
Global Stabilization for Causally Consistent Partial
Replication ∗

Zhuolun Xiang
Department of Computer Science

University of Illinois at Urbana-Champaign
xiangzl@illinois.edu

Nitin H. Vaidya
Department of Computer Science

Georgetown University
nitin.vaidya@georgetown.edu

ABSTRACT
Causally consistent distributed storage systems have received
significant attention recently due to the potential for provid-
ing high throughput and causality guarantees. Global stabi-
lization is a technique established for achieving causal consis-
tency in distributed multi-version key-value store systems,
adopted by the previous work such as GentleRain [6] and
Cure [1]. Intuitively, this approach serializes all updates by
their physical time and computes the “Global Stable Time”
which is a time point t such that versions with timestamp
≤ t can be returned to the client without violating causal-
ity. However, all previous designs with global stabilization
assume full replication, where each data center stores a full
copy of data, and each client is restricted to access servers
within one data center. In this paper, we propose a theo-
retical framework to support general partial replication with
causal consistency via global stabilization, where each server
can store an arbitrary subset of the data, and each client is
allowed to communicate with any subset of the servers and
migrate among them without extra delays. We propose an
algorithm that implements causal consistency for distributed
multi-version key-value stores with general partially replica-
tion, and our algorithm is optimal in terms of the remote
update visibility latency, i.e. how fast update from a remote
server is visible to the client, under general partial replica-
tion. Simulation results on the performance of our algorithm
compared to the previous work are also provided.

CCS Concepts
•Theory of computation→ Shared memory algorithms;

∗This research is supported in part by National Science
Foundation award 1849599, and Toyota InfoTechnology
Center. Any opinions, findings, and conclusions or recom-
mendations expressed here are those of the authors and do
not necessarily reflect the views of the funding agencies or
the U.S. government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WOODSTOCK ’97 El Paso, Texas USA
© 2019 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

Keywords
distributed shared memory, causal consistency, partial repli-
cation, optimal

1. INTRODUCTION
The purpose of this paper is to propose global stabilization

for implementing causal consistency in a partially replicated
distributed storage system. Geo-replicated storage system
plays a vital role in many distributed systems, providing
fault-tolerance and low latency when accessing data. In gen-
eral, there are two types of replication methods, full replica-
tion where the same set of data are replicated at each server
or data center, and partial replication where each server can
store a different subset of the data. As the amount of data
stored grows rapidly, partial replication is receiving an in-
creasing attention [5, 8, 16, 4, 17, 3].

To simplify the applications developed based on distributed
storage, many systems provide consistency guarantees when
clients access the data. Among various consistency models,
causal consistency has received significant attention recently,
for its emerging applications in social networks. To ensure
causal consistency, when a client can get a version of some
key, it must be able to get versions of other keys that are
causally preceding.

There have been numerous designs for causally consistent
distributed storage systems, especially in the context of full
replication. For instance, Lazy Replication [9] and Swift-
Cloud [18] utilize vector timestamps as metadata for record-
ing and checking causal dependencies. COPS [11] and Bolt-
on CC [2] keep dependent updates explicitly to maintain
the causality. GentleRain [6] proposed the global stabiliza-
tion technique for achieving causal consistency, which trades
off throughput with data freshness. Eunomia [7] also uses
global stabilization but only within each data center, and
serializes updates between data centers in a total order that
is consistent with causality. Occult [12] moves the depen-
dency checking to the read operation issued by the client to
prevent data centers from cascading.

In terms of partial replication, there is some recent progress
as well. PRACTI [5] implements a protocol that sends up-
dates only to the servers that store the corresponding keys,
but the metadata is still sent to all servers. In contrast,
our algorithm only requires sending metadata to a necessary
subset of servers. Saturn [3] implements tree-based meta-
data dissemination via a shared tree among the datacenters
to provide both high throughput and data visibility. All up-
dates between data centers are serialized and transmitted
through the shared tree. Our algorithm does not require to

Work - Nitin
This manuscript was submitted for review to the ICDCN conference and was accepted
for presentation at the conference. This is not the final published version.

Work - Nitin
The above DOI is a placeholder in the manuscript submitted for review, and differs from the actual DOI of the published version.

maintain such shared tree topology for propagating meta-
data. Instead, our algorithm allows updates and metadata
from one server to be sent to another server directly, without
the extra cost of maintaining a shared tree topology among
the servers.

Most relevant to this paper is the global stabilization tech-
niques used in GentleRain [6]. Distributed systems often
require its components to exchange heartbeat messages pe-
riodically in order to achieve fault tolerance. In the de-
sign of GentleRain, each server is equipped with a loosely
synchronized physical clock for acquiring the physical time.
When sending heartbeats, the value of physical clock is pig-
gybacked with the message. Also, the timestamp for each
update message is the physical time when the update is is-
sued, and all updates are serialized in a total order by their
timestamps. The communication between any two servers
is via a FIFO channel, hence the timestamp received by one
server from another server is always monotonically increas-
ing. Suppose the latest timestamp server i receives from
server j is t, then any updates from j to i with timestamp
≤ t has already been received by server i. Due to the to-
tal ordering of all updates by their physical time, to achieve
causal consistency, each server i only need to calculate the
time point T such that the latest timestamp value received
from any other server is no less than T . This indicates that
server i has received all updates with timestamp ≤ T from
other servers, and hence there will be no causal dependency
missing if server i returns versions with timestamp ≤ T . We
call such time point T as the Global Stable Time or GST .

However, there are several constraints on the design of
GentleRain. In particular, (i) GentleRain applies to only
full replication, where each datacenter stores a full copy of
all the data (key-value pairs). Within a data center, the key
space is partitioned among the servers in that data center,
and such partition needs to be identical for every data center,
(ii) each client can only access servers within one data center.
Under these constraints, the global stabilization approach is
simple and straightforward.

In this paper, we develop a theoretical framework for gen-
eral partial replication via global stabilization where (i) we
allow arbitrary data replication across all the servers, and
(ii) each client can communicate with an arbitrary subset of
servers for accessing data, and migrate among the servers
without extra delays. As we will see in Section 4, the global
stabilization technique, which is relatively simple in the case
of full replication, becomes much more complicated under
general partial replication, due to the arbitrary data shar-
ing pattern and clients’ mobility. Finding the right way to
compute the optimal Global Stable Time for general partial
replication is the main challenge of this paper.

The contributions of this paper are the following:

1. We propose an algorithm that implements causal con-
sistency for general partially replicated distributed stor-
age system.

2. We prove the optimality of the GST computation in
our algorithm regarding remote update visibility la-
tency, under general partial replication.

3. We also provide trade-offs to further optimize the re-
mote update visibility latency by introducing extra de-
lays during client’s migration.

4. We provide simulation results on the performance of

our algorithm comparing to the stabilization algorithm
of GentleRain.

2. SYSTEM MODEL
We consider a client-server

Figure 1: Illustration of the
system model

architecture, as illustrated
in Figure 1. Let there be
n servers, S = {1, · · · n}.
Let there be m clients, C =
{1, · · · ,m}. Each client c
is restricted to communicate
with an arbitrary set of servers
Sc, and we will call Sc the
server set of client c. We
assume that client c can ac-
cess all the keys stored at
any server in Sc. Let G be the set containing all clients’
server sets, i.e. G = {Sc | ∀ client c}. Notice that the size
of G is |G| ≤ 2n where n is the total number of servers. We
say a client migrates from server i to server j, if the client
issues some operation to server i first, and then to server j.

The communication channel between servers is assumed to
be point-to-point, reliable and FIFO. Each server has multi-
version key-value storage locally, where a new version of a
key is created when a client writes a new value to that key.
Each version of a key also stores some metadata for the
purpose of maintaining causal consistency. Each server has
a physical clock (reflects the physical time in the real world)
that is loosely synchronized across all servers by some time
synchronization protocol such as NTP [13]. Each server will
periodically send heartbeat messages (denote as HB) with its
physical clock value to a selected subset of servers (the choice
of the subset is described later). The clock synchronization
precision may only affect the performance of our algorithm,
not the correctness.

To access the data, a client can issue GET(key) and PUT(key,
value) to a server. GET(key) will return to the client with
the value of the key as well as some metadata. PUT(key,
value) will create a new version of the key at the server, and
return to the client with some metadata. We call all PUT
operations to some server i as local PUT at i, and all other
PUT operations as non-local PUT with respect to i.

2.1 Model for General Partial Replication
We allow arbitrary replication of the keys among the servers,

i.e. each server can store an arbitrary subset of the keys. Let
Ki denote the set of keys stored at server i. LetKij = Ki∩Kj

denote the set of keys shared by servers i and j. For ex-
ample, in Figure 2, let Ki = {k′, k, y, a}, K1 = {k′, x, b},
Kj = {v, d}, then Ki1 = {k′}, Kij = ∅. Only keys shared by
multiple replicas are showed in Figure 2.

In order to model the data partition, we define an share
graph, which was originally introduced by Hélary and Milani
[8]. We also define a augmented share graph that further
captures how clients access servers.

Definition 1 (Share Graph [8]). Share graph is an
unweighted undirected graph, defined as Gs = (V s, Es), where
V s = {1, 2, · · · , n}, where vertex i ∈ V s represents server i,
and there exists an undirected edge (i, j) ∈ Es if Kij 6= ∅.

The augmented share graph extends the share graph by
adding virtual edges between nodes i, j such that i, j ∈ Sc

for some client c.

Definition 2 (Augmented Share Graph [17]).
Augmented share graph is an unweighted undirected multi-
graph, defined as Ga = (V a, Ea). V a = {1, 2, · · · , n}, where
vertex i ∈ V a represents server i. There exists a real edge
(i, j) ∈ Ea if Kij 6= ∅, and there exists a virtual edge (i, j) ∈
Ea if there exists some client c such that i, j ∈ Sc. Denote
the set of real edges in Ga as E1(Ga) and the set of virtual
edges in Ga as E2(Ga).

Example: Figure 2 shows an example of the augmented
share graph defined above. In the example, Ga consists 7
vertices h, i, j, 1, 2, 3, 4, and the common keys shared by any
two servers are labeled on each edge. There exists a client c
that can access h, i, j, thus vertices h, i, j are connected by
virtual edges.

For convenience, we as-

Figure 2: Illustration of Ga

sume that both Gs and Ga

are connected. However, our
results can be easily extended
to the case when the graph
is partitioned. We assume
the augmented share graph
is static for most of the pa-
per, and briefly discuss how
our algorithm may be adapted when there is data inser-
tion/deletion or adding/removing servers in Section 9.3.

2.2 Causal Consistency
Now we provide the formal definition of causal consistency.

Firstly, we define the happened-before relation for a pair of
operations.

Definition 3 (Happened-before [10]). Let e and f
be two operations (PUT or GET). e happens before f , de-
noted as e → f , if and only if at least one of the following
rules is satisfied:

1. e and f are two operations by the same client, and e
happens earlier than f

2. e is a PUT(k, v) operation, f is a GET(k) operation
and GET(k) returns the value written by e

3. there is another operation g such that e→ g and g →
f .

The above happens-before relation defines a standard causal
relationship between two operations. Recall that each client’s
PUT operation will create a new version of the key.

Notation Explanation
S set of all n servers
C set of all m clients
Sc server set that client c can access
G = {Sc | ∀ client c} the set containing all clients’ server sets
Ki the set of keys stored at server i
Kij = Ki ∩ Kj the set of keys shared by server i and j
Gs = (V s, Es) share graph by Definition 1
Ga = (V a, Ea) augmented share graph by Definition 2
k and K K is a version of key k
→ happened-before relation by Definition 3

Table 1: Summary of Notations

Definition 4 (Causal Dependency [15]). Let K be
a version of key k, and K′ be a version of key k′. We say K
causally depends on K′, and denote it as K dep K′ if and
only if PUT(k′,K′) → PUT(k,K). We use ¬(K dep K′)
to denote that K does not causally depend on K′.

Now we define the meaning of visibility for a client.

Definition 5 (Visibility [15]). A version K of key k
is visible to a client c, if and only if GET (k) issued by client
c to any server in Sc returns a version K′ such that K′ = K
or ¬(K dep K′). We say K is visible to a client c from a
server i if the version K is returned from server i.

We say a client c can access a key k if the client can issue
PUT and GET operations to a server that stores k. Causal
consistency is defined based on the visibility of versions to
the clients as follows.

Definition 6 (Causal Consistency [15]). The key-
value storage is causally consistent if both of the following
conditions are satisfied.

• Let k and k′ be any two keys in the store. Let K be a
version of key k, and K′ be a version of key k′ such
that K dep K′. For any client c that can access both
k and k′, when K is read by client c, K′ is visible to
c.

• Version K of a key k is visible to a client c after c
completes PUT(k,K) operation.

In Section 3, we will first present the structure of the
algorithm for both clients and servers. Then in Section 4,
we complete the algorithm by specifying the definition of
the Heartbeat Summary (HS) and Global Stable Time (GST)
used for maintaining causal consistency. We also prove in
Section 6 the optimality of our algorithm regarding remote
update visibility latency under general partial replication.
By introducing extra delays during client’s migration, we
present algorithms in Section 7 that can provide a trade-off
between the visibility latency and client migration latencies.
The evaluation of our algorithm is provided in Section 8.
More discussions can be found in Section 9.

3. ALGORITHM
In this section, we propose the algorithms for the client

(Algorithm 1) and the server (Algorithm 2). The algorithm
structure is inspired by GentleRain [6] and designed for gen-
eral partial replication. The main idea of our algorithm is
to serialize all PUT operations and resulting versions by
their physical clock time (which is a scalar). For all causally
dependent versions, our algorithm guarantees that the to-
tal order established by their timestamps is consistent with
their causal relation, i.e., if K dep K′ then K’s timestamp is
strictly larger than K′’s timestamp. Such ordering simplifies
causality checking since now each server can learn that up to
which physical time point it has received updates from other
servers when assuming FIFO channels between all servers.
When a server returns a version K of key k to a client,
the server needs to guarantee that any causally dependent
versions are already visible to the client. How to decide the
right version of the key to return is the main challenge of our
algorithm, as represented by computing and using Global

Stable Time (GST) in the algorithm below and Section 4.
While GST is relatively easy to compute for full replication
as in GentleRain, we will show that general partial repli-
cation makes the computation of optimal GST much more
complicated.

When presenting our algorithm in this section, we left the
Global Stable Time (GST) and Heartbeat Summary (HS)
undefined, and the definitions are provided later in Section
4. Intuitively, GST defines a time point, and the versions
no later than this time point can be returned to the client
while satisfying causal consistency. HS is a component for
computing GST . We prove the correctness of our algorithm
in Section 5. We also prove in Section 6 that our definition
of GST is optimal regarding the remote update visibility
latency. In Table 2 below, we provide a summary of the
symbols used in our algorithm. Recall that Sc is the set of
servers that client c can access, and G = {Sc | ∀ client c}.

Symbol Explanations
ut update time, scalar
K version of some key k with value v, tuple < k, v, ut >
GTc metadata stored at client c for get dependencies, scalar
PTc metadata stored at client c for put dependencies, scalar
HSc Heartbeat Summary stored at client c, vector of size |Sc|
HSi(g) Heartbeat Summary for server set g ∈ G at server i, scalar
GST Global Stable Time, scalar
Ns

i set of neighbors of server i in the share graph excluding i
HBji heartbeat value from server j to server i
Clocki physical clock at server i
Oi set of servers that server i needs to send heartbeat to

Table 2: Explanations of Notations in Algorithm 1 and 2

Algorithm 1 is the client’s algorithm. Each client is re-
stricted to issue GET and PUT operations to the servers
in Sc. Each client will store a put dependency clock PTc

(which is a scalar) for PUT operations, a get dependency
clock GTc (scalar) for GET operations, and a vector HSc of
length |Sc| for remote dependencies. All these parameters
will be specified in Section 4. When issuing operations, the
client will attach its clocks with the operation, as in lines
3, 9 in Algorithm 1. When receiving the result from the
server, the client will update its clocks as in lines 5, 6, 11 in
Algorithm 1.

Algorithm 1 Client operations at client c.

1: GET(key k) from server i
2: compute rd(c, i) = minj∈Sc,j 6=iHSc[j]
3: send 〈GetReq k, PTc, rd(c, i), Sc〉 to server i
4: receive 〈GetReply v, t, {hsj | j ∈ Sc, j 6= i}〉 from

server i
5: GTc ← max(GTc, t)
6: HSc[j]← max(HSc[j], hsj) for all j ∈ Sc, j 6= i
7: return v

8: PUT(key k, value v) to server i
9: send 〈PutReq k, v,max(PTc, GTc)〉 to server i

10: receive 〈PutReply t〉
11: PTc ← max(PTc, t)

Algorithm 2 below is inspired by the algorithm in [6], with
several important differences: (1) The Global Stable Time
computation is different and more complicated due to the
general partial replication, as will be specified in Section

Algorithm 2 Server operations at server i

1: upon receive 〈GetReq k, t, rd, g〉 from client c
2: // The computation of GST is provided in Section 4
3: if k shared by j ∈ g ∩Ns

i then
4: wait until GST ≥ t
5: obtain the latest versionK of key k with largest times-

tamps from local storage s.t. K.ut ≤ GST or K is due
to a local PUT operation at server i

6: send 〈GetReply K.v,K.ut, {HSj(g) | j ∈ g, j 6= i}〉
to client c

7: upon receive 〈PutReq k, v, t〉 from client c
8: wait until t < Clocki
9: create new version K

10: K.k ← k, K.v ← v, K.ut← Clocki
11: insert K to local storage
12: for each server j that stores key k do
13: send 〈Update uK = K〉 to j
14: send 〈PutReply K.ut〉 to client c

15: upon receive 〈Update u〉 from j
16: insert u to local storage
17: HBji ← u.ut

18: upon every ∆ time
19: for each server j ∈ Oi do
20: send 〈Heartbeat Clocki〉 to j

21: upon receive 〈Heartbeat hb〉 from j
22: HBji ← hb

23: upon every θ time
24: compute HSi(g) for every g ∈ G such that i ∈ g
25: for each server j ∈ g do
26: send 〈Heartbeat Summary HSi(g), g〉 to j

27: upon receive 〈Heartbeat Summary hs, g〉 from j
28: HSj(g)← hs

4. (2) The heartbeat/HS exchange procedures are differ-
ent (lines 19 − 20, 25 − 26 in Algorithm 2). (3) The client
will keep slightly more metadata locally, such as a vector of
length |Sc|. (4) There may be blocking for the GET opera-
tion of the client as in lines 3, 4 of Algorithm 2. Such block-
ing is necessary for satisfying the second condition of causal
consistency as in Definition 6, i.e., the version of client’s own
PUT is always visible to the client.

The intuition of the algorithm is straightforward. When
handling GET operations, the server will first check if the
client may have issued a PUT at other servers on some key
that it also stores, and make sure such version is visible to
the client (lines 3, 4). Then the server will return the latest
version of the key that satisfies causal consistency (line 5).
The computation of Global Stable Time (GST) is designed
for this purpose, as will be specified in Section 4. When
handling PUT operations, the server will first wait until its
physical clock exceeds the client’s causal dependencies (line
8). Then the server performs a put locally (lines 9, 10, 11),
sends the update to other servers that stores the same key

(lines 12, 13), and replies to the client (line 14).
Lines 15− 17 is for receiving updates from other servers.

Rest of the algorithm (lines 18−28) specifies how heartbeats
and HSs are exchanged among the servers.

4. COMPUTING GLOBAL STABLE TIME
In this section, we complete the algorithm by defining

heartbeat exchange procedure and Global Stable Time com-
putation. We will specify for each server the set of destina-
tion servers its heartbeat/HS messages need to be sent to
and how to compute GST from received messages. The
Global Stable Time is a function of the augmented share
graph defined in Section 2. As we will see in this section
and Section 6, the computation of the optimal GST is much
more complicated than GentleRain due to general partial
replication.

4.1 Server Side: GST Computation and Heart-
beat Exchange

Let HBxy denote the clock value attached with the heart-
beat message sent from server x to y. We will later use the
term heartbeat value, heartbeat message or heartbeat to re-
fer HBxy. Basically, the Global Stable Time (GST) in our
Algorithm 2 computes a time point that is “safe” for return-
ing versions whose timestamps are no larger than this time
point. More specifically, GST is computed as the minimum
of a set of heartbeat values, which is the time point that all
the causal dependencies have been received at correspond-
ing servers. In this section, we provide the computation of
GST .

We say a cycle or path is simple if it has no vertex repe-
tition. We define the length of a cycle to be the number of
nodes in the cycle. Nodes a, b with both a real edge and a
virtual edge between a, b is considered a valid simple cycle
of length 2. We will use (a, b) to denote the directed edge
from node a to b. We will next define two sets Li(k) and
Ri(g) each contains a set of directed edges.

Define set Li(k) with respect to server i and a key k ∈ Ki

as follows. For every simple cycle (i, v1, · · · , vm, i) of length
≥ 2 inGa such thatm ≥ 1, k ∈ Kv1i, we have (v1, i) ∈ Li(k),
and if (vm, i) is a real edge, we also have (vm, i) ∈ Li(k). For
instance, in Figure 3, Li(k) = {(1, i), (2, i)}. Intuitively, if
(v, i) ∈ Li(k), then server v may send updates to i that are
causal dependencies of key k’s version. For example, there
can be updates uK′ → uX → uK , as shown in Figure 3.

Recall that G is the

Figure 3: Intuition for set
Li(k), Ri(g)

set of all clients’ server
sets, i.e. G = {Sc | ∀ client c},
and |G| ≤ 2n where
n is the total number
of servers.

Define setRi(g) with
respect to server i ∈
g and g ∈ G as fol-
lows. For every sim-
ple path (v1, · · · , vm)
inGa such that v1, vm ∈
g, m ≥ 2, we have (v2, v1) ∈ Ri(g) if v1 6= i and (v2, v1) is
a real edge. For instance, in Figure 3, let g = Sc = {h, i, j},
then Ri(g) = {(3, h), (4, h), (4, j)}. Intuitively, if (a, b) ∈
Ri(g), then server a may send updates to b that are causal
dependencies of key k’s version. For example in Figure 3,
there can be updates uV → uW , and then some client c′

reads version W from server h and puts a new version K of
key k to server i, leading to K dep V .

As mentioned, set Li(k) ∪ Ri(g) contains directed edges
along which the causal dependencies of key k’s version may
be sent, and these dependencies can be read by client c whose
server set is Sc = g. The computation of GST involves all
heartbeat values in the set

{HBxy | (x, y) ∈ Li(k) ∪Ri(g)}

To be more specific, the following two values need to be
computed for GST :

LDi(k) = min
(v,i)∈Li(k)

(HBvi), RDi(g) = min
(x,y)∈Ri(g)

(HBxy)

which stands for local dependencies (LD) and remote de-
pendencies (RD) respectively. The intuition for LDi(k) is to
compute the time point up to which server i has received all
causally dependent updates of key k’s version. For example
in Figure 3, suppose uK′ .ut = 0, uX .ut = ε and uK .ut = 2ε
where ε is some small number. Our algorithm guarantees
that if updates u → v, then u.ut < v.ut as will be shown
in the next section. Recall that servers communicate via
FIFO channels, once server i has received HB1i ≥ 2ε and
HB2i ≥ 2ε, it has received all the causal dependencies of
version K from its neighbors in the augmented share graph.
Therefore for version K or similarly other versions of k with
timestamp ≤ LDi(k), server i has received the causal depen-
dencies of those versions from its neighbors. The intuition
for Ri(g) is similar, which computes the time point when
all servers in the server set g have received all the causal
dependencies of key k’s version. More details can be found
in the correctness proof of our algorithm in the next section.

Heartbeat and HS exchange.
In order to compute LDi(k), server i needs to know the

set of heartbeat values HBvi for all pairs (v, i) ∈ Li(k).
Therefore,

• For ∀v such that (v, i) ∈ Li(k), v will send heartbeat
messages to i.

In order to compute RDi(g), server i ∈ g needs to know
the value of min(v,j)∈Ri(g)HBvj for each server j such that
∃(v, j) ∈ Ri(g). Therefore,

• For ∀v, j such that (v, j) ∈ Ri(g), v will send heartbeat
messages to j. Notice that j 6= i by the definition of
Ri(g).

• For each server j above, j will periodically send to i
a summary of heartbeats (denoted as Heartbeat Sum-
mary or HS) it received, as

HSi
j(g) = min

(v,j)∈Ri(g)
(HBvj)

Note that if (v, j) ∈ Ri(g) then j ∈ g. Also notice
that for ∀i, i′ ∈ g and j 6= i, i′, by definition HSi

j(g) =

HSi′
j (g), since the set {(v, j) ∈ Ri(g)} = {(v, j) ∈

Ri′(g)}. We will denote HSj(g) = HSi
j(g) for brevity.

Then RDi(g) = minj∈g,j 6=i(HSj(g)) by the definition of HS
above. The target server set Oi that server i needs to send
heartbeats to can be written as Oi = {j|(i, j) ∈ Lj(k), k ∈
Kj} ∪ {j|(i, j) ∈ Rz(g), z ∈ S, g ∈ G}.

Finally, the computation of GST used in our Algorithm
also depends on the client’s dependency clock rd. Intuitively,

due to the delay of communication between servers, the val-
ues of HSs may be different at different servers in g. For
instance, server i may receive HSj(g) = 10 from server j
at time t, but server i′ may only receive an old message
HSj(g) = 5 at t due to network delay. To avoid such in-
consistency, the client c accessing server set g will keep the
value of the largest HSj(g) it has seen so far for ∀j ∈ g, de-
noted as HSc[j]. And the client’s dependency clock rd(c, i)
is defined as

rd(c, i) = min
j∈Sc,j 6=i

HSc[j]

Since client’s dependency clock rd(c, i) (or rd) reflects latest
remote dependencies that have been observed by the client,
when computing GST , the larger value between RDi(g) and
rd should be considered for remote dependencies. Therefore,
the computation of GST can be written as

GST = min (LDi(k),max(RDi(g), rd))

4.2 Client Side
Each client maintains a vector of size |g| = |Sc| for HS

values as mentioned above. Also, the client will keep two
scalars GTc and PTc as the dependency clock for GET and
PUT dependencies respectively.

5. CORRECTNESS OF ALGORITHM 1 AND
2

In this section, we prove that our Algorithm 1 and 2 im-
plement causal consistency by Definition 6.

Lemma 1. Suppose that PUT(k′,K′)→ PUT(k,K), and
thus K dep K′. Let uK′ , uK denote the corresponding up-
dates of PUT(k′,K′) and PUT(k,K), and let uK′ .ut, uK .ut
denote their timestamps. Then uK′ .ut < uK .ut, and K′.ut <
K.ut.

Proof. The proof is provided in Appendix A.

Lemma 2. Suppose at some real time t, a version K of
key k is read by client c from server i. Consider any server
i′ ∈ Sc and version K′ of key k′ ∈ Ki′ such that K′ is due to
a PUT at some server other than i′, and K dep K′. Then at
time t, (i) K′ has been received by server i′, (ii) the version
K′ is visible to client c from server i′.

Proof. The proof is provided in Appendix B.

Theorem 1. The key-value storage is causally consistent.

Proof. To prove the first condition, which is: Let k
and k′ be any two keys in the store. Let K be a version of
key k, and K′ be a version of key k′ such that K dep K′.
For any client c that can access both k and k′, when K is
read by client c, K′ is visible to c.

If K′ is due to a local PUT at the server that client c is
accessing, then by line 5 of Algorithm 2, K′ is visible to client
c. Otherwise, if K′ is due to a non-local PUT, according to
Lemma 2, K′ is received by the server which the client is
accessing, and is also visible to the client.

To prove the second condition, which is: A version K
of a key k is visible to a client c after c completes PUT(k,K)
operation.

Consider a client c issuing GET(k) after a PUT(k,K)
operation. If client c reads from the same server, accord-
ing to line 5 of Algorithm 2, K is visible to the client. If

client c reads from a different server, to pass lines 3, 4 of
Algorithm 2, we have K.ut ≤ PTc = t ≤ GST . By def-
inition, GST = min(LDi(k),max(RDi(g), rd)) ≤ LDi(k).
Thus K.ut ≤ LDi(k), and the definition of LDi(k) implies
that K is already received by i. Then, since K.ut ≤ GST ,
version K is visible to client c.

6. OPTIMALITY OF THE ALGORITHM
In this section, we prove that the GST computed by our

algorithm is optimal for general partial replication regard-
ing remote update visibility latency, defined to be the period
from when a remote update is received by the server to when
this remote update is visible to the client. Recall that in gen-
eral partial replication, clients are allowed to migrate among
the servers freely without extra delays, and our GST is op-
timal for this case. Later in Section 7, we show that if extra
delays can be introduced during the client’s migration, the
remote update visibility latency can be further reduced. To
show the optimality for general partial replication, we show
that at line 5 of Algorithm 2, returning any version with a
timestamp larger than our GST value may violate causal
consistency, indicating our definition of GST is optimal re-
garding remote update visibility latency. Formally, we have
the following theorem.

Theorem 2. Consider Algorithm 1 and 4 for general par-
tial replication. If any version K with K.ut > GST is re-
turned to client c from server i as a result of its GET (k) op-
eration, the causal consistency may be violated. More specif-
ically, there may exists a version K′ of some key k′ such that
K dep K′ and client c can access key k′, but version K′ is
not visible to client c.

Proof. The proof is provided in Appendix C.

7. OPTIMIZATION FOR BETTER VISIBIL-
ITY

Previously in Section 3 and 4, we allow each client to
migrate among the servers in Sc without extra delays. In
reality, the frequency of such migration may be low, i.e. a
client is likely to communicate with a single server for a long
period before changing to another one. If such migration
among different servers occurs infrequently, it is reasonable
to introduce extra delays during the migration, in exchange
for better remote update visibility latency when clients issue
GET operations. In fact, some system designs already ob-
served such trade-off, such as Saturn [3]. However, Saturn’s
solution requires to maintain an extra shared tree topology
among all the servers, and is quite different from our global
stabilization approach. In Section 7.1 below, we demon-
strate how to design the algorithm to achieve better remote
update visibility latency as the discussion above. Then in
Section 7.2, we generalize the above idea from a single server
to a group of servers.

7.1 One Server as a Group
We will use the same notation from Section 3 and 4. Recall

that the Global Stable Time GST , computed for the client
c accessing server i for the value of key k, is the minimum of
a set of heartbeat clock values, reflecting all possible local
dependencies and remote dependencies. Essentially, the rea-
son for taking remote heartbeat values received by servers
other than i is to ensure that the client can migrate freely

among the servers in its server set Sc. During the client’s
migration to another server, there is no extra delay since
all causal dependencies are guaranteed to be visible to the
client as proven in Lemma 2. One natural idea is that, if the
client can wait for a certain period during its migration to
ensure that the client’s causal dependencies are visible from
the target server, then the GST computation does not need
to include the remote heartbeat values necessarily. To be
more specific, the Global Stable Time simply becomes

GST = LDi(k) = min
(v,i)∈Li(k)

(HBvi)

which only reflects the causal dependencies locally.
When a client migrates to another server, it needs to ex-

ecute operation MIGRATE as shown in Algorithm 3. Basi-
cally, the client will send its dependencies clock max(PTc, GTc)
to the new target server for migration. For the target server,
it needs to ensure the local storage has already included all
the versions in the client’s causal dependencies before re-
turning an acknowledgment. Specifically, the server needs
to wait until mink∈Ki(LDi(k)) is no less than the client’s
dependency clock, as shown in line 13 of Algorithm 3.

Algorithm 3 One Server as a Group

1: // Client operations at client c
2: MIGRATE to server i
3: send 〈Migrate max(PTc, GTc)〉 to server i
4: wait for 〈Reply〉
5: return

6: // Server operations at server i
7: upon receive 〈Migrate t〉 from client c
8: wait until t ≤ mink∈Ki(LDi(k))
9: send 〈Reply〉 to client

Also, there is no exchange of Heartbeat Summary among
the servers, since now the computation of GST does not
depend on the remote heartbeat values. This implies signif-
icant savings in bandwidth usage as the number of servers
increases.

Another advantage of Algorithm 3 is to decrease the vis-
ibility latency. As mentioned, the GST is now equal to
LDi(k), which is very likely to be larger than the origi-
nal GST, because the original GST also takes the remote
heartbeat values for computation. Therefore the version re-
turned is likely to have larger timestamps and thus fresher
compared to Algorithm 2. Although there are extra delays
incurred during the client’s migration procedure as in line
8 of Algorithm 3, the penalty caused by migration delays is
small if the frequency of migration is low.

7.2 Multiple Servers as a Group
In the basic case, we consider a single server as a “group”,

and introduce extra delays when clients migrate from one
group to another. In general, a client may frequently access
some subset of servers for some time, and then migrate to an-
other subset of servers for frequent accessing. For instance,
each subset may be a data center that consists of several
servers, and each client usually accesses only one datacenter
for PUT/GET operations. In this case, each “group” that
the client will access contains a subset of servers.

Thus, we can design an algorithm where the client can
migrate among the servers within a group without extra

Algorithm 4 Multiple Servers as a Group

1: // Client operations at client c
2: MIGRATE to another group g′

3: send 〈Migrate max(PTc, GTc), g
′〉 to some server

i ∈ g′
4: receive 〈Reply {hsj}〉 from server i
5: HSc[j]← max(HSc[j], hsj) for all j ∈ g′
6: return

7: GET(key k) from server i ∈ g
8: compute rd = minj∈g,j 6=iHSc[j]
9: send 〈GetReq k, PTc, rd, g〉 to server i

10: receive 〈GetReply v, t, {hsj}〉 from server i
11: GTc ← max(GTc, t)
12: HSc[j]← max(HSc[j], hsj) for all j ∈ g
13: return v

14: // Server operations at server i
15: upon receive 〈Migrate t, g〉 from client c
16: wait until t ≤ min(mink∈Ki(LDi(k)), RDi(g))
17: send 〈Reply {HSj(g) | j ∈ g}〉 to client

18: upon receive 〈GetReq k, t, rd, g〉 from client c
19: // GST = min(LDi(k),max(RDi(g), rd))
20: if k shared by j ∈ g ∩Ns

i then
21: wait until t ≤ GST
22: obtain latest version K of key k with largest times-

tamps from local storage s.t. K.ut ≤ GST or K is due
to a local PUT operation at server i

23: send 〈GetReply K.v,K.ut, {HSj(g) | j ∈ g}〉 to
client

delays, and need to wait extra time when migrating across
different groups, as presented in Algorithm 4. We only show
the different parts compared to the algorithm in Section 3
here for brevity.

We will use the same notation from Section 3 and 4.
The augmented share graph in this section contains virtual
edges connecting all servers accessible by one client, includ-
ing servers within the same group and across groups. Then,
when a client is accessing group g, and issues GET operation
to server i, the Global Stable Time is computed as

GST = min(LDi(k),max(RDi(g), rd))

where rd = minj∈g,j 6=iHSc[j], HSc is the vector of Heart-
beat Summarys stored at client c. Note for the case g = {i},
by definition GST = LDi(k) since Ri(g) = ∅.

When the client migrates to another group g′, extra delay
will be enforced. In particular, the server i′ in group g′

needs to wait until min(mink∈Ki′ (LDi′(k)), RDi′(g)) ≥ t,
where t is the dependency clock of the client. The extra
delay here ensures that all client’s causal dependencies has
been received by the servers in the group g′, and visible to
the client.

Notice that the algorithm in Section 3 and Algorithm 3
are both special cases of Algorithm 4, where group g equals
Sc and some single server i respectively.

8. SIMULATION RESULTS
In this section, we evaluate the heartbeat message over-

head and the remote update visibility latency (or visibility
latency in short) of our algorithm comparing to the global
stabilization algorithm of GentleRain (or GentleRain in short)
[6]. Some simulation results are deferred to the Appendix D
due to lack of space. Recall that the remote update visibility
latency is defined as the period from when a remote update
is received by the server to when this remote update is visible
to the client.

Recall in Section 6, we have proved that our GST compu-
tation is optimal in terms of remote update visibility latency
for general partial replication. To give some insights on how
well our algorithm performs, we provide simulation results
on remote update visibility latency under various settings.

8.1 Simulation Setup
For evaluation purpose, we implement and evaluate the

global stabilization layer as described in our algorithm from
Section 3. We simulate servers by running multiple server
processes within a single machine, and control network la-
tencies by manually adding extra delays to all network pack-
ages. Each server process will execute multiple threads con-
currently, including i) one thread that periodically sends
heartbeat messages to target server processes according to
the heartbeat frequency ii) one thread that periodically sends
update messages (due to PUT operations) to target nodes
according to the update throughput iii) one thread that lis-
tens and receives messages from other nodes and iv) one
thread that periodically computes GST and checks which
remote updates are visible. We use synthetic workloads for
the simulation. The machine used in this experiment runs
Ubuntu 16.04 with 8-core CPU of 3.4GHZ, 16 GB memory
and 128GB SSD storage. The program is written in Golang,
and uses standard TCP socket communication for exchang-
ing messages.

We evaluate our algorithm for a family of share graphs
for the ease of comprehension. The graphs used are ring
graphs of size n, with each node to be both a client and a
server. The client of one node will only access the server of
that node. This family of share graph can represent sim-
ple robotic networks in practice – each node is a robot that
stores key-value pairs depending on its physical location,
and only share keys with its neighbors. In order to achieve
causal consistency, by our algorithm, each node will send
heartbeat messages to only its neighbors, and GST is com-
puted as the minimum of the heartbeat values received from
its neighbors. As for the global stabilization algorithm in
GentleRain, they cannot handle partial replication directly.
Therefore we pretend the system to be fully replicated so
that GentleRain can achieve causal consistency correctly.
Then, in GentleRain, the GST for each node is computed
as the minimum of heartbeat values from all nodes in the
ring. Hence intuitively, GentleRain will have a smaller GST
value comparing to our algorithm because its GST is com-
puted as the minimum of a larger set of heartbeat values.
This implies that only older versions can be visible to the
client comparing to our algorithm, which leads to higher
remote update visibility latencies. Also, the heartbeat mes-
sage overhead should be larger in GentleRain.

In each experiment, we repeat the measurement 3 times
and take the average as a data point. Each experiment will
vary one or two parameters while keeping other parameters
constant. The default parameters for all experiments are
listed below: stabilization frequency = 1000/ sec, heartbeat

frequency = 10/ sec, network delay = 0ms or 100ms, ring
size = 10, update throughput = 5k/ sec and clock skew =
0ms.

8.2 Simulation Results and Observations

Message Overhead. We first measure the overhead of heart-
beat messages in our algorithm and GentleRain, as a func-
tion of the ring size. Here the heartbeat frequency is set
to be 50/ sec. The overhead presented below is computed as
the average overhead over all the servers. As we can see from
Figure 4, the message cost is almost constant in our algo-
rithm, while the cost increases dramatically in GentleRain.
It is because our algorithm only requires each server to re-
ceive heartbeat messages from a small set of servers (neigh-
bors in the ring) in order to achieve causal consistency, while
GentleRain needs heartbeat messages from all other servers.

Next, we measure the vis-

Figure 4: Different Network
Delays

ibility latency of our al-
gorithm and GentleRain,
under the influence of sev-
eral parameters including
heartbeat frequency, stabi-
lization frequency, clock skew,
update throughput, ring size
and network delay (the last
three are presented in Ap-
pendix D due to lack of space).
The visibility latency presented in this section is computed
as the average latencies over all the updates from all servers.

Stabilization Frequencies and Heartbeat Frequen-
cies. In this section, we set both stabilization frequencies
and heartbeat frequencies to be variables. The network de-
lay is set to be 100ms in this experiment.

PPPPPPPHB fq.
Stab fq.

1 10 100 500 1000

Ours

1 508.09 54.87 10.44 5.69 4.87
10 505.92 55.53 9.37 5.88 4.76
50 505.33 54.52 10.02 5.47 6.21
100 506.51 54.13 9.22 5.09 4.75
200 505.77 53.28 8.47 4.64 3.97

GR

1 1468.42 778.51 729.88 715.95 720.42
10 578.99 127.41 79.89 79.82 77.02
50 515.96 64.95 22.63 18.23 15.71
100 690.01 214.11 258.27 276.5 292.56
200 2973.86 3612.18 2736.22 2737.07 3685.53

Table 3: Different Stabilization/Heartbeat Frequency
From Table 3 we can observe that there are significant

improvements on latencies by our algorithm comparing to
GentleRain in the simulation. Here are some observations:

• For both algorithms, the visibility latency decreases
significantly with higher stabilization frequencies, ex-
cept the case when the heartbeat frequency is too high
in GentleRain. In the latter case, the machine is al-
ready overwhelmed by heartbeat message, so increas-
ing stabilization frequency actually damages the per-
formance.

• The heartbeat frequency does not influence the visibil-
ity latency of our algorithm much, since update mes-
sages at a frequency about 5k/ sec also carries clock

values, and GST computation can proceed with such
clock values. However, this is not the case for Gen-
tleRain, since each node needs to receive clocks from
all other nodes, but the update messages each node re-
ceives only come from its neighbors. Then low heart-
beat frequencies will delay the GST computation and
thus increase the visibility latencies of GentleRain. There-
fore, the visibility latencies improve with higher heart-
beat frequencies in GentleRain, until the number of
heartbeat messages is too large for the simulation. Our
algorithm does not suffer from such a problem since the
heartbeat messages in our algorithm will only be sent
to a small set of nodes.

Clock Skew. To evaluate the influence of clock skew on
the visibility latency, we manually add clock skews between
any pair of neighbors in the ring. Label the nodes in the ring
with id 0, 1, · · · , n − 1 where n is the ring size. For a skew
value t, we add clock skew (i · t)/(n− 1) to node i. We vary
the skew value from 0ms to 100ms, and plot the visibility
latency change in Figure 5 below.

(a) Network Delay = 0ms (b) Network Delay = 100ms

Figure 5: Different Clock Skew

As we can observe from Figures 5a and 5b, the remote
update visibility latencies increase with the clock skew in
both cases. This is predictable since the latency is deter-
mined by the minimum clock value received by the server,
which is affected by the clock skew between servers. Also,
our algorithm performs significantly better than GentleRain
regarding visibility latency under various clock skews in the
simulation.

More simulation results can be found in Appendix D.

9. DISCUSSIONS AND EXTENSIONS

9.1 Fault Tolerance
In this section, we discuss how various failures such as

server failure, network failure or network partitioning may
affect our algorithm. Our discussion is analogous to the one
in GentleRain [6], and can be applied to other stabilization
based algorithms as well.

The main observation is that our stabilization algorithm
will guarantee causal consistency even if the system suffers
from machine failure, machine slowdown, network delay or
partitioning. Recall that in our algorithm, versions are to-
tally ordered by their timestamps which equals the physical
time point when the version is created. When a client issues
a GET operation, the version returned will have timestamp
value no more than the Global Stable Time.

When a server fails, the client may not receive any re-
sponse from the server. However, since our algorithm allows

clients to migrate across servers, the client can timeout af-
ter a period of waiting and then connect to another server
to issue operations. The failure of the server will affect the
computation of GST at other servers, since the failed server
no long sends heartbeat messages to other servers and thus
the value of GST at some server may stop updating. In this
case, the causal consistency is ensured, since the version re-
turning to the client may be out-of-date but still causally
consistent. To make sure the system can make progress and
have newer versions visible to the client eventually, other
servers should be able to detect the failure eventually. For
instance, servers can set a timeout for heartbeat and HS
exchanges. If one server does not receive the message from
another server after the timeout, it can mark this server as
failed. How to recompute the new GST to make progress
after failure while ensuring causally consistency is an inter-
esting open problem.

For other issues such as machine slowdown, network de-
lay or partitioning, similarly, the computation of GST may
stop making progress, but the version returned to the client
is guaranteed to be causally consistent. Then when the fail-
ure is recovered, the pending heartbeats or updates can be
applied at corresponding servers, and GST can continue to
increment. One possible failure that can cause the violation
of causal consistency is packet loss, in particular, the loss
of update messages. Update loss may result in returning a
version to the client that is not causally consistent due to
missing dependencies. In practice, we can use reliable com-
munication protocols for transmitting update messages to
handle the issue.

9.2 Using Hybrid Logical Clocks
To reduce the latency of the PUT operation caused by

clock skew, we can use hybrid logical clocks (HLC) [15]
instead of a single scalar as the timestamps. The HLC
for an event e has two parts, a physical clock l.e and a
bounded logical clock c.e. The HLC is designed to have
the property that if event e happens before event f , then
(l.e < l.f)∨ ((l.e = l.f)∧ (c.e < c.f)) [15]. By replacing the
scalar timestamp with HLC, we may be able to avoid the
blocking at line 8 of Algorithm 2. More details about HLC
can be found in [15].

9.3 Dynamic Systems
This section will briefly discuss the ideas on how the algo-

rithm can be adapted for dynamic systems where keys can
be inserted or deleted, and servers themselves can also be
added or removed. The change in the system can be essen-
tially modeled as augmented share graph change from G to
G′.

When the system experiences changes, the algorithm should
guarantee that the causal consistency is not violated. That
is, the versions returned to the client should always be causally
consistent. Therefore, the algorithm should ensure that dur-
ing the dynamic change, the Global Stable Time computed
is nondecreasing. However, due to the change of the aug-
mented share graph, it is possible that GST computed in
the new augmented share graph becomes smaller. To en-
sure causal consistency, the algorithm can continue to use
the old GST value v at the time point when the augmented
share graph changes, until the new GST value exceeds v.
Then the GST used for GET operations is nondecreasing,
and the version returned to the client is causally consistent.

How to design an efficient algorithm for achieving causal
consistency in dynamic systems is interesting and left for
future work.

10. OTHER RELATED WORK
Aside from the previous work mentioned in Section 1,

there has been other work dedicated to implementing causal
consistency without any false dependencies in partially repli-
cated distributed shared memory. Hélary and Milani [8]
identified the difficulty of implementing causal consistency in
partially replicated distributed storage systems. They pro-
posed the notion of share graph and argued that the meta-
data size would be large if causal consistency is achieved
without false dependencies. Reynal and Ahamad [14] pro-
posed an algorithm that uses metadata of size O(mn) in the
worst case, where n is the number of servers and m is the
number of objects replicated. Shen et al. [16] proposed two
algorithms, Full-Track and Opt-Track, that keep track of
dependent updates explicitly to achieve causal consistency
without false dependencies, where Opt-Track is proved to
be optimal with respect to the size of metadata in local logs
and on update messages. Their amortized message size com-
plexity increases linearly with the number of operations, the
number of nodes in the system, and the replication factor.
Xiang and Vaidya [17] investigated how metadata is affected
by data replication and client migration, by proposing an
algorithm that utilizes vector timestamps and studying the
lower bounds on the size of metadata. The vector times-
tamp in their algorithm is a function of the share graph and
client-server communication pattern, and have worst case
timestamp size O(n2) where n is the number of nodes in
the system. In the above-mentioned algorithms, in order to
eliminate false dependencies, the metadata sizes are large,
in particular, superlinear in the number of servers. In com-
parison, the global stabilization technique used in our algo-
rithm adopted for partial replication only requires metadata
of constant size, independent of the number of servers, clients
or keys.

11. CONCLUSION
This paper proposes global stabilization for implementing

causal consistency in partially replicated distributed stor-
age systems. The algorithm proposed allows each server
to store an arbitrary subset of the data, and each client
to communicate with an arbitrary set of the servers. We
prove the correctness of the algorithm, show the optimality
of our Global Stable Time computation under general partial
replication, and also discuss several optimizations that can
further improve the performance of the algorithm in prac-
tice. Simulartion results demonstrate the effectiveness of
our GST computation compared to GentleRain for causally
consistent partial replication.

12. REFERENCES
[1] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li,

T. Crain, A. Bieniusa, N. Preguiça, and M. Shapiro.
Cure: Strong semantics meets high availability and
low latency. In Distributed Computing Systems
(ICDCS), 2016 IEEE 36th International Conference
on, pages 405–414. IEEE, 2016.

[2] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
Bolt-on causal consistency. In Proceedings of the 2013

ACM SIGMOD International Conference on
Management of Data, pages 761–772. ACM, 2013.

[3] M. Bravo, L. Rodrigues, and P. Van Roy. Saturn: a
distributed metadata service for causal consistency. In
Proceedings of the Twelfth European Conference on
Computer Systems, pages 111–126. ACM, 2017.

[4] T. Crain and M. Shapiro. Designing a causally
consistent protocol for geo-distributed partial
replication. In PaPoC. ACM, 2015.

[5] M. Dahlin, L. Gao, A. Nayate, P. Yalagandula,
J. Zheng, and A. Venkataramani. Practi replication. In
IN PROC NSDI. Citeseer, 2006.

[6] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel.
Gentlerain: Cheap and scalable causal consistency
with physical clocks. In SoCC, 2014.

[7] C. Gunawardhana, M. Bravo, and L. Rodrigues.
Unobtrusive deferred update stabilization for efficient
geo-replication. arXiv preprint arXiv:1702.01786,
2017.

[8] J. Hélary and A. Milani. About the efficiency of
partial replication to implement distributed shared
memory. In ICPP, 2006.

[9] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat.
Providing high availability using lazy replication.
ACM Trans. Comput. Syst., 10:360–391, 1992.

[10] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[11] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: scalable causal
consistency for wide-area storage with cops. In SOSP,
2011.

[12] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi,
N. Bronson, and W. Lloyd. I can’t believe it’s not
causal! scalable causal consistency with no slowdown
cascades. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and
Implementation, pages 453–468. USENIX Association,
2017.

[13] D. Mills. Network time protocol (version 3)
specification, implementation and analysis. Technical
report, 1992.

[14] M. Raynal and M. Ahamad. Exploiting write
semantics in implementing partially replicated causal
objects. In PDP. IEEE, 1998.

[15] M. Roohitavaf, M. Demirbas, and S. Kulkarni.
Causalspartan: Causal consistency for distributed
data stores using hybrid logical clocks. In Reliable
Distributed Systems (SRDS), 2017 IEEE 36th
Symposium on, pages 184–193. IEEE, 2017.

[16] M. Shen, A. Kshemkalyani, and T. Hsu. Causal
consistency for geo-replicated cloud storage under
partial replication. In IPDPS Workshops, 2015.

[17] Z. Xiang and N. Vaidya. Lower bounds and algorithm
for partially replicated causally consistent shared
memory. arXiv preprint arXiv:1703.05424, 2017.

[18] M. Zawirski et al. Swiftcloud: Fault-tolerant
geo-replication integrated all the way to the client
machine. CoRR, abs/1310.3107, 2014.

APPENDIX
A. PROOF FOR LEMMA 1

Proof. If two PUTs are issued by the same client, when
PUT(k,K) is issued, by lines 8, 10 of Algorithm 2, uK .ut
will be larger than the client’s max(PTc, GTc) value, which
is ≥ uK′ .ut by line 14 of Algorithm 2 and lines 9, 11 of
Algorithm 1. Hence uK′ .ut < uK .ut.

If two PUTs are issued by different clients, and the happen-
before relation is due to the second client reading the version
of the first client’s PUT(k′,K′), and then issuing PUT(k,K).
By line 6 of Algorithm 2 and line 5 of Algorithm 1, when the
second client issues PUT(k,K), the dependency timestamp
max(PTc, GTc) in line 9 of Algorithm 1 will be ≥ uK′ .ut.
Similarly, by lines 8, 10 of Algorithm 2, uK .ut will be larger
than the client’s max(PTc, GTc) value. Hence uK′ .ut <
uK .ut.

For other cases when PUT(k′,K′)→ PUT(k,K), by tran-
sitivity we have uK′ .ut < uK .ut.

Since the timestamp of a version K equals the timestamp
for the corresponding replication update uK , we also have
K′.ut < K.ut.

B. PROOF FOR LEMMA 2
First we list several observations regarding the definitions

of the set Li(k), Ri(g) mentioned in Section 4. The obser-
vations will be used in later proofs.

Observation 1: For any (v, i), (v′, i) ∈ Li(k) and k ∈ Kvi, k
′ ∈

Kv′i, we have Li(k) = Li(k
′).

Observation 2: For any (v, i) ∈ Li(k), if (v, i) ∈ Rj(g) for
some server j 6= i, we have Li(k) ⊆ Rj(g).

Observation 3: For a server set g containing server i, j and
(v, i) ∈ Li(k), if (v, i) ∈ Rj(g), we have LDi(k) = HSi(g).

Proof Proof of the lemma. In order to have K dep
K′, there must be a chain of versions on a simple path (no
vertex repetition) from i′ to i in Ga such that K = K1 dep
K2 dep · · · dep Km dep Km+1 = K′ where each version
Kx corresponds to key kx.

We prove the lemma in two cases, i′ = i and i′ 6= i.
Case I: i′ = i. Since the version K could be due to a

local PUT at server i or a non-local PUT at a server other
than i, there are two cases.

1. K is due to a non-local PUT at a server other than i.
There are two cases, namely none of Kx is issued at i
for 1 ≤ x ≤ m+ 1, or at least one Kx is issued at i.

(a) None of Kx is issued at i. This implies that there
exists a simple cycle C = (i, v1, · · · , vm, i) such
that k ∈ Kiv1 , k′ ∈ Kivm , and K is the result of
PUT(k,K) at v1, K′ is the result of PUT(k′,K′)
at vm. Since K dep K′, the dependency is propa-
gated along the path vm, vm−1, · · · , v1 in Ga. We
illustrate one possible execution as follows.
First, a client cm+1 issues PUT(k′,K′) at server
vm, which leads to an update uK′ from vm to i.
Then for x = m,m− 1, · · · , 2 sequentially, a client
cx reads the version written by the previous client
cx+1 from server vx via a GET operation at server
vx. If (vx−1, vx) ∈ E1(Ga), client cx then issues
PUT(kx,Kx) at vx where kx ∈ Kvx−1vx , which
leads to an update message from vx to vx−1. If
(vx−1, vx) ∈ E2(Ga), without loss of generality,

suppose cx can access both vx−1, vx. Then cx is-
sues PUT(kx,Kx) at vx−1 where kx ∈ Kvx−1 . In
the end, client c1 read the version K2, written by
client c2, from server v1, and issues PUT(k,K) at
server v1, which results in an update uK from v1
to i. By the definition of happens-before relation,
it is clear that PUT(k′,K′)→ PUT(k,K), namely
K dep K′.

Figure 6: Illustration for Case I.1(a)

We first prove that K′ is received by server i. Let
HB0

vmi denote the heartbeat value received by i
from vm when K is read by the client. Since K is
read by the client, by line 5 of Algorithm 2 we have
K.ut ≤ GST . By definition GST = min(LDi(k),
max(RDi(g), rd)) ≤ LDi(k), we haveK.ut ≤ LDi(k).
By the definition of set Li(k), we have (vm, i) ∈
Li(k), and thus LDi(k) = min(v,i)∈Li(k)(HBvi) ≤
HB0

vmi, which implies that K.ut ≤ HB0
vmi. By

Lemma 1, K′.ut < K.ut since K dep K′. There-
fore we have K′.ut ≤ HB0

vmi, which implies that
K′ is received by server i since the channel is as-
sumed to be FIFO.
Now we prove that K′ is visible to client c from
server i. Let GST 0 denote the Global Stable Time
when K is read by the client, then GST 0 ≥ K.ut
by line 5 of Algorithm 2. Since (v1, i), (vm, i) ∈
Li(k), by Observation 1, Li(k) = Li(k

′) and thus
LDi(k) = LDi(k

′). Notice that at any server,
the heartbeat values received from another server
is nondecreasing, thus the value of LDi(k

′) and
RDi(g) at any server are also nondecreasing. By
line 6 and 2 of Algorithm 1, the value of rd com-
puted at line 2 of Algorithm 1 is also nondecreas-
ing. Therefore when client c issues GET (k′) at
server i, GST = min(LDi(k

′),max(RDi(g), rd)) ≥
GST 0 ≥ K.ut. By Lemma 1, K′.ut < K.ut, which
implies that GST ≥ K′.ut and thus K′ is visible
to client c from server i.

(b) At least one Kx is issued at i. Let Kf be the first
version that is issued at i, namely Kf is the version
issued at i with the largest subscript. SinceKf dep
Kf+1 dep · · · dep K′, there exists a simple cycle
C = (i, vf+1, vf+2, · · · , vm, i), where k′ ∈ Kivm and
K′ is the result of PUT(k′,K′) at vm. Depending
on the edge (i, vf+1) and how dependencies propa-
gate, there are two cases.

i. (i, vf+1) is a real edge. Let kf+1 ∈ Kivf+1

and Kf+1 is the result of PUT(kf+1,Kf+1) at

vf+1. The dependency between K′ and Kf+1

is propagated along the path (i, vm, · · · , vf+1)
similarly as in Case I.1(a), and Kf is issued by
some client c′ after c′ read Kf+1 from server
i. Then when Kf+1 is read by the client c′ at
server i, the conclusion of Case I.1(a) guaran-
tees that the lemma holds.

Figure 7: Illustration for Case I.1(b).i

ii. (i, vf+1) is a virtual edge. Without loss of gen-
erality, suppose that i, vf+1 ∈ Sc′ . The depen-
dency between Kf and K′ is propagated along
the path similarly as in Case I.1(a), and Kf

is issued by client c′ at server i after c′ reads
Kf+2 from server vf+1.
We first prove that K′ is received by server
i. Let HB0

vmi denote the heartbeat value re-
ceived by i from vm when Kf+2 is read by
the client from server vf+1. Consider the time
point when Kf+2 is read by the client from
server vf+1. By line 5 of Algorithm 2 we have
Kf+2.ut ≤ GST . By definition, RDvf+1(g) =

min(x,y)∈Rvf+1
(g)(HBxy) ≤ HB0

vmi since (vm, i) ∈
Rvf+1(g). Also, by line 2 and 6 of Algorithm
1, rd = minj∈Sc,j 6=vf+1 HSc[j] ≤ HSc[i] ≤
HB0

vmi. When Kf+2 is returned, by the def-
inition of GST , GST = min(LDvf+1(kf+2),
max(RDvf+1(g), rd)) ≤ max(RDvf+1(g), rd) ≤
HB0

vmi. Hence we have Kf+2.ut ≤ GST ≤
HB0

vmi. By Lemma 1, K′.ut < Kf+2.ut since
Kf+2 dep K′. Therefore we have K′.ut ≤
HB0

vmi, which implies that K′ is received by
server i since the channel is assumed to be FIFO.

Figure 8: Illustration for Case I.1(b).ii

Now we prove K′ is visible to client c from

server i.
We first show that LDi(k

′) ≥ K′.ut when client
c issues GET (k′) to server i. Consider the
time point when Kf+2 is read by the client c′

from server vf+1. We have Kf+2.ut ≤ GST ≤
max(RDvf+1(g′), rd) where g′ = Sc′ . Notice

that ∀(v, i) ∈ Li(k
′), we have (v, i) ∈ Rvf+1(g′),

since we can find a cycle containing (v, i) that
satisfies the requirement for Rvf+1(g′). This

implies that LDi(k
′) ≥ RDvf+1(g′) at any time

point. For the value of rd, it is computed as
rd = minj∈Sc′ ,j 6=vf+1 HSc′ [j] ≤ HSc′ [i]. By

definition, HSc′ [i] ≤ HSi(g
′) ≤ LDi(k

′). The
first inequality is because that HSc′ [i] is up-
dated by HSi(g

′), and the second inequality
is because that HSi(g

′) includes the heartbeat
value HBvi for all (v, i) ∈ Li(k

′) and calcu-
lates the minimum. Therefore, we have rd ≤
LDi(k

′), together with RDvf+1(g′) ≤ LDi(k
′)

and Kf+2.ut ≤ max(RDvf+1(g′), rd), we have

Kf+2.ut ≤ LDi(k
′) at the time point when

Kf+2 is returned. By Lemma 1, K′.ut < Kf+2.ut
and thus K′.ut ≤ LDi(k

′). Since LDi(k
′) is

nondecreasing, this condition remains true later
when client c reads K′ from i.
Now we show that max(RDi(g), rd) ≥ K′.ut
when client c issues GET (k′) to server i. When
K is read by the client c from server i, by
line 5 of Algorithm 2 we have K.ut ≤ GST ≤
max(RDi(g), rd). Since the value of max(RDi(g), rd)
is nondecreasing, when client c issues GET (k′)
later, we also have K.ut ≤ max(RDi(g), rd).
By Lemma 1, K′.ut < K.ut and thus K′.ut ≤
max(RDi(g), rd).
Summarizing the conclusions above, we have
GST = min(LDi(k

′),max(RD(g), rd)) ≥ K′.ut,
which implies that K′ is visible to client c from
server i.

2. K is due to a local PUT at server i. Since K is issued
at server i, Case I.1(b) proves that the lemma holds.

Case II: i′ 6= i.

1. First consider the case where there exists at least one
Kx issued at server i′. Let Kf be the last version that
is issued at server i′, namely Kf is the version with the
largest subscript. Then the same proof for Case I.1(b)
proves that K′ is received by server i′, and LDi′(k

′) ≥
K′.ut.

Now we will prove that K′ is visible to client c from
server i′. When K is read by client c from server i,
by line 5 of Algorithm 2, we have K.ut ≤ GST =
min (LDi(k),max(RDi(g), rd)) ≤ max(RDi(g), rd) where
g = Sc. By definition, RDi(g) = minj∈g,j 6=i(HSj(g))
and rd = minj∈g,j 6=i(HSc[j]). Since the client will store
the largest HS values for each server j ∈ Sc, we have
HSc[j] ≥ K.ut > K′.ut stored at the client c for each
server j 6= i in Sc.

Now we will show that HSc[i] ≥ K′.ut when client c is-
sues GET (k′) to server i′. Since K = K1 dep K2 dep
· · · dep Kf , there exists a simple path (i, v1, · · · , vm, i′)
connects i′ and i that propagates the dependency above.
Similarly to Case I.1.(b), there are two cases, i.e. (i, v1)

is a real edge or virtual edge. If (i, v1) is a real edge,
let version Kt of key kt be the version that is sent from
v1 to i, and read by some client at i. Since Kt is vis-
ible, we have LDi(kt) ≥ GST ≥ Kt.ut. Notice that
(v1, i) ∈ Ri′(g) due to the simple path above, by Ob-
servation 3, we know that LDi(kt) = HSi(g). Thus
HSi(g) ≥ Kt.ut > K′.ut. If (i, v1) is a virtual edge,
let client c′ be the one that gets a version Kt from
server v1 and then puts a version to server i. When
Kt is returned, we have HSi(Sc′) ≥ Kt.ut. Notice
that for ∀(u, i) ∈ Ri′(g) where g = Sc, we also have
(u, i) ∈ Rv1(Sc′) since v1, i

′ are connected by a sim-
ple path. Thus HSi(g) ≥ HSi(Sc′) ≥ Kt.ut > K′.ut.
Since the client will keep largest HS values, we have
HSc[i] ≥ HSi(g) ≥ K′.ut.
Then, when client c issuesGET (k′) to server i′, we have
proved that LDi′(k

′) ≥ K′.ut, HSc[j] ≥ K′.ut stored
at the client c for each server j ∈ Sc. According to line 2
of Algorithm 1, the dependency clock value that client c
passes to server i′ is rd = minj∈Sc,j 6=i′ HSc[j] ≥ K′.ut.
Recall that we already proved LDi′(k

′) ≥ K′.ut. Then
GST = min (LDi′(k),max(RDi′(g), rd)) ≥ min(LDi′(k), rd) ≥
K′.ut, and hence K′ is visible to client c from server i′.

2. Now consider the case where none of Kx is issued at i′.
Then there exists a simple path (i′, vm, · · · , v1, i) such
that the causal dependencies are propagated through
the path. Notice that the situation is identical to the
second part of Case II.1 above, and the same proof will
show that K′ is received by server i′, and K′ is visible
to client c from server i′.

C. PROOF FOR THEOREM 2
Proof. Recall the definition of GST from Section 4.

GST = min (LDi(k),max(RDi(g), rd))

where LDi(k) = min(v,i)∈Li(k)(HBvi),
RDi(g) = min(x,y)∈Ri(g)(HBxy), and rd = minj∈Sc,j 6=i(HSc[j]).

By line 6 of Algorithm 1 and line 6 of Algorithm 2, the
value of HSc[j] the client keeps is the largest HSj(g) value it
has seen so far from servers it accessed so far for ∀j ∈ Sc. By
definition, HSj(g) = min∀(z,j)∈Ri(g)(HBzj), which implies
that rd is also computed as the minimum value of a set of
heartbeat values.

By the definitions above, we observe that our GST is com-
puted as the minimum of a set of heartbeat values from
server x to server y where (x, y) ∈ Li(k)∪Ri(g). Let HBpq

be the minimum heartbeat value from the set and therefore
GST = HBpq. There are two cases.

Case I: (p, q) ∈ Li(k), and thus q = i.
By the definition of Li(k), there exists a simple cycle

(i, v1, · · · , vm, i) of length ≥ 2 in Ga such that m ≥ 1,
k ∈ (v1, i), we have (v1, i) ∈ Li(k), and (vm, i) ∈ Li(k)
if (vm, i) is a real edge. First observe that due to the fact
that version K with K.ut > GST = HBpi is returned to the
client, we have p 6= v1, otherwise version K is not received
by server i yet since the latest heartbeat value received by
i from v1 is HBpi < K.ut. Without loss of generality, let
p = vm. We can show the following possible execution that
will violate causal consistency. Let there be a PUT (k′,K′)

at server p which results in a version K′ with timestamp
Hpi < K′.ut < K.ut such that K dep K′. The causal
dependency can be created by the same procedure as de-
scribed in Case I of the proof for Lemma 2. For complete-
ness, we state the procedure here again. First, a client cm+1

issues PUT(k′,K′) at server j, which leads to an update
uK′ from j to i. Then for x = m,m− 1, · · · , 2 sequentially,
a client cx reads the version written by the previous client
cx+1 from server vx via a GET operation at server vx. If
(vx−1, vx) ∈ E1(Ga), client cx then issues PUT(kx,Kx) at
vx where kx ∈ Kvx−1vx , which leads to a replication update
from vx to vx−1. If (vx−1, vx) ∈ E2(Ga), without loss of gen-
erality, suppose cx can access both vx−1, vx. Then cx issues
PUT(kx,Kx) at vx−1 where kx ∈ Kvx−1 . In the end, client
c1 reads the version K2, written by client c2, from server
v1, and issues PUT(k,K) at server v1, which results in an
update uK from v1 to i. By the definition of happens-before
relation, it is clear that PUT(k′,K′) → PUT(k,K), namely
K dep K′.

Figure 9: Illustration for Case I

Since K′.ut > Hpi, K
′ is not received by i at the time

when version K is returned to the client c. Now let uK′

be delayed indefinitely, which is possible since the system is
asynchronous. Consider the case that after reading version
K, client c issues GET (k′) at server i. Suppose that client
c does not issue any PUT operation before, and thus its
PTc = 0. Notice that the get operation is non-blocking
when PTc = 0 by lines 3, 4 of Algorithm 2, it is possible
that an older version K′0 of key k′ such that K′ dep K′0 is
returned to client c since uK′ is delayed and not received
by server i. Hence K′ is not visible to the client c, which
violates the causal consistency.

Case II: (p, q) ∈ Ri(g). Then by definition, there exists
a simple cycle (i = v1, · · · , vm−1 = p, vm = q) of length ≥ 2
in Ga such that m ≥ 2 and i, q ∈ g.

Let k′ ∈ Kpq. Let there be a PUT (k′,K′) at server p
which results in a version K′ with timestamp Hpq < K′.ut <
K.ut such that K dep K′. The causal dependency can be
created by a similar procedure as described in Case I above,
with differences at the end: client c1 reads the version K2

from server v2, and issues PUT(k1,K1) at server v2 where
k1 ∈ Kiv2 . Then some client c′ that only access server i
(Sc′ = {i}) reads the version K1 and issues PUT(k,K) at
server i. The fact that Sc′ = {i} ensure that when client c′

can read K1 without K′ being received by q.
Now let uK′ be delayed indefinitely. Suppose that after

Figure 10: Illustration for Case II

client c gets versionK, it issuesGET (k′) at server i′. Similar
to Case I, K′ is not visible to client c, which violates the
causal consistency.

D. MORE SIMULATION RESULTS

Update Throughput. Since we simulate servers by run-
ning multiple server processes in a single machine, there is a
limitation on the maximum update throughput, which is
about 12.5k updates per second for each server program
when we have 10 processes running. There also exists a
threshold after which the machine cannot handle the up-
date messages in time, leading to a dramatic increase in
the visibility latencies. To find such threshold, we plot the
latency changes with respect to the update throughput in
Figure 11a and 11b with 0ms and 100ms network delays
respectively.

(a) Network Delay = 0ms (b) Network Delay = 100ms

Figure 11: Different Update Throughput

As we can see from Figure 11a and 11b, the threshold
would be some value > 10k when network delay is 0ms
and > 7.5k when network delay is 100ms. Hence for other
evaluations, we set the update throughput to be 5k/ sec for
each node, since we will increase the other parameters such
as ring size, heartbeat frequency, and stabilization frequency
for other experiments.

Ring Sizes. Intuitively, the ring size will affect the visi-
bility latency of the stabilization algorithm in GentleRain,
since the number of heartbeat values received by any node
will grow linearly with the ring size, leading to smaller GST
and larger visibility latencies. However, our algorithm will
not be affected too much since the number of heartbeat val-
ues received is equal to the number of neighbors in the ring.

Figure 12a and 12b below validate the discussion above, and
demonstrate the scalability of our algorithm. In both cases,
the visibility latency in our algorithm remains relatively sta-
ble while the latency in GentleRain increases as ring size in-
crements. Notice that with network delay of 100ms, the visi-
bility latency grows dramatically larger (more than 1000ms)
as ring size increases. The reason may be that the queue size
of messages becomes too large with artificial delay when the
ring size is large, which results in high latency in our simu-
lation.

(a) Network Delay = 0ms (b) Network Delay = 100ms

Figure 12: Different Ring Size

Network Latencies
To measure the influence of network latencies on the vis-

ibility latency, we manually add extra delays to all network
packages via Linux tc command. Although the network de-
lays are set to be constants in our experiment which may not
be true in practice, the results give us some insights on how
network delay will affect the visibility latencies. As shown in
Figure 13, the visibility latency is mostly stable with low net-
work delays (< 150ms), and increases when network delay
becomes large (> 150ms). By definition, visibility latency is
the period from when a remote update is received to when
the remote update can be returned. Hence in theory, with
good network conditions, the visibility latency should not be
affected much by network delays. However, when network
conditions become worse, the computation of GST may be
negatively affected by the network delays, leading to incre-
ment in the visibility latencies.

Figure 13: Different Network Delays

