suppression depends on the values of the neutrino masses. Since heavier
neutrinos become non-relativistic earlier and also contribute a greater fraction of the total
energy density after becoming non-relativistic, a larger neutrino mass results leads to more
suppression of LSS. In the case of neutrinos that decay, this suppression now also depends on
the neutrino lifetime. After neutrinos have decayed, their contribution to the energy density
redshifts like that of massless neutrinos, resulting in a milder suppression of structure as
compared to stable neutrinos of the same mass. It follows that there is a strong degeneracy
between the neutrino mass and the lifetime inferred from the matter power spectrum. The
cosmological upper bound on the neutrino mass is therefore lifetime-dependent, as was first
discussed in [8, 9].

Neutrino masses also lead to observable effects on the CMB. Sub-eV neutrinos become
non-relativistic after CMB decoupling. The main “primary” effect on the CMB is through
the early and late integrated-Sachs-Wolfe effects, as well as a modification of the angular

! Also see the more recent discussion in [49] for the effects of interacting neutrinos on the CMB.



diameter distance to the last scattering surface. Because of their impact on the growth of
structure detailed above, neutrinos also affect the CMB through the “secondary” effect of
lensing. At the precision of Planck, the effects of lensing drive the CMB constraints on the
sum of neutrino masses. Since neutrino decay results in a milder suppression of structure
as compared to stable neutrinos of the same mass, the bounds on > m,, from CMB lensing
are also lifetime dependent.

We begin our analysis by deriving the Boltzmann equations that govern the cosmo-
logical evolution of density perturbations in the case of unstable neutrinos. We then ap-
propriately modify the Boltzmann code CLASS? [57] to calculate the CMB and matter
power spectra to accommodate this framework. We find that the results admit a simple
analytic understanding. We then perform a Monte Carlo analysis based on CMB and LSS
data (Planck+BAO+Pantheon+LSS) to determine the bounds on this scenario. We use
the likelihood function from the Planck 2015 analysis [58].> We find that when the stable
neutrino assumption is relaxed, the limits on the neutrino masses from this data set become
much weaker, with the bound on »  m,, increasing from 0.25eV to 0.9eV. Importantly, this
shows that the cosmological bounds do not exclude the region of parameter space in which
future experiments such as KATRIN [60], KamLAND-ZEN (KLZ) [61] and the Enriched
Xenon Observatory (EXO) [62, 63] are sensitive to the neutrino masses.

Our focus in this paper is on the decay of neutrinos to dark radiation, since this
framework has a greater impact on the bound on ) m, than the decay of heavier neutrinos
to lighter ones. In particular, at present the cosmological limits on »_ m, only constrain
quasi-degenerate neutrino spectra, so that decays of heavier neutrinos to lighter ones are not
expected to alter the current bound significantly. In appendix A we present an example of a
simple model in which the neutrinos decay into dark radiation on timescales of order the age
of the universe. This model is consistent with all current cosmological, astrophysical and
laboratory bounds, and represents a concrete realization of the scenario we are considering.
However, we stress that the results presented in the body of the paper are not restricted to
this specific model, but apply to any theory in which the neutrinos decay to dark radiation
after becoming nonrelativistic.

The outline of this paper is as follows. In the next section we discuss the parameter
space of the neutrino mass and lifetime, outlining the current bounds. In section 3, we
derive the Boltzmann equations that dictate the cosmological evolution of perturbations
in the phase-space distribution of unstable neutrinos and their daughter radiation. While
our focus is on the case in which the decaying particles are neutrinos, the formalism is
more general and can be applied to the much larger class of models in which warm dark
matter decays into dark radiation. In section 4.1, we numerically compute the growth of
perturbations in the case of unstable neutrinos, and determine the effects on the matter
power spectrum and on CMB lensing. To obtain a physical understanding, in section 4.2
we derive analytical expressions for these effects. In section 5, we perform a Monte Carlo
scan of the parameter space and derive constraints on the mass and lifetime of the neutrino

*http://www.class-code.net
3While this analysis was being finalized, the Planck 2018 data became public [59]. We leave the analysis
using Planck 2018 data to future work.


http://www.class-code.net

1 09 i CMB neutrino free streaming i
8L 4
10 KLZ-800 (NH) KAji'N
107}
‘g 10°F
% 105 > H(_a‘_“l__
E 1 04 ‘,—’\:: H(@nr)
= 103
10°F
10F
1L Logseale
Linear Scale
0
0.1 02 03 04 05 06 07 08 09 1

>my [eV]

Figure 1. The plot shows the current constraints in the Y m, — ', parameter space. The colored
regions are excluded by current data while the white region is allowed. The orange dashed line
separates the region of parameter space in which neutrinos decay while still relativistic from that in
which they decay after becoming non-relativistic. Our study focuses on the region below this line,
corresponding to the latter scenario. The light grey regions show current constraints on neutrino
mass and lifetime coming from CMB free streaming and the bound on stable neutrinos (labelled
“CMB+LSS (stable neutrino)”). Our analysis excludes the blue region labelled “CMB+LSS (this
work)” based on CMB and LSS data (Planck+BAO-+Pantheon+LSS). The dash-dotted line repre-
sents the approximate constraint obtained by simply requiring that the matter power spectrum be
consistent with observations in the neighborhood of ¥ = 0.1 h/Mpc with fixed Hy. This is seen to
provide a reasonable estimate to the constraints from all data. The vertical brown band shows the
projected KATRIN sensitivity and also the current KLZ sensitivity. The vertical red line shows the
projected KLZ-800 sensitivity in the case of a normal hierarchy.

from current data. Our conclusions are in section 6. In appendix A, we present a realistic
example of a model in which the neutrinos decay into dark radiation on timescales of order
the age of the universe.

2 Parameter space of the unstable neutrino

In this section we outline the constraints on the decay of neutrinos to dark radiation.
As explained in the introduction, these bounds only place limits on a combination of the
neutrino mass and the lifetime. Therefore, in this study we will map out the constraints
and the signals in the two-dimensional parameter space spanned by the sum of neutrino
masses (Y m, ) and the neutrino decay width (T',), as displayed in figure 1. In our analysis
we make the simplifying assumption that all three neutrinos are degenerate in mass. As we
shall see, the bounds on »_ m, are always much larger than the observed mass splittings,



and so this is an excellent approximation in the relevant parameter space. We further
assume that all three neutrinos have the same decay width I',,. Since the mixing angles
in the neutrino sector are large, this is a good approximation in many simple models of
decaying neutrinos if the spectrum of neutrinos is quasi-degenerate. In particular, the
model presented in appendix A exhibits this feature.

There is a hard lower limit on the sum of neutrino masses from the atmospheric and
solar mass splittings which constrain ) m, > \/ Am%l + \/ Am%l = (0.06 eV in the case of
normal ordering and > m, > 2 x \/Am3, = 0.1 eV in the case of inverted ordering [6].
Therefore, we present the parameter space starting from > m, = 0.06 eV. CMB observa-

tions can be used to obtain an upper bound on the sum of neutrino masses. The current
CMB data constrains the effective number of neutrinos, N.g, during the epoch of acoustic
oscillations to be 2.99 £+ 0.17 [1], which is perfectly compatible with the SM value of 3.046.
Then, if neutrinos are stable on CMB timescales, we can obtain an approximate upper
bound on their masses by requiring that all three species of neutrinos are relativistic at
< 3Trec =~ 0.9eV. A more

~

recombination. This translates into an approximate limit, > m,,
precise bound can be obtained from a fit to the CMB data.

The CMB can also be used to constrain the masses of neutrinos that decay prior to
recombination. As mentioned in the introduction, CMB data requires the species that con-
stitute Neg to be free streaming at redshifts below z ~ 8000 until recombination, z = 1100.
This can be used to place limits on processes such as neutrino decays and inverse decays
that prevent neutrinos from free streaming at late times. The resulting bound depends on
the neutrino mass, and is given by 7, > 4 x 1085 (m,,/0.05eV)? [48]. This bound excludes
the grey region at the top of figure 1. Naively, one might expect the CMB bounds from
free streaming to rule out all theories in which the neutrino decays before recombination,
independent of the neutrino mass. However, in the case of an ultrarelativistic mother par-
ticle, the decay process results in approximately collinear daughter particles moving in the
same direction as the mother. Similarly the inverse decay process generally only involves
collinear initial state particles, so that there is no significant disruption in the flow of energy
even if the decay and inverse decay processes are efficient [45]. The net constraint from
CMB free streaming is therefore much weaker on the decays of light neutrinos.

As discussed in the introduction, massive neutrinos suppress the growth of matter per-
turbations by reducing the time available for structure formation. In the case of stable neu-
trinos, this has been used to set a constraint on the sum of neutrino masses, Y m, < 0.12
eV [1]. Unstable neutrinos that decay after becoming non-relativistic also lead to a suppres-
sion in the growth of structure that now depends on the neutrino lifetime. In this paper we
determine the resulting bound in the two dimensional parameter space spanned by > m,,
and the neutrino lifetime. Based on the Monte Carlo study presented in section 5, CMB and
LSS data (Planck+BAO+Pantheon+LSS) exclude the blue region labelled as “CMB+LSS
(this work)” in figure 1. We have scanned the region between 0 < loglom < 5.5.

In figure 1, we simply extrapolate the bound at logmm = 0 to I') = 0, because
the constraint on »_ m, is independent of '), when I'), < Hp. The existing constraint on
the masses of stable neutrinos from this data set forms the lower boundary of this region
(labelled as “CMB+LSS (stable neutrino)”).



The dash-dotted line that approximately envelopes the blue shaded region represents
the constraint obtained by simply requiring that the matter power spectrum be consistent
with observations in the neighborhood of k£ = 0.1 h/Mpc with fixed Hy, where the current
LSS measurements have the best sensitivity. We see that it provides a good approximation
> 0.9eV, where the CMB limits on

~

to the true bound, except in the region of > m,,
Neg at recombination become important. The impact of neutrinos on the matter power
spectrum depends slightly on the mass ordering as the individual mass eigenstates become
non-relativistic at different times. However, since the current limits are only sensitive to
quasi-degenerate spectra, we are justified in neglecting this effect.

The orange dashed line (I' = H(z,)) separates the region where neutrinos decay
when non-relativistic from the region where they decay while still relativistic. Here zy,,
the approximate redshift at which neutrinos become non-relativistic, is defined implicitly
from the relation 37, (zn,) = m,. This definition is based on the fact that for relativistic
neutrinos at temperature 7T, the average energy per neutrino is approximately 37,. The
Hubble scale at z,; is given by,

m. N\ 3/2
H(znr) - HO\/@(ZQTOV> (2'1)
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Since our study assumes neutrinos decay after they become non-relativistic, we only present
the constraints below this orange dashed line.

The currently allowed parameter space is represented by the white regions in figure 1.
In the white region above the orange dashed line, even though neutrinos decay when
still relativistic, their small mass allows them to evade the current CMB free streaming
constraints. In this scenario their contribution to the energy density evolves in a manner
similar to that of massless neutrinos, and so the effects on LSS are similar in the two
cases. In the white region below the orange dashed line the neutrinos decay after becoming
non-relativistic, but because their masses are too small or their lifetimes too short, the
suppression of the matter power spectrum is too small to be detected with current data.

We see from this discussion that the unstable neutrino paradigm greatly expands the
range of neutrino masses allowed by current data. This has important implications for
current and future laboratory experiments designed to detect neutrino masses. Next gen-
eration tritium decay experiments such as KATRIN [60] are expected to be sensitive to
values of m,, as low as 0.2eV, corresponding to »_ m, of order 0.6eV. A signal in these
experiments would conflict with the current cosmological bound, > m, < 0.12eV, for sta-
ble neutrinos. However, in the decaying neutrino paradigm, we have seen that the current
cosmological upper bound on the sum of neutrino masses is relaxed, with the result that
> m, as high as 0.9eV is still allowed. Therefore, a signal at KATRIN can be accommo-
dated if neutrinos are unstable on cosmological timescales. In figure 1, we display a brown
vertical line Y m, ~ 0.6 eV that corresponds to the expected KATRIN sensitivity.

In the case of Majorana neutrinos, current data from neutrinoless double-beta decay
experiments such as KLZ and EXO have already ruled out > m, 2 0.6eV (brown vertical



line) [61, 63]. An updated version of KLZ, the KLZ-800, is currently probing »_ m, as
low as 0.17 eV [64] (red vertical line) in the case of the normal hierarchy and the entire
parameter space for the inverted hierarchy. If this experiment were to see a signal, we
cannot immediately conclude that hierarchy is inverted based on the current cosmologi-
cal bound of Y m, < 0.12eV, since the decaying neutrino paradigm would still admit a

normal hierarchy.

3 Evolution of perturbations in the decay of non-relativistic particles
into radiation

In this section we derive the set of Boltzmann equations describing the evolution of the
phase-space density of massive particles decaying into massless daughter particles, working
to first order in the perturbations. In contrast to the case of cold dark matter (CDM)
decay (see, e.g., [65, 66]), we cannot assume that the mother particles are at rest, but must
take into account their non-trivial momentum distribution, as in the studies [67-69]. This
allows us to study the cosmological effects of a warm particle species, such as neutrinos or
warm dark matter, decaying into radiation. We implement these new Boltzmann equations
into the numerical code CLASS to generate the results in sections 4.1 and 5.

The phase-space distribution of a particle species in the expanding universe is a func-
tion of the position &, the comoving momentum ¢ = ¢n, and the comoving time 7. The
evolution of this distribution is determined by the Boltzmann equation,

o Of ditOf dgdf di Of
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=Clf1, (3.1)

where C|[f] is the collision term that accounts for all processes involving the species.

We consider the case of a massive mother (with the subscript M for mother) of mass M
decaying into N daughters (Di:m__ ~ ). For the sake of simplicity, we restrict ourselves to
the case where the mother particles decay after becoming non-relativistic, but nevertheless
keep track of their non-trivial momentum distribution. In this regime, inverse-decay pro-
cesses can be safely neglected. We also ignore any effects arising from Pauli blocking and
spontaneous emission since far,p; < 1. The collision terms for the mother and daughter
particles are then given by,
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where e€g = (q% + m%az)l/ 2 represents the comoving energy of the species S(= M, D;) and
d*¢ = d®q/(2r)%. From the definition of the decay width, the collision term for the mother

particle can be simplified to

I
CM:—%ﬁW (3.4)



where I denotes the decay width in the rest frame of the decaying particle, and the relativis-

tic boost factor v = \/q3, + M?a?/(Ma) accounts for time-dilation in the cosmic frame.
To determine the evolution of inhomogeneities in our universe, we consider perturbations
about the homogeneous and isotropic background phase space distribution functions,

fS(QS7TALaf7T) = f,(S]'(QS7T) +Af5(q5aﬁafa7—)a S = MaD’L (35)

3.1 Background: zeroth order

Treating A fyr and fluctuations about the gravitational background as higher order pertur-
bations, the zeroth order Boltzmann equations for f](\)/[ arising from eq. (3.1) take the form,

ofyr T

The formal solution to f{,(g,7) from the differential equations in eq. (3.6) is given by,

a dT/
Y

£, m) = filq)e T At (3.7)

where 7; denotes the initial conformal time and f;(¢q) represents the initial momentum
distribution. We will focus on the case where the mother decays after becoming non-
relativistic. Using integration by parts, the exponent in eq. (3.7) can be rewritten as,

J ), () 6

where we have used adr = dt. It is computationally demanding to solve the integral

t

ti

for general a(r). However, the behavior of the exponential factor is rather simple: the
exponential is close to 1 when 7 is smaller than the mother lifetime ~ ~/T'a, and fy; no
longer contributes when 7 is much larger than the mother lifetime. The only time that
the exponential factor exhibits a non-trivial a-dependence is when 7 ~ ~/T'a. Since our
focus is on decays in the non-relativistic regime, so that v(a) is slowly varying at the time
of decay. Then the second term on the right-hand side of eq. (3.8), which depends on
the time derivative of y(a), can be neglected in favor of the first term. This allows us to

T adr’ I't
v s (39)

approximate the exponent as

We have verified numerically that eq. (3.9) is a good approximation to the full solution.
Therefore, the mother distribution we use in this paper is

g, 7) ~ fi(g)e 7", (3.10)

It is worth pointing out that the mother distribution described by eq. (3.10) is a general
formula that can also be applied to the case of decaying CDM. This limiting case corre-
sponds to the distribution f;(qnr) = 6(qar)Nasi/(47q3,), where Nyy; represents the initial



comoving number density of mother particles. Since this distribution is localized entirely
at qpr = 0, the boost factor y(a) = 1. Then eq. (3.10) reduces to the known result for
decaying cold dark matter [70-72]. Our analysis is, however, more general, because it ac-
counts for the fact that the contribution of warm dark matter to the background energy
density scales with the redshift in a more complicated manner than ¢~3. In addition, it
takes into account the fact that, in general, particles with larger momenta live longer as a
consequence of time dilation.

We now apply the above general formula to the decay of massive neutrinos. The SM
neutrinos decoupled from the photon bath when they were ultra-relativistic. Therefore,
their distribution prior to decay is of the Fermi-Dirac form. Therefore, f; = 1/(e%/Tv0 +1),
leading to

1 r
0 _ —
fM = eq/Tyo T 1 exp ( f)/t> . (311)

The collision terms for the daughter particles are more challenging. However, we can
simplify this set of equations by using the total integrated Boltzmann equations for the
daughters. This is done by integrating the Boltzmann equations for the individual daughter
species with respect tod>¢p;ep; and adding them up. The resulting total integrated collision
term for the daughter species is given by,
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The simplification in the last line follows from the covariant conservation of the energy-
momentum tensor, where we have used eq. (3.2), eq. (3.4), and €j;/y = Ma to obtain
this expression. In this work we focus on the case in which the mother neutrino decays
into massless daughter particles. The relation in eq. (3.12) can be used to express the
Boltzmann equation for the daughters in terms of the total comoving energy density of the
daughters Ep and the comoving number density of the mother Ny,

Ep = Z/dQDiqf%i o3 Nu = /qu% S (3.13)

Since the daughter particles constitute massless radiation, we can rewrite the expres-
sion for the evolution of the daughter distribution in eq. (3.1) in terms of the background
daughter energy density pp = 47m*4E% and the background mother number density
ny = 47ra*3N]?4, where E% and N& are defined as in eq. (3.13) after expanding out
fv and fp, as in eq. (3.5),

%+4(IH,(_)D =al'Mny,. (3.14)

The right-hand side of the eq. (3.14) is exactly the same as in the case of cold dark matter
decay. While mother particles that have higher momentum have more energy, they also
decay more slowly due to time-dilation in the cosmic frame. This perfect cancellation
between relativistic energy and time-dilation is neatly encapsulated in the simplification
en/y = Ma that was used in obtaining eq. (3.12).
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3.2 Perturbations: first order

In the synchronous gauge, the metric perturbations can be parametrized as,
ds* = a(r)? [—ah‘2 + (05 + Hyj) dmid:ﬁj] , (3.15)

where dr = dt/a(7) and the indices ¢ and j run over the three spatial coordinates, (i,j =
1,2,3). It is convenient to work in Fourier space,

- A - ~ A 1 -
Hij(k,T) = ki/{jh(/{,T) + (/{ikj — 3(52']) 677(/€,T) , (3.16)

where k is conjugate to ¥ and k is the unit vector. In Fourier space the first order terms
in eq. (3.1) for the mother particle can be collected as,

Afur [_ W' Pa(p)
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EM
where p = k- 7 and Py(p) are the Legendre polynomials.
As usual, we can expand the angular dependence of the perturbations as a series in
Legendre polynomials,

i "al+1)X(..., k) Pk - 7). (3.18)
=0

Here X represents any of the perturbations A fjr, Djs AFEp or ANy, which are defined as
in egs. (3.5) and (3.13). Exploiting the orthonormality of the Legendre polynomials, we
arrive at a Boltzmann hierarchy of moments in which any moment is related only to its
neighboring moments. The diminishing importance of the higher moments allows us to
cutoff the calculation at some [ = .y, where the choice of l;,,x depends on our desired
level of accuracy. We use the improved truncation scheme from ref. [73], which has been
generalized to spatial curvature in ref. [74].
The Boltzmann hierarchy for the perturbations of the mother particle becomes,

Afiro) = —ﬁAfM( +Z aa% - ZMAfM(O)

Afbaty = 32 (o) ~ 28 ) — ol A,

Afisiy = o (28 ) = 38fu) — (151 + 31 )a Uit T Aoy
Afuay = QZfli)EMUAfM(z—l) — (+ DA — 2FMAfM 1>3. (3.19)

In the limit that the decay term is set to zero, these equations reduce to the standard
equations for massive neutrinos in the synchronous gauge [73], as expected.

For the Boltzmann hierarchy of daughter particles, we integrate with respect to
S d3chqujPl(uD].) on both sides of eq. (3.1) for each daughter particle and add them
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up. The collision term becomes

4
&g d qpi
Z( 2l +1 / ZEDj)(27T
26M 4 2ep; r

4 (

X 5(4)(§M — ZlJDZ)AfM(l/)B(MDJ)Pl’ (,U’M)

Again, our focus is on the case in which the mother particle decays after becoming non-
relativistic. Then, up to corrections of order gps/(Ma) arising from the motion of the
mother particle, the decay into daughters is isotropic, so that there is no correlation be-
tween the directions of the mother and daughter momenta (72p7,p). Given that the per-
turbations of the daughter particles give only a small contribution to structure formation,
we can ignore this subleading correction in qy//(Ma) and assume that py and pp, are
uncorrelated. In this case, the angular integrals over the Legendre polynomials can be
performed independently, so that

, 1 1
> (=it +1)/lduDja(ﬂDj)/lduMPy(uM) =0 (florl>0). (3.20)
7 _ _
This implies that in the daughter equations, only the zeroth moment of the source term
from the mother particle decay (A fys(o)) survives in the limit of non-relativistic decay. The
source term shows up in the equation for A f/D(O)‘ We can therefore take [ = ' = 0 and
simplify the collision term to get a source term similar to that in eq. (3.12), but with fJ(\)/I
replaced by the perturbation A fy(g). Therefore, the Boltzmann hierarchy for the daughter
energy perturbations, AFEp, in terms of the ANy and the metric perturbations h and
7 is given by,

2
AEp ) = —kAEpa) — gh’E% + a®>MT ANy ),

k 2k
AEpq = *AED(O) - 7AED(2)a
2k 3k
AEp@) = = 8Epa) — —AEpE) + 5ED(h’ + 61'),
k
ABpy = g7 IAED@-1) — 1+ DAEpayy), 123, (3.21)

Similar equations can also be found in [65, 66, 68, 71]. Again, we neglect the source
terms with ANj;(50y due to the additional gys/(Ma) suppressions in these terms. Other
quantities such as the overdensity, perturbed pressure, energy flux/velocity-divergence, and
shear stress can be calculated from these moments in the usual manner, to be fed into the
perturbed Einstein field equations as detailed in [73].

4 Cosmological signals of neutrino decay

In this section we determine the impact of decaying neutrinos on the matter power spec-
trum and on CMB lensing. In section 4.1, we solve the Boltzmann equations of the previous
section numerically using CLASS, and determine the matter power spectrum and the CMB
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lensing potential C’f ? as a function of the neutrino mass and lifetime. This allows us to
establish numerically that there is indeed a degeneracy in the matter power spectrum be-
tween neutrino mass and lifetime. In section 4.2, we determine the matter power spectrum
analytically, after making certain well-motivated approximations. We show that the results
closely reproduce those based on the numerical study, and admit a physical interpretation
of the effects of decaying neutrinos.

4.1 Numerical results

To simplify the analysis, we assume that the three neutrinos have degenerate masses and
lifetimes. This extends the parameter space of the ACDM model to include two addi-
tional parameters; the sum of neutrino masses, »_ m,, and the logarithm of the decay
width, log;oI'y,. In our analysis, we fix the following cosmological parameters to their
central values from the Planck 2015 TT, TE, EE+low-P data:{w, = 0.022032, weqm =
0.12038, In(101°4) = 3.052, ng = 0.96229, Teio = 0.0648}. The impact of neutrino
masses on the matter power spectrum looks different depending on whether 65 or Hy is
kept fixed [75]. This is because, to keep 6, fixed, Hy must be adjusted within CLASS,
leading to an overall shift of the matter power spectrum. While fixing Hy is more conven-
tional, fixing 6 gives a better reflection of the constraining effects of a combined analysis
of CMB+LSS data, since CMB data pins 8, down very precisely. In the following, we will
show results with either Hy = 67.56 km/s/Mpc or 100 x s = 1.043, explicitly stating in
each case what convention is chosen.

Since the galaxy power spectrum is known to trace the CDM and baryon overdensities,
we focus on the power spectrum

Pay(k) = <5pd’ 5”0b> , (4.1)
Pcb Pcb

where pey (0pep) is the average (perturbation) of the sum of CDM and baryon energy
densities.* In figure 2, we display the residuals of P (left) and the CMB lensing potential
(right) with respect to the case of massless neutrinos for ) m,, fixed at 0.25eV, keeping the
value of Hy fixed. We compare three different values of I'), and the limiting case of stable
neutrinos. The curves run from top to bottom in order of decreasing I',. The analytic
results are shown as dashed lines in the plot, and are seen to agree reasonably well at large
k or £ with the numerical results, shown as solid lines. These plots demonstrate that the
main effect of a non-zero decay rate of neutrinos is to reduce the power suppression at
large k arising from their mass. Moreover, they establish that the gravitational effects of
unstable relic neutrinos can indeed give rise to observable signals in LSS, provided that the
decays occur sufficiently long after the neutrinos have become non-relativistic.

Because of the effects of nonlinearities at large &k (small scales) and cosmic variance at
small k (large scales), current experiments are sensitive only to a narrow range of k in the
neighborhood of 0.1h/Mpc. We see from figure 2 that in this region there are no qualitative
features in Puy|,—o or Cg)d) that would allow unstable neutrinos to be distinguished from

4Note that this is different from the matter power spectrum conventionally defined as P, =
([(8pes + 0pu) [ (Pes + pu)]?), which differs from P., by an extra factor [pes/(peb + )]
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Figure 2. Plots of the fractional difference in the CDM+Baryon power spectrum P, (left) and
CMB-lensing potential Cf ¢ (right) for various decaying (and stable) massive neutrino scenarios
with respect to the case of massless neutrinos. The solid lines show the results from numerical
simulations of the decaying neutrino scenario for three values of the decay width, I',,= 1040 3:5, 3.0
(km/s/Mpc) (top to bottom), and also the stable neutrino scenario, holding > m, = 0.25eV and
Hj fixed. The dashed lines represent the corresponding analytic estimates from section 4.2.
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Figure 3. The fractional differences in the CMB-lensing potential C’f ¢ (left), CDM+Baryon power
spectrum P, (right) for an unstable (purple) and a stable (blue) neutrino scenario with respect to
the case of massless neutrinos (black) at fixed Hy. The grey regions show the 1o uncertainties from
Planck and SDSS DR7 respectively.

stable ones. Although P,|.—¢ and CZM are more suppressed in the stable case, as expected,
this effect can be mimicked if the the neutrino masses in the unstable scenario are suitably
heavier. This results in a strong parameter degeneracy between the neutrino lifetime and
the sum of neutrino masses as determined from Pp|.—¢ and Cg)d).

In figure 3 we show an explicit example of the degeneracy between mass and lifetime
in the values of P, and C’Z) ? at fixed Hy. We consider a model with stable neutrinos of
mass y_m, =0.2eV, and a different model with unstable neutrinos of mass > | m, =0.36 eV
and width T', = 10* km/s/Mpc. In the P4(z = 0) case, we see from the figure that the
blue (stable neutrino) and purple (unstable neutrino) curves cannot be distinguished by
measurements such as SDSS DR7 (used later in section 5), whose sensitivity is shown in
grey. However, we note that the lensing power spectrum can potentially help in breaking
the degeneracy, because it receives its dominant contribution at higher z ~ 3 [76]. We will
explore the possibility of breaking the degeneracy by using next generation measurements

at different redshifts in future work.
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Figure 4. The fractional differences in the CMB-lensing potential C’f‘f) (top left), CDM+Baryon
power spectrum Py, (top right), CET (bottom left), and CFE (bottom right) for an unstable (purple)
and a stable (blue) neutrino scenario with respect to the case of massless neutrinos (black) at fixed
Os. The grey regions show the 1o uncertainties from Planck and SDSS DR7 respectively.

Finally, we show in figures 4 the effects of neutrino masses and decay at fixed 6,
on P, C’f ? and CZT’EE. This fixes the peak locations in the CMB power spectra and
only generates negligible deviations away from the massless neutrino case in C’ZT’EE [75].
The same choices of parameters, however, do generate sizeable deviations in CZ’ ? and Py
away from the massless neutrino case that are close to the current sensitivities. This
demonstrates that as expected, for sub-eV > m,, it is the CMB-lensing and matter power
spectrum measurements that provide the constraining power. Additionally, note that the
change in Hy required to keep 0, fixed leads to an overall shift of P.,. This makes the BAO
in the three models out of phase and leads to small oscillations at large k on top of the

power suppression.

4.2 Analytic understanding

In this section we provide an analytic derivation of the effects of neutrino decay on CMB
and LSS observables. We begin by showing how the results in the literature for the effects
of massive neutrinos on the matter power spectrum (P (k)) and CMB lensing (Cf ?) can
be reproduced analytically. We improve on the existing analytical treatment of the cosmo-
logical effects of massive neutrinos by taking into account their momentum distribution.
We then build on this to derive an expression for the evolution of overdensities in scenarios

with unstable neutrinos.
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Once neutrinos become non-relativistic, their contribution to the background energy
density leads to an increase the Hubble rate, leaving less time for structure formation as
compared to a universe with massless neutrinos. The net result is an overall suppression
of power at small scales in the matter power spectrum. The size of this effect can be
determined by studying the evolution of density perturbations. Consider §; = dp;/p; for
particle species i, for a mode that is already deep inside the horizon when neutrinos become
non-relativistic at z = z,,. In the matter dominated era, the Einstein equation for the
density perturbation with wavenumber k£ can be approximated as

k2 ~ —dm Ga®(8ey peb + Oy pv)- (4.2)

> We assume

Here ¢ is the metric perturbation in the conformal Newtonian gauge [73].
baryons have already decoupled from photons. This allows us to combine the baryon
contribution to the matter density with that of CDM to simplify the discussion. Since

0, < Iy for perturbation modes that enter the horizon before z,,., we can write,

K2~ 0 (1 _ 27 > Seb, (4.3)

T Ptot (T)

where 7 is the comoving time and piot = pep + pr- Inserting this expression into the
Boltzmann equation for CDM perturbations yields,

bep + %50,) — % (1= f,(7)) 6e = 0, fu(r) = ﬁp; :t((TT)). (4.4)

where the dots represent derivatives with respect to 7. Deep in the matter dominated

era, neutrinos only contribute up to a few percent of the total energy density. Therefore,
throughout this derivation, we work to leading order in f, (< 1). We look for a solution

sa=aih(r) (2) o[£ [ e (@)

T

of the form,

where now the function h(7) is to be determined. Inserting this expression into eq. (4.4)
and dropping the term proportional to f2, we obtain the following differential equation
for h(r).
. . 6. .
Th—|—6h—5hf:0. (4.6)
Thus far we have not made any assumption about the redshift dependence of f,. For
massless or ultrarelativistic neutrinos in the matter dominated era, we have

Ti 2

o) = 1o () (4.7)
T

In this case we can solve for the function h(7) as,

R (1) = exp {k / T di 7w (7)

Ti

e |2 (0w - @) s

"We use the metric ds? = a?(7)[—(1 + 2)dr? + (1 — 2$)6;;dx’*dz’] and approximate ¢ = —¢, ignoring
the small correction arising from the presence of free streaming radiation.
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This leads to the following approximate solution for perturbations in the case of massless
or ultrarelativistic neutrinos,

7\? TdT
(7 = () o |5 [ S| o) (19)

In the limit that neutrinos are non-relativistic, f,(7) goes to a constant value. Then
eq. (4.6) admits a solution where h(7) is constant. This implies that in the case of massive
neutrinos, the h-function can be approximated as

™ () = exp {? [ () — 73 (min(r, 7)) } . (4.10)

The result is almost identical to eq. (4.8) since in both cases the exponent is dominated by

v () (and fI after 7 > Ty is much smaller than the expansion parameter f7)

W™ (1) ~ B (7). (4.11)

This means that the solution in the case of massive neutrinos can be approximated as,

5 (1) = G (:)Qexp [_g | G <f>] e (7). (4.12)

i . T

Then the ratio of the perturbations in the two cases is given by,

g’% (1) _ exp [_g/:df (f;ny (#) — f;ﬁu(%)ﬂ _ (4.13)

T
7

This ratio can be expressed in terms of the scale factor as,

%" (@) ~ 0" (@) ex _§ a@ pv(a)
5?;”(@ N 5%“(%) p[ /a a ﬁtot(a):| ’ (4.14)

5 T
where p,(a) = py,m, (@) — Py, (a) represents the difference in the neutrino energy between
the two scenarios. If all the neutrinos are stable and become non-relativistic instantly at
ai, pu(a)/prot(a) = Pum, /Prot is a constant, and eq. (4.14) recovers the well-known result
for the ratio of perturbations in the massive and massless neutrino scenarios,

6%:(“) N <a>_ Brot ‘ (4.15)
35" (a) a;

We can improve on this estimate by incorporating a more precise expression for the
neutrino energy in eq. (4.14),

pv(a) = 47ra4/ooodq 7’ (\/ q* +mZa® — q) fa) - (4.16)

. -1
Here ¢ = ap, denotes the neutrino’s conformal momentum, and f(q) = [eq/ Tvo 4 1]
represents the momentum distribution of neutrinos. p,(a) exhibits non-trivial redshift
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dependence since the neutrino energy goes from being radiation-like to being matter-like.
In figure 5, we show the evolution of the ratio in eq. (4.14) as a function of redshift (black
dashed curves) for two different values of the neutrino mass. We start our approximation
from a; = 2 x 1072 to make sure we are deep inside the matter dominated era so that the
assumptions leading to eq. (4.14) are justified. We stress, however, that the result is quite
insensitive to order one changes in a;. As we can see, eq. (4.14) is a good approximation to
the full numerical results (black solid curves), and describes the evolution of the d., ratio
from the relativistic to the non-relativistic regime much better than the approximation
based on eq. (4.15) (black dotted curves). Using this, we can estimate the ratio of the
power spectrum between the two scenarios,

my 2
Fovmy o (7tar) ) (4.17)
Pcb,?;hy (567;[?”(@]0)

The density perturbation grows much slower in the cosmological constant dominant era,
and we take the final scale factor to be at ay = 0.7 for a good approximation to the power
spectrum ratio today.’

We now turn our attention to the effects of massive neutrinos on CMB lensing. The
difference in the density perturbation dp. between the massive and massless neutrino
scenarios results in a change in the gravity perturbation ¢. The photons are therefore
deflected differently in the CMB lensing process. The correlation function of the lensing
potential, Cfd) ~ (¢¢), parameterizes the size of angular deflection of CMB photons. The
ratio of Cgﬁ % in the massive neutrino case to that in the massless case can be approximated
using Limber’s formula [77, 78]

1
14
m 2 2
" 1 —
Co, < /0 & om <wm><) S _ T _
el i , X = , X« =Tp—Te . (4.18)
Cra, Xfw/ dz 62, < : ) (1- )2 A
0 v gjmux*

Here 7, ~ 2.8 x 102 Mpc is the conformal time at last scattering, while Tr ~ 1.4 X 104
Mpec is the conformal time today. The value of 7, differs a bit between the massive and
massless neutrino scenarios, since the contribution of neutrinos to the total energy density
is different in the two cases. However, since the neutrino mass only results in a signifi-
cant difference in the contributions to the background energy in the short period of time
between the neutrinos becoming non-relativistic and the universe becoming dominated by
the cosmological constant, the difference in y, between the two scenarios can be neglected.
Then, the difference between Cf(b in the two cases primarily arises from differences in the
evolution of ¢.

According to the Einstein eq. (4.2), the ratio of ¢ between the two scenarios for large
£ modes at a given value of the scale factor is,

Pm, (@) _ 0g"(a)
P, (@) 6% (a)

(4.19)

SWe can also use ay = a g(a) with the growth function g(a) for a reasonable approximation [5].
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Figure 5. Evolution of the ratio of the CDM+baryon density perturbation with respect to the
case of a massless neutrino, 0., / (5Cmb”. The results are shown for the case of a single massive neutrino
with m, = 60 meV. All the solid curves are obtained from numerical calculations using the modified
CLASS code discussed in section 3. The black curve is for the stable neutrino scenario, and the
blue (orange) curve is for the neutrino with decay rate I', = 10% (103) km /s/Mpc. The dashed
curves represent the first approximations to the solid curves, based on the derivation in eq. (4.14).
The dotted curves are based on the approximation method in eq. (4.15), where we assume a; to be
the value when 80% of neutrinos have their momenta lower than m, and a; = agec. As we see,
eq. (4.14) provides a much better approximation to the full numerical result.

Since C’f ¢ receives its dominant contribution close to z ~ 3 [76], we can estimate the ratio

of the C’f‘z’ as,
¢ 2
Ce’ my < (52’2” )
¢ T\
C o

e7,r/hl/

(4.20)

z=3

Based on a very similar analysis, we can predict the suppression of P (k) and Cf¢ for
large k and ¢ in the unstable neutrino case. We consider a scenario with a single massive
neutrino species that becomes non-relativistic after last scattering and decays into dark
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radiation. After the decay, the energy density of the daughter particles redshifts more
quickly than that of a stable neutrino of the same mass as the mother. We work in the
instantaneous decay approximation and assume that all neutrinos decay at the same time,
corresponding to a scale factor agec, which is implicitly determined by the equation,

T, = H(ageo)- (4.21)

The difference in energy density p, between an unstable neutrino and a massless neutrino
evolves in a more complicated way than in the case of a stable neutrino. The instantaneous
decay approximation allows us to separate the evolution into two parts. On timescales
shorter than the proper lifetime of the neutrino, the difference in energy density follows
the equation,

pv(a) = 47Ta_4/ dq q° (\/ ¢* +mja® — q) f@), a<agec- (4.22)
0

In the instantaneous decay approximation, the energy density in non-relativistic neutrinos
is immediately transferred into radiation energy at agec. It subsequently redshifts with an
extra (agec/a) factor as compared to a non-relativistic neutrino, so that

pv(a) = 47m_4/0 dq ¢* [\/ q? + mZa? (CL‘:}C> - q] fl@), a> agec- (4.23)

The ratio of CDM density perturbations in the case of unstable neutrinos can be obtained
by inserting the energy density ratios in eqgs. (4.22) and (4.23) into eq. (4.14). Then the
ratios of P(k) and C’f‘b in the limit of large k& and ¢ can be obtained from egs. (4.17)
and (4.20)

In figure 5, we show the ratio of §. from the numerical calculation described in section 3
for both the decaying (blue and orange) and stable (black) neutrinos. The plots are for a
single massive neutrino with m, = 60 meV (upper) and 80 meV (lower), and a decay rate
', = 10* (10%) km /s/Mpc for the blue (orange) curves. In this scenario, more than 80% of
the neutrinos have momenta p, < m, after a > 0.012 (a > 0.0096) for m, = 60 (80) meV
neutrino. It is at this point, when most of the neutrinos have become non-relativistic, that
the major suppression of d., begins. During this period the 4 ratio drops with the power
described in eq. (4.15) (grey line). The blue (orange) dotted lines give the value of the §.-
suppression if the later contributions of daughter particles to the energy density shown in
eq. (4.23) are ignored. As we see, this underestimates the suppression of ¢, showing that
the contributions of daughter particles to the energy density cannot be neglected. It is clear
from the figures that eqgs. (4.22) and (4.23) provide a good description of the ., evolution
in unstable neutrino scenarios (dashed blue and orange), both before and after neutrino
decay. This shows that the effects of neutrino decay on the evolution of d., on these length
scales primarily arise from the contributions of the unstable neutrinos and their daughter
particles to the background energy density, and not from their perturbations.

5 Current limits on the neutrino mass and lifetime from Monte Carlo
analysis

In this section we perform a Monte Carlo analysis to determine the current bounds on the
neutrino mass and lifetime.
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5.1 The data and analysis pipeline

Our analysis makes use of various combinations of the following datasets.

e CMB: we include Planck 2015 CMB high-¢ TT, TE, and EE and low-¢ TEB power
spectra [79], as well as the lensing reconstruction power spectrum [80].

e BAO: we use measurements of the volume distance from 6dFGS at z = 0.106 [81]
and the MGS galaxy sample of SDSS at z = 0.15 [82]. We include the anisotropic
measurements from the CMASS and LOWZ galaxy samples from the BOSS DR12
at z =0.38, 0.51, and 0.61 [83].

e Growth function: the BOSS DR12 measurements also include measurements of the
growth function f, defined by

(o))"

) o

fos =

where aévd) measures the smoothed density-velocity correlation, analogous to og =

Uédd) that measures the smoothed density-density correlation.
e Pantheon: we use the Pantheon supernovae dataset [84], which includes measure-
ments of the luminosity distance of 1048 SNe Ia in the redshift range 0.01 < z < 2.3.

e [.SS: we use the measurement of the halo power spectrum from the Luminous Red
Galaxies SDSS-DR7 [85]7 and the tomographic weak lensing power spectrum by
KiDS [86].

Our baseline analysis makes use of Planck+BAO+Growth Function+Pantheon data (i.e.
data that relies on background cosmology or perturbations in the linear regime mostly).
We then add LSS information to gauge the constraining power of such surveys.

Using the public code MONTEPYTHON-V3® [87, 88], we run Monte Carlo Markov chain
analyses using the Metropolis-Hastings algorithm assuming flat priors on all parameters.
Our ACDM parameters are,

{wcdma W, 98) ln(1010A8)7 Ns, Treio} 5

to which we add the sum of neutrino masses »_ m, and the logarithm of the neutrino
lifetime Log;ol',. In our analysis we assume 3 degenerate, unstable neutrino species that
decay into dark radiation. Although not detailed for brevity, there are many nuisance
parameters that we analyze together with these cosmological parameters. To that end, we
employ a Cholesky decomposition to handle the large number of nuisance parameters [89],
and use the default priors that are provided by MONTEPYTHON-V3.

"More recent measurements are not yet available in MONTEPYTHON-v3. These could naturally make
the bounds presented here slightly stronger.
Shttps://github.com /brinckmann/montepython_public
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Figure 6. Posterior distributions of Y m, and log;,I', for each dataset. Small decay rate
log,oT,/(km/s/Mpc) € [0, 3] are shown in the left panel, while large decay rate log,,I', /(km/s/Mpc)
€ [3,5.5] are shown in the right panel.

5.2 Current limits on the neutrino mass and lifetime

In order to perform meaningful comparisons and to check the accuracy of our modified
version of CLASS, we begin by running the case of stable neutrinos. Our baseline con-
straint on the neutrino mass, obtained with Planck+BAO+Growth Function+Pantheon,
is Y~ m, < 0.28¢eV (95% C.L.). This is in good agreement with the result reported in [58].
The inclusion of SDSS DR7 and KiDS improves the constraint by ~ 10%, bringing the
limit down to > m, < 0.25eV (95% C.L.). This constraint when LSS data is included is
also in good agreement with what is reported in ref. [90].

In figure 6 we show the 1D and 2D marginalized posterior distribution of > m,,
and log;oI', for both datasets, cutting the parameter space between small decay rate
log,oI'y/(km/s/Mpc) € [0,3] (left panel) and large decay rate log;,I',/(km/s/Mpc) €
[3,5.5] (right panel) to accelerate convergence. Strikingly, once the neutrino lifetime is
let free to vary, the constraint on ) m, is driven by our prior on log;,I',. We recall
that this was chosen in order to ensure that neutrinos decay while non-relativistic. Inter-
estingly, the constraint stays quite stable for log;oI',/(km/s/Mpc) < 2.5, but relaxes to
> my < 0.9eV (with Planck+BAO+Growth Function+Pantheon) for higher values of the
decay rate. We note that the limit only marginally improves with the addition of current
LSS data, especially at high decay rates (right panel), for which the improvement is below
numerical noise.

Our study allows us to obtain a bound on the sum of neutrino masses as a function
of the neutrino lifetime. We see that ) m, can be as large as 0.90eV for neutrinos that
decay close to recombination. However, given our restricted prior enforcing non-relativistic
decays, our analysis does not set a true upper bound on the neutrino mass. In order to
derive the true upper bound we would need to correctly incorporate relativistic decays,
taking into account inverse decay processes. We refer to refs. [45, 48] for a discussion of
that regime, and defer to future work a reanalysis of that region of parameter space in light
of the latest Planck results.
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6 Conclusions

The fact that the couplings of neutrinos to the other SM particles are so weak makes it
extremely difficult to study their properties. Even though it has been over six decades since
neutrinos were first directly observed in the laboratory, several of their fundamental prop-
erties, including their masses and lifetimes, remain to be determined. However, neutrinos
are also among the most abundant particles in the universe, and their gravitational pull
has effects on cosmological observables. The universe is therefore an excellent laboratory
for studying the detailed properties of neutrinos.

In this paper, we have explored the cosmological signals arising from the theoretically
well-motivated scenario in which neutrinos decay into invisible dark radiation on timescales
less than the age of the universe. We have studied the effects of neutrino decay on the
evolution of density perturbations, both analytically and numerically, and used the results
to generalize the bound on the sum of neutrino mass to the case when the lifetime of the
neutrino is less than the age of the universe. We have shown that the existing mass bound
from CMB and LSS measurements, which assumes that neutrinos are stable, gets weakened
if neutrinos decay, so that values of Y m, as large as 0.9eV are still allowed by the data.
This provides strong motivation to continue the current efforts to measure the neutrino
masses directly in the lab, in spite of the limited reach of these experiments. Our analytical
results show that the signals of neutrino decay in LSS and CMB-lensing primarily arise from
the contributions of neutrinos and their daughters to the overall energy density, and are
quite insensitive to their contributions to the fluctuations about the background. Although
the bounds we obtain based on the existing data do not set independent constraints on the
neutrino mass and lifetime, next generation measurements of the matter power spectrum at
different redshifts will provide useful information that may help in breaking this degeneracy.
We will explore this in the future work [91].
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A A model of massive neutrino decay into dark radiation

In this appendix we present a simple, realistic model in which massive neutrinos decay
into invisible dark radiation on timescales of order the age of the universe. To illustrate
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the main features of the model, we first consider a simplified version with just a single
flavor of SM neutrino, denoted by v, and two singlet right-handed neutrinos, labelled as n
and n/. The model also contains two complex scalars, labelled as ® and ®’. We introduce
U(1),, x U(1), global symmetries that act on the right-handed neutrinos. While n and ®
carry equal and opposite charges under U(1),,, n’ and ®' are neutral under this symmetry.
Similarly, n’ and ®' carry equal and opposite charges under U(1),,, while n and ® are
neutral. Then the part of the Lagrangian responsible for generating the neutrino masses
takes the form,

/
L5 %Eﬁn@ + yXEﬁn’CD' +He. (A.1)

Here L represents the SM lepton doublet and H = iooH*, where H denotes the SM Higgs
doublet. A is a UV mass scale while y and 3’ are coupling constants. Although this
Lagrangian is nonrenormalizable, it can be interpreted as the low energy description of
a renormalizable theory after particles with masses of A have been integrated out. For
example, consider the renormalizable Lagrangian,

—L =§LHN + MNyNNY + AnN°® 4§ LHN' + My N'N¥ + X'n/N9® 4 H.c. (A.2)

Terms of the form shown in eq. (A.1) are obtained after the heavy fermions N, N¢ N’ and
N¢ have been integrated out.
Once the scalars ®, ' and the SM Higgs each acquire a vacuum expectation value
(VEV), we obtain Dirac masses for the SM neutrino,
yfo_ Yy flv

= mvny + H.c.. (A.3)

vn' + H.c.

Here %, \% and % denote the VEVs of ®, ®" and H respectively. The SM neutrino ac-

quires a mass m = 1/ (yf)? + (' f)*v/(2A). Its Dirac partner ny, is one linear combination

of n and 7/,

6 sinf
<nh>:< CO.S esme) (n,> © cosf = yf ‘ (A.4)
n —siné cos n
1 V' + 1)
It is clear from eq. (A.3) that the spectrum contains one massive Dirac neutrino and one
massless singlet neutrino n;.
Below the spontaneous symmetry breaking scales f and f’, the Goldstone bosons can
be parametrized as
f 1w
&= =L A5
7 VG (A.5)
where ¢ and ¢’ denote the Goldstone bosons from U(1), and U(1),s respectively. The

couplings of the Goldstone bosons in the low energy effective theory are dictated by the
non-linearly realized global symmetries. To leading order in 1/f and 1/f’, they are given by,

DI »

_ﬁDZﬂ?Vn+Z2A f’

— 24 —



In the mass basis these interactions take the form,

/ /

—L D imv [<¢ cos? 0 + o sin? 9> Ny + <¢, - d)) sin 6 cos 0 nl] +He (A7)
f f VA

We see from this that the massive neutrino can decay into n; and either ¢ or ¢’. Its partial

widths into these decay modes are given by,

3 3

I‘(u—mmb)zw, o

L(v—m¢) = 322 (A.8)
where f = f/(cosfsinf) and f' = f’/(cosfsin@).

Now we move on to discuss the realistic case in which there are three flavors of SM
neutrinos v, (o« = e,u,7). We also introduce three flavors of the sterile neutrinos ng,
and n/,, as well as a new scalar field ¥,5. The global symmetry in the neutrino sector
is now extended to SU(3)y x SU(3)r x U(1), x U(1),. The charge assignments under
U(1), x U(1), are the same as before, but with all 3 flavors of n, and n/, now being
charged under U(1),, and U(1),, respectively. Under SU(3); x SU(3)g, the various fields

transform as
L—U,L n—Ugn n —=Ugn —=USUL, (A.9)

where Uj, and Ug are the rotation matrices of SU(3);, and SU(3)r respectively. The
neutrino masses now arise from terms in the Lagrangian of the form,

/

£ {5 LalSapns® + 5 LaHSasmy@ + He. (4.10)

Once the ¥ field acquires a VEV, we can diagonalize its VEV (3) to obtain,
Y+ o5 y - -
—L > Z <A2LiH<E>mi<I> + MLiH@)m;q)’) + He. (A.11)

where the index ¢ runs over i = 1,2,3 and (3); denotes the ith eigenvalue of (¥). The
Lagrangian in eq. (A.11) can be viewed as three copies of eq. (A.1). After the scalars ®, &’

/

and H acquire VEVs, all three generations of (n;,n}) can be simultaneously transformed

to the mass basis (ny;, ny;) using the same orthogonal matrix,

on cosf sin@ n;
= A.12
<n1i> (—sin&cos@) (né)’ ( )

where cos @ is exactly the same as in eq. (A.4). Now the neutrino masses are given by,

2 (X)v

mi =\ () + W)

(A.13)

Assuming that the Goldstone bosons from X are heavier than the massive neutrinos due
to some external source of explicit breaking, the dominant decay modes of the massive
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neutrinos are to a massless sterile neutrino and either ¢ or ¢’. Following the discussion
above, the total neutrino decay width is given by

m3 m3

Ty, =T(v; = nig) + D(vi = md) = 327er2 " 327#/27

(A.14)

where f and f' are as defined after eq. (A.8). One characteristic feature of this model is
that the widths of the neutrinos scale as the cube of their masses, Iy, /T'y; = m; /m? In
the case of quasi-degenerate neutrinos, m; ~ ms = mg, it is clear that all neutrinos have
almost the same total width. Assuming f = f’, we find that the total width is of order H
for f ~ 10° GeV and neutrino masses of order 0.1eV,

T, m; \° /10° GeV 2
i~ 1.3 ! — . A.15
Hy <0-1 eV> < f ) (A.15)

The parameter space of this model is constrained by astrophysical, cosmological and

laboratory data. These limits are very similar to those on conventional Majoron models,
and can be expressed in terms of bounds on the decay constants f and f’. In the case
of massless Goldstone bosons, the bounds from cosmology and astrophysics are the most
severe. A strong cosmological constraint arises from requiring consistency with the obser-
vation that the cosmic neutrinos are free streaming at temperatures below an eV [45-48].
Neutrino-neutrino scattering mediated by Goldstone boson exchange can prevent the neu-
trinos from free streaming, impacting the heights and locations of the CMB peaks. This
translates into constraints on f and f of order 100keV [92]. A stronger although somewhat
model-dependent constraint, f, f/ = 100 MeV, may be obtained by requiring that the Gold-
stone bosons and right-handed neutrinos not contribute significantly to the energy density
in radiation at the time of Big Bang nucleosynthesis (BBN), or during the CMB epoch.

The strongest astrophysical bounds arise from the effects of Goldstone bosons on su-
pernovae. The large chemical potential for electron neutrinos inside the supernova means
that these particles can now decay into final states containing a Goldstone boson and a
right-handed neutrino. This has the effect of deleptonizing the core, preventing the ex-
plosion from taking place. In addition, the free streaming of Goldstone bosons out of the
supernovae core can lead to overly rapid energy loss. The resulting constraints are at
the level of f, f > 100keV [93-97]. There are also bounds on the couplings of neutrinos
to Goldstone bosons from laboratory experiments, such as neutrinoless double beta de-
cay [98, 99], meson decays [93, 100], charged lepton decays [101] and tritium decay [102].
These constraints arise from corrections to the energy spectrum of the visible final states
due to Goldstone boson emission. However, in all these cases, the limits are weaker than
astrophysical and cosmological bounds on massless Goldstone bosons. Clearly, our bench-
mark values of f, f’ ~ 10° GeV are easily consistent with all current bounds.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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