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Abstract

A mixed Dirichlet-Neumann problem is regularized with a family of singularly perturbed Neumann-
Robin boundary problems, parametrized by ¢ > 0. Using an asymptotic development by Gamma-
convergence, the asymptotic behavior of the solutions to the perturbed problems is studied as e — 07T,
recovering classical results in the literature.
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Introduction

Mixed Dirichlet-Neumann boundary value problems arise naturally from a wide range of applications.
Examples are the problem of a rigid punch or stamp making contact with an elastic body (see [CD96],
[CDS9g|, [WSHT9], and the references therein), the steady flow of an ideal inviscid and incompressible
fluid through an aperture in a reservoir (see [MW17], [WSHT79], and the references therein), as well as
free boundary problems (see, e.g., [ACS8I]).

The prototype for this kind of problems is given by

Aug = f in €,
&,UO =0 on FN, (1.1)

up =g onI'p,



where Q € RY is an open set with sufficiently smooth boundary and I'p,T'y are disjoint sets such that
00 =TpUT.

It is well known (see [Dau88], |[Gri85], [KOS83|, and [MP75]) that solutions to mixed boundary
problems are in general not smooth near the points on the boundary of the domain where two different
conditions meet. Indeed, when N =2 in (L.1)), f =0, g =0, and € is given in polar coordinates by

{(r,0):r>0,0<6 <},
the function S: Q — R given is polar coordinates byE|
S(r,0) == r'/?sin (0/2) (1.2)

is a solution to (|1.1)), where I'p and I'y correspond to the positive real axis and the negative real axis,
respectively. However, S fails to be in H? in any neighborhood of the origin.

In dimension N = 2 it turns out that functions of the type completely characterize the behavior
of solutions to (L.1). Indeed, we have the following classical result (see [Dau88], [Gri85], [KO83], and
[MPT75]).

Theorem 1.1. Let N = 2, and let Q be an open, bounded, and connected subset of R?, with 0 of class
CYl. Assume that Tp and Ty are nonempty, relatively open, and connected subsets of OQ with

0 =TpUTyN, and TpNTy={z1, 22},

and that QN B,(x;) is a segment for i = 1,2 and for some 0 < p < min{1, |z —x2|/2}. Let f € L*(),
g € H32(0Q), and let u € H'(Q) be a weak solution to (1.1). Then u admits the decomposition

2
U = Ureg + § ciS;,
i1

where ureg € H?(Q) and the ¢; are coefficients that only depend on u. The singular functions S; are
given by the formula

Si(ri,0;) = @(r;)ri" sin(6;/2),
where (r;,0;) are polar coordinates centered at x; such that
QN By(x;) = {zi + (ri,6;) : 0 <r; <p,0<0; <7},
I'p N By(xzi) = {x; + (1,0) : 0 < r; < p},

and ¢ € C*([0,00)) is such that @ =1 in [0, p/2] and @ = 0 outside [0, p|]. Furthermore, there exists a
constant ¢, which only depends on the geometry of 2, such that

2
g 20y + D leal < ¢ (I 2@ + gl 2oy
=1

An approach that often proved to be successful for the study of ill-posed problems, and in general for
problems that present singularities of some kind, is to consider a small perturbation, typically chosen
with an opportunely regularizing effect, and then carry out a careful analysis on the convergence of
solutions of the regularized problems to solutions of the original one. This procedure often requires to

Tn what follows, given a function v = v(x) where & = (z,y), we denote by ¥ the function ¥(r,6) = v(r cosd, rsin 6),
and with a slight abuse of notation we write v = o(r, 0).



prove estimates that are independent of the parameter of the regularization. We refer to the classical
monograph of Lions [Lio73] for more details.

The aim of this paper is to regularize problem by introducing a family of mixed Neumann-Robin
boundary value problems parametrized by € > 0. To be precise, we consider

Au. = f in Q,
O,u: =0 on I'y, (1.3)

edyue + ue =g on I'p.

The convergence of solutions to ([L.3]) to solutions of ((1.1)) has been studied by Costabel and Dauge
in [CD96] using classical PDE expansions (see [Lio73]), who proved the following result.

Theorem 1.2 (Costabel-Dauge). Let N = 2, Q be as in Theorem f=0,g€ HYTp) for some
d >0, and let u. and ugy be solutions to (1.3) and (1.1) (with f =0), respectively. Then

[ue — uollz2(0) = O(eloge),

. 11
e = woll vy = OE2), for s € (2,2>, (1.4)

| (ue — uo)|y, HLQ(FD) = O(ey/|logel). (1.5)

Moreover, these estimates cannot be improved in general.

We refer to [CD96] for the precise statement in the case f # 0. This problem was also previously
considered by Colli Franzone in [CF73a], where the author proved estimates on the difference u. — ug
in certain Sobolev norms (see also the work of Aubin [Aub72] and Lions [Lio73]).

The question of convergence of solutions to the family of problems to the solution to ([1.1))
is of significance for the numerical approximations of (1.1). We refer to [BEFMO03], [BE91], [CDS93],
[CE73b], [CE74], and the references therein for more information on this topic.

In this paper we present an alternative proof of the estimates with s = 0 and using the
variational structure of . Indeed, solutions to are minimizers of the functional

1 1
/ﬂ<2!vv|2+fv> de+5- | (v—g)°dH', veH' (D). (1.6)
D

Thus a natural approach is to use the notion of Gamma-convergence (I'-convergence in what follows)
introduced by De Giorgi in [DG75] (for more information see also [Bra02] and [DM93]).

We recall that given a metric space X and a family of functions F.: X — R, € > 0, we say that
{F.}- T-converges to Fp: X — R as e — 07, and we write F. BN Fo, if for every sequence €, — 0 the
following two conditions hold:

(i) liminf inequality: for every x € X and every sequence {z,}, of elements of X such that z,, — =,

liminf 7, (@) > Fo(z);

(i7) limsup inequality: for every x € X, there is a sequence {z,}, of elements of X such that x,, — x
and
limsup F¢, (z,,) < Fo(z).

n—oo



A sequence {z,}, as in (i) is called a recovery sequence for x. Moreover, we say that the asymptotic
development by I'-convergence of order k

Fe=Fo+wi(e)F1+ - +wi(e)Fr
holds if there are functions F;: X — R, i =0, ...k, such that F. RN JFp and for i > 1

wi-1(€) . -
)

FO = (FOD — inf{Fia(2) 0 € X})
where ]-"go) = F., wo = 1and for i > 1, w;: Rt — R7 is a suitably chosen function such that both w;
and w; /w;_1 converge to zero as ¢ — 0. We remark that for w;(e) = ' one has the standard power
series asymptotic development

Fe=Fo+eFi+- +e"F.

We refer to [AB93] and [ABO96] for more informations on asymptotic developments by I'-convergence,
and to [BTO08] for informations on asymptotic expansions by I'-convergence.

The powerfulness of asymptotic developments by I'-convergence has been shown in the recent papers
[DMFL15], [LM16], [LM17], and [MR16], where the authors completely characterized the second order
asymptotic development of the Modica-Mortola functional and used it to obtain new important results
on the slow motion of interfaces for the mass-preserving Allen-Cahn equation and the Cahn-Hilliard
equation in higher dimensions.

In this paper we consider the I'-convergence of the functionals with respect to convergence in
L?(9), and thus we define F.: L?(Q2) — (—o0, 00| via

) /Q<;\Vv\2+fv> d:v—l—% g (v—g)2dH* if ve HY(Q),
v) = D

F. (1.7)

400 otherwise.

We begin by studying the I'-convergence of order zero of (1.7)).

Theorem 1.3 (0th order I'-convergence). Let Q C RY be an open, bounded, connected set with Lipschitz
continuous boundary, and let Tp C 0 be non-empty and relatively open. Assume that f € L*(Q) and
g € HY2(0Q). Then the family of functionals {F.}. defined in (1.7) T-converges in L*(Q) to the

functional
1
/ (]Vv[z + fv) de ifveV,
Folv) =4 Ja \2 (1.8)
400 otherwise,
where
Vi={ve H(Q):v=g onTp}. (1.9)

Since the first asymptotic development by I'-convergence of ([1.7]) strongly relies on Theorem in
what follows we assume N = 2. We begin with a compactness result.

Theorem 1.4 (Compactness). Let N =2, Q be as in Theorem feL*Q), ge H¥?0Q), F. and
Fo be the functionals defined in (1.7)) and (L.8]), respectively, and define

Fe — min Fy

1 ._
Fe el loge|

(1.10)

If en, — 0T and v, € L?(2) are such that

sup{]:g(i) (vp) :m € N} < o0,

4



then there exist a subsequence {vn, }x of {Vn}n, ro € HY() and vo € L*(I'p) such that

S VN ro in H'(Q), (1.11)
Ve, [logen, |
U Z80 L yy in LA(Tp), (1.12)

engV/ | logen, |
where ug is the solution to (|1.1)).
Theorem 1.5 (1st order I'-convergence). Under the assumptions of Theorem the family {}"5(1)}5
I'-converges in L?(S)) to the functional

2

71203 if v =y,
Fi(v) = 83 (1.13)

400 otherwise,

where the coefficients ¢; = ¢;(ug) are as in Theorem . In particular, if u. € H*(Q) is a solution to

(1.3), then
Fe(us) = Foluo) + ¢|loge|F1(uo) + o (¢]logel) . (1.14)

To characterize the second order asymptotic development by I'-convergence of the family of func-
tionals {F:}., we introduce the auxiliary functional

Ji(w) = /11@2 |Vw(x)|? de + /01 (w(x,O)Q _ Cix_lmw(a},O)) dr

" (1.15)
00 ) 2
+/1 (w(z,O) - %x_lﬂ) dz
defined in
H = {we H (R) : w € H'(B};(0)) for every R > 0}, (1.16)
where w(-,0) indicates the trace of w on the positive real axis. Letﬂ
A; = inf{Ji(w) :w € H}, (1.17)
1 [° _1/2———(i
B; = 2/0 o(ri)r; 1/26,,u96g( )(ri,O) dr;, (1.18)
1 M
Cy, = / (1—p(x)?) 2! da, (1.19)
8 Jp/2
— 1_ _
dilri) = ooy 2 (1.20)

As shown in Proposition there exists w; € H such that J;(w;) = A;, and thus w; satisfies
Aw; =0 in R?,
dyw; =0 on (—o00,0) x {0}, (1.21)

dyw; +w; = S22 on (0,00) x {0}.

2In what follows, given a function v = v(x), we denote by % the function 1‘)”)(1"1-,9,-) = v(x; + ri(cosb;,sinb;)), for
polar coordinates (r;,0;) given as in Theorem



Observe that if ¢; = 0 then J; > 0 and so w; = 0 and A; = 0. Finally, let u; € H'(Q) be the solution
to the Dirichlet-Neumann problem

Aup =0 in €,
Oyupr =0 on 'y, (1.22)
Uy = —Byu?eg onI'p.

Theorem 1.6 ( Compactne Let N =2, Q be as in Theorem. feL?), ge H¥?*09Q), F., Fo,
.7-'5( , F1, J; be as in , l , , and , respectively, and define

1) . .
F@ = 7 —min 7y FoominFy | log £| min F. (1.23)
1/]loge| €

If en, — 07, w, € L*(Q) are such that
sup{fe(f)(wn) :n € N} < o0,
and Wi, € H is defined as
(l) (ngna 01) - ﬁg) (Ti&n, 91) - €nﬂ§i) (’T’i&n, 92)
Ven
for (r;, 6;) polar coordinates as in Theorem then there exist a subsequence {wy, }i of {wn}n, wo €
HY(Q) and qo € L% (T'p) such that

Win(ri, 0;) = @(Tﬂn) (1.24)

Cnp ZU0 7ty in HY(Q), (1.25)
Enp
w .
"T —u — Zczdh ~ XB.,, (w)] = @~ Z;czwl in L*(Tp), (1.26)
(]

where 1; is the function given in polar coordinates by (1.20) and uy is the solution to (1.22)). Further-
more, for every R > 0,

Win, = W; in H(B(0)), VWi, — VW; in L*(R%;R?)), (1.27)
Wi, (+,0) = W;(-,0) in L*((0,1) x {0}), (1.28)
Wi, (+0) = Sa~ /2 = Wi(-,0) = S ™2 in L((1,50) x {0}), (1.29)

for some W; € H such that J;(W;) < oo, where Wi, (+,0) and W;(-,0) indicate the trace of Wi, and

W; on the positive real axis.

Theorem 1.7 (2nd order I'-convergence). Under the assumptions of Theorem the family {.7-1?2)}5
I'-converges in L*(S2) to the functional

S (% + Biei+ Co2) = % fr, (0u0y)” dH if v = uo,

400 otherwise,

Fa(v) =

where the numbers A;, B;, and Cy, are defined in , , and (|1.19 -, respectively. In particular,
if u. € HY(Q) is a solution to . then

Fe(ue) = Folug) + €|log e| F1(ug) + eFa(ug) +o(e). (1.30)



As a consequence of our results, we obtain an alternative proof of the sharp estimates (|1.4)) for s = 0
and ((1.5)) in Theorem Indeed, we have the following theorem.

Theorem 1.8. Let N = 2, Q as in Theorem f e L*Q), g € HY2(0Q), and let u. and ug be
solutions to (1.3) and (1.1]), respectively. Then

Jue = woll 2(r,y) = © (v/TTogel) (1.31)

IV (e = wo)llp2(m2) = O (12). (1.32)

In contrast to the work of Costabel and Dauge [CD96|, our results rely on the variational structure of
the mixed Neumann-Robin problem , rather than the PDE. In particular, the compactness results
in Theorem and Theorem [I.6] are valid for energy bounded sequences and not just for minimizers,
and thus are completely new. A key ingredient in the proof of compactness is the following Hardy-type
inequality on balls due to Machihara, Ozawa and Wadade (see Corollary 6 in [MOW13]).

Theorem 1.9. Let Br(0) be the ball of R? with radius R > 0 and center at the origin. Then

) 1/2 1/2
/ h(z) Sdx| < V2 / h(z)? dz
Br(0) |x|? (14 log R — log |x|) R\ JBg(0)

for every h € H*(Bg(0)).

We remark that our results rely heavily on the decomposition of Theorem and on the Hardy-
type inequality (Theorem and thus hold only for N = 2. The extension to dimension N > 3
seems to be highly non-trivial and, in particular, the correct scalings in the asymptotic development by
I-convergence are not clear and may depend in a significant way on the geometry of the domain (see,
for example, [MR10] for a discussion on the mixed Dirichlet-Neumann problem in a three-dimensional
dihedron).

It also important to observe that the asymptotic development by I'-convergence leads naturally to
the asymptotic expansion of the solutions u. to , and does not require an a priori ansatz of this
expansion. Thus it could be applied to a large class of problems, including the p-Laplacian mixed
problem

div(|Vug[P~2Vug) = f in €,
|Vuo|P~20,u9 =0 on Ty,
ug =g on I'p.

In the seminal paper [BCN90|, Berestycki, Caffarelli and Nirenberg considered the family of elliptic
equations
Lu; = Be(ue) (1.33)

to approximate (ase — 01) a one-phase free boundary problem. Here the family {3} is an approximate
identity and the term [.(u.) is non-zero only for values of u. less than . In particular, the region
{us < €} can be thought of as an approximation of the free boundary of the solution to the limiting
problem. One-phase free boundary problems with mixed boundary conditions are strongly related to



problems arising in fluid-dynamics (see |[GL18]). Our original motivation for this paper was the study
of the regularized problem

Au, = %ﬁs(us)QQ in 0,
Ou: =0 on I'y,
edyle +Us = ¢ on I'p,

where {:}. is a family of approximate identities as in (1.33)) and @ is a nonnegative function in L2 ().
Solutions u. of this problem converge to a solution u of the one-phase free boundary problem

Au=0 in €,
u=0, [Vu|=Q on QN d{u> 0},

&,UZO on FN7

| u=yg on I'p.

The asymptotic development by I'-convergence of the corresponding family of functionals

/ (IVol* + B:(v)Q?) dz + 1/ (v—g)2dHNt, ve HY(Q)
Q € Jrp
is ongoing work. Here B; is a primitive of (..

Our paper is organized as follows: in Section 2 we study the minimization problem for the functional
and prove Theorem As a consequence, in Corollary we show that there exists a unique
variational solution to the problem . Section 3 is devoted to the study of the simpler case in which
I'p = 09, so that reduces to

Aus. = f in Q,
(1.34)

edyUe +ue. =g on OfD.

Under suitable regularity assumptions on the set €2, we characterize the complete asymptotic develop-
ment by I'-convergence of {F.}., still defined as in , but with I'p replaced by 92 (see Theorem |3.2
Theorem and Theorem . In Corollary and Corollary we address the question of the
convergence of u. to ug, i.e., the unique variational solution to the Dirichlet problem

Aug = f in Q
’ (1.35)
ug =g on 0f2.
To be precise, we show that the asymptotic expansion
Ue = Z Eiui
i=1
holds, where for every ¢ € N the function w; is a solution to the Dirichlet problem
Aui =0 in Q,

u; = —0y,u;—1 on OS).



We remark that Corollary fully recovers the results of Theorem 2.3 in [CD96] and that the auxiliary
problems for u; arise naturally during the study of higher order I'-limits of F; (see, for example, the proof
of Theorem [3.4)). The case of a Robin boundary condition that transforms into a Dirichlet boundary
condition for Helmholtz equation was considered by Kirsch in [Kir85]. In Section 4 we prove our main
results. In Section 5 we recast these results in a more general framework by decoupling the different
scales in the asymptotic expansion of wu..

2 Gamma-convergence of order zero and global minimizers

Throughout the section we study the mixed problem (1.3)) and the associated minimization problem
under the following assumptions on the set €2 and on I'p, namely the portion of the boundary where
the Robin boundary condition is imposed:

(i) 2 is an open, bounded and connected subset of R,
(73) O is Lipschitz continuous, (Ho)

(747) T'p is a non-empty and relatively open subset of 0€2.

Furthermore, define I'yy := 9\ T'p. Notice that for the purposes of this section we do not assume that
'y # 0); analogous results hold (with trivial changes) if 'y = 0.

Theorem 2.1. Let 2 be as in , f e L), ge L*09Q), and ¢ € (0,1). Then the functional F-,
defined as in (1.7), admits a unique minimizer u. € H*(Q). Furthermore, u. is a weak solution to the
mized Neumann-Robin problem (1.3)).

The proof of Theorem is based on the following well-known result.
Lemma 2.2. Let Q be as in (Ho) and for u € HY(Q) set

9 9 1/2
llell a0y = (IVul3ammy + lulay) - (2.1)

Then |||l (q) defines a norm on H'(Q) that is equivalent to the standard norm, i.e., there are two

constants K1, ko, which only depend on the geometry of Q and T'p, such that for every u € H' (),
kallull gy < llullme) < mallulll g q)-
Proof of Theorem [2.1. By Holder’s inequality, we have that for every ¢ € (0,1) and for every u € H'(Q),
1 1
Fe(u) > SIVullzpry = I lz2@llull 2@ + 51w = 0llZzr,)- (2.2)

Young’s inequality then implies

1
2 _ 2 2 N-1 2 2
lu—=9gll720,) = Nulli2@p,y + M972 ) — 2/11 ug dH™" 2 Sllullzzry) = 7902 wp)s (2.3)

D
and thus, combining the estimates (2.2)) and ({2.3]) with Lemma we obtain
1 7
Fe(u) = Z”‘u”ﬁ{l(ﬁl) = mallfllzz@llull i) = 51907200,

In turn,
inf{F.(u) : e € (0,1),u € L*(Q)} > —o0



and for every € € (0, 1) the functional F; is coercive. Since F. is lower semicontinuous with respect to
weak convergence in L?(f2), the existence of a global minimizer u. follows from the direct method in
the calculus of variations and the assertion about uniqueness is a consequence of the strict convexity of
the functional F.. Moreover, one can check that u. is a weak solution to by considering variations
of the functional F.. We omit the details. ]

Proposition 2.3 (Compactness). Under the assumptions of Theorem if €n — 07 and u, are such
that
sup{Fe, (u,) : n € N} < o0,

then there exist a subsequence {un, }r of {tun}n, u € V and v € L*(T'p) such that
Up, — u  in HY(S),
57_%1/2(“7% —g)—=v in L*Tp).
Proof. Let M := sup,, ¢, (uy,) and assume without loss of generality that e; < 1. Reasoning as in the

proof of Theorem by Holder’s inequality we see that

1 1
M > iHvunHiz(Q;RN) = Iz llunllz9) + 5 llun = 9720 p) (2.4)

for every n € N. Young’s inequality, together with the fact that ¢, < 1, then implies that

1

1 1
5o llun = gllz2r,) = Fllun = 9llia,) + 7 ln = gllZ2 ey,
%, 4 de,,

(2.5)

1 2 LT 1 2
> g”unum(rD) - 1”9”L2(FD) + EH% - gHL2(FD)7

and thus, combining the estimates (2.4)) and (2.5) with Lemma and using the notation (2.1)), we

arrive at
1 2 7 2 1 2
M > gll\unlllm(g) = m2ll flle@lllunllg @) = 3 190z2wp) + e lun = 9l 720 p)-

Consequently, {uy,}, is bounded in H() by Lemma and furthermore {e;, Y % (up — 9)}n is bounded
in L?(I'p). Hence there are functions u € H*(Q), v € L*(T'p) and a subsequence {uy, }x of {u,}n as in
the statement. To conclude we notice that u, — ¢ in L?(I'p), and so u € V. O

Proof of Theorem[1.3, Let e, — 07 and {u,}, be a sequence of functions in L?(f2) such that u, — u
in L?(Q). If liminf, o F:, (up) = oo there is nothing to prove. Hence, up to the extraction of a
subsequence (not relabeled), we can assume without loss of generality that

liminf 7. (u,) = lim F., (uy) < 0o.
n—oo n—oo

In particular, 7., (un) < oo for every n sufficiently large. Let {un, }1 and u be given as in Proposition 2.3
then

1 1
liminf 7o, (up,) > liminf/ Vg, 2+ fup, | dz > / |Vu|? dz +/ fudx = Fo(u).
k—o0 k k—oo Jq 2 2 Q Q

On the other hand, for every u € L?(f2), the constant sequence u, = u is a recovery sequence.
Indeed, F;,(u) = Fo(u) for every u € V, while if u ¢ V' then Fy(u) = co and hence there is nothing to
prove. O

10



Corollary 2.4. Under the assumptions of Theorem if en, — 01 and {un}n is a sequence of functions
in L*(Q) such that
limsup F., (u,) < inf {Fo(v) 1 v € L*(Q)}
n—oo
then w, — ug strongly in H*(Q), where ug is the unique global minimizer of Fo. In particular, global
minimizers ue, of Fe, converge in H*(Q) to ug.

Proof. Since g € HY?(09), by standard trace theorems (see Theorem 18.40 in [Leol7]) the space V
defined in (1.9) is nonempty. In turn, the strictly convex functional Fy given in (|1.8]) admits a unique
minimizer uo which is a weak solution to (1.1)). Let {u,}, be a sequence of functions in L?(§2) such that

limsup Fz,, (un) < Foluop)- (2.6)

n—o0
Given a subsequence {e,, }1, of {e, }n, by Proposition We can find a further subsequence {Unkj }; and

vg € V such that w,, — vg. By I'-convergence
J

./—"()(UO) 2 limsup}"gn (unk]) Z Fo(vo),

Jj—o0 kj
which in turn implies that vy = ug. Hence the full sequence {u,}, converges in L?(Q) to ug. Moreover,

by (2.6)

Fo(ug) > limsup F, (u,) > limsup/ (;]VunIQ + fun> dx
Q

n—oo n—o0

1
> liminf/ |V, |? dx +/ fuodx > Fo(up),
and so
lim / |V, |* dx = / |Vug|? de.
By the strict convexity of the L?-norm it follows that Vu, — Vug in L2(Q;RY). O

3 A problem without singularities

Following Costabel and Dauge [CD96], in this section we will be concerned with the study of the easier
case of the non-mixed problem ([1.34)); to be precise, it is assumed throughout the section that I'p = 0.
Under this additional assumption we prove asymptotic developments by I'-convergence of all orders for
the family of functionals {F;}. and deduce a complete asymptotic expansion for u., i.e., the solution to
(1.34) (see Theorem [2.1). Throughout the section, we will make the following assumptions on the set
Q:

(4) © is an open, bounded and connected subset of RY, ()

) J
(ii) 09 is of class C91.

3.1 The non-mixed problem: Gamma-convergence of order one

In this section we prove a first order asymptotic development for F.. We begin by studying the com-
pactness properties of sequences with bounded energy.

11



Proposition 3.1 (Compactness). Let Q be as in (Hy), f € L*(Q), g € H*?(0Q), F. and Fo be the
functionals defined in (1.7) and (L.8]) (with T'p = 0R2), respectively, and define

F- — min Fy
8 .

FO =

€ (3.1)
If e, — 0% and v, € L*(Q) are such that
sup{}"g(i) (vp) :n € N} < o0,

then u, — ug in HY(Q) and there exist a subsequence {vn, . of {vn}n, 1o € HY(Q) and vy € L?(0)
such that

Une ZH0 L po i HY(Q),
(3.2)
3.2
Une ZU0 Lo in L2(09),
Eny,

where ug is the solution to (|1.35)).
Proof. If we let M = sup{]-}(i) (vp) : m € N}, then Fe(vy,) < Fo(ug) + €, M. On the other hand,

lim inf 7., (vn) > Fo(uo)

by Theorem and in turn v, — ug strongly in H'(Q) by Corollary
For every n € N, let 7, € L*(Q) be such that v, = ug + €,7,. Then fe(i) (vp) can be rewritten as

. 1 .
FL) (wn) =/ (Vo - Vra+ 2 9ral? + fra) da+ 2/ r2dHN (3.3)
Q o0

Since 0 is of class C11, f € L?(Q),and g € H 3/ 2(0Q), by standard elliptic regularity theory for |D
ug € H%(Q) (see Theorem 2.4.2.5 in [Gri85]) and by an application of the divergence theorem we have

/Q (Vug - Vry + fry) de = - dyugry, dHN L. (3.4)

Substituting (3.4]) into (3.3) we arrive at

M > FV(v,) = 5”/ IVrn\QdaH—/ 1r,%+ayuorn dHN 1
" 2 Ja a0 \ 2 55)

1

n 1 _ -
= 5/ |wn\2da:+/ (rn + Oyug)® dHN 1—/ (Dyug)® dHN Y,
2 Ja 2 Ja 2 Joo

and (3.2)) is proved at once. O

Theorem 3.2 (1st order I'-convergence). Under the assumptions of Proposition the family {.7-"5(1)}6
I'-converges in L(2) to the functional

1
—/ (Byu0)? dHN L if v = g,
Fiv) ={ 2Jaq (3.6)
—+00 otherwise.
In particular, if u. € HY(Y) is the solution to (1.34)), then
Fe(ue) = Fo(uo) +eFi(uo) +o(e). (3.7)
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Proof. Let e, — 07 and {v,},, be a sequence of functions in L?(£2) such that v, — v in L?*(2). Reasoning
as in the proof of Theorem we can assume without loss of generality that

hmlnff()( n) = lim .7:5()( n) < 00.

n—o0 n—oo

In particular, }}(i) (vn) < oo for every n sufficiently large. Let {v,, }; be as in Proposition ﬂ Then
vp — up in HY(Q) and from (3.5) we deduce that

1
lim inf F (v,) > —/ (Byu0)? dHN T = Fi(u).
n—00 n 2 Jan

On the other hand, for every v € L2(Q) \ {ug} the constant sequence v, = v is a recovery sequence.
If now v = ug, since by assumption d,ug € H'/?(90), we can find w € H'(Q) such that w = —d,ug on

09, where the equality holds in the sense of traces. Set v, = ug + ,w. Then v, — ug in H*(2) and
again from (3.5)) it follows that

lim f(l)(vn = lim / |Vw\2da:—/ (Oy UO) dHN"! = Fi(u).

n—oo n—o0

This concludes the proof of the I'-convergence. The energy expansion (3.7]) follows from Theorem 1.2
in [AB93]. O

3.2 The non-mixed problem: Gamma-convergence of order two

In this section we prove a second order asymptotic development for F.. As customary, we begin by
investigating the compactness properties of sequences with bounded energy.

Prop051t10n 3 3 ( Compactness) Let Q be as in (Hy), f € L*(Q), g € H¥?(09), F., Fo, FY and

F1 be as in , , , and (3.6} ., respectively, and define

@ fa(l) —min/f;  F.—minFo — 5m1nf1
g T € - 52

If en, — 0% and w, € L*(Q) are such that
sup{]:e(i) (wp) :n € N} < o0,

then wy, — ug in H(QY) and there exist a subsequence {wy, }r of {wn}n, wo € HX(Q) and qo € L*(0N)
such that

Wp, — U
m 0wy in HY(R),
Eny,
Wp, — U + En, Opll ,
ng 03/2 AN % n LQ((?Q),
Eny

where ug is the solution to (1.35)). In particular, wo = —0,ug on 0K in the sense of traces.

Proof. By Corollary we deduce that w, — ug in H'(2). For every n € N, let r, € L*(Q) be such
that w,, = ug + €,7,. Then .7-'5(3) (wy,) can be rewritten as

(2) = / V| da T o (ry + Oyug)? dHN L (3.8)
oN

We then proceed as in the proof of Proposition with f =0, g = —0,ug and r, in place of u,. O
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Theorem 3.4 (2nd order I'-convergence). Under the assumptions of Proposz’tion let u; € HY(Q)
be the unique solution to the Dirichlet problem

Aup =0 in £,

up = —0,ug on €.
Then the family {FgQ)}e I'-converges in L?*(Q) to the functional

1/\Vu1]2da: if v = wo,
Fo(v) =1 2 /o

+00 otherwise.

In particular, if u. € H () is the solution to (1.34), then
fg(“g) = fo(Uo) + 6]:1(’LLO) + 62]:2(’&0) + o0 (62) . (3.9)

Proof. Let ¢, — 0% and {w,}, be a sequence of functions in L?(Q) such that w, — w in L?*(Q).
Reasoning as in the proof of Theorem [1.3] we can assume without loss of generality that

linniioréfféz)(wn) = nlgrolo Fgf) (wp,) < 0.

In particular, fe(f)(wn) < oo for every n sufficiently large. Let {wy, }; and wp be as in Proposition

Then w,, — ug in H*(Q) and from (3.8)) we deduce that

1 1
lim inf 2 (w,, ) > liminf/ V7, |? dz > / |V |? dae
2 Jo 2 Jo

€
k—o0 "k k—o0

> inf {;/ \Vp|?dzx : p € HY(Q), p=—08,u on GQ} = ;/ |V |? de = Fa(up).
Q Q

We remark that the function wu; exists (and is unique) by an application of Corollary

On the other hand, for every w € L?(2)\ {uo} the constant sequence w,, = w is a recovery sequence.
As one can check from , Wy, = ug + €xu1 18 a recovery sequence for ug. This concludes the proof of
the I'-convergence. The energy expansion follows from Theorem 1.2 in [AB93]. O

Corollary 3.5. Let Q be as in (H,), f € L*(Q), g € H¥?(0Q), and let u. and ug be solutions to (1.34)
and (1.35)), respectively. Then there exists a constant ¢ > 0, independent of €, such that

lte = wollzney < & (Ifllzac@) + 9l ooy
lue — w0 + €dyuoll 12y < e/ <||f||L2(Q) + Hg”H3/2(8Q)) :
Proof. If we let w, := ug + cuq, for u; as in Theorem then
Fe(we) = Foluo) + F1(ug) + > Fa(uo)

and from the minimality of u. we deduce

Fe(ue) < Foluo) + eFi(ug) + 62]’—2(U0)-
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Writing re = #=-%0, expanding, and rearranging the terms in the previous inequality we arrive at

1 1 2
2/ |Vre|? dx + 2/ (re +edyug)? dHN 1 < 62/ |Vuq|? de. (3.10)
Q € Joa Q

Since 99 is of class CL1, f € L?(Q), and g € H32(9Q), by standard elliptic estimates (see Theorem
2.4.2.5 in [Gri85)]) the solution up € H(£2) to the Dirichlet problem (1.35)) belongs to H?() with

luollieqoy <k (I llz2c@) + gl ey

In turn, by standard trace theorems (see Theorem 18.40 in [Leol7]), we have that d,uq € H'/2(9Q),
and so there is z9 € H'(Q) such that zg = —d,ug on JQ in the sense of traces and

120l 1.0y < KallOvuol| /2 (90) < kslluollmz) < ¢ (Hf||L2(Q) + ||g||H3/2(Q)) :
Since u; € H*(Q) is a minimizer of
v / \Vo|? dx
Q

over all functions v with v = —d,ug on 02, we have that

[Vuillp2rny < V2ol p2@ryy < e (HfHLQ(Q) + ||g||H3/2(Q)> :

The previous estimate, together with (3.10|), gives the desired result. O

3.3 The non-mixed problem: Gamma-convergences of all orders

In this section we prove asymptotic developments by I'-convergence of any order for F. and derive
asymptotic expansions for wu., i.e., the solution to ((1.34).

Theorem 3.6. Given k € N, let j € N be such that k =2j —1 or k =25, Q be as in (H}), f € L*(Q),
g € HY?(99Q), and for every m € {1,...,j} let u,, € H(Q) be the solution to the Dirichlet problem

Ay, =0 in €,
(3.11)
Uy, = —Oplm—1 on 0L,

where ug s the solution to |i Let .7-"5(]6“) be defined recursively by

k
Flket) F — Fi(uo)
€ = -

9

where .7-"5(1) 1S given as in 1) and the functionals F;, for i € {1,...,k+ 1}, are given by

;/ (8l,um)2 dHN Y if v = w,
Fom1(v) = 0

400 otherwise,

and

—i—l/ |V, | de if v = o,
Fom (v) = 2 Ja

+00 otherwise.
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Then the family {]:E(i)}E I'-converges in L*(Q) to the functional F; for every i € {2,....k +1}. In
particular, if ue € H' () is the solution to (1.34)), then

k+1

Fe(ue) = Zei}}-(uo) +o0 (sk“) )
i=0

Proof. Notice that for £ = 1 we have that j = 1 and so the statement reduces to the one of Theorem
The result for k& > 2 follows by induction from arguments similar to the ones of Theorem and
Theorem (depending on the parity of k). We omit the details. O

Corollary 3.7. Under the assumptions of Theorem (3.6, and for an odd value of k € N, let ue, ug, u;

be solutions to (1.34), (1.35), and (3.11)), respectively. Then there exists a constant ¢ > 0, independent
of €, such that for every j € {1,...,(k+1)/2}

j—1
Ue — E Uy
=0

< Ce (Hf||L2(Q) + ||9||H1/2+J‘(ﬂ)) )

H(Q)
j—1
ue — Y e'ui+edyu; < Cet/?H (”f”LQ(Q) + ||9||H1/2+j(sz)) :
=0 L2(69)
Proof. The proof is analogous to the one of Corollary and therefore we omit the details. O

4 The case of mixed boundary conditions

In this section we prove our main results regarding the higher order I'-limits for the functional F. defined

as in (|[1.7)).

4.1 Preliminary results

Throughout the section {2 is assumed to be as in the statement of Theorem We recall that we use
the following notations: given a function v = v(x) where = (z,y), we denote by v the function

o(r,0) == v(rcosf,rsinf), (4.1)
and with a slight abuse of notation we write v = %(r, §). Moreover, we denote by () the function
5D (ri, 0;) = v(w; + ri(cos 0;,sin 6;)), (4.2)

where the polar coordinates (r;,6;) are as in Theorem Furthermore, recall that ¢ € C*°([0,00)) is
such that ¢ =1 in [0, p/2] and ¢ = 0 outside [0, p].

Proposition 4.1. Let N =2, Q be as in Theoremm feL?), ge HY?20Q), and let ug € H'(Q)
be the solution to (1.1)). Then

2 rp .
/ (Vg - Vb + fo) dac = / XTI / (i) 25 (14, 0) dr
Q I'p i=1 0

for every 1 € HY(Q), where u’,

reg> Ci and ¢ are given as in Theorem 1.1,
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Proof. By Theorem given ¢ € H'(), we get

2 T rp . o
/ Vug - Vi dx = / Vb - VO dz + Y ¢ / / (ansiaw(“ +r;2agisiagi¢<l>) ridrd;.  (4.3)
Q Q -1 J0 Jo

Since the function u?eg belongs to H2($2) and satisfies a homogenous Neumann boundary condition on

I'y, the divergence theorem yields

/ Vudy, - Vipdz = / — Al do + / O uegth dM'. (4.4)
Q Q I'p
To rewrite the second term on the right-hand side of (4.3]), we consider the auxiliary function

(i)(’l“i, 91) = ri&,ib—“i(ri, (91)12)(2) (’I“i, 91),

indeed, a simple computation shows that ® € W11((0, p) x (0, 7)) and thus ®(-,6;) is absolutely con-
tinuous for Ll-a.e. §; € (0,7). For any such 6;, by the fundamental theorem of calculus, we have
that

_ _ P _ P _ . _ . _ .
0=8(p,0;) — B(0,0;) = / 0,,8(ri, 0;) dri = / (8”51‘1[}(2)—|—7“i83i5i¢(1)—l—Ti@nSia”@Z)(z)) dri. (4.5)
0 0

Similarly, noticing that the function W(r;, ;) == r; '8y, S;i(ri, 0:)0® (14, 6;) belongs to the space W1 ((0, p)
(0,7)), and reasoning as above we find that

—%ﬁ(ri)rfl/w(i)(ﬁﬁ) = W(ry,m) — U(r;,0) = / D9,V (73, 0;) db;
0

= / ! (agigi&(i) + 892.5’1-891,1;(")) do; (4.6)
0
holds for £!-a.e. r; € (0, p). Combining the identities (4.5) and , we get

iy P _ . _ .
/ / (87«1.51'8”1/1(1) + ?”i_zagisiagil/)(l)) r; dr;d0;
0 0

P . T rp B B ~
= - ;/ @(Tz‘)ri_lm?b(l)(m,()) dr; —/ / p® (3%51, 70,8 + T{QﬁiSi) r: drd6;
0 0 Jo

2
Consequently, the desired formula follows from the previous equality, (4.3), , and upon noticing

that )
T reo_ . _
/ fodz = / Auddz +> e / / GO, 0)Siri dridf;.
Q Q im1 0 Jo

This concludes the proof. ]

P . T reo_ _
= — 1/ @(T’Z‘)Ti_l/le(l) (7“2',0) dr; — / / w(’)A(mgi)Sm dr;db;.
0 0 0

In the following theorem we present an estimate that will prove instrumental for the proofs of our
compactness results, namely Theorem and Theorem

Theorem 4.2. There exists a constant r such that for any R > 0 and h € H'(B}(0)),

. 1/2 R 1/2
/ Y2 |z, 0)| dz < K R/ \Vh(z)|* dz + K </ h(z,0)? dx) ;
0 B£(0) 0

where h(-,0) indicates the trace of h on the positive real axis.
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We begin by adapting Theorem [I.9] to our framework.

Lemma 4.3. There exists a constant & such that for any R >0 and h € H'(B#(0)),

h($)2 2 1 [
/ sdr <R / |Vh(x)|* de + / h(z,0)?dz |,
B} (0) || (1 4 log R — log |z|) B} (0) R Jo

where h(-,0) indicates the trace of h on the positive real axis.

Proof. Since B#(0) is an extension domain, we can find h € H'(Bg(0)) such that h(z) = h(x) for
L2-ae. € BE(O) and with the property that

||i7“”L2(BR(O)) < OIHhHLQ(B;(O))v
VAl L2(Ba)e2) < CillVAl L2052 0)m2):

for some constant C; > 0 independent of R. Theorem applied to the function h and the previous
estimates yield

2 1
/ : h(z) s dz < Oy (/ Vh(z)[* dz + —; h(x)? da:) ,
B (0) |z[? (1 +log R —log |z|) B};(0) R= /B 0)

for some constant Cy > 0 independent of h and R. By Lemma together with a simple rescaling
argument, we deduce that

— h(x)*dx < C Vh(x)|*dx + = h(x,0)* dz
7 [y 0 1 3<BE(0)1 @ de+ 5 [ h(z.0)

for some constant C3 > 0, which is again independent of both h and R; this concludes the proof. O

Proof of Theorem[{.3 By the fundamental theorem of calculus,
— — 6 -
h(r,0) = h(r,0) —|—/ Oph(r, o) da,
0

and so, multiplying both sides by r~1/2 and integrating over BE(O), we get

R B 1 T R B 1 sy R 0 _
- / r2h(r, 0)dr = — = / / r2h(r, 0) drdg + — / / / r=12099h(r, o) dadrdd
0 ™ Jo 0 ™ Jo 0 0

© rR T rR — _
= L[ [ [ ED a0 ara,
m™Jo Jo 0 Jo d

where the last equality follows from Fubini’s theorem. In particular,

R B 1 T R B T R B
/ r_1/2|h(r,0)|dr§/ / r_1/2|h(r,9)|drd0+/ / r=200h(r, 0) drdd, (A7)
0 T™Jo Jo 0 Jo

and thus we proceed to estimate the terms on the right-hand side of (4.7)). Passing to cartesian coordi-

nates,
T rR _ 1+1 —1
| [remeolaas = [ hiz) UtlogR —loglz)) 4,
0o Jo BE(0) |z

1+ log R —log|x|) || 1/2
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) 1/2

< 1/2 / =

< (57R) ( B*(0) || (1 + log R — log |z|)? dx ;
R

where in the last step we have used Holder’s inequality together with the fact that

1+logR—1 2 R
/ (1 +log R — log |z[) dw:ﬂ/ (1+log R —logr)? dr = 57R.
B} (0) 0

|z|

Then, from Lemma [4.3] we deduce that

x /R R 1/2
/ / r=Y2|h(r, 0)| drdd < (57r)/? R/ ]Vh(m)]2da:+/ hz,0)2dz| . (4.8)
0 Jo B} (0) 0
On the other hand, Holder’s inequality yields
T R B s R B 1/2
/ / =120 (r, 0)| drdo) < <7rR / / r_l\ﬁgh(r,9)|2drd9>
0o Jo o Jo
1/2
< <7rR / yVh(x)Pda;> , (4.9)
B} (0)
and so the desired inequality follows from (4.7)), (4.8]), and (4.9). O

4.2 Mixed boundary conditions: Gamma-convergence of order one

In this section we prove Theorem and Theorem We recall that we use the notations (4.1)) and
(E3).

Proof of Theorem[1.4. By Corollarywe have that v, — ug in H*(2). For every n € N, let 2, € L%(Q)
be such that v, = ug + ep+/|logen|2zn. Then .Fg(i) (vp,) can be rewritten as

n 1
fgl)(vn) /Q (Vug - Vzn + fzn) de + % /Q |Vzn|2 dx + 2/1“ zi dH*,

D

1
B V|log e,

and an application of Proposition [£.1] yields

2
1 T _ -
.7-"5(711) (vp) = —— &,u?egzn dH! — Z c/ o(ri)r; 1/227(5) (r:,0) dr;
” (4.10)
En 2 1 2 1
+/|Vzn| da:+/ 2 dH.
2 Ja 2 Jrp,
For n large enough so that 2¢, < p, we write
? lr /250 _ [0 ? ey 250)
o(ri)r, 72 (ri,0) dr; = r, T2 (13,0) dry + o(ri)r, "2 (ri,0) dr; (4.11)
0 0 En

and proceed to estimate both terms on the right-hand side separately. By Theorem we obtain

En . 1/2 en 1/2
/ r;1/2|27(f) (ri, 0)| dri < K <€n/ |Vzn|2 d:c) + K </ Z,(f) (m,O)2 dn) , (4.12)
0 BEvL(mi)mQ 0
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while by Holder’s inequality we get

p P 1/2
/ B(ro)r V2|50 (ri,0)|d7‘¢§\/logp—|—|log6n|( / z,<;>(n,0)2dri> . (4.13)
En

En

Consequently, from (4.10)), (4.12)), and (4.13) we deduce that

1 10vtvegll 20,y leil(s + /log p + [log en])
FOW) 2 Ll - ( e L0) | lenllz2cen)

" v/ |1ogey| 2y/|loge,|

Lo 1 2 |cilk 1/2
+ —|l&;/*Vz R2) — e/ *Vz R2),
2” n nHL2(Q,R2) 9 /—| 10g5n|H n nHL2(Q,R2)
and so (1.11]) and (1.12]) are proved at once. ]

Proof of Theorem[1.5. Step 1: Let €, — 0% and {v,}, be a sequence of functions in L?(Q2) such that
vp — v in L2(2). Reasoning as in the proof of Theorem we can assume without loss of generality
that

lim inf F! )( n) = lim FM(v,) < oo

n—o0 n—oo En

(1)

In particular, Fz,’(v,) < oo for every n sufficiently large. Let {v,, }; be a subsequence of {v,}, given
Ci

as in Theorem [I.4] and define B
O =%
2y/|logen|

Arguing as in the proof of Theorem (see (4.10) and (4.12)) we arrive at

1 |0yl £2(r ik
fs(ii (Uny,) = §||anH%2(FD) - ( 2 Lp) + | Hz”kHLQ(FD)

V1ogen, | 24/|logen,

(ri)r; /2. (4.14)

)

|cilk

- m\|€l/2vznk||m(a r2) + *||5 VZWHI}(Q iR2)
ng

2 0
- E / 57(;;3(7“1')27(1)(7'17 )drz (4.15)
i=1"Eng

Then, as k — 0o, we have

V

2 e . . .
lim inf ]:( )(Unk) > liminf E / (;Z};’z (r5,0)% — 1(lzk) (ri)zglk) (ri,0)> dr;
Enk

k—oo k—oo 4
=1

= — = li f 201 g
8 4 ¢ llcrggé | log nk‘/ Plri)7ri dr
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2

2
I o0 1 1 o
> 21 f—— (1 1 =_= . 4.16
> 8;10@ imin |1Og€nk|(0gp+! 0g Eny ) 8;16” (4.16)

where in the second to last step we have used (4.14]).
Step 2: For every v € L?(Q) \ {ug}, the constant sequence v, = v is a recovery sequence. Then let
v = ug and consider the radial function ¢;, given in polar coordinates at x; by

Ginlr) = €00 (1= (201) ) = S T—ttr) (1-¢(L2n))r

where 57(11) is the function defined in 1' We define

in(x) if © € B.(x;) N Q with r < p,
(@) = 1 @) (=) P (4.18)

0 otherwise.

Notice that if we let

U n(r) =1 ife, <r <p/2,
)

=0 fo<r,<e,/20rp<r,
<ri<ep/2orp< (4.19)

W), (ri)| < & ifen/2 <71y < ey,

|W! (r)] <c if p/2 <1 <p,

for some constant ¢ > 0 independent of n. Finally, set

Up = ug + eny/|logen|zn.

Notice that v, — ug in L?() since the sequence {z,}, is uniformly bounded in L?(2), indeed

2 2 p 2

/zidmﬁz cm ri_ldri:77(10gp+|10g5n|+10g2)2022.
o 2 4loge,] J., s 4log e, o

Next, we claim that 6711/ QVzn — 0 in L?(Q;R?). Indeed, using the notation above we have that

Ci

2¢/|logen|

-1/2

Ei,n (Tz) = ‘iji,n(ri)rl s

and therefore

2 5 0 2
5 En cim =, —172 1 _3p0=
dz — U ) V2= 20328 ) ) v drs
o fvetin = e (S 57) [ (Wt 5 )

2 )
En cm - 1 -
= 1Tog &, (Z 2) /0 <\Ilfi,n(ri)2 T 2\I’i,n(n)2> dr;. (4.20)
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From (4.19)) we see that

P _ En P 1
/ () dry = / B, ()2 dr; + / V()2 dry < & ( + ”) (4.21)
0 en/2 /2 2e, 2
and
P g P 2 1
/ 7y 2 Wi (ri)? dry < / ri?dry = — — - (4.22)
0 en/2 En P

Combining (4.20)) with the estimates (4.21)) and (4.22]) we obtain

2 0?77 c? c2p 1 1
—1 n n

and the claim is proved. From (4.10)), using (4.11)), (4.12)), (4.13]), and (4.14) we have

1 10, teg || £2(r cilw 1
féi)(vn)<2|!zn\|%z(rp)+< e | Izollzaep) + 5l *Venlltz ome)

V/|logen| 2y/|logey,
4 leils
2¢/|loge,|

By (4.23)) we have that the second, third, and fourth member on the right-hand side of the previous
inequality vanish as n — oo. Since @ (ﬁn) =0 for r; € [en, p], by (4.14) and (4.17]),

2 e _
e/ 2V 2| 12 (um2) — Z/ ED (1) G (1) dr, (4.24)
i=1"¢n

Cin(ri) = €9 (r;)  for r; € [en, p]. (4.25)

Consequently, from (4.14), (4.25)), (4.18)), and the fact that ¢ =1 in [0, p/2],

2
. . 1 P _
11rr:supf§i)(vn) < hm_)sup {QHZnH%Q(FD) — Z/ ED (1) Cin () dr,;}
n—oo n—oo i=1 Y €n
= limsu in ’FZ w2 (ri)Cin(rs) | drg
m£;/<c - E00Gnlr))
= limsu —/ D (r)? dr;
msup Z &7 (ri)? dry
1 1 p/2 P
< — = c; liminf ——— / rildn—f—/ o(r; 2r;1dn
8 Zz: n—o00 |10g€n’ < £n p/2 QO( )
1 2
-1y (4.26)
i=1
The energy expansion ((1.14]) follows from Theorem 1.2 in [AB93]. O
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4.3 An auxiliary variational problem

In this section we study the functional
1 o0 . 2
Ji(w) = / |Vw(x)|* dx —l—/ (w(az,O)2 — cix71/2w($,0)> dx +/ (w(m,()) - &x71/2> dx
R2 0 1 2
defined in

H={we¢ HIIOC(]RE_) Tw € HI(BE(O)) for every R > 0},

where w(-,0) indicates the trace of w on the positive real axis. This functional appears in the char-
acterization of the second order I'-convergence of F. (see (L.15)), (1.16)), (1.17), Theorem and
Theorem |1.7]).

Proposition 4.4. Let J; and H be given as above. Then A; = inf{J;(w) : w € H} € R and there
exists w; € H such that J;(w;) = A;. Furthermore, w; is a weak solution to the mized problem ([L.21).

Proof. Let v be the function given in polar coordinates by

Ci

o(r,0) = 2V/r

% r ifr<land0<6<m,

ifr>1land 0< 0 <m,

where (r,6) are polar coordinates centered at the origin of R? and such that the set {(r,0) : r > 0}
coincides with the positive real axis. Then v € H and J;(v) < oo, indeed

Ji(v) = /07r /Ooor(arﬂ)z drdf + /01 (5(r,0) — ¢;o(r,0)) dr = “~—

In turn, this implies that A; < co. On the other hand, by Theorem we see that for every w € H,

L 1/2
Ji(w) > / |Vw(x)|* de +/ w(z,0)*dr — |ci|k / |Vw|? dx
R2 0 B (0)

2
+ /loo (w(fc,O) — %3:_1/2)2 dz,

leilk </01w(x,0)2d:n)

and so A; > —oo. Furthermore, we deduce that for an infimizing sequence it must be the case that
(eventually extracting a subsequence which we don’t relabel)

1/2

Vw, — Vw in L*(R%;R?),
wp(-,0) = w(-,0) in L*((0,1) x {0}),

wn(-,0) — %gfl/? — w(-,0) - %fl/? in L2((1,00) x {0}),
for some w € H, where w,(-,0) and w(-,0) indicate the trace of w, and w on the positive real axis.
To conclude, it is enough to show that J; is lower semicontinuous for sequences converging as above.
The lower semicontinuity is certainly true for the nonnegative terms in J;, thanks to Fatou’s lemma.
In order to pass to the limit in the remaining term we can argue as follows. First, we observe that by
Lemma {wy}y in bounded in H'(B; (0)) and in particular in H'/2((0,1) x {0}). Next, we recall
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that H'/2((0,1) x {0}) embeds continuously into LP((0,1) x {0}) for every p € [1,00). Consequently,
up to the extraction of a further subsequence, we can assume that w,, — w in LP((0,1) x {0}), p > 2.
Therefore, we deduce that

1 1
liminf/ x_l/an(x,O)dac:/ V2w (x,0) da.

This proves the existence of a global minimizer of J; in H. The rest of proposition follows by considering
variations of the functional 7;; we omit the details. O

We remark that w; doesn’t necessarily belong to the space L2(Ri), unless ¢; = 0, in which case
w; = 0. In the following lemma we prove an estimate on the L?-norm of global minimizers in an annulus
that escapes to infinity. This estimate will be crucial for the construction of the recovery sequence for
ug in the proof of Theorem

Lemma 4.5. Let ¢, — 07 and w; be given as in Proposition[{.4 Then

2 / w?dzx — 0
+ +
BP/ETL (0) BP/QSH (0)

as n — 00.

Proof. By applying Lemma and by a rescaling argument in By (0) \ B;r/Q(O) we can deduce that
there exists a constant ¢, independent of n, such that

p/en
/ w? de < % (/ ]Vw|2dw+€n/ w(z,0)? dx)
By, (O\B,,_ (0) S \JBJ,. (O\B,,. (0) p/2en

for every w € H'(B',_ (0)\ BT,,_ (0)). If we apply the previous inequality to w = £, w; we obtain

p/en p/2en
p/en
5%/ w? de < ¢ / |Vw;|? da + En/ wi(z,0)? dx | .
B:/En (0)\3;/2571 (O) B;r/en (0)\B;r/2en (0) p/z‘s’”

The first term on the right-hand side vanishes as n — oo since Vw; € L*(R?%;R?), and the second term
is shown to vanish by the following computation:

plen plen . 2 plen (2
€n / w(z,0)? dz < 2e, / (wi(x,()) - ﬁx—lﬂ) da + 2¢,, / Sy
p/2€n p/2en 2 p/2en dx

plen . 2
= 2{-:”/ (wi(x, 0) — ﬁx_1/2> dx + 2e,1og2 — 0
p/2en 2

since w;(+,0) — $27 Y2 € L?((1,00)). This concludes the proof. O

4.4 Mixed boundary conditions: Gamma-convergence of order two

In this section we prove Theorem and Theorem We recall that we use the notations (4.1) and
E2).

Proof of Theorem[1.6. Step 1: By Corollary we have that w, — ug in H*(Q). For every n € N,
let s, € L?(Q) be such that

Wy, = U + /EnSn- (4.27)
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Then, by . . ., and , ]-'En (wy) can be rewritten as

2
1 1 1 log ey,
/Q(VUQ -Vsp + fsn) de+ 2/Q|V5n|2 dx + 2/ s2dH' + |0g88|;c?7

(2) —
‘F€n (wn) \/a En 'p

and an application of Proposition [£.1] yields

1 i
FO(w,) = = ( : Bl s dH' — § :C / () 250 (4, 0) dn)
n D

2
log ey,
g [ siaes g [ BEE S
T'p =1

Using the fact that |loge,| = f r~!dr, grouping together the different contributions on I'p N Be,, (x;),
I'p N (By(xi) \ Be, (x;)) and Tp \ B,(x;), and completing the squares we obtain

2 () . 2
7,0 (@) Ci o\ —1/2
fs(i) E { /an << a) + 0 u?eg (ri,0) — 5150(7"1)7“2- / ) dr; + B; nc; + C@C?

=1

" I 900 50 )2
+/ (8 ugeg()(ri,o)sn (T‘Z,O) o &r,_l/ZSn (Tuo) + (T270) > d?”i}
0

/En 2" /En 2en

oy (S5 at) a0 | 1
+ = +0 ur dH" — = Oy, dH
2 Tp\U; By (i) VEn * 2 Ip\U; Bep (2:) ( eg)

1
—l—/ Vs, |? de,
2 Ja

1 [° _ i
Bi:n = 2/ @(TZ)T 1/281/u9eg( )(Tiv O) dria (428)
En

where

and C,, is given as in (1.19). Setting
Zn = Sy — \V/EnU1, (4.29)

where u; is the solution to 1) and using the fact that uy = —al,u?eg on I'p we can rewrite the
previous expression as

2 7(1)(7"1 0) o ~1/2 ’
F2 (wy) = Z{ / <\/€>n = 5 @ri)r; ) dri+ Bie; + Coc?

=1

n (4) 2 =@ 2
L1 / &_W;mw dr, b o L / Zn gt
2 Jo En VEn 2 Jrp\U; Bo(x:) En

1

—2/FD (B,uly)? dm! + A|V(zn+@u1)y2dm. (4.30)

Notice that all the terms in the previous expression are either positive or independent of n, with the
only exception of B; ,c;, which converges to B;c;, and the fourth term on the right-hand side. However,
by an application of Theorem [£.2| we get

€ (1) 1/2 c _() 9 1/2
n _ n 2-’() n 1,0
—/ e 2202 (13,0) —leilk / Vonl2da | —|els / 2 (ri,0)* ,
0 En B;—n(ml) 0 En
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and thus (1.25) and (1.26]) are proved at once.
Step 2: Let W;,, be as in (1.24)). Then

mm(ri? 61) = @(Enrz) 70 )(gnrw 91) (4.31)

by (4.27) and (4.29)), and thus by a change of variables and the fact that @ =1 in [0, p/2], if &, < p/2,

1 en (5@, 02 5D,
/ (V_Vi,n(sy 0)2 1/ W (S 0)) dS _ / Zn (TZ; 0) o ciT;1/2 Zn (T"L, 0) d'ri.
0 0 En Ven

Similarly, for every R > 1 and for every n such that ¢, R < p/2, we have

R . 2 enR ()( ., 0) , 2
T G — Zn \Ti, Ci —1/2
Winlond) - o t2) = [ (B0 _exa)
/1 < n(5:0) 2 > e VEn 2"

2 1
M > féz)(wn) > Z {1/ (W n(s, O) — Cis_l/zwi,n(s,())) ds+ Binci + C’cpcl2
. 0

1
- 2/ (8,,u?eg)2 dH + \/sn/ Vzp, - Vug de. (4.32)
I'p Q

Since {Vz,}, is bounded in L%(;R?%) (see (1.25)), it follows that

1, R, Cs 2
/ |VVVZ7n’2 dy +/ (Wi,n(sa 0)2 1/2W (S O)) ds + / (W/i,n(570) — i5*1/2> ds <c,
BE(O) 0 1 2

for some constant ¢ > 0 independent of n and R. To conclude, it is enough to send R — oo. ]

Proof of Theorem[1.7]. Step 1: Let £, — 07 and {w, }, be a sequence of functions in L?*(Q) such that
wy, — w in L?(Q). Reasoning as in the proof of Theorem we can assume without loss of generality
that

lim inf F{2 )( n) = lim .7-"5( ) (wy,) < .

n—oo n—oo

In particular, ]:5(3) (wp) < oo for every n sufficiently large. Let {wy, }r be the subsequence of {wp},

given in Theorem [I.6| and for every k € N let 2, be such that wy, = uo + \/En;2n, + en,ui. Let Wi,
be given as in (4.31]), then by (4.30)), taking n = ny in (4.32) and letting k¥ — 0 we obtain

2 1
1 - _
i i (2) - ) 2 o121 o 2
hgn inf .ank (wn,) > ;1 {2 /0 (VH(S, 0)° — ¢is Wi(s, 0)) ds + Bici + Cyc;

+1/R(W(s 0) — G _1/2) ds+1/ \VW;|? dy
2 1 2 2 BE(O)
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1 0 \2 g1
2/1“,3 (&,ureg) dH~,

where we have used (1.27)), (1.28), (1.29), and the fact that {Vz,}, is bounded in L?(Q;R?%) (see ([1.25)).
By letting R — oo in the previous inequality we get

n—o00 k—o0 2

2
lim inf};(? (wy,) = lim .7:5(2 (wn,,) > Z {\71(21/‘/@) + Bic; + C@c?} - 1/ (8yu?eg)2 dH' > Fa(w),
i=1 I'p

where in the last step we used the fact that J;(W;) > A;.

Step 2: For every w € L?(Q) \ {ug}, the constant sequence w, = w is a recovery sequence. On the
other hand, if w = ug, let w; € H be given as in Proposition Let z, be the function defined in
By(x;) N using polar coordinates around x; (see (4.2)) via

n
and z,(z) = 0 in Q\ U2, B,(z;). Set
Wy, = UY + \/EnZn + EpUT.-

We claim that {wy,}, is a recovery sequence for ug. To prove the claim, we notice that (4.30) implies

2 — —
. . 1 En Wi(’l”i/én 0)2 _1/2wWi(ri/€n O)
lim sup F2 (wy,) < lim su / (’ — ¢, M ) dry 4 Bic + Cucl
n—)oop " ( ) B ; n—>oop 2 0 €n ! VEn v

1 [* i n i 2
+ lirinjolip B /sn @i(r)2 <w (7:;6% 0) — 027“1/2) dr}

1 1
- / (&,ugeg)2 dH! + lim sup / |V (zn + VeEnu1)| de. (4.34)
2 Jrp 2 Ja

n—o0

Letting r = se,,, we obtain

En (A (1. 2 A (1 1, _
/ (Wz(n/e?n, 0) - Ciri—l/QWz(Tz/Enao)> dr; = / (Wi(s,0)2 — cis_l/QWi(s, 0)) ds, (4.35)
0 €n Ven 0

and similarly

p Wi(ri/en,0) ¢ —1/2 ? plen = Ci _1/2\2
o2 ) G- _ , 2 (vir B 1/2
/En wi(r) < e 5 i dr /1 wi(sen) (Vh(s, 0) 5 ) ds

oo, Ci 2
< Wi;(s,0 — Z2s7H2) gs. 4.36
< [T (W0 - 5) (4:36)

Next, we compute the contribution to the energy coming from the gradient term. Since ¢ = 0 outside

of [0, o, by (I33) we have
2
V2, | doe = / |V 2, |? da
/Q ; By (i)

2 ™
= Z/O /Op [Ti (81%'(@(7’2')Wi(7’i/5n,9i))2 + %@(ﬂﬁ (801-V_Vi(7"i/5n,(9i))2 dr:d6;.
=1 [
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We write
_ [ pr Lr)w; (r (T w; (1 2 dr
/ / (r)w;(r/en, )) drd@-/o /0 (goz() i(r/en, 0) + ©i(r)endrw;( /5n,9)) drd®.

Expanding the square on the right-hand side of the previous identity we obtain three terms, which we
study separately. By the change of variables s = r;/e,, we obtain

p/en i
/ / 7@ (1)W1 Jen, 0;)* dridf; = / / se2 ol (sen)*Wi(s, 0;)? drdb;

T rp/en _
< c/ / se2Wi(s,0)? dsdf — 0,
PJo Jp/2,

where in the last step we have used Lemma [4.5] Similarly,

T rp _ T rp/en 3
/ / ri@(ri)2 (0, Wi(ri/n, 0:))* dridf; = / / 5@ (sen)?(0sWi(s, 0;))? dsdb;
o Jo 0o Jo
T rp/en _
g/ / 5(8:W;(s,0))? dsdb.
0o Jo
In turn, Holder’s inequality implies that

T rp _ _
2/ / TZ'@,(Ti)Wi(’I“i/Sn, Gl)ﬁ(rl)amwl(n/sn, (91) dT‘ldel — 0
0 0

as n — 00. The same change of variables s = r; /e, also yields

m P A . _ p/sn
//Sogim(@eiWi(Ti/En,, erdH_// 1(,0 (561)%(0p, Wi (s, 6:))* dsdb;
0 0 %
™ P/5n1 B
<// ~ (09, Wi(s,0))? dsdb.
o Jo S

2
limsup/ IV (2 + /Enur)|? da < limsup/ |V2,|? dx < Z/ |VW;|? de, (4.37)
4 2

n—o0 n—oo

Thus

which, together with (| - , and -, concludes the proof of the I'-limsup inequality.
The energy expansion - ) follows from Theorem 1.2 in [AB93]. O
4.5 Sharp estimates

Proof of Theorem[I.8 Suppose by contradiction that (1.31)) is not true. Then there exists a sequence

€, — 07 such that
||we,, — uol|p2rp) > 1 <€n\/ ] log€n|> (4.38)
for every n € N. In view of (1.14), we have that
sup{]:éi) (ug,) :n € N} < o0,
and thus by Theorem H there exist a subsequence {uc, }x of {uc,}n and vy € L?*(T'p) such that

Ue,, — UQ

— = — V0,
€ny/ | log &4,
which is a contradiction to (4.38]).
The proof of ((1.32)) follows analogously from ([1.25) and ({1.30]). O

28



5 More general Gamma-convergence results

Our results can be recast in a more general framework by decoupling the different scales in the asymptotic
expansion of u.. Here we present in full detail the generalizations of Theorem and Theorem
the results of Section 3 can be analogously reformulated. Throughout the section we assume that the
domain 2 is given as in Theorem and use the notations introduced in and .

Theorem 5.1. Under the assumptions of Theorem let KV L?(2) x L?(T'p) — R be defined via

(1) ; 1 u—u
F € H'(Q) and —2=%_ — 4 on Tp,
K0 ) c(u) ifu (Q) an e — v on D 51)

g
+00 otherwise.

Then the family {ICS)}E I-converges in L*(Q) x L?(T'p) to the functional
1 1<
2 g1 2 2
= vidH — =Y ¢ ifu=wug andv € L*(I'p),
Ki(u,v) == 2/FD 8; '
400 otherwise,
where the coefficients ¢; are as in Theorem [1.1]
Proof. Step 1: (Compactness) Let e, — 07 and (un,v,) € L*(Q) x L?>(T'p) such that
sup{ngl)(un, vp) : € N} < 0.
Then by (5.1), u, € H'(), the function

Up — UQ
T L.
" eny/|logen|

belongs to H!(£) and satisfies v} = v, on I'p in the sense of traces. By Theorem there exist a
subsequence {uy, }x of {un}n, r € HY(Q) and v € L*(T'p) such that

*

e}va;;k —~7r in HY(Q),
v, — v in L*(Tp).

Step 2: (Liminf inequality) Let &, — 0% and {(un,v,)}n be a sequence in L?(Q) x L?(T'p) such that
(un,vn) — (u,v). Reasoning as in the proof of Theorem we can assume without loss of generality
that

linniiorolf IC&) (Un,vp) = nlLIEO ICSL)(un, V) < 00.
In particular, ICSL) (tn, vp) < oo for every n sufficiently large. Let {uy, }» be the subsequence of {u,},
given as in the previous step and ¢! be the function defined in polar coordinates as in (4.14). Then

lim inf K& (up, , vp, ) = liminf F (u,,, )
k—o0 "k k—o0 "k

and so, reasoning as in the proof of Theorem (by (4.15) and (4.16) with vy, and z,, replaced by
and vy, , respectively), we obtain

Uy,

—00

1
1"f(1)nn>l"f/2d1—/ i (ny, + Eny) dH
et S L) = B {2 ey Po\U, B, (20) o b YO
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> lim inf/ [1072% — Upy, (571% + fik)] dH!
k=00 JLp\U, Bep, (@) L2
~ timint 5 | (o, = &1, =€) (€7 — (2,7 an’
k=00 2 Jrp\U; Bey, (@)
1 1<
2 1 2
22/FD’U dH —SECZ —ICI(UO,'U),

where in the last step we have used the fact that v,, — v, £, — 0in L*(I'p), and so

lim inf

/ (o, — &L, —€2)% dH' > / o2 A
k=00 JTp\Ui By, (1)

'p

Step 3: (Limsup inequality) Let u = ug and v € L?(T'p). We extend v to zero in 92\ I'p and assume
first that v € H'/2(9Q) (in what follows, although with a slight abuse of notation, we identify v with its
extension). Then there exists v* € H(2) such that v* = v on 99 in the sense of traces (see Theorem

18.40 in [Leol7]). Set
U = Ug + En/ |logen|(zn + v7),

where z, is defined as in (4.18). As one can check (see (4.24)) and (4.26)), {(un, 2, + v*)}, is a recovery
sequence for (ug,v).
If v € L2(09) \ H'/?(99Q) we consider a sequence {v,},, of functions in H'/2(d) such that

vn —vl|L2a0) = 0 asn — oo, (5.2)

and for every n € N we let v € H*(Q) be such that v} = v, on 99 and

lonll @) < cllonll i an), (5.3)
where ¢ > 0 is independent of n (see Theorem 18.40 in [Leol7]). Furthermore, notice that by a standard
mollification argument we can also assume that

leX/*onll /290y = 0 as n — oo. (5.4)

Set

Up = Uy + En/ |logen|(zn + vy,)
and notice that by 1) and 1} Hs}/ZV(zn + vyl L2(;r2) — 0 as n — oo. Thus, we can proceed as
in (L24) and (120). 0
Theorem 5.2. Under the assumptions of Theorem [1.6, let

K@ L2(Q) x L3 (R2) x L (R2) x L} (Tp) — R

loc loc

be defined via
IC§2) (u,v1, vy, w) = ]:5(2) (u) (5.5)
if
u—ug —eul =VeVie i QN B,(x;),
0 1=VeVie o(x;) (5.6)

U — Uy — EU] = EW onI'p\ Be(x;),
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where the functions V; . are defined in polar coordinates by
Vie(ri,00) = v (2,6) (5.7)

and K2 (u,v1,v2,w) == 400 otherwise. Then the family {IC£2)}5 I-converges in L*(2) x L%
L% (R%) x L2 (T'p) to the functional

loc loc

2
1
Ka(u,v1,v9, w Z [ i(vi) + Bici + Cypc; ] 2/ ( Zcz¢z> 8 Ureg) dH!
I'p

(R3) x

if u=1wug, v1,v9 € H w— Z Lcii € LA(Tp), and K2(u,v1,ve, w) = +oo otherwise, where B; and Cy,

are defined as in ) and -, respectively.

Proof. Step 1: (Liminf inequality) Let &, — 07 and {(un, v1.n, V2.0, wn)}n be a sequence in L?(2) x
1OC(R2 )><LIQOC(R2 )XLIQOC(FD) such that (un, v1,n, Von, wWp) = (4, v1, V2, w). Let uy, = (Un, V1n, V20, Wy).
Reasoning as in the proof of Theorem we can assume without loss of generality that

linl)inf ICgL) (up) = lim K(Q)(un) < 0.

n—oo

(2)

In particular, K¢’ (uy,) < oo for every n sufficiently large. Let {uy, }r be the subsequence of {u,},

given as in Theorem By (4.30) (with w, replaced by w,, ), (5.5)), (5.6), and (5.7)) it follows that for

every e, <0 < p,

2) 1 [° Vin, (Ti/€n,,0) ¢ —-1/2 2 9
K ) = 3005 [ (TR - SR ) it B O
Eny,

i=1 En
1 /E”k <17¢,nk (ri/en,0)* Ciri—l/Zﬁi,nk(Ti/Enk70)> dm}
2 0 E’Vlk Enk
1 2 ’ 1
+ / Wn, — Cﬂ/)l' dHl - / (8 ure ) dHl
2 FD\UiB(S(mi)( * zz; ) 2 Jrp )
25nk / |V (up, — uo)] dzx, (5.8)

where B; ,,, is defined as in (4.28). Arguing as in the first step of the proof of Theorem we arrive at

2

2 2
1 1
liminf K2 (u,,) > [j v;) + Bici + C. cf] +/ w— cip; | dH
k00 Enk( k) Z 2 ( ) L4 2 FD\UiB(S(mi) Z

i=1 1=1
1 / (0yuly)? dH!
2 Jr, ureg .

To conclude the proof of the liminf inequality it is enough to let § — 0%.
Step 2: (Limsup inequality) Let (uo,vi,v2,w) be such that Ka(ug,v1,v2,w) < co. We assume first
that there exists 0 < 6 < p/2 such that

2
we HY? <rD U 35/4(;@)) , (5.9)

=1
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and we extend it to a function in H'/2(9Q) (in what follows, although with a slight abuse of notation,
we identify w with its extension). Then there exists w* € H'(Q) such that w* = w on O in the sense
of traces (see Theorem 18.40 in [Leol7]). Set

Up = U + EpU1 + +/ Endn,

where Z,, is given in polar coordinate at x; by

70 (1 0:) = G (L N\ D b,
Z (i, 0;) ._<p<26 >v < > +\/5>n(1 <25rl>)w (ri, 0;),
and Z, = \/g,w* in O\ U?Zl B,(x;). We claim that {u,},, defined from {u,}, via and ,

is a recovery sequence for (ug,v1,v2, w). Using the fact that ¢ (2%7"1-) = 1 for r; < ¢ and the change of
variables e,s = r; (see also (4.35)), (4.36]), and (4.37))), we get

en (7@ M2 Z(1) (.
Ji(v;) > limsup / |V Z,|? da —|—/ M - ciri_l/QM dr;
n—00 By (x;) 0 €n \/5>n

(1)(7“ 0) ¢ 1 ?
an \ToP) G2 g
i / ( Ve 2P s

In turn, it follows from (5.8]) that

9 2
lim sup ICéQ)(un) < Z {.Z(vz) + Bic; + Cyc; } + lim sup = L /F U B (\/? — Zczwz> dH*
D\U; Bs(x; n

2
n—oo i=1 n—o0 i=1

1 1
- / (9 ureg) dH' + lim sup / \V(Zn + Venur)|?dz.  (5.10)
2 Jrp NU; Bs(z:)

n—oo

By the convexity of the square function we have

25 ([ 70(,0) ¢ ) 26 A
Zn \"p V) Gioey,—1/2 < (P = (. _ G ~1/2 .
/ < 2 Getrar ) ans [ (g5n) (mtrfen0) - Gatror V)

[T (-5 (L) (- Sptar)

and therefore, since J;(v;) < 00,

25 [ 7(i) 2 26
. Zy'(1,0) ¢ _ ~1/2 Ci _ —1/2)?
hfln—igpfa < Ven 2 Plrir; > ari = /5 (w 2 plrar ) dri

In addition, using the fact that ¢ (%ri) = 0 for r; > 2J, we obtain

9 2
i | dHY = / (w - ci@Di) dH’ .
/FD\UiBQ(S( i) ( Z ) r () ;

p\U; Bas(z
We now observe that the result of Lemma straightforwardly extends to every v; € H such that
Ji(v;) < o0o. Consequently, we can argue as in the second step of the proof of Theorem to deduce
that

limsupl/ IV (Zn + JEnu) | da = 0.
2 Ja\U, Bs ()

n—oo
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This concludes the proof of the limsup inequality under the assumption that (5.9) is satisfied.

If on the other hand )
w¢ H'Y? (FD U 35/4(3%))

i=1
for any § > 0, we reproduce the mollification argument in (5.2) - (5.4) and proceed as before. O
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