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Abstract

The goal of this paper is to derive in the two-dimensional case necessary and
sufficient minimality conditions in terms of the second variation for the func-
tional

Gl / (IVo]* + X (>0 Q%) da,
Q

introduced in a classical paper of Alt and Caffarelli. For a special choice of @
this includes water waves. The second variation is obtained by computing the
second derivative of the functional along suitable variations of the free boundary.
It is proved that the strict positivity of the second variation gives a sufficient
condition for local minimality. Also, it is shown that smooth critical points are
local minimizers in a small tubular neighborhood of the free-boundary.
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Introduction

variation for the functional

introduced by Alt and Caffarelli in the seminal paper [AC] (see also [ACF1], [ACF2],

[ACF3], [CS], [F]). Here, @ C R¥ is an open connected set with locally Lipschitz

Flv) = / (V0P + X0} Q%) da, v € Ay,
Q

boundary, the function @ : Q — [0, 4+00) is continuous, and

where S C 09 is a measurable set with H"~!(S) > 0, and the Dirichlet datum

v* € (92) is a nonnegative function with Vo* € L2(Q;RY). The identity v = v*

Ao = {v e HL(Q): Vv e LAGRY), v="0" on S},

Hl

loc

on S is to be understood in the sense of traces.



In this paper a critical point for (1.1) is a function v € Ag such that F(v) € R
and

dF
d—g(v +ep) T 0 (1.2)

for every ¢ € H*(Q)) with ¢ = 0 on S in the sense of traces. It can be shown that
when v is a smooth critical point, e.g., v € C?(Q), and the free boundary QN {v > 0}
is a manifold of class C?, then we are led to a free boundary problem (see [KS]). To
be precise, the Euler-Lagrange equations of (1.1) are given by

Av =0 in QN {v >0},
v=0, |Vv|=0Q onQnd{v>0}, (1.3)
v=0* on S,

(see the Appendix).
Under the assumptions that @ is Holder continuous and

0< Qmin S Q(X) S Qmax < 00, (14)

Alt and Caffarelli [AC] proved existence of global minimizers, full regularity of the free
boundary QN9 {v > 0} of local minimizers for N = 2 and partial regularity for N > 3.
Using a monotonicity formula, Weiss in [W] improved the estimate of the Hausdorff
dimension of the singular set, and Caffarelli, Jerison, and Kenig [CJK] showed full
regularity in dimension NV = 3. Note, however, that in dimension N = 3 there exist
critical points of (1.1) whose free boundary is singular (see [AC] and [CJK]).

In this work we prove that in dimension N = 2 and under the assumption (1.4),
smooth critical points of (1.1) are actually local minimizers with respect to small O
perturbations (see the statement of Theorem 1.2 for the precise notion of minimality)
in a tubular neighborhood of 9{u > 0} N Q. The proof is based on the derivation of
a second order variation of the functional (1.1).

This approach has been successfully applied to several contexts. In particular, in
the study of the Mumford-Shah functional the strict positivity of the second varia-
tion has been used to obtain local minimality of critical points (see [BM], [CMM],
[C], [MM]), including triple junctions, which are at the core of the Mumford-Shah
conjecture. Furthermore, using the diffuse-interface Ohta-Kawasaki energy to model
microphase separation in diblock copolymer melts, critical configurations with pos-
itive second variation were found to be local minimizers in [AFM] (see also [BC1],
[BC2]). In turn, these results are used to determine global and local minimality of
certain lamellar configurations. Finally, in [FM] (see also [B]) the authors analyzed a
variational model for epitaxial growth of a thin elastic film over a flat substrate when
a lattice mismatch between the two materials is present. Again using techniques in-
volving the positivity of the second variation, they determined the critical threshold
for local and global minimality of the flat configuration.

We now present the main results of this paper. We assume Q := (—1,1) x (0, 00),
and we consider the functional F in (1.1) defined on the class

A= {ve L. () : Vve L (QR?), v(x,0) =u*(z) for v € (—1,1),
v(=1,y) =v(l,y) for y > 0}, (1.5)



where x = (7,y) € R?, u* € C'([—1,1]) is periodic, and u* > 0, while the function Q
satisfies

QeC"(Q), 0<Q(x) < Quax for every x € Q. (1.6)
By Theorem 1.3 in [AC] (see also [AL]), there exists a minimizer of F in .A. Moreover,

in view of Lemma 2.4 in [AC], for any local minimizer v of F in A, the set {v > 0}NQ
is open and v is harmonic in {v > 0} N Q. Let u € A be such that the set

Qr ={u>0}NnQ (1.7)
is open, u is harmonic in €, and

F:=0{u>0}NnAN (1.8)
is a smooth curve. Then u satisfies the elliptic problem

Au=0 in QJ’_,
u=0 onl, (1.9)
u=u* on{y=0}No0,,

together with the periodicity conditions
u(—1,y) =u(l,y) fory>0. (1.10)

We consider a one-parameter family of diffeomorphisms {®,}s¢[o,1] that coincide with
the identity in a uniform neighborhood of 0{2. We then derive the second deriva-
tive of F(us) with respect to s, where us is the minimizer of the Dirichlet energy
on ®,({u > 0}) with respect to the given boundary conditions. Imposing the first
derivative of F(us) to be zero at s = 0 gives back the equilibrium condition |Vu| = Q
on QN9 {u > 0}. The second order derivative of F(us) provides a new necessary con-
dition for minimizers, expressed in terms of a sign condition for a quadratic form (see
Remark 2.4 below). In turn, the strict positivity of this quadratic form gives a suffi-
cient condition for local minimality. This is made precise by the following theorem,
which is one of the main results of this paper.

In what follows, we denote by v : I' — S! a smooth normal vector to I'. The
curvature s of I' satisfies ;v = w1 and 0,7 = —kv, where 7 : I' — S! is a smooth
tangent vector to T'.

Theorem 1.1 Assume that Q € CY1(Q) and satisfies (1.6). Let u € C**(Q, UT),
a > 0, satisfy (1.7), (1.9), (1.10), and let the free boundary T’ given in (1.8) be the
graph of a C3 periodic function. Assume, in addition, that

(Ou)>=Q* onT (1.11)

and that there exists Cy > 0 such that

/Q 2|V |? da + / (00Q% +26Q2)2 dHY > Co [0y (112)
. r



for every ¢ € CH(T'), where uy, is the solution to

Auy =0 in Q4
Uy =QyY onT, (1.13)
Uy =0 on {y =0} Ny,

with uy(—1,y) = uy(1,y) for all y such that (£1,y) € Q. Then there exists § > 0
such that for every open set U € Q and for every diffeomorphism ® € C%*(R?;R?)
with

supp(® —Id) c U (1.14)
and
||(I) - IdHCZ,a(]RZ) < 57 (115)
we have
F(u) < F(v)

for every v € A with {v> 0} = &({u > 0}).

Although the notion of C?%-minimality established in the previous theorem may
be perceived as weak, it has been shown to lead to a stronger minimality property
in several of the contexts mentioned above. To be precise, in the case of epitaxial
growth Fusco and Morini [FM] proved that the strict positivity of the second variation
implies local minimality with respect to W2 perturbations and in turn, that this
leads to local minimality with respect to L°° perturbations. Similarly, for the diffuse-
interface Ohta-Kawasaki energy it is shown in [AFM] that the strict positivity of the
second variation yields local minimality with respect to WP perturbations and that
W?2P-local minimizers are actually L'-local minimizers. Thus, it is natural to expect
that in our setting C%“-minimizers are in fact local minimizers in a much larger class
of competitors. This will be addressed in a forthcoming paper.

We also observe that a different type of second variation for the functional (1.1) has
been used by Caffarelli, Jerison, and Kenig in [CJK] to prove full regularity of global
minimizers when N = 3, and by Weiss and Zhang in [WZ] for a similar functional
related to water waves with vorticity. In contrast to our case, where we perform
variations of the free boundary T', in [CJK] and [WZ] the variations are of the type
u + ev, where v is harmonic in €24 N B with boundary datum a given function g on
0(24 N B) and B is a ball.

Furthermore, Theorem 1.1 is closely related to Theorems 1 and 2 of Dambrine
in [D]. In this paper, Dambrine considered the solution ug to an elliptic equation
with homogeneous Dirichlet boundary condition on a moving domain €2, and proved
stability of critical points of the “shape functional”

UQH/f(uQ,VuQ)dx
Q

with coercive second variation (see also [DZ]). The family of diffeomorphisms con-
structed in [D] are variations in the normal direction to the boundary. In our case,



due to the additional boundary condition |Vv| = @ we need to consider more gen-
eral families of diffeomorphisms {®}.c[0,1] With zero tangential velocity on the free
boundaries. This latter property plays a crucial role in the proofs of the main theo-
rems, and it leads to a first order partial differential equation (see (3.41) below) that
we solve using the method of characteristics. One of the main difficulties is that the
components of the flow are given by compositions of functions that are discontinuous.
Thus, proving the regularity of the flow is extremely delicate.

In the second main theorem we prove that, if u is a smooth critical point of F
restricted to A, then u satisfies the minimality property of Theorem 1.1 in a tubular
neighborhood of T.

Theorem 1.2 Assume that Q satisfies (1.6) and Q > Qumin > 0. Let u € C%*(Qy)
be as in (1.7)-(1.10), and let T be the graph of a C® periodic function. Assume, in
addition, that

(Ou)*=Q* onT.

Then there exist € > 0 and c. > 0 such that
[ avuPde s (@034 2@ 2 ey, (110)
Ugﬁ{u>0} I

for every ¢ € CH(T'), where U. is the intersection of Q with the e-tubular neighborhood
of T, and wy is the solution to (1.13). In particular, if Q@ € CY1(Q) then there
exists 6. > 0 such that for every open set V. € U, and for every diffeomorphism
® € C?*(R?;R?) with

supp(® —1d) C V. and  [|P —1d|| g0 (ge) < Oe,

we have

/ (IVul? + X{u>0, Q%) da < / (IV0]* + X (>0 Q%) d
for every v € Li (U.) such that Vv € L*(U;;R?), v = u on OU. N Q4, v(—1,y) =
v(l,y) for all y such that (£1,y) € U, and {v > 0} = ®({u > 0}).

The constant ¢, in (1.16) depends strongly on Qmin. This is not surprising, since
the hypothesis Quin > 0 is fundamental for the regularity of local minimizers. When
Qmin = 0 one expects the free boundary to present singularities at points where
Q(x) = 0. Indeed, in dimension N = 2 and when Q(x,y) = /(¢ — 2g9y)+, where
q is a physical constant related to the hydraulic head and g is the gravitational
acceleration, the free boundary problem (1.3) is related to Stokes waves of greatest
height, which are characterized by the fact that their shape is not regular but has a
sharp crest of included angle 27 (see, e.g., [AL], [CoSS], [CoS], [MT], [PT], [ST], [S],
[S2], [T], [V], [VW], [VW2], [W], [WZ], and the references therein).

This paper is organized as follows. In Section 2 we give the precise definition of
admissible flows and derive the second variation of the functional (1.1). In Section 3,
given a small perturbation of I", we construct an admissible flow (see Definition 2.1)
joining I" to the perturbed free boundary and with zero tangential velocity on the free



boundaries. The regularity will be carried out in the appendix. In Section 4 we prove
Theorem 1.1. To control the second variation along the flow we use sharp Schauder
estimates together with the zero tangential velocity of the flow. Finally, in Section 5
we prove Theorem 1.2.

2 The Second Variation

In this section we derive the second variation of F on some suitable variations of
u that are constructed along a family of variations of I' according to the following
definition.

Definition 2.1 We say that {®s}c(0,1) is an admissible flow if it satisfies the fol-
lowing conditions:

(i) the map (s,x) — ®,(x) belongs to C2([0,1] x Q;R2);
(ii) for every s € [0,1], the map @ is a diffeomorphism from Q onto itself;
(iii) o = 1d in Q;
(iv) there exists an open set U, compactly contained in Q, such that supp(®s—1d) C
U for all s € [0,1].

Let {®,}se[0,1] be an admissible flow, and let u be as in Theorem 1.1. For every
s € [0,1] we consider the solution ug of the problem

Aug =0 in &,(Q),
us =0  on @ (), (2.1)
us=u on dP;({y =0} NoN,),

with us(—1,y) = us(1,y) for all y such that (£1,y) € ®4(Q). Note that, in view of
property (iv) in Definition 2.1, we have that

02s({y =0} N0Qy) = {y =0} NoQ,

and (£1,y) € ®4(Q) if and only if (£1,y) € Q. Moreover, extending us by 0
outside ®4(£24), we obtain us € A.

In what follows, for every s € [0,1] and & € Q we denote by tus(x) the partial
derivative with respect to r of the function (r, ) — w,(x) evaluated at (s, ), that

is,
ou,

s : . 2.2
(@) = S (@) (2:2)
We define ) )

X,i=®,00;, Z =0, 00! (2.3)
for every s € [0, 1], where

. P, - 0%,

(I)s = 3 q)s = . 2.4

or lr=s 87“2 r=s ( )



Moreover, we set I's := ®,4(T") and denote by 75 and v the tangent and normal vector
to 'y given by

(DCI)S)T -1 (D(I)S)_TV 1
Tsi=7——a—=0® ", vyi=————o0d . 2.5
(D%.)7) (D%,) T (2:5)

Finally, ks denotes the curvature of I';.
The proof of the following proposition follows the arguments in [CMM].

Proposition 2.2 Let u € C*(Q4 UT) satisfy (1.7)—(1.10), let {®,}sep0,1) be an ad-
missible flow, and let G := us o Dy, where ug solves (2.1). Then the map

S U

belongs to C*([0,1]; HY(Q4)). In particular, the function ts in (2.2) is well-defined
and is the unique solution to the boundary value problem

Augs =0 in ®s(Q4),
Uy = —(Xs - vs) Oy us  on Ty, (2.6)
s =0 on 0P,({y =0} NoNy),

with is(—1,y) = us(1,y) for all y such that (£1,y) € ®5(Q4).

Proof. For simplicity, we only prove the result in a neighborhood of s = 0. The gen-
eral case can be obtained analogously. In view of (2.1) a straightforward computation
shows that u, satisfies

div(A,Va,) =0 in Qy, o
s =u on'U({y =0} NnoQy), .
with @s(—1,y) = ds(1,y) for all (£1,y) € O, where
—1 —1\T
A, o= (W) o ®,. (2.8)
det D®g

Let V' be the subspace of all functions v € Hl(QL) such that v = 0 on T'U ({y =
0} N0N4) and v(—1,y) = v(1,y) for all (£1,y) € Q4. For every s € [0,1] and v € V
let H(s,v) be the unique weak solution w € V of the Poisson’s equation

Aw = div(4A;V(v +u)) in Q4.
Then
H:[0,1] xV = V.

Observe that Ay = Irxo and u is harmonic in Q4 by (1.9), hence H(0,0) = 0.
Moreover, (1.9) implies that H(0,v) = v, thus 9, (0, 0) is the identity operator from
V into V. Since the matrix Ay in (2.8) is of class C'!, by standard elliptic estimates
(see also the proof of Proposition 4.2 below), we have that the map H is of class



Cl. Hence, we are in a position to apply the implicit function theorem (see, e.g.,
[AP, Theorem 2.3]) to find 69 > 0 and ro > 0 and a unique continuous function
g :10,60] = By (0,r9) such that g(0) = 0 and

H(s,g(s)) =0

for all s € [0,80]. Moreover, g is of class C!.
On the other hand, in view of (2.7) the function s — u belongs to V' and satisfies

H(s,ts —u) =0

for all s € [0,1]. Since the map s — 4 — u is continuous (see, e.g., the proof of (4.3)
below), it follows by uniqueness that g(s) = 4s; — u for all s € [0,dp]. In particular,
s+ 1y — u is of class C1.

To prove (2.6), let v € H () be such that Vv € L*(;R?), v(=1,y) = v(1,y)

for y € (0,00), v(x,0) = 0 for z € (—1,1), and T Nsuppv = @. Then T'y Nsuppv = 0
for all s sufficiently small. By (2.1) it follows that there exists an open subset of {2
containing supp v and on which u is harmonic for all s sufficiently small; thus,

/VuS'Vvdm:O
Q

for all s sufficiently small. Differentiating the previous identity with respect to s (see
(2.2)) we obtain
/QVQS -Vv dx =0. (2.9)
By (2.1) we have that us(Ps(x)) = 0 for « € T'; thus,
s (Py(x)) = —Vuy(Ps(x)) - Dy(x) forx el
which by (2.3) is equivalent to
s = —Vus - X, on Iy (2.10)

On the other hand, since Vus = 9, usvs on I'y by (2.1), we have that Vu, - X, =
(X5 - vs) 0y,us on I'. In conclusion,

s = —(Xs-vs) O, us on . (2.11)
Let now v € HL _(Q) be such that Vv € L*(Q;R?), v(—1,y) = v(1,y) for y €

(0,00), v(z,0) =0 for z € (-1, 1), and decompose v = v1 +va, where I' Nsuppv1 = 0.
Then by (2.9) and (2.11), integrating by parts we get

/ws-vv dm:/Vﬂs~Vv2 da::/ (X - vs) Oy us Oy, vo dH"
Q Q s

B / (Xs - vs) Oy, us a”sUdH1
I

for all s sufficiently small. This proves that the function u, is a solution to (2.6). =

In view of Proposition 2.2 we can now derive the second derivative of F(us).



Theorem 2.3 Let u € C?(Q UT) satisfy (1.7)-(1.10), let Q satisfy (1.6), and let
{®s}sepo,1) be an admissible flow. Then

%f(us)=/ (Q° = |Vu|*) (X - vs) dH! (2.12)
and
d2
—QF(US):/ 2|V115|2dm+/ (00, Q% + 2k5(0y,us)?) (X - vs)2 dH!
ds D.(2) r,

+/ (Q* — |Vus|*) (Zs - vs — 2(Xs - 75) Or, (X5 - vs) + ks | X |?) dH,
Ts

(2.13)
where U is given in (2.6).

Remark 2.4 If u is a minimizer of F, then the expression in (2.12) is equal to zero
at s = 0; since this is true for any choice of the admissible flow, this implies

|Vul? =Q* onT. (2.14)
In turn, the second variation at s = 0 reduces to
d2
T () = / 2|Vux,.|* de +/ (0,Q% 4+ 26Q%) (X - v)*dH',  (2.15)
5= Q. r

where ux,., s the solution to

Aux,, =0 in Oy,
uxow = Q(Xo-v) on, (2.16)
Ux,p =0 on {y =0} NN,

with ux,.,(—1,y) = ux,..(1,y) for ally such that (£1,y) € Q. Indeed, on T we have
(0,u)? = |Vul? = Q? and d,u < 0 by the Hopf Lemma. Moreover, the expression in
(2.15) is nonnegative.

Note that every minimizer u satisfies the necessary condition

/ 2|Vuy|* dz +/ (0,Q% 4+ 2kQ*) > dH' > 0 (2.17)
Q4 r

for every 1 € C%(T), where uy, solves (2.16) with v in place of Xo - v. In fact, for
every ¢ € C2(T') with small C? norm it is possible to construct an admissible flow
{®s}sepo,1) such that Xo-v =1 onT'. To see this, it is enough to consider

Dy(2,y) = (2,y) + My) sy (z, w(@))v(z,y),

where the normal v to T’ has been extended smoothly, and X is a cut-off function (see
(8.38) below for more details). Hence, from (2.15) we deduce that (2.17) holds for
every ¢ € C2(T') with small C? norm. In turn, given an arbitrary 1 € C2(T'), using
a scaling argument, it can be shown that (2.17) continues to hold.



Remark 2.5 Observe that if u is a critical point of F, that is, u satisfies (2.14) in
addition to (1.7)-(1.10), then (2.15) holds.

Proof of Theorem 2.3. In view of (2.1), we have that us > 0 in ®4(); thus,
Flu,) :/ (IVusl? + Q*()) dz
P (Q24)
= [ (90 @) + Q@) det Db ) dy.
n

Differentiating the previous identity with respect to s we obtain

%}—(ué) = /Q 2Vus (@5(y)) - (Vﬂs(q)s(y)) + DQUs(q)s(y))‘i)s(y)) det D®(y) dy

/) VQ?(®s(y)) - ®s(y) det DD,(y) dy

[ (V@) + Q(@.()) - (det DO, v) dy.
Q, s

where we used (2.2) and (2.4). By [G, Chapter III, Section 10] we have

d .
2 (det D®B,) = [div(d, 0 1) 0 B,] det DD,
d S

S

thus, recalling that X, = ®, 0 &1 (see (2.3)),

d
— F(us) = / 2V, - Vit dz + / 2D*u Vu, - X, dx
ds ®.(24) . (24)

+/ Vus|? div X, da +/ (VQ* X, + Q*div X,) da.
@ (204) @ (24)

Integrating by parts, from (2.6) and the fact that supp(®s —Id) C U for all s € [0, 1],
we deduce that

iJf(us) :/ 20150, us dH" +/ div ((|Vus|* + Q%) X,) da
ds T, D ()

= [ (=206 )00 ) + (Vi + Q) (X, )
Is
Since (9,,us)* = |[Vus|? on Ty, we obtain (2.12).

We now derive the second derivative of F(us) with respect to s at s = 0. First,
by the area formula we can write the first derivative as

%f(us) = /F (Q*(®s(y)) — |Vus(s(y))[?) Ds(y) - vs(Ps(y)) Jo, (y) dH (y),

10



where Jg, := |(D®,)~Tv|det D®, is the one-dimensional Jacobian of ®,. Differenti-
ating with respect to s yields

d2

a2 )

:/ (VQ? - by) by - v dH!
r
—/2(Vu-Vﬂ0+D2uVu~<i>0) ¢>0-de1
r

dH* . (2.18)

s=0

2 2y 4 rg
+ [ (@ = 19uP) Tl (v 0®) I

The first integral in the above expression can be written as
/F (VQ?*- &g) &g -van' = /F (0:Q% (Do - 7) (Do - v) + 0,Q% (P - v)?) dH .
Since Vu = d,uv on T, the first term in the second line of (2.18) becomes
— /F Q(Vu . Vuo) by - vdH' = — /F 20,1100, u Pg - v dH'
= /F2uoa,,u0 dH',

where we used the fact that 4y = —(Xo-v)d,u by (2.10) and X = . We now focus
on the term

7/ Q(DQUVU . @0) o - vdH!.

r

Using again the fact that Vu -7 =0 on I' and that u is harmonic, we obtain
0=0,(Vu-7)=D?*ur-7+Vu-0,7=—-D?*uv-v—rdu onT,

that is,
D?>uwv-v=—rd,u onl.

Thus,
—/ Z(DQUVU . <i>0) Do - vdH!
r

=— / 2(D*uVu - T)((i)o ) (Pg - v) dHE — / 20,u(D*uv - 1/)(<i)0 -v)? dH?
r r

= 7/87(\Vu\2)(<i>0o7)(<i30'y)d7-l1+/2/<;(8yu)2(<i30'u)2d7-[1.
T T

Finally, by [CMM, Lemma 3.8] we have

d

o [@S (Vs 0®y) Jo, |

= éo-y—2(<i>0~7)87((i>o~u) +/€(‘i>0'7')2+5r[(¢>0'v)‘i>0] - T.

s=0

11



Combining the previous equalities, we deduce that

d2
ds?

F(us)

_ i u 1 2 k(O.0)2 .O'V 2 1
SZO_/Fz 00y 1o dH +/F(8VQ + 26(0,u)?) (Po - v)? dH
+/F(Q2 — |Vul?) (@0 - v — 2(Do - 7)0r (B0 - v) + k(Do - 7)?) dH?
+/F(Q2 — |Vul?) 8, [(®¢ - v)®o] - 7 dH"
+/F37(Q2 — |Vu|2)(<i>0 . T)(Cfo V) dH'.

Now, using the fundamental theorem of calculus on curves, the last two integrals in
the formula above satisfy

/(Q2 — |Vul?) 0, [(®o - v)®o] - TdH' + / 0 (Q* — |Vul?) (®q - 7) (D - v) dH'
T I

:/paT [(Q% — [Vul?) (&g - 1) o) - 7 dH!

= [ 5@ = [Vul?) (o -0 .

Thus, we conclude that

d2

gz ()

. :/ 2090, t1g dH* +/ (0,Q% + 26(9,u)?) (Xo - v)* dH"
= r r

+ (@ = 1Vu) (20w = 2(X0 - 7) 0, (X0 - 0) + 5l Xof?) R,
(2.19)

where we used the fact that 5 = X, and & = Z,.
Let us now fix r € (0,1). We observe that the family of diffeomorphisms {‘i’h}he[o,u
defined as
<i)h =®, p0 CI);l
is still an admissible flow (we can always reparametrize the variable h away from 0 so
that @, is defined for all h € [0,1]), and that

o= X, o= 7.

Applying (2.19), we deduce that

d? d2
)| _ = gaF )],
:/ Qurawurcmw/ (00, Q% + 26, (0, ur)?) (X, - vp) 2 dH!
T, .

+ / Q> = |Vu, ) (Zy - vp — 2(X, - 73) Or (X - 1) + K| X |2) AT

r
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To conclude the proof of (2.13), it remains to show that
/ 2050, U5 dH' = / 2|Viig|? de. (2.20)
r, P, (Q)
Indeed, by (2.6) and the divergence theorem
/ 20,0, 11 dH* = / 20140, s dH*
s

9% ()

= / Q(GSA% + |Vus|2) dx
D, (Qy)

= / 2|Viis|? de.
. (Q24)

Hence, (2.13) holds and the proof is complete. ]

3 Construction of the Family &,

Let 2, u, and I" be as in Section 2, and assume that
I'={(z,w)): ze(-1,1)},
where w is a periodic function with w € C3(R) and
w(z) >0 forall x € [-1,1]. (3.1)

Let
—-l<a<bkl

and consider a polynomial ¢ : [a,b] — R satisfying

pla) = ¢'(a) = ¢"(a) = " (a) =0, @(b) =¢'(b) =¢"(b) =¢"'(b)=0, (3.2)

and such that [¢||c2.a(, ;) << 1. Extend ¢ to be zero outside [a,b]. In this section
we construct an admissible flow (see Definition 2.1) joining T' to graph(w + ¢). To
estimate the second variation along the flow it is essential to have the condition
X575 =0 on I'y for every s. This leads to a first order partial differential equation
(see (3.41) below), that we solve using the method of characteristics. One of the main
difficulties is that the components of the flow are given by compositions of functions
that are discontinuous. Thus, proving the regularity of the flow is extremely delicate
and it will be carried out in the appendix. The construction of the flow is the central
part of this paper and will require several preliminary results.

Theorem 3.1 Let  and w be as above. Then there exists an admissible flow {®}se(o,1)
such that

O,(T) = {(z,w(z) + sp(zx)) : x € (-1,1)} (3.3)
and
Xs-17s=0 onTy (3.4)

for every s € [0,1].
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For every z € R, we consider the initial value problem

B = W (©el6) - (7 - w(EO)/(€),
% = (&), (3:5)

£(0) = =, n(0) = w(z).
Since ¢ € C2(R), w € C3(R), the function

(&n) € R* = (—w'(&)p(&) — (n —w(&))¢' (€), ¢(£))
is C?, globally Lipschitz, and satisfies

(=" (€)e(€) = (n = w(§))#'(€), e(€))] < C(1 + |n))

for all (¢,17) € R? and for some constant C' > 0. Hence, the initial value problem

(3.5) admits a unique global solution, which depends smoothly on the initial datum,

and thus on x. We will denote by (£(t, ), n(t,z)), t € R, the solution of (3.5).
Observe that if p(z) = 0, then

€@, 2),n(t,z)) = (2, w(@)). (3.6)

Remark 3.2 Note that if ¢'(zg) = w'(x0) = 0 or p(xg) = ¢’'(xg) = 0 for some
xo € R, then for every yo € R the unique solution of the initial value problem

%~ (©p() — (1~ wl€)P(©)
% = ¢(&), (37)

£(0) = zo, n(0) = yo,
is given by
£(t,z0) = w0, 1t x0) = Yo + tp(wo). (3.8)

Hence, if for some o <  we have p(a) = ¢'(a) = 0 and p(B) = ¢'(B) = 0,
then for every a < x < f the curve (&(-,z),n(-,x)) cannot leave the vertical strip
(o, B) x R, otherwise uniqueness for the initial value problem (8.7) would be violated.
In particular, in view of (3.2), if a < x < b then the curve (&(-,x),n(-,x)) cannot
leave the vertical strip (a,b) x R.

Theorem 3.3 Let ¢ and w be as above. Given s € [0,1] and = € R, there exists a
first time to = to(s,x) > 0 such that the solution (&(-,x),n(-,x)) of (3.5) intersects
the graph of the function w + s@ at time tg. Moreover, if s =0 or p(z) =0 then

to(s,x) =0, (3.9)
if p(x) #0 and ¢'(z) = w'(x) = 0 then

to(s,z) = s, (3.10)
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while in all the other cases
0 <tp(s,x) <s. (3.11)

Finally, to is of class C? in [0,1] x {x € R: p(x) # 0} and if p(z) # 0, then
e&(t,x))e(x) >0 for all 0 <t < to(s,z). (3.12)

Proof. We begin by proving the existence of tg. If s = 0 or p(z) = 0, then to(s,z) =0
by (3.5). Property (3.10) follows from (3.7) and (3.8) with g = = and yg = w(z).
Thus, in what follows assume that p(z) # 0, s > 0, and that at least one of ¢'(z)
and w'(x) is different from zero. By (3.2) and Remark 3.2, the curve (£(-, x),n(-, z))
cannot leave the vertical strip (a,b) x R.

Step 1: Assume that ¢(x) > 0 and let T' > 0 be the first time, if it exists, such that
w(&(T,x)) = 0, otherwise set T := oco. Then p(&(t,x)) > 0 for all 0 < ¢t < T, and so
by (3.5), n(-,x) is strictly increasing in [0,T") and there exists
lim n(t,x) = ¢ € (w(x), o0]. (3.13)
t—T—
If £ = 0o (and hence T' = 00), then the solution (£(-,x),n(:,x)) of (3.5) intersects the

graph of the function w + sp, and so ty exists. Thus, in what follows it suffices to
consider the case ¢ < co. Assume, by contradiction, that

n(t,x) < w((t,x)) + sp(&(t,z)) forall0<t<T. (3.14)

Substep la: We claim that the curve ({(-,z),n(-,x)) stays above the graph of the
function w for all 0 < ¢t < T. Consider the function

G(&n) = 77;(%(5) (3.15)
defined for all (&) # 0 and n € R. Then
_ —w'(©p(§) — (n—w(€))¥'(§) _

and so by (3.5), forall 0 <t < T,

0i&(t, x) = P (E(t,2)) 0 G (E(E, ), (t, ),
3t77(t7 l‘) = <p2(£(t, I))anG(g(t’ CE), n(t’ .CE))

It follows that for all 0 < t < T,

(0 (t,2))” + (Oun(t, )
P2((t, 7))

= 0§G(f(t, 1’), n(tv l’))atf(t, x)

+ 871G(§(t7 'T)’ 77(157 'T))atn(t’ x)
= 8t(G<£(ta 33)7 n(ta 33))
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Integrating between 0 and ¢, and using (3.5) once more, gives

[ Qa0 O, _ nier) —witien)
0o PEn) Pt

Since the integrand on the left-hand side is positive for all 0 < ¢t < T', it follows that
n(t,x) > w(é(t,x)) for all 0 <t < T. If T < oo, then also by (3.14) we have that

w(E(t,x)) <nlt,x) <w(E(t x)) + sp(E(t, ),

and letting ¢ — T~ gives that w(¢(T,z)) = n(T,z) = w(é(T,z)) + se(&(T,x)),
where we have used the fact that o(£(7T,x)) = 0. This contradicts (3.14), and thus
establishes the existence of tg in the case T' < oco.

It remains to study the case T' = co. Since % =1 by (3.5), it follows from

(3.16) that

(3.16)

 _ n(t2) — wlg(t, )
A ({ (X))
for all t > 0. Let o < x < 8 be such that ¢ > 0 in (o, 8) and p(a) = ¢(8) = 0. We
claim that there exists

(3.17)

tlirrolo it x) =1¢€{a, B} (3.18)
To see this, note that since p(£(¢,x)) > 0 for all ¢, we have that
a<ly = liggfﬁ(t,x), Iy = liills;)lipf(t,x) <pB.
Assume, by contradiction, that I3 < 3. Then there exists a sequence t; — oo such

that £(t;,z) = ¢ € (o, 8). Taking t = ¢; in (3.17), and using (3.13) and the fact that
{ < o0, gives

0 = lim # = lim M%) —wEti,2)) _ €—wlc)

A A O T C

which is a contradiction. Hence, I = l5. Note that the previous argument also shows
that {1 cannot belong to («, 3). Hence, either I} = a or Iy = 3.

Substep 1b: We prove the existence of 5. Without loss of generality, assume that
[ = « (the case | = f is similar). Then by (3.14) and Substep la, we have

w(§(t,x)) <n(t,z) <w(E(t x)) + sp(E(t, )

for all ¢ > 0. Hence,

n(t, ) — w(¢(t, x))

0< < s.

e(&(t, )
Letting t — oo we obtain a contradiction from (3.17). Therefore, we have proved that

condition (3.14) fails. This asserts the existence of ¢g.

Substep 1c: We prove (3.12). It follows from Substeps 1a and 1b that to(s,z) < T,
so that

w(&(t,z))p(x) >0 forall 0 <t < to(s,x).
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To prove (3.12), it remains to show that ¢(&(to(s,x),x)) > 0. Let tg := to(s, ).
Assume, by contradiction, that ¢(&(to,z)) = 0. Then by the definition of ¢y(s,x) we
have that

77(th x) = w(g(t()v 1’)),

which contradicts the fact that the unique solution of the initial value problem

L = W (©le) - (7 - w(EO)(€),
2~ e,

£(to) = &(to, ), n(to) = w(&(to, ),
is given by
&(t) =&t o), m(t xo) = w(é(to, ).
Step 2: The case ¢(z) < 0 is similar and we omit it.
Step 3: We prove the regularity of ¢y. Fix (sg,2o) € [0,1] x R, with ¢(z0) # 0, and
let to := to(S0,x0). Assume that p(zg) > 0 (the case p(zg) < 0 is similar), and let

a < xp < B be such that ¢ > 0 in (a, 3) and p(a) = ¢(B) = 0. Consider the C?
function

F(Svtvx) = n(tvx) - w({“(t,x)) - Sw(g(ta SU))
defined in the set
V=R xRx (a, ).

Then F(sg, tg, zo) = 0. By (3.5) and (3.12), we have
9 F (s0, o, x0) = Oin(to, mo) — [w'(E(to, 20)) + so (€(to, 0))] Beé (to, xo)
= ¢(&(to, o)) [1 + (w'(€(to, 20)) + 50’ (E(to, 20)))* | > 0.

Thus, we can apply the implicit function theorem to conclude that there exist 0 <
r < min{f — zg,xo — a}, 6 > 0, a function t; : B((so,x0);7) — [to — 0, to + ] of class
C? such that t;(sg, o) = to and

F(s,t1(s,z),z) =0 for all (s,z) € B((so,0);7).

Note that, in view of (3.16), which continues to hold for ¢ < 0 small, and the fact
that ¢ > 0, for ¢ < 0 sufficiently small,

n(t, ) <w((t,z)) < w(E(t z)) + sp(€(t, ),

and so the function ¢; must be nonnegative. Hence, by the definition of #(s,z), we
have
to(s,z) < ti(s,x) for all (s,z) € B((sg,0);7).

We claim that t1(s,z) = to(s, z) for all (s,x) € B((so,%0);71) for some 0 < r; < 7.
Since ty is the first time that the solution (&(-,20),n(-,x0)) of (3.5) intersects the
graph of the function w + sg¢, if £y > 0 we have that

n(t, o) < w(&(t,x0)) + sop(£(t, o)) for all 0 <t < tp.
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Fix 0 < e < 4 and let

o= min(w(g(t:20)) + sop(€(t,x0) — nlt,z0) > 0.

By the regularity of w and ¢ and the continuity of ¢ and n with respect to initial
data, there exists 0 < r; < r such that

w(E(t, @) + sp(&(t, ) = n(t, x) — (w(E(t z0)) + sop(§(t, x0)) — n(t, z0))| < %cs
for all (s, z) € B((s0,20);71) and for all t € [0,t — <]. Hence,
Nt x) < w(E(t,z) + sp(E(t,x)) forall0 <t <ty—e
for all (s, 2) € B((s0,20);71). This implies that
to —e < to(s, ) (3.19)

for all (s,z) € B((so,x0);71). If tg = 0, then (3.19) continues to hold since to(s, z) >
0. On the other hand, since ¢; is continuous and ¢1(sg, xg) = to, by taking r; smaller
if necessary, we have that to —e < t1(s,z) < to + ¢ for all (s,z) € B((so0,%0);71)-
Because to(s,z) < ti(s,x), also by (3.19), we have that

to—&éto(s,x) <tg+e

for all (s,z) € B((so,0);r1). Using the fact that € < 0, it follows from the uniqueness
of the implicit function that to(s,z) = t1(s,x) for all (s,z) € B((so,%o);r1). In turn,

F(s,to(s,z),z) =0 for all (s,z) € B((s0,0);71),
and so, by (3.5) and the definition of ¢, we have
0. F (s,t0(s, ), x)
9, F(s,to(s, x), x)
_ [wE(to(s, 2),2)) + 50" (E(to(s, 2), )] Dut(to(s, ), ) — Dun(to(s, ), )

e (Elto(s,2),2)) [1+ (W' (E(to(s, @), 2)) + 5/ (€ (to (5, 2), 2)))°
(3.20)

Ozto(s,x) =

Step 4: It remains to prove (3.11). By (3.17) and the definition of ¢y, we have that

n(to(s, ), 2) — w(€(to(s, ), x))
p(&(to(s, z), x))

This concludes the proof. [

0 <to(s,z) < =s.

Remark 3.4 By (3.5), ift € R and 0 <t < 1, then

In(t, @ |—’/ (r,2)) dr
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and, in turn,

£t @) — 2| = /0 [—w'(&(r,2)p(&(r,x)) = (n(r,x) — w(&(r,x)))¢ (§(r, )] dr

< 3wl aey 1€ller ey + 12l e aen 1971 cam) -

Since 0 < to(s,z) < s <1 by Theorem 3.3, it follows that

§(t) = al <3 (lwllcr o + Iellcanp ) 1ellor o (3:21)
In(t, ) —w(@)] < llllega,n
for all s € [0,1], x € R, and 0 <t < ty(s,z).
Given s € [0,1] and z € R, we define the function g : [0,1] x R — R by
9(5,2) = E(to(s,2), 2), (3.22)

where (s, z) is given by Theorem 3.3. Note that by the definition of to(s,x), if s =0
or p(x) =0, then ty(s,z) =0, and so

g(s,z) =&(0,z) = x. (3.23)

Moreover, since (£(to(s, ), x),n(to(s,x),x)) belongs to the graph of w + sy, we have
that

n(to(svx)’x) = w(g(tO(sax)a 33‘)) + 3@(§(t0(57x)’x)) (324)
= w(g(s,z)) + se(g(s, 7).

We will use this property in the sequel.

The following theorem states that the function g is of class C2. As part of the
proof we will actually show that the function tq is discontinuous at all points (s, o)
with ¢(zo) = 0 and ¢ # 0 near xy. Hence, establishing the regularity of ¢ is far
from trivial. The proof of Theorem 3.5 is rather lengthy and will be presented in the
appendix.

Theorem 3.5 Let ¢ and w be as above. Then the function g : [0,1] xR — R defined
in (3.22) is of class C?.

Define the function 4 : [0,1] x R — R by
h(s,z) == n(to(s, ), ), (3.25)
where to(s, x) is given by Theorem 3.3. Note that, by (3.24),
h(s,z) = w(g(s,z)) + sp(g(s, x)). (3.26)

Thus in view of Theorem 3.5, the function h is of class C?. Moreover, by (3.23), if
s=0or ¢(z) =0, then
h(s,x) = w(x). (3.27)
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Theorem 3.6 Let ¢ and w be as above. Then for every s € [0,1],

{(g(s,2), h(s,2)) = @ € [a,0]} = {(2,w(z) + sp(z)) : 2 € [a,b]}.

Proof. Given sy € [0,1] and ¢ € [a, b], we want to find = € [a,b] such that

(€(to(s0, ), ), n(to(s0, ), ) = (w0, w(wo) + sop(0))-

If so = 0 or p(xp) = 0, then by (3.23) and (3.27), g(so, o) = o and h(sg, z¢) = w(xo)
and so there is nothing to prove. Therefore, also by (3.2), in what follows we assume
that sop > 0, zg € (a,b), and p(xg) # 0. Assume further that ¢(zp) > 0 (the case
©(xg) < 0 is similar).

Consider the initial value problem

a _

5 = W(Ee&) + (1 —w(€))P'(§),
&~ —le), (328)

£(0) = zo, 1(0) = w(xo) + sov(wo).

Reasoning as for (3.5), we have that (3.28) admits a unique solution (&p, 1) defined
for all ¢ € R. We claim that (£, 7o) intersects the graph of w at some time t; > 0.
For every y € R the functions

&Gi(t) =a, m(t) =y,
fg(t) = b, Ug(t) =Yy

are solutions of the differential system in (3.28) with £(0) = a, n(0) = y, and £(0) = b,
n(0) = y, respectively. Hence, by uniqueness of (3.28), we conclude that the curve
(€0,mo0) cannot leave the vertical strip (a,b) x R.

Let T > 0 be the first time, if it exists, such that ¢(& (7)) = 0, otherwise set
T := oo. Then by (3.28) the function 7y is strictly decreasing in [0,T), and so there
exists

tli)rr%no(t) =l € [—oo,w(xg) + sop(x0)).

If I = —oo (and hence T = o0), then there exists a time ¢; > 0 such that (£, n0)
intersects the graph of w. Thus, assume that [ € R and that

w(éo(t)) <mo(t) forall0<t<T. (3.29)
Reasoning as in Substep la of the proof of Theorem 3.3, with G in (3.15) replaced by
w(&) —n
G&n) = —5—
&) o(£)

we have that

L @ko(r)? + @) o
/0 22(&0(r) dr = G(&o(t),no(t)) — G(wo, w(xo) + sop(z0))
_ w&o(t) —m(t)

)
©(&o())

+ So
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for all 0 < ¢t < T. Since the integrand on the left-hand side is positive for ¢t > 0, it
follows that no(t) < w(&o(t)) + sop(&o(t)) for all 0 < ¢t < T. As in Substep la of the
proof of Theorem 3.3, if T' < oo then we obtain a contradiction to (3.29). Thus, we
can assume that 7' = co. As in Subtep la of the proof of Theorem 3.3, the inequality

w(&o(t)) — no(t)
N )

for all ¢ > 0 implies (3.18). The existence of ¢; follows exactly as in Substep 1b of the
proof of Theorem 3.3.

This shows that (£p, 79) intersects the graph of w at some time ¢; > 0. Assume that
t1 is the first such time. Define = := &y(¢1). Then the function (§o(¢1 — -),no(t1 — *))
is the solution (&(-,z),n(-,x)) of the initial value problem (3.5), and at time t = #; it
touches the graph of w+ spp at the point (zg, w(xo) + sop(xo)). Hence, to(so, ) = t1
and

+ So

(£ (to(s, ), ), n(to(s, x), x)) = (20, w(x0) + so(x0))-
This completes the proof. [

To estimate the norm of d,¢ and 0,k we need the following preliminary result.
Proposition 3.7 Let ¢ and w be as above with ||¢||c2((, ) < 1. Then
1028(t,2) = 1] < Cllellczany 1020t 2) —w'(@)] < Cllell oz o)
Jor allz € R and 0 <t <to(s,x), where C >0 depends on ||w||c2((, y))-

Proof. Differentiating (3.5) with respect to x, we have that

01 (10:€ +19:n[*) = —2[w" (©)2(€) + (n — w(€)e" ()] 02

If o(x) = 0, then by (3.6) the right-hand side of the previous equality is identically
equal to zero. If p(x) # 0 then assume that ¢(z) > 0 (the case ¢(z) < 0 is similar).
Using the fact that

w(é(t,x)) <n(t,z) < w((t, ) + sp(§(t, x))

for all 0 <t <tp(s,x) (see Step 1 of the proof of Theorem 3.3), we obtain
0:6(t @) + 9t @) < 1+ (w'())?
! 2 2
+ 2 lelloasy (1" logasn + 19" loqas) / (10260 2) + |22m(r, ) ) dr

for all 0 < t < tp(s,z). By Gronwall’s inequality and the facts that ¢y < 1 by
Theorem 3.3 and [|¢|| 2[4y < 1, We deduce that

026 (8 )| + 2n(t, )

2
< (1 + Hw/”C([a,b])) exp (2 [l a0y + 2)
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for 0 <t <tg(s,z). In turn,
|0xm(t, z) x| </ |’ (&(r, 2))0LE(r, )| dr (3.30)

< 1 Noauy (1 + [l ||c<[a,b]>) exp (Hw"ncqa,bp +1).
This implies that
‘825(15,%) - 1|

< [/l eramne(etr.a) + (ot 2) — (el )" (€, ) one(r. )
+ ' (&(r,x))Dpn(r, x)| dr

< lellegam (10" Nogau + 19" legas )
% (1 10l ) 5 (10" llogas, +1)

+ H@/HC([a,b]) (1 + ”w/HC([a,b])) exp (”w"”cqa,b]) + 1) :

Since [|¢[lc2((q,p) < 1, this concludes the proof. ]

Theorem 3.8 Let ¢ and w be as above with ||| 244y < 1. Then

1029(s, ) = 1| < Co [[¢ll o2 fa,p)) » (3.31)
|0:h(s,2) —w'(z)| < Co H‘PHCZ([a,b]) (3.32)

for all (s,z) € [0,1] X R, where Co > 0 depends on [|w]|c2((q.p))-

Proof. The proof is subdivided into three steps.
Step 1: By (5.9) in the Appendix, for s > 0 and ¢(z) > 0 (the case p(x) < 0 is
similar), we have
0:&(to(s,x),2) — 1
Oz9(s,2) — 1= 2
A T g(ova) + s . ))
ol 2)) + 59/ g(e, ] ) ~ 0/ (g(0,7) — slola)] g g
1+ [w'(g(s,z)) + s¢'(g(s, 7))]
w'(g(s,x)) + s¢'(g(s, 7)) b (s 2). o _
T+ [w(g(o,2) + o9/ (glor ot 20092 =)
By the mean value theorem, (3.5), (3.22), the facts that to(s,z) <1 and w(§) <n <
w(&) + sp(€) (see Theorem 3.3), we obtain

w/(z) — @ (g(s,2)] = 0 (€)@ — g(s,))]
to(s,x)
< leguy [ € a)p(ena) (3:3)
T () — w(E(r,2))) & (€ ) dr

< "Nl W e + 19 e qae) 19llea) -

+

22



Hence, from (3.33) and Proposition 3.7, we deduce that

9a9(s,2) — 1] < 9:tos,), @) — 1] + [w' () — w'(g(s,2))] + |’ (g(s,2))
+laun(tos, ). @) ' (@) < C @l enany -

Step 2: If s > 0 and ¢(z) = 0, then by (5.23) in the Appendix,

1+ [w’(fc)]2

V14 (@) + s/ ()]
w'(z )+890 (@) ~ [w'(x)]?

:<\/1+[ +\/1 z) + s/ (x >\/1+ ) + s¢' ()]

< 2 w'll o qaup) 19" e ae)y H<P/||c([a,b]) ,

|0zg(s,2) = 1| =1—

so that (3.31) holds even in this case.
Step 3: To conclude the proof, note that by (3.26),

Ozh(s,x) = [w'(g(s,x)) + s¢'(9(s,2))]0xg(s, z),
and so by (3.31) and (3.34), we deduce that

9sh(s, ) — v (@)] < [/ (g(s,2)) + 5/ (9(5, 2)[1ag(s,2) — 1]
+ [/ (g(s,2)) — ' (@)] + ¢ (9(5.2))] < Clllloaany -

which proves (3.32). |
We are now ready to construct the family of diffeomorphisms.

Proof of Theorem 3.1. For every s € [0,1], we define ¥, : R? — R? by

Us(z,y) := (9(s,2), h(s, ) +y — w(2)), (3.35)

where g and h are the functions given in (3.22) and (3.25), respectively. By Theo-
rem 3.5 and (3.26), U, is of class C? ([0, 1] x R?). Moreover, by (3.23) and (3.27),

\I/()(l‘,y) = (x7y)7

which implies, in particular, that ¥o(I') = I", while by Theorem 3.6 and the fact that
g(s,z) =z and h(s,z) = w(z) for all x € R\ [a, b] by (3.23) and (3.27), it follows that

() = {Ty(a, w(@) < @ € (~1,1)} = {(z,w(@) + sp(@)) : @ € (~1,1)}

for every s € [0, 1].
Since min;_; ;;w > 0 by (3.1), let

0<2L < min w, M > max w. (3.36)
[—1,1] [—1,1]
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We now modify ¥, to obtain a diffeomorphism in R? which coincides with the identity
outside the open set U := (a,b) x (L, M + 2). Given

0<dp <min{l,L}, (3.37)
construct a function A € C° (R) such that 0 < A <1, A(y) =1 L+ <y <
M+2—-5, My)=0ify>M+2o0ry<L,and [N (y)] <2/ for all y € R. For
every s € [0,1] and (z,y) € R?, define

Oy(z,y) = My)¥s(z, ) + (1 = AMy) (2, ). (3.38)
Then
D@y (x,y) = Ioxz + M) (DVs(@,y) — Iox2) + (Ts(z,y) — (2,9)) @ (0,X(y)), (3.39)
and so

ID®u(0.9)  Lana| < D) ~ Toal + 5 [Wa(a0) — (@20
By Theorem 3.8 and (3.35), we have
|DVs(x,y) — Tax2| < Collellcz(jap) -
while by (3.23), (3.27), and Theorem 3.8, for = € (a,b),
Ws(z,y) = (2,9)| < 2|g(s, @) — 2|+ 2[h(s, ) —w(z)|

/9«’ (0zg (s,7) — 1) dr /I (Oph (s,7) —w' (1)) dr

< Collell ez (o) »

=2 +2

while for © ¢ (a,b), Us(z,y) = (x,y) by (3.23) and (3.27), since ¢ = 0 outside (a, b).
Hence, for all (z,y) € R2, we deduce that

1
|D®s(z,y) — I2x2| < Co (1 + 50) 12l 2 (fae)y < 1 (3.40)
provided ||<p||C2([a,b]) < 53 and
1
0<dp < =—.
™90,

This implies that ®, is invertible in R2. It follows by the inverse function theorem
that @, (R?) is open and (®,) ' is of class C2.

Moreover, we have already seen that U, (z,y) = (z,y) for z ¢ (a,b), and so, again
by (3.38), ®,(x,y) = (x,y) for ¢ (a,b). This shows that @, is the identity outside
U. In particular, ®, (0U) = U and @, (U) C U.

Finally, we observe that



since, by (3.36) and (3.37),
L8 2 2L — [l gogiany < (@) +59() < M + [l gogan < M +2— 6o,

provided
1@l co(fa,p)y < min{l, L —do}.

To conclude the proof, it remains to show (3.4). By (3.38), (3.39), and the fact
that A (y) =1if L+ <y < M + 2 — &y, we have that

P, (z, w(z)) - (DPs (2, w(z))T (2, 0(T)))
=V (z,w(2))  (DT(z,w(x))r(2,w(z)))
029(s,x) (1,w'(z))

0
= (0s9(s, ), 0sh(s,x)) - ( dsh(s,z) —w'(z) 1 ) ma

provided ||<p||cg,a(a7b) is sufficiently small. Hence, by (2.3), (3.4) is equivalent to
0:9(8,2)0s9(s,x) + Oxh(s, 2)0sh(s,2) =0 (3.41)

for every (s,z) € [0,1] x [a, b].
Differentiating (3.26) with respect to z and s, respectively, yields

duh = (W' (g) + 5¢'(9))02g9,  Osh = (wW'(g) + s¢'(9))0sg + ©(9), (3.42)
so that
029059 + 0xhOsh = [(1+ (w'(g9) + s¢'(9))*)sg + (W' (9) + s¢'(9))2(9)] 0z g,

which is equal to 0 by (5.6), (5.11), and (5.16) in the Appendix. |

4 Proof of Theorem 1.1

To prove Theorem 1.1 we first establish a minimality property with respect to special
variations of the domain €. To be precise, we will show the following result.

Theorem 4.1 Under the assumptions of Theorem 1.1, there exists 61 > 0 such that
for all polynomials ¢ : [a,b] — R satisfying (3.2), extended to be zero outside [a,b]
and with [|¢[|g2.0 g p) < 61,

F(u) < F(v)

for every v € A such that {v > 0} = ®1({u > 0}), where {®,}scpo,1] is the admissible
flow given in Theorem 3.1.

We begin with some preliminary estimates.
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Proposition 4.2 Let Q € CY1(Q), let ¢ be as in Theorem 4.1, and let us be the
solution to problem (2.1), where @ is given by (3.38). Then

|Q*(z, w(x) + sp(x)) — [Vus(z, w(z) + s())]*| < Cllollo2.0(ap
and
102(Q* (2, w(2) + sp(2)) = [Vus(z, w(z) + 50(2)*) | < Cllellcza(ap
for all x € [=1,1], where C' depends only on ||w||cz.a_q 1y and [[ullcz.eq, -

Proof. The proof is subdivided into three steps.

Step 1: Recall that the function g := us o @, satisfies the boundary value problem
(2.7) with coefficients A given by (2.8). Using the matrix expansion

(Iax2 + B) ™' = Iox2 — B+ o(|B]),
it follows from (3.40) that the matrix B := Ag — Ioxo satisfies

1
|Bs| < C||80||c2([a7b]) < 2 (4.1)

provided ||| 2 (4,5 is sufficiently small. In turn, the matrix A, is positive definite
uniformly with respect to s. Using (4.1), by (2.7) and Poincaré inequality in the
Lipschitz domain Q, we obtain

||7:L8||H1(Q+) <c Hu||H1(Q+) J (4.2)

where C' > 0 depends on 24 but not on s. On the other hand, by (1.9) and (2.7) we
have

div(A,V(is —u)) = —div(Bs;Vu) in Q4

s —u=0 onT'U ({y = 0} N 9Qy),

with (s — u)(—=1,y) = (4s — u)(1,y) for all (£1,y) € Q.. Hence, with similar
estimates, it follows from (4.1) that

[ds — u||H1(Q+) <C ||BS||CU(Q+) Hu||H1(Q+) <C H‘P|‘c2([a,b}) Hu||H1(Q+) : (4.3)

Using the fact that dg(x,y) = us(x,y) for all y < L, where L is given in (3.36), by
(4.2) and (4.3) we have

sl —1x0,0) £ G llus = ullgr i) < Cllellczapy . (44)

where C' depends on [|w|[c1(_y 1) and [Jul|g1(q, - By [GT, Theorem 9.13] and (4.4),

sl 2= 1,1)x (0,600)) SO0 Mts = Ul g2 21,1y % (e0,600)) < C Nllo2((ap))

for 0 < g9 < L/6. Since us and u are periodic in the x variable, they are still harmonic
in R X (g9, 6ep) and satisfy

lwsll 2 ((ar by (co,600)) < Co tts = Ull g2 1y (c0,600)) < C NNl c2(a,))
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for some a’ < —1 <1 < V. Using [GT, Theorem 2.10] in the set (a’,b’) x (g9, 6e0) we
obtain that

s lloa((—1,1)x (2e0,520) < Cr lltts = Ullgs—1,1)x (260,560)) < C Nl 2y s (45)
where we invoked the continuous immersion of H?((a’, ") x (9, 6€0)) into CO((a’, ') x
(€0, 6¢0)).

Step 2: Let ||l c2((q,4) < €0- By Theorem 3.1 the function
vs(,y) o= us(,y + sp(x)) (4.6)
is well-defined in the set
Qo := Q4 N ((—1,1) x (3e0,0)), (4.7)
and by (2.1) it satisfies the elliptic equation
Dovs + (14 (s¢')*)02vs — 259/ 07 ,vs — 59" Oyvs =0 in Qp. (4.8)

Moreover, since ¢ = 0 outside [a,b] C (—1,1), we have vs(—1,y) = us(—1,y) =
us(1,y) = vs(1,y). Hence, v, satisfies the previous equation in ((a’,d’) x (39, 00)) N
{u > 0}, where u has been extended periodically and o’ < —1 < 1 < . More-
over, v; = 0 on T' by (2.1) and (3.3), while vs(z,3e0) = us(x, 30 + sp(z)). Since
[llc2(ja,p) < €0, We have that (z,3g0 + sp(x)) € (a, ') x (20, 4e0).
By (3.40) and (4.2) we have that
sl 1 (@, (y)) < C

where C' depends on Q4 and ||lul| (o, - By the lateral periodicity of u,, the same

estimate holds with ®,(Q4) replaced by ®,(((a’,b") x (3e9,00)) N {u > 0}). In turn,
by (4.6) and the chain rule

081l g1 (a6 (320,00 {us0p) < C-

It follows from [GT, Theorem 9.13], with T the graph of w restricted to (a’,d’), that

Hvs||H2(((a~,b//)x(450,oo))ﬂ{u>0}) ¢

for a’ < a” < -1 <1<V <V. By the continuous immersion of H?(((a”,b") x
(4e9,00)) N {u > 0}) into CO(((a”,b") x (4g9,0)) N {u > 0}), we have

Vsl co.a (((ar b7 x (420,00 {us0p) < C-

By [GT, Corollary 6.7], with T the graph of w restricted to (a”,b"”), and using a
covering argument, we obtain that there exists an £1-neighborhood I'y of T" such that

[0sll 2.0y 00y < € (4.9)
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for some 0 < &1 < 9. By (4.5) and the chain rule, we have that

[0sll 2.0 ((=1,1) % (320,a20)) < C- (4.10)

In the remaining set we can now use the interior Schauder’s estimate in [GT, Corol-
lary 6.3] to conclude, also by (4.9) and (4.10), that there exists a constant C' depending
only on [|wl|cz.a(—1,1) and [[ufl g1, ) such that

0]l 2,000y < € (4.11)

for all s € (0,1).
By (1.9) and (4.8),
A(vs —u) = —(s¢')2020s + 259’02, vs + 59”9y, in Q.

Since vs —u = 0 on I', we can argue as in Step 1, and from standard estimates,
Poincaré inequality, (4.11), and the fact that [|¢[| ¢z (4, < €0, We obtain

lvs =l gy < Cllellczap + € llvs = ullor (1) q3e0p)
< Cllellczap)
where the last inequality follows from the chain rule and (4.5). By the lateral periodic-
ity of v and u, the same estimate holds with Qg replaced by ((a’,b") x (329, 00))N{u >

0}. Again by [GT, Theorem 9.13], with T the graph of w restricted to (a’,d’), we
deduce that

lvs =l g2 a0y x (a0 00 a0y < C Vs =l a0y x 320,00 N um0))
+C ||‘P||c2([a7b]) ”US||H2(((a,’7b’)><(3€07oo))ﬂ{u>0})
< Cllellez(ap)

fora’ <a” < —1<1<b" <V, and where we have used the previous inequality and
(4.11), which holds in ((a”,b") x (3g9,00)) N {u > 0} by lateral periodicity.

By [GT, Corollary 6.7], with T' the graph of w restricted to (a”, "), and a covering
argument, we have that

lvs — u||C2»a(F1ﬂQo) < Clvs = U’”C"(((a”,b”)><(3£o,oo))ﬁ{u>0})
+C ||‘P||cz»a([a,b]) ||Us||cz=a(((a”,bw)x(geo,oo))m{u>o})
< Cllellcz(ay) -

where we used the fact that the estimate (4.11) holds in ((a”, ") x (329, 00))N{u > 0}
by lateral periodicity. We can now continue as before using (4.5) and [GT, Corol-
lary 6.3] to conclude that

[|vs — U”c%a(go) <C ||S0||Cz=0‘(a,b) : (4.12)

Step 3: Since
Q*(z,w(x)) — |Vu(z,w(x))* =0 (4.13)
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for all z € [-1,1], by (1.9) and (1.11) it follows that

|Q*(z, w(z) + sp(@)) — [Vus(z, w(z) + sp(x))]?]
< Q% (@, w(z) + sp(@)) — Q*(x, w(w))|
+|IVus (2, w(z) + sp())* — [Vu(e, w(z)) |
< |[[@%[len lellco + [[Vus(@, w(@) + sp(@)* = [Vu(z, w(@)) |-
By (4.6), (4.11), (4.12), and the chain rule, the last term on the right-hand side can
be estimated from above by
CllIVuslico + VUl go) [ Vus(z, w(z) + sp(x)) — Vu(z, w(z))|
< C(IVuslico + 1Vullco) (Vs (2, w(@)) = Vu(z, w(@))| + [ Vsl co [ (2)])
< CHQPHcZa(a,b)a
where, as before, C' depends only on [|w||c2.a(_ 1) and [[u[|c1(q, - On the other hand

by (4.13),
02 (Q*(z, w(x)) — [Vu(z, w(x))[*) =0

for all z € [-1,1], and so
102 (Q* (2, w(2) + sp(w)) — |Vus (@, w(z) + s(@))|?) |
< 0 (Q* (2, w(z) + sp(x)) — Q*(z, w(2)))|
+ 10 (IVus (2, w(z) + sp(@)* = [Vu(z, w(z))?)|
< C|@% g lellor + |02 (IVus(z, w(@) + sp(@)* = [Vu(z, w(@)) )],

where C' depends only on [|w||c1(_y ;). The last term on the right-hand side can be
estimated from above by

C Vs o [V2us (2, w(z) + sp(2) — Vu(e, w(z))|
+ C||V2ul| oo [Vus (2, w(z) + sp(x) = Vulz, w(@)] + Clluls ¢ (2),

where, as before, C' depends only on [|wl|¢2.a(_1 1) and [lullc2(q,)- By (4.6) and the
chain rule, we have that

V2 us (2, w(2) + sp(2)) = Vu(z, w(2))|
< V202, w(z)) = V2ule, w(@))] + C ||vsll ce.

@”C%[a,b]) <C ||§0||02>“(a,b) ’

where in the last inequality we used (4.11) and (4.12). A similar estimate holds for
|Vus(z, w(z) + sp(z)) — Vu(z,w(x))|. This concludes the proof. |

Remark 4.3 The proof of the previous proposition could be significantly simplified if
we could show that the diffeomorphism ®g is of class C*< rather than just C?, and
if we had uniform estimates on the C*® norm of ®, in terms of ||w||c2=a(—1,1) and
[#llc2.0(qp) - Indeed, the C?® bounds on us and vs would follow in this case from
standard elliptic estimates.
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Next we estimate the second integral on the right-hand side of (2.13).

Proposition 4.4 Let Q € CY1(Q), let ¢ be as in Theorem 4.1, and let us be the
solution to problem (2.1), where ®s is given by (3.88). Then there exists C > 0,
depending only on |[w||2._11) and |[ullcziq, ), such that for every s € [0,1] and
every ¥ € C(Ty),

‘/ ns(aysus)%?d’f#f/n(ayu)%%@sd%l’ SCH(pch([a,b])/ YrAH' (4.14)
Ty r Ty
and
‘/ d,,Q* w%ml—/aycg? wZOchd’Hl‘ §C|\¢||Cl([a7b])/ YrdH'.  (4.15)
s r s

Proof. Let v, and Qg be defined as in (4.6) and (4.7). Then, by (4.11) and (4.12),

||Us||c2,a(90) <G, s — U||c2-,a(90) <C ||<P||c2-,a(a,b) (4.16)

for some constant C' > 0 depending only on |[w|[c2.(_y 1y and [[ul[cz(q, ). By the
chain rule,

Oy us(z,w ~+ sp) = Vus(z,w + sp) - vs(z,w + sp)
= Vus(z,w) - v(z,w) — scp'ayvs(x7 w)ey - Vs(z, w + sp)
+ VUS(:L‘,”LU) ’ (Vs(iL’,w + 590) - I/(.T, w))

Using (4.16),

00, s, + ) = Dyl w)] < D0, w) — Dyula,w)| + C @l enugy » (417)

where to estimate |vs(z, w+sp)—v(x, w)| we used the fact that the function t — ﬁ

is 1-Lipschitz. Similarly,
w// + SQDH w//
(1 + (w/ +3<,0/)2)3/2 (1 + (w/)2)3/2

< Cllelle(ja) -

|ks(z, w + sp) — k(z,w)| = (4.18)

Combining (4.16), (4.17), and (4.18), and using a change of variable, we obtain (4.14).
On the other hand,

D, Q% (x,w + 5p) — 0,Q*(x,w) = VQ*(z,w + 5¢) - (vs(x,w + s¢) — v(z,w))
+ (VQ?(z,w + sp) — VQ* (2, w)) - v(x, w),

and so
|8u5Q2(5€, w+ sp) — 8,,@2(95711/)\ <C H@Hcﬂ([a,b]) )

which gives (4.15). |
We now estimate the first integral on the right-hand side of (2.13).
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Proposition 4.5 Let ¢ be as in Theorem 4.1, and let us be the solution to problem
(2.1), where ®, is given by (3.38). Then there exists C > 0, depending only on
lwllez.a—1,1) and [ullcz(q,y, such that for every s € [0,1] and every ¢ € CcY(Ty),

s 2
[ uPde— [ Vi, Pda] < Ol W1 e,)
D, (Q4) Q.

where uy, is the unique solution to the problem

Auy, =0 in ©5(Q4),
uy, = —0,,us on L,
ug, =0 on ®s({y =0} NoNy).

with uj(=1,y) = ug,(1,y) for all y such that (£1,y) € ®4(Qy).

Proof. Reasoning as in the proof of (2.20), we have

/ \Vuf”zdm:/ ufbaysufbd?il.
4 (Q24) Ts

Define
ﬁfb = ufb o®d,.
Then ﬁfp satisfies
div(A,Vas,) =0 in Q4
iy, = — (Y0, us) o ®s onT, (4.19)
iy, =0 on O, N{y =0},

with 45 (=1,y) = 4,(1,y) for all y such that (+1,y) € Q, where A, is given by
(2.8). Multiplying the first equation in (4.19) by ty, and by the divergence theorem,
we obtain

/Q (A Vi) - Vi, do < ||(AVas,) - VHHA/Z(F) (0, 1s) © @l 12y
N
<C HASV%HB(QH (100, 1s) © @il /2y

<C Hvafp||L2(Q+) H(d)ausus) o (I)SHHU?(F) s

where we used (4.1) and the continuity of the normal trace in the space H(div;,)
(see, e.g., [BF, Section 3.2]), and where the constant C' depends only on Q. The
previous estimate, together with (3.40) and (4.1), implies that

HvawHB(QJr) <C ||(¢ausus) © (I’s||H1/2(r) <C ||¢8VSUSHH1/2(rS)
< Cldll e, 10vusllcon(r,y + C 1l sz, 10v,usllcor,)
< Clbll sz,
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where in the last inequality we reasoned as in the proof of Proposition 4.4 and used
(4.16). By the Poincaré inequality, we get

’&;Z’HHI(Q+) S Clbllgrer,) - (4.20)

On the other hand,

div(A V(a5 — ufog.)) = —div(BsVu,q ) in Qy,
iy, — u%oq)S = —(¢Y0y, us) o Py + (Y 0o Ps)d,u on T,

~s

U, — g, =0 on {y =0} NNy,

with (4, —u 5 )(=1,y) = (4, —u,e_)(1,y) for all y such that (£1,y) € Q, where
By = A; — Irx2. Reasoning as before, by (4.1) and (4.20) we get

| Bs V.

.5 2 ~s
[V (@ — uoa,) |L2(Q+) <| L2(Q4) [V (@ — wos,) |L2(Q+)

+[[(AsV (@ — whos,) + BaVigos,) | fyoso(py 18 © @) (@0t = Ot 0 @)l oy
<C ||50||02([a,b]) M}”HUQ(FS) |V(ﬁf¢z - u?{;oés)
+ C | AV (@5 — ulp,) + BsVudog,

|20

L2(0y) |( 0 @s)(0pu — Oy, us 0 (I)S)”Hl/?(l“)

<C ||50||C2([a,b]) ||7/1||H1/2(rs)
+ C ||V (@5, — uos,)
+ Cllell e o) 14

~S 0
V(@3 = tos, )| 120,
|L2(Q+) ”(w °© q)s)(al/u - 61/5“(‘3 ° (I)S)”Hl/?(l")
HY/2(T,) [[(1 0 @s)(Oyu — Oy, us 0 (I)S)HHl/z(r) .

Hence,

[V (@5, — ugos,) ‘L2(9+) < Cllelleap 10l g2,y

+ C|(¢ 0 @) (dyu — O, us © q)S)HHl/?(F) :
As before, using (4.16), we obtain

(0 @) (dyu — Oy, us 0 (I)S)HHl/2(F) <C ||¢||L2(rs)
+C |7/}|H1/2(1“S) [Ovu — By us 0 (I)SHc(!(r) <C ||<PH02,a(a,b) ||1/}HH1/2(FS) )

|ayu - aysus e} @SHCO’I(F)

and so
[V, — Vigoq,

sy < C ol Wl sscr,y - (4.21)
Then, also by (4.20),

‘/ |Vﬂ¢|2da:f/ Ve,
o, Q.

By a change of variables, we get

2
2 da| < C lpll s o 11302,

/ Vi3, do = / [(D®, 0 &, 1)Vui,|* det DP, dy
Q4 ®,(24)
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In turn, by (3.40) and (4.20), we deduce that

'/ Vs, |? dw—/ Vg |? dl“ SC”@”CZ’([mb])/ Vg, | da
4 (24) Q4 D5(024)

2
< Cllellezqaey 1902w,y »

and this concludes the proof. [

Finally, we estimate the first term in the last integral on the right-hand side of
(2.13).

Proposition 4.6 Let Q € CYY(Q), let ¢ be as in Theorem 4.1, and let us be the
solution to problem (2.1), where ® is given by (5.58). If [|¢llc2.0(qp) is sufficiently
small, then for every s € [0,1] the following inequality holds:

‘/ (Q* = |Vus|HZs - vsdH'| < C HQOHCZvQ(a,b)/ (X, -vg)?dH!, (4.22)
I's s

where X and Zs are given in (2.3) and C > 0 depends on [|w|c2.a(_1 1)-

Proof. Observe that, by (3.38), (3.42), and the fact that AM(y) = 1if L+ 6y <y <
M + 2 — §p, we have that

b, (@, w(@)) - (DO - w(@) vz, w(z)
= e () (Dl wla) vl ()
ch(o0) s z) 0,1(s5,) Plgls,2) 23)
: |

5:2) Vit @ @)  it@@)? it @@)

provided ||¢]| C2.0(q,p) 18 sufficiently small. Similarly,

<'I'>( w(@)) - (DPs(w, w(x))) ™" v(z, w(x))
= Uy(z, w(x)) - (DVs(z,w(2))) " v(z, w(x))

)
= (89 x),02h(s, ) - (O

1 1 —0yh(s,x) +w(x) ) (—w'(z),1)
Dug(s, ) 929(s, ) V14 (W' (z))?
_ _(%Eh(S,CE) 339(8, ) 62 ( ) (4.24)

) /1+ (w'(z \/1 + (
Differentiating (3.42); with respect to s gives
92h = (w"(g) + 59" (9))(959)° + 2¢'(9)0s9 + (w'(9) + 5'(9)) D2 g.-
so that, by (3.42); and (4.24),
b, (2, w(x)) - (DO (2, w(x))) v (2, w(x))
_ (W"(g) +5¢0"(9)(0s9)* | 2/(9)0sg (4.25)

)
V1 (w'(x))? 1+ (w'(@)?
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Since, by (2.5), we have

and

(D2 (@, w(@) v w(a))

by (2.3) we have
/ (Q* — |Vus|*) Zs - vs dH?
Fs

b
= [(@(0.0) = [Tuulg. D" (0) + 56" (9))(0u0)*Dug
b
+ / (Q%(9:1) — [Vua(g 1)*)20'(9) Bag By iz = T+ I1.
By (5.6) and (5.16) in the appendix we obtain

|059(s, 2)| < l(g(s, )| (4.26)

for every (s, ) € [0,1] x [a, b]. Hence, by Proposition 4.2, for [[¢[|¢z2.a ;) sufficiently
small,

b
112 Clellcmnn | (005,00 2ug do

’ ¢*(g(s,2))
<C H@HcZa(a,b)/a \/1 W (g) + s (g)]2 Ozg dz

:CHQDHCQ,Q(QJ))/ (XS'Vs)2dH1,

s

where C' depends only on [|w||c2.a(, ), and where we have used (4.23).
To estimate I1, we use (5.6) to write

b / w' so! »
1= = [ @00~ [Vus(o ) DAV 22 )00

Using the change of variables r = g(z, s) and (3.26), we have

7= - / (Q2(r,w + 5) = [Vus (r,w + 59) )26 p(w' + 5¢9')
o 1+[w/+8¢/]2 :

Integrating by parts and using (3.2), we obtain

b 2 2 / /
_ 2, ((Q°(rw+sp) — [Vus((r,w + sp)|) (w' + 5¢")
II—/a %) 8r( T+ + 57 ) dr.
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It follows from Proposition 4.2 that

b
11| < C||ga||cz,a(a)b)/ ©* dr < C||go||cz,aw)/F (X - vs)2dHE,

where in the last inequality we have reasoned as in the estimate of I. ]
Next we prove Theorem 4.1.

Proof of Theorem 4.1. Let ¢ be as in the statement of Theorem 4.1, and let
{®s}sej0,1) be the admissible flow given in Theorem 3.1. By Theorem 2.3 and Propo-
sitions 4.2 and 4.6,

— F(us) 2/ 2|vu5\2dw+/ (0, Q% + 264(0,us)?) (X, - vg)? dH'
ds D, () T

= Cliellcnou [, (X i,

where we used the fact that |ks] < C. On the other hand, by (2.6) and by Proposi-
tions 4.4 and 4.5 with ¢ = X, - v4, we have

2

%Hus)z / 2|Vuy, [* dx + / (8,Q% + 26(0yu)*) (X, - v)? 0 @, dH!
Q. r

2
-0 H‘PHcla(a,b) X - VS||H1/2(1“3) ]

where ¢5 := (X, - v5) o &5 and wuy, is the unique solution to the problem

Auws =0 in Q+,
Uy, = —YsOpu on T,
Uy, =0 on {y =0}NoNy,

with uy, (—1,y) = uy, (1,y) for all y such that (£1,y) € Q;. Now we apply (1.11)
and (1.12) to obtain

d? 2

d )2 (€= O Illone o) 1K vallaqe,

By taking [¢l|c2.a () < Co/(2C1) we get j—;f(us) > 0 for all s € [0,1]. In turn,
by (1.11),

Flw = Fuw) - [ (1~ 8) 0 Fu) ds

< Fluy) = [I) o (|Vu1\2 + QQ(QE)) dx.

In view of (2.1), u; is the unique minimizer of F over all functions v € H'(®1(24))
such that v =0 on ®1(T"), v = w on 9P1({y = 0} NIN,) and v(—1,y) = v(1l,y) for
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all y such that (+1,y) € ®1(24). In particular, for every v € A with {v > 0} =
@4 ({u > 0}), we have
F(u) < F(v),

which concludes the proof. [
We conclude this section with the proof of the main theorem.

Proof of Theorem 1.1. Let U € Q, § > 0, and let ® € C?%(R?;R?) be a diffeo-
morphism satisfying (1.14) and (1.15).

Step 1: We begin by proving that there exist a constant C' > 0 and an interval
[a,b] C (—1,1) (independent of ®) such that the set ®(T") is the graph of a function
w + ¢, where ¢ € 0%%(—1,1) has compact support in [a,b] and satisfies

||<)0‘|C210é(71’1) < (9. (4.27)
Consider the function
w(flf) = (I)l(wi(x))a T € [ila 1]a

where ® = (&1, ®2). By the chain rule, ¢ € C**(—1,1) with

Y (z) = 0,0 (z,w(2)) + W' ()9, " (z, w(z)) (4.28)

1

Z 1 — 5 — 5 ||w/HCO(—1,1) Z 5
forall 0 < d < WM, where we used the facts that 9,®1(z,y) > 1 — ¢ and
|0y ®1(z,y)] < 6 by (1.15). Moreover, by (1.14), ¥(-1) = —1 and (1) = 1. Hence,
¥ 1 [=1,1] — [—1,1] is invertible, and by the chain rule ¢y~ € C**(—1,1). It follows

that
() = {(z, 2~ (2), w(@~(2))) : =€ [-1,1]}.

Define ¢(z) := ®?(v(z),w( " (z))) — w(x). By (1.14), ¢(z) = x for = in a
neighborhood of —1 and of 1, ®*(z,y) = y for (z,y) ¢ U. Hence, » has compact
support in (—1,1). A 1engthy7 but straightforward calculation using (1.15), shows
that (4.27) holds.

Step 2: Let now {¢,}, be a sequence of polynomials satisfying (3.2) and such that
©n — ¢ in C%%(a,b). By Theorems 3.1 and 4.1, for § small enough we can construct
an admissible flow {® ,}sc[0,1] (see Definition 2.1) for every n such that

D10 (I) = {(z, w(z) + ¢n(2) : € (=1,1)}

and

F(u) < F(v) (4.29)

for every v € A with {v > 0} = &4 ,,({u > 0}).
Consider now a function v € A with {v > 0} = ®({u > 0}), and define

Un(x’y) = ’U(xvy - Spn(x) + @(x))
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Then y < w(z) + ¢n(z) if and only if y — v, (z) + @(z) < w(

Since ¢, — ¢ in C%%(a,b), we have that v, — v in H'((—1,1
We now construct A, € C*°(R) such that 0 < A, <1

Ar(y) =0if y <7 and |A.(y)| <2/7 for all y € R. Define

V7 (2,9) = A (Y)vn (@, y) + (1 = Ar(y))u(, y).

Since ®; , satisfies (1.14), we have that v, , € A and {v,, > 0} = ®&1,({u > 0}).
Hence, by (4.29), we have

F(u) < Flon,) = / (Vo + Q3(x)) da
q>1,n(Q+)
— /Q (Vs * + X{on . >01 Q% (2)) de. (4.30)

Since ¢, — ¢ in C*%(a,b), if (z,y) € Q is such that y # w(x) + () then for all n
sufficiently large y # w(x) + ¢y (), and 0 X{v, ,>0}(Z,¥) = X{v>0}(z,y). It follows
by the Lebesgue dominated convergence theorem that

[ g, 0 Q@) e = /Q N0y Q2 () da. (4.31)
On the other hand,
Von = AV, + (1 = X)) Vu+ (v, — u)\.ea.
Hence, using convexity and the inequality (a + b)? < (1 + ¢)a? + C.b?, we obtain
/Q |V, 2 de < (1+¢) /Q A |V, 2 dx + (14 ¢€) /Q(l —A\)|Vul? dx

4C
+ — / vy, — ul? da.
T J(=1,1)x(r,27)

Since v, — v in H'((—1,1) x (1,00)), letting n — oo we have that

limsup/ |V .| de < (1+8)/ )\T|Vv|2d:n+(l+5)/(1—)\T)\Vu|2d:c
Q Q Q

n—oo
4C;
5 / |v — ul? de. (4.32)
T J(-1,1)x(r.27)

By (1.5), if v is of class C, it holds

+

v(z,y) —ulz,y) = /Oy(ayv(x,r) — Oyu(z,r)) dr,
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and so by Holder’s inequality

Y 2
/ hpﬂﬁmng/ (/|%MLHMH%M%ﬂ|W)dm
(=1,1)x(7,27) (=1,1)x(7,27) 0

y
< / / y(((%v(x,r))2 + (ayu(x,r))Q) drdx
(-1,1)x(7,27) JO
< 472/ (ayv(x,r))Q + (ayu(xm))Q) dx dr.
(—1,1)x(0,27)

By density, the same inequality is satisfied without any extra regularity on v.
We now combine (4.30)—(4.32) with the previous inequality. By first letting 7 —
0" and then e — 0T, we conclude that F(u) < F(v). [

5 Proof of Theorem 1.2

The proof of Theorem 1.2 is based on some auxiliary lemmas. We start by showing
that the first term in the expression (1.12) of the second variation is coercive with
respect to the H'/2 norm of the boundary datum on I

Lemma 5.1 Let Q, u, and I' be as in Theorem 1.2, let U C ) be an open set such
that UNT # @, and let A :={u >0} NU. Assume that A has a Lipschitz boundary.
Then there exist two constants C1,Cy > 0, depending on A, such that

Cﬂ&ﬁppr)ghﬁ{/hvdex:UE&H%A%1n:¢0n3A}§(EH¢ﬁPMwm

(5.1)
for every ¢ € CHT NU), where

b Qv inI'NU,
"0 i dU N {u>0}.

Proof. Let ¢ € CHT' NU). Since @* € C%! and Q > Quin > 0, we have that
Y € H'/2(QA), and so there exists v* € H'(A) such that v* = 1) on JA in the sense
of traces and

* |12 2
10" 7 4y < Coll¥ll 294y
where Cs is a positive constant depending on A. Thus, the second inequality in (5.1)
holds. On the other hand, the trace operator T : H'(A) — H'/?(9A) is continuous,
and so there exists a positive constant Cy, depending on A, such that
2 A 2
||T(U)||H1/2(8A) < ChllvllFcay

for every v € H(A). In particular, given ¢ € CH(I' " U), we have that

101212004 < CullvlZn ay
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for every v € H'(A) with T'(v) = . Since ¢» = 0 in U N {u > 0}, by Poincaré’s
inequality 5

[0y < Cill Vol 22y
for every v € H'(A) with T'(v) = ¢. Combining these two last inequalities, we get
the first inequality in (5.1). ]

Lemma 5.2 Let Q, u, and I' be as in Theorem 1.2. For every € > 0 let U, be the
intersection of £ with the e-tubular neighborhood of T'. Define

per=int{ [ uar: ve oin), el =1},
U.N{u>0}

where for every ¢ € CL(T') the function uy is the solution to

Auy =0 inU:N{u> 0},
Uy =QY onl,
Uy =0 on OU. N {u > 0},

with wy(—1,y) = uy(l,y) for all y such that (£1,y) € U. N{u > 0}. Then

lim pe = oo.
e—0t

Proof. Assume, by contradiction, that there exist C' > 0, &, — 0%, and v,, € C}(T)
with [/ z2(ry = 1, such that

/ |Vun,|*dx < C  for every n,
U, N{u>0}

En

where u,, 1= uy,. We extend u, by 0 to the set U3 N {u > 0} =: V. Then
/ |Vu,|?dx < C for every n.
v

By Poincaré’s inequality there exists u,, € H'(V) such that u, — u. weakly in
HY(V), up to a subsequence, not relabeled. This implies that u, — us strongly in
L2(0V). Since L%(U.,) — 0, we have that u, — 0 a.e. in V, hence uo, = 0 and
up, — 0 strongly in L2(9V).

On the other hand,

1= [[dullzey < ClQ2]| gollunllz(ry-
Since the right-hand side tends to 0, we arrive at a contradiction. ]
We now prove Theorem 1.2.

Proof of Theorem 1.2. By Lemmas 5.1 and 5.2, for € > 0 small enough we have

[ oAVl det [ (0,04 20Q2) A 2 Cldf s+ (e C) 6
Usﬂ{u>0} r
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where C3 := (1 + ||&||c0)[|@?||co.1. On the other hand,

WLy = 19/Qluzwy < IWllz2my1/Qlooawy + ¥l mir2my11/Qllcor
<YLz m)l|Qll oy 11/RQloory + [¥| /2 (ry/ Qumin,

and so 1
"l,bﬁ'_]l/z(p) > 5 r2nin|¢|?'—ll/2(1“) - C'4H¢||%2(r)

Hence,

/ 2|Vuy|* de + /(f)yQ2 +26Q%)% dH!
Uaﬂ{u>0} T

C .
> 5 Quinl¥l7/2(r) + (e — Cs — min{C. /2, BOYI¥|| 72 ).
Since p. — oo by Lemma 5.2, the inequality (1.16) holds.
The second part of the statement follows from (1.16) by repeating the proof of
Theorem 1.1. We omit the details. ]

Appendix

Here we sketch the proof of the derivation of the Euler-Lagrange equations (1.3) of
(1.1). Let v € Ag N C?(Q) be such that 90, NQ (see (1.7)) is a manifold of class C2,
F(v) € R and (1.2) holds. Since Q4 is open, consider variations ¢ € C2°(£24). For
¢ > 0 sufficiently small it can be shown that {v +e¢ > 0} = {v > 0}, therefore from
(1.2) we obtain

d
O:—/ |V(v—|—€g0)|2dm‘ =2 Vv -Vedz.
de Jo e=0

Q4

This gives (1.3)1, and the condition v = 0 on 2N {v > 0} follows from the continuity
of v. To prove that |Vu| = Q on QN9 {v > 0} we use Theorem 2.5 in [AC] to obtain

lim (Vo> = Q*)n-vdH' =0 (5.2)

e=0% Jafv>e}

for every n € C2°(£;R?). Note that in the original proof of (5.2), v was assumed
to be a local minimizer, but this property was used only to guarantee the validity of
(1.2). In view of the smoothness of v and 90 N Q, for e sufficiently small O{v > £}
is a smooth manifold of class C?, and using a partition of unity, it can be shown that
(5.2) reduces to

/ (IVv|* = Q*)n-vdH' =0. (5.3)
o0{v>0}

Extend locally the outward unit normal v to d{v > 0} as a C! function ¥ in an open
neighborhood of d{v > 0}, and take 7 := ¢, where ¢ € C°(Q) is supported in that
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neighborhood. Then (5.3) yields
[ veP - @eant —o.
o{v>0}

By the arbitrariness of ¢ we deduce that [Vv| = Q on QN9 {v > 0}.

The remaining of the Appendix is dedicated to the proof of Theorem 3.5.
Proof of Theorem 3.5. Let

D:={zeR: p(zx) #0}.

Step 1: Regularity at points s > 0, x € D. By Theorem 3.3 the function ¢y is of
class C*° in [0,1] x D. Hence, by (3.22) and the smooth dependence of £ with respect
to initial data, we have that g is of class C* in [0,1] x D. Taking t = (s, z) in
(3.16) gives

/W@ [(w’(é(n 2)p(E(r,2) + (nlr.7) - wiEro) P €0 ],
0

@*(§(r,z))
for all (s,x) € [0,1] x D. Differentiating with respect to s, and using (3.24), yields
1
1+ [w’({(to(s, .%')7 x)) + 8@’(5(150(37 ;C)7 m))]Q

for all (s,z) € [0,1] x D. Since t¢(0,z) = 0, it follows upon integration and by (3.22)
that

dsto(s, ) = (5.4)

§ 1
fols 1) = / U+ [/ (g(r,2)) + 7/ (g, 2))]
By (3.5), (3.22), (3.24), and (5.4),

dr. (5.5)

0sg(s,x) = 0i&(to(s, x), x)Dsto(s, z)
_ —w'(g(s,2))e(g(s, x) = (n(to(s, x), ©) —w(g(s, ) ¢'(9(s, 7)) (5.6)
L+ [w'(g(s, @) + ¢/ (9(5,2))]
__¢lgls 7)) [w'ly(s, @) + s¢'(g(s,2))]
L+ [w'(g(s, @) + s/ (g(s, 2)))”

Differentiating (5.6) with respect to s and x, respectively, gives

2 — — + 59" (9)] 0s9 + ¢(9)¢' (9)

_|_
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and

2, PO+l o) @) s G
’ 1+ [w'(g) + s¢'(9))? .
L 20(9) (w'(9) + +5¢'(9)” (W"(g) + 5¢"(9)) Oug
[1+ (w'(g) +5¢'(9))?]2 '

while by Schwartz’s theorem 92 g = 92 g.
On the other hand, by Theorem 3.3, (3.5), (3.20), (3.22), and (3.24), for (s,z) €
[0,1] x D

0:9(s,) = K&(to(s, ), 7)0xto(s, ) + 02€(to(s, 7), )
_ 0:€(to(s,2), @)
1+ [w'(g(s,x)) + s¢'(g(s,2)))”
w'(g(s, 7)) + s¢'(g(s, 7))

T ' (9(s.2)) + 52/ (g(5.2))]

Differentiating with respect to x, we get

(5.9)

3 53577(??0(5, x)v l‘)

92— 2 @) +57(6) (0 (9) + 3¢ (5)
[1+ (w(9) + s¢'(9))"]
O2klto,0)0uto (ko)
L+ (W' (g) +52'(9)" 1+ (w'(9) +s¢'(9))”
N 1= W'(9) +5¢'(9))°] (w"(9) + 5¢"(9))
[1+ W) + s9(9)*]

(w'(g) + 5¢'(9))0 in(to, 2)0uto  (w'(g) + s¢'(9)) 0% (to, x)

1+ (w'(g) + s¢'(g))? 1+ (w'(g) + s¢'(9))
4TI+ TIT+IV 4V + VI

8$gaw€(t07 .'I/')

(5.10)

amgawn(th -T)

It remains to study the regularity of g at points (sg, zp) with @(x¢) = 0.
Step 2: Regularity at points s > 0, = ¢ [a,b]. Let so > 0 and g ¢ [a,b]. Since
¢ = 0 outside (a, b), by (3.23) we have that g(s,z) = z for all s > 0 and « € R\ (a,b).
It follows that for all s > 0 and x € R\ [a, D],
dwg(s,z) =1, 0Os9(s,x) =0, (5.11)
02g(s,x) = O2g(s,x) = 93 .g(s,x) = 02 ,g(s,2) = 0.

Step 3: Continuity of g. Let so > 0 and let ¢ € [a,b] be such that ¢(x¢) = 0. By
(3.9) and (3.23), we have that to(-,29) = 0 and g(-, 29) = g, respectively. Then by
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(3.5), (3.22), and (3.23), we have
g(s,2) — o = &(to(s, ), 2) — £(0,2) + = — xo

to(s,x)
= / O&(r,x)dr+x —xo (5.12)
0

to(s,x)
_ / ! (E(r,2))p(E(r )
() — w(€(r, 7)) @ (€(r,2)) dr + = — 0.

Since £(-, xg) = zo and (-, xo) = w(xg) by (3.6), it follows that

w'(§(t20))(§(E x0)) + (n(t; x0) — w(&(t 20))) @' (§(E, 20)) =0

for all ¢ € [0,1]. By continuity with respect to initial data, we deduce that the
functions (t,z) — &(t,z) and (¢,2) — n(t,z) are uniformly continuous on compact
sets, and so using also the facts that w is smooth and ¢ € C%(R), we have that given
€ > 0 there exists § > 0 such that

' (&(t, ) e (&(t, ) + (n(t, x) — w(&(t, 2))) @' (E(t, )| <€
for all t € [0, 1] and all & with |z — x| < §. Since 0 < ¢y < 1 by (3.11), it follows that

to(s,z)
/O [w'(§(r, 2))p(E(r, ) + (n(r, x) — w((r,2))) " (€(r, x))| dr < e

for all (s,x) with |z — x| < d. By (5.12) we obtain

lim g(s,z) = xo (5.13)

Tr—xQ

uniformly for all s € [0, 1]. This shows that g is continuous at (sg, Zg).
In particular, if ¢ # 0 in some interval (a, ) and p(a) = @(8) = 0, by the
continuity of g, it follows from (5.5) that

lim to(s,x) = To(so, @), (5.14)

(s,@)=(s0,)*

where
5 1
W09 = | T T
_ { [arctan(w'(z) 4+ s¢'(x)) — arctan(w’(x))]/¢'(z) if ¢'(z) # 0,
s/[1+ (w'(x))?] if ¢'(x) =0

Since to(s, @) = 0, this shows that the function t; is discontinuous at (sg,«) for all
8o > 0. A similar result holds at the endpoint S.

Step 4: Existence and continuity of J,9 and 9,g. Let sy > 0 and let xg € [a, b]
be such that ¢(xg) = 0. By (3.23), we have that g(-,z0) = zo, and so

0s9(s,29) =0 (5.16)
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for all s > 0. On the other hand, if ¢ # 0 in some interval (zg,2zo + ) (the case
(xg — d,x0) is similar), by the continuity of g and (5.6),

Bug(s, 1) — —LLEO W (@0) + 56 (z0)] _

1+ [w'(zo) + s¢/ (z0)]?

as (s,x) — (s0,xo)". Hence, dsg is continuous at (sg,x¢) for all sy > 0.

Next, we prove the existence and continuity of 9,9 at (so, o) for all sp > 0. We
assume, as before, that ¢ # 0 in some interval (zg,xo + 0) (the case (zg — d,z0) is
similar). Differentiating (3.5) with respect to x, we obtain

94(0:€) = —[w" (§)p(&) + (1 — w(§)) ¢"(£)]02€ — ' (£) D,
0:£(0,2) =1, :
0:1(0,z) = w'(x).

Since £(+, o) = x¢ and 7(+, xg) = w(xp) by (3.6), we have that 9,£(+, xo) and 9.7(-, xo)
solve the system

and so

0:€(t, o) = cos(¢’(z0)t) — w'(x0) sin(¢’ (z0)t), (5.18)
9:n(t, xg) = w'(zo) cos(¢’ (w9)t) + sin(¢’ (xo)t).

By the the continuity of 9,¢ and 9,7, (5.14) and (5.18),

(Sxi)ii&,wo)+arg(to (s,2),x) = 0:§(To(s0, 0), %o)
= cos(' (w0) To (s, 20)) — w' (o) sin(’ (x0) To (s, o)) (5.19)
1+ [w’(mo)]2

- \/1 + [ (w0) + 80! (x0)]”

and

lim 0xn(to(s, x), ) = 0xn(To(s0, 20), To)
(s,2)—=(s0,z0) T

= w' (o) cos(¢'(x0)To (s, o)) + sin(¢’ (z0) To (s, z0)) (5.20)

_ (w'(0) + s0¢'(z0)) /1 + [w!(o)]?

V14 [ (o) + so¢' (o))

)
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where we have used the formulas
142y + y2

VI+2V/1+ (@ +y)?
X

VI+ 2/ + (@ +y)?

cos (arctan(z + y) — arctany) =

sin (arctan(x 4+ y) — arctany) =

Note that

[w'(z0) + 59" (20)] 0:6(To(s,0), x0) — On(To (s, 20), x0) =0 (5.21)

for every s € [0, 1].
By (5.9), (5.19), (5.20), we obtain

lim 8, ) 1w )]2
(s,2)—(s0,20)* tg '
1+ [w'(zo) + 509’ (20))?

(5.22)

By the continuity of g proved in Step 3,

lim 9(s0,7) — g(s0,20) _ 97
a:—»;ra' r — o 0

and so we can apply L’Hopital’s rule to the function z — g(sp,x) to conclude that
there exists

2
li g(s0,2) — g(s0,z0) .. 029(s0,2) 1+ [w'(20)]
1m+ — = hm+ T .
%0 T o7 %0 \/1 + [w (20) + s0¢’ (z0)]”

If ¢ # 0 also in some interval (z¢ — 01, 2g), then we conclude in the same way that

gls0,®) —glso, @) Daglso,x) _ L+ [w(20))”
hrni = hmﬁ T =
Tz T — Xg Tz, \/1 + [w’(xo) + 50<p’(330)]2

)

and so we deduce that there exists

1+ [w(20))?
\/1 + [w'(x0) + sop (%)]2

9:9(s0,20) (5.23)

and that d,g is continuous at (sg, o). On the other hand, if ¢ = 0 in some interval
(o — 01,%0), then zy = a, and ¢'(xg) = 0. It follows that the limit in (5.22) is 1,
and so by (5.11) we obtain again that there exists 9,9(so,z9) = 1 and that 0.g is
continuous at (sg, o).

Step 5: Existence and continuity of 92g, 02 .g, and 92 9. Let 5o > 0 and let
xo € [a,b] be such that p(rg) = 0. We assume, as before, that ¢ # 0 in some interval

45



(w0, w0 + J) (the case (xg — 6, 0) is similar). By (5.16), we have that 92g(s,zo) = 0
for all s > 0. On the other hand, by (5.7) and the continuity of ¢ and 0sg,

lim 22g(s,z) = 0.

(s,x)—(s0,a)

By (5.8) and the continuity of g, 99, and 9,9,

/ !/ /
22l - ) /(o) + o0 ()] Do, ).
s, 50,0 + [’LU (1'0) + sp (xo)]

On the other hand, by Step 4,

i 2:9(50:2) = 959(50,20) _ O
w—m:;r T —Xo 0

and so we can apply L'Hépital’s rule to the function  — 959(sg, x) to conclude that
there exists

. 889(80,.’17) - 689(8075(:0) T 8%,59(807:6)
lim = lim ——=
a:~>a:3' r — o a:~>x3' 1

¢’ (@0) [W'(20) + S0’ (0)] Fzg(50, 0) .
1+ [w'(z0) + s/ (wo)]”

(5.24)

If ¢ # 0 also in some interval (zo — d1,¢), then we deduce as in the previous step
that that there exists 92 ,g(so,20) and that 02 g is continuous at (so, ). On the
other hand, if ¢ = 0 in some interval (zg — d1,¢), then zg = a, and ¢'(z9) = 0. It
follows from (5.24) and (5.11) we obtain again that there exists 92 ,g(so, zo) = 0 and
that 92 .g is continuous at (so, zo).

In both cases we can apply Schwartz’s theorem to conclude that there exists
02 ,9(s0,20) and that

92 ,9(s0,20) = 03 ,9(s0, o).

Step 6: Existence and continuity of 92g. By Step 3, (5.19), (5.20), (5.22), and
(5.10), we have

2 (w'(wo) + s¢'(x0)) (w" (o) + 5¢" (20))

lim . I=- 5 (5.25)
(s,2)—(s0,z0) {1 + (w'(20) -I-S(,O'(:L‘o))ﬂ
X &Cg(so, Jio)axf(To(So, 170), Io),
(1= (' (@) + 5¢'(20))°] (" (0) + 5" (20))
IV = (5.26)

lim . 5
()=o) [+ (w' (o) + 5¢/(w0))’]
x 0:9(80, 20) 921 (To (S0, o), o).
On the other hand, by Step 3, the continuity of 92¢ and 927, (5.10), and (5.14),

lim - 926(To(s0, 0), %0)
(s:2) = (s0,0)* 1+ (w'(x0) + 509’ (20))*’

(5.27)
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and

im v = (@(@) + s¢(0))05n(To(s0, ¥o), o)
(s:2)=(s0,20) 1+ (w'(w0) + s¢'(w0))?

It remains to estimate I7 and V in (5.10). By Taylor’s formula, we obtain

(5.28)

W (2) + 5/ (2) = W' (@0) + 59/ (20) + (" (@) + 5" (30)) (= — o) + 0{% — 20).
Hence, also by (5.13),

[/ (g(s,2)) + 5 (a( x?(] ax§<to<s, ),2) = Oenllo(5,2),2) (5 )
S,T) — Tg
(' (w0) + 5’ (20))Bub b (5, 2), ) — D (to(s, ). )

g(s,z) — xg
+ (w" (o) + 59" (o) + 0(1)) 0z (to (s, ), ).

By repeated applications of the mean value theorem, we have that

(w’(xo) + 890/(1'0))8:65(150(5’ CU), 1') - 3177@0(57 $), SU)
= (w'(w0) + ¢ (x0))0:& (to (s, x), x0) — Den(to(s, ), 20)

+ (x = xo)[(w' (w0) + 59 (0))0Z&(to (s, 2), 1) — Don(to(s, x), x1)] (5.30)
= (o — o) { (LTI () 45 (20032 € 01,0

— 07 m(ty, z0)] + [(w' (z0) + s’ (20)) 07 (to(s, ), 1) — 3277(?50(8»90)7931)]}

for some 1 between z and z and for some t;(s,x) between to(s,z) and To(s, o),
and where we have used (5.21).
By (3.23), (5.5), (5.15), and again the mean value theorem, we get
to(s, ) — To(s, zo)
(w'(z0) + 7! (30))* — (W (g(r, 2)) + 1/ (o(r,2)))? 5o
/ ! :

g
o [+ wlglr,z)+re'(g(r,2)))?)[1 + (w'(zo) + r¢'(20))?]
b

for some ¢ = ¢(r,x,zp) between x and xo. Hence, by (3.23) and the continuity of g

and 0,9,
im  fo(6@) = To(s 20) (5.32)
(5,0)—(50,20) + T — 20
L[ A o ) s
0 [1+ (w'(z0) + 7¢' (20))?]? o
By (3.23), (5.22), and the mean value theorem, we deduce that
g(S, 3)) — o _ g(S,Ji) — g(sva) _ 89;9(3, 9) N 819(507 330) (533)

Tr — X Tr — X
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as (s,z) = (s0,x0). Hence, letting (s, z) — (so,x0) in (5.29) and using (5.30), (5.32),
and (5.33) gives

lim [w'(g(s,2)) + s¢'(g(s, 2))] Dxé(to(s, ), ¥) — Dun(to(s, x), T)
(G0 9(s,2) — 2o
{51 "(z0) + s’ (20))0z 1£(To (0, x0), x0) — 02 ;n(To(s0,20), Z0)]
029(s0,%0)
+ [(w'(z0) + s¢'(20))02€(To (50, 20), x0) — Oan(To(s0, %0), 0)] }
+ (w” (o) + s¢" (20)) 026(To (0, Z0), T0) =: La.

By (3.24), (3.20), (5.17), (5.10),
)e(9) + sp(9)¢” (9)]0:€(to, ) — ¢’ (9)0un(to, )

1+ (w'(g) + s¢/(9))*
. [W'(9) + 5¢'(9)] 0u&(to, @) — Banlto, )

2(9) [1+ (w(9) + 5¢/(9))’]
— [w(g) + 5" (9))0r (b0, ) 9 T 529N 0utllo, 7) _28 illo: )
[1+ (w/(g) + s¢'(9))*]
@’((g)) Dun(to, ) [w'(g) + s¢'(9)] 9x& (to, ) — fx277(to, x)
- |1+ Ww'(9) + 5¢/(9))’]
=11, +II,.

(5.34)

[T O AL

(5.35)

By Step 3, (5.19), (5.20), and (5.21),

lim 11, = —[w”(l‘o) + So@ll(mo)}axg(To(So, 330), JJ()) (536)

(s,@)=(s0,0) T

« [w'(z0) + s0¢’ (20)] 0:&(To(s0, %0), o) — O=n(To(S0, Z0), Zo)

4 =0.
1+ (w'(xo) + sogp’(xo))z

Since ¢ is a polynomial with ¢(zo) = 0, we may write
(2) = p(2)(z — 0)", (5.37)
where p is a polynomial with p(zo) # 0 and k > 1. In turn,
¢'(2) = (z — o) p' (2)(z — o) + kp(2)]. (5.38)
By (5.37), (5.38),
[p'(9)(g — 20) + kp(9)]9xn(to, )
1+ (w(9)+ s¢'(9)] plg)

% [w/(g) + Swl(g)] 3z§(t0,$) - 3zﬁ(to, ,T)
g —Zo

II, = —
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and so by Step 3, (3.2), (5.20), and (5.34),
kOzn(To(s0,20), T0)

lim 11, = -
[1 + (w'(z0) + 5049’(930))2}

(s,)—(s0,x0)t

. (5.39)

v (3.24), (5.37), (3.20), (5.17), (5.10), (5.38),

_ (w'(y ) s¢'(9))p ( )5 £(to, ) [w'(g) + s¢'(9)] 9:€(to, ¥) — Oun(to, @)
+ (w'(9) + 5¢'(9))° 2l9) [1+ (w'(9) + 5¢'(9))*]
 (w'(g) + 59 ()P (9)(g — x0) + kp(9)]0:E (to, x)
L+ (w(9) + 52'(9))”] plo)
[w'(g) + 5¢'(9)] 92 (Lo, x) — 5177(%795)’
g — o

and so by Step 3, (5.20), and (5.34),

p - (W) + s o) ROE T s 20). 20) (40

lim . 2
(s,2)—(s0,20) [1 + (w'(zg) + SO‘P/@O))Q}

X

Finally, by (5.10), (5.25), (5.26), (5.35), (5.36), (5.39), (5.40), (5.27), and (5.28), there
exists

02g(s,x) =3 € R.

(s,z)—(s0,z0) T

By the continuity of d,¢ proved in Step 4,

lim amg(SOax) - 619(507I0) _ 9

)
z—zd T —To 0

and so we can apply L’'Hdpital’s rule to the function x — 9,¢g(so,x) to conclude that
there exists

_ 2
lim 8x9(80,$) 8959(50»300) - lim 8zg<807m)

a:~>a:3' r — o r%za' 1

= /3.

If ¢ # 0 also in some interval (zg — 01, %¢), then the limit as x — = is still £3, and
so there exists 82g(sg, ¥o) = 3 and §%g is continuous at (sg,zg). On the other hand,
if ¢ = 0 in some interval (zg — 01, o), then xg = a, and ¢'(zg) = ¢”(x9) = 0.

Then by (5.19), (5.20), (5.22),

0:€(To(s0, o), x0) =1,  9an(To(so0, o), zo) = w'(x0), (5.41)
0-9(s0,0) = 1.
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To calculate 92£(Ty(so, o), x0) and 921(Ty(so, o), To), differentiate (5.17) with re-
spect to = to obtain

9y (03€) = —[w" (©)p(&) +w" ()¢’ (§) — w'(§)¥" (€)
+ (= w(&)) ¢ ())(9:€)
—[w"(€)e(&) + (n —w(€)) ¥" (§)]078 — ¢'(§)07n — 2" (§)0:£um,
3y (93n) = ¢"(€)(9:€)* + ¢’ (£) D3¢,
02£(0,2) = 0, 92n(0,z) = w"(z).

Since £(+, 20) = xo and 1(-, 79) = w(zo) by (3.6), we have that 92£(-, zo) and 92n(-, z)
solve the system

0y (92&(- o)) =0,

9 (92n(-,x0)) = 0,

9:€(0, fBo) =0, 9:1(0,20) = w"(x0),

and so

02(t,20) =0,  92n(t,z0) = w” (20). (5.42)

By (5.10), (5.25), (5.26), (5.35), (5.36), (5.39), (5.40), (5.27), (5.28), (5.41), and
(5.42), we have that

2 !/ " k /
lim X 6§g(s,x) _ s (zo)w (l’o)2 _ w' (o) 05+ 0
o) 1+ @)’ Lt w0 (0)’]
1 — (w'(20))* | w"(x0) o)k
+ [ } 5 w’(xo) + LA (z0) 252
1+ (' (@0))?] (14 (w(x0))?
w'(zo)w” (x0)
+—— =0,
1+ (w'(20))
and so we can conclude, as before, that 92g exists and is continuous at (s, zp). m
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