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Abstract

This paper completely resolves the asymptotic development of order 2 by I'-convergence of the mass-
constrained Cahn—Hilliard functional. Important new results on the slow motion of interfaces for the
mass preserving Allen—Cahn equation and the Cahn—Hilliard equations in higher dimension are obtained
as an application.
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1 Introduction

This work considers fine asymptotic properties of the Modica—Mortola or Cahn-Hilliard functional (see
[18, 25, 30])

F.(u) := /QW(U) + &%|Vul? d, u € HY(Q), (1.1)

subject to the mass constraint

/Qud:t =m. (1.2)

Here W : Q@ — R is a double well-potential and Q is a bounded set in R™ (see Section 1.1 for precise
assumptions).

The functional (1.1) provides an important toy model for a variety of physical phenomena. Historically
it was proposed to model anti-phase boundaries [3] and liquid-liquid phase transitions [32]. It is the simplest
example of phase-field modeling, which is prevalent throughout continuum mechanics and material science,
see [9] for an overview of applications.

In a recent paper [21] the authors solved in most cases a long-standing open problem, namely, the
asymptotic development by I'-convergence of order 2 of the functional (1.1). We recall that given a metric
space X and a family of functions F. : X — R, ¢ > 0, an asymptotic development of order k

fe — f(o) + 5]:(1) + -4+ gkf(k) + O(Ek)
holds if there exist functions F® : X - R, i =0,1,...,k, such that the functions

sy, Fe ) —infx FOU

3

are well-defined and



where .7-'5(0) := F. and R is the extended real line (see [5] for an introduction to asymptotic developments,
and [10] for a precise definition of I'-convergence).
In our case X := L1(Q) and we define

(1.5)

() F.(u) ifue HY(Q) and (1.2) holds,
Fo(u) :=
00 otherwise in L!(£2),

where F; is the functional in (1.1). It is well-known (see [7], [25], [30]) that, under appropriate assumptions
on Q and W, the T-limit F™1) of order 1 of (1.5) (see (1.3) and (1.4)) is given by

(1.6)

FO () 2ew P{u=0a};Q) ifue BV(Q;{a,b}) and (1.2) holds,
u) =
00 otherwise in L'(£2),

where P(-; Q) is the perimeter in Q (see [4, 12, 33]), a, b are the wells of W, and ¢ is a constant depending
on W (see (1.21) below). Hence, u € BV (Q; {a,b}) is a minimizer of the functional F™) in (1.6) if and only
if the set {u = a} is a solution of the classical partition problem

Za(v) :=min{P(E;Q): EC Q,L"(E) = v} (1.7)
at the value v = v,,, where (see (1.15))
b—m
= . 1.
Om b—a (18)

When Q is bounded and of class C?, minimizers E of (1.7) exist, have constant generalized mean curvature
KE, intersect the boundary of € orthogonally, and their singular set is empty if n < 7, and has dimension
at most n — 8 if n > 8 (see [15, 17, 22, 31]). Here and in what follows we use the convention that g is the
average of the principal curvatures taken with respect to the outward unit normal to OF.

Under the hypothesis that the isoperimetric function v — Zg(v) (see [23]) satisfies the Taylor expansion

Ta(v) = Za(0m) + Lo (0m) (0 — vm) + O(lo — v, [7F7) (1.9)
for all v close to v, and for some 8 € (0, 1], in [21] we proved the following theorems (see also [11]).

Theorem 1.1 ([21]). Assume that Q, m, W satisfy hypotheses (1.15)-(1.20) with ¢ =1 and that (1.9) holds.
Then

F2 (u) = mﬁi + 2(csym + cwTu)(n — Dk, P({u = a}; Q) (1.10)

if u € BV(Q;{a,b}) is a minimizer of the functional F) in (1.5) and F@ (u) = oo otherwise in L*(2).

Theorem 1.2 ([21]). Assume that Q,m,W satisfy hypotheses (1.15)-(1.20) with ¢ € (0,1) and that (1.9)
holds. Then
FO(u) = 2(caym + cwa)(n — 1)k, P({u = a}; Q) (1.11)

if u € BV (% {a,b}) is a minimizer of the functional FV and FP (u) = oo otherwise in L*(Q).

Here &, is the mean curvature of the set {u = a} and cgym and 7, are constants (see Section 1.1).

The assumption (1.9) is known to hold at a.e. v,,, or, equivalently, for a.e. mass m € (a,b), since Zg
is semi-concave [27]. However, in the case that the isoperimetric function is differentiable at v,, the mean
curvature of the interface of minimizers is completely determined since (see Chapter 17 in [22])

Th(0m) = (n — Vi

for every minimizer E of (1.7) with v = v,,. Hence Theorems (1.1) and (1.2) do not provide a selection
criteria for minimizers. Indeed, the case of two global minimizers of the partition problem (1.7) with different
mean curvatures is excluded by (1.9).

The purpose of this paper is to remove the assumption that Zg is regular at v,,. Specifically, the theorem
that we prove is the following:



Theorem 1.3. Theorems (1.1) and (1.2) continue to hold without assuming (1.9).

The I'-lim sup portion of this theorem was already established in [21], see Remark 5.5 in the same. Thus
this work focuses on proving the I'-lim inf inequality. This is accomplished by refining an L' local version of
the rearrangement inequalities that were utilized in [21] and [27] and by studying a 1-dimensional version of
the problem with non-smooth weights.

Besides its intrinsic interest, Theorem 1.3 has important applications in the study of the speed of motion
of the mass-preserving Allen—Cahn equation

Opue = e2Aue — W' (us) +eXe in Q x [0, 00),

Qe =0 on 99 x [0, 00), (1.12)
Us = Up,e on Q x {0}

and of the Cahn—Hilliard equation

Opue = —A(e? Au. — W (u.)) in 2 x (0, 00),
Oue 0, 4 ,
-2 — = 1.13
5 — 9y (e“Aus — W' (u:)) =0  on 9Q x [0, 00), (1.13)
Ue = Uy e on Q x {0}

in dimension n > 2. In dimension n = 1 many celebrated works (e.g. [8], [13]) establish the slow motion
of solutions to the Allen-Cahn and Cahn-Hilliard equations. In particular, solutions move very slowly when
they are near perimeter minimizers. Some of these works have focused on the existence of slowly-evolving
metastable solutions (e.g. [2]). Others have focused on demonstrating that metastability, or slow motion,
occurs very generally. For example, Bronsard and Kohn [6] (see also [16]) utilize precise energy asymptotics
when n = 1 to provide slow motion bounds for initial data which is only well-prepared energetically. In
certain settings more can be shown: that the set of metastable solutions is in some sense an attractor for
the system (e.g. [28]). Proving slow motion bounds of this type in higher dimensions has proved more
challenging, at least partly because the role of curvature in the dynamics is not immediately clear. Recently,
the second author together with Rinaldi [27] utilized the energy asymptotics in [21] to prove slow motion
bounds in dimension n > 2, in settings where the assumption 1.9 held. A more complete treatment of the
many contributions to this field can be found in [27].

In what follows we say that a measurable set Ey C Q is a volume—constrained local perimeter minimizer
of P(-, Q) if there exists p > 0 such that

P(Ey; Q) =inf {P(E;Q): E C Q Borel, L"(Ey) = L"(E), L"(Ey © E) < p},
where © denotes the symmetric difference of sets. We define
upg, = axe, +bxo\g, (1.14)

The following theorem significantly improves Theorems 1.2, 1.4, 1.7, and 1.9 in [27]. In particular, the
assumption that the local minimizer Fy has positive second variation (see Theorem 1.9 in [27]) and the deep
results on the stability of the perimeter functional developed in [1], [14], and [19] are no longer needed.

Theorem 1.4. Assume that Q,m, W satisfy hypotheses (1.15)-(1.20) with ¢ = 1, and let Ey be a volume-
constrained local perimeter minimizer with L"(Ey) = v,,. Assume that ug . € L>(Q) satisfy
/ uge dr =m, Up,e — UR, N L*(Q) ase — 0T
Q
and
fs(uo,s) < Ef(l)(qu) + 082
for some C' > 0. Let u. be a solution to (1.12). Then, for any M > 0,

sup  ||ue(t) — ugy||pri) — 0 ase — 07
0<t<Me~1



The following theorem improves upon Theorem 1.4 in [27].

Theorem 1.5. Assume that Q,m, W satisfy hypotheses (1.15)-(1.20) with ¢ = 1 and that there exists a
constant C1 > 0 so that
[W'(s)] < Culs|” + C1,

where p = - forn >3, andp > 0 forn =1,2. Let Ey be a volume—constrained global perimeter minimizer

with L™(Ey) = b,,. Assume that ug . € L*(Q) satisfy
/ Up,e dr = m, upe — upg, in (H(Q)) ase— 0"
Q

and
fs(“O,s) < fo(uEO)E + 062

for some C > 0. Let u. be a solution to (1.13). Then, for any M >0,

sup  |ue — up,|| (a1 () — 0 ase — 0.
0<t<Me—1

The remainder of the work is organized as follows. In Section 1.1 we state assumptions and definitions.
In Section 2 we establish some technical properties of an L' localized version of the isoperimetric function.
In Section 3 we recall the rearrangement given in [21] and study properties of the associated weighted 1-
dimensional problem when the weight has corners. In Section 4 we then apply these tools to prove the main
results.

1.1 Assumptions and Definitions

We will assume that Q C R”, 2 < n <7, is an open, connected, bounded set with
L) =1 and 099 is of class C**, « € (0,1], (1.15)

and the double-well potential W : R — [0, 00) satisfies:

W is of class C*(R\{a,b}) and has precisely two zeros at a < b, (1.16)
) W (s) . W’ (s)

}E}}z 5 a1~ llg}; P >0, ¢e€(0,1], (1.17)
W' has exactly 3 zeros at a < c < b, W"(c) <0, (1.18)
liminf [W'(s)| > 0. (1.19)

[5] 00
We assume that the mass m in (1.2) satisfies
a<m<b (1.20)
We define .
cw = / W2 (s)ds. (1.21)

Finally, in equations (1.10) and (1.11) we let %, be the constant mean curvature of the set {u = a},

o = / W (=(0)t dt, (1.22)
R

where z is the solution to the Cauchy problem

(1.23)

{z’(t) = /W (z(t)) for t € R,
z(0) = ¢, z(t) € [a, b],



with ¢ being the central zero of W’ (see (1.18)), and 7, € R is a constant such that

P = k) [ =t =) = gm0 = W“

if g=11in (1.17) and
/ 2(t — 7,) —sgn, ,(t) dt =0
R

if g €(0,1) in (1.17), where
a ift<0,

580a,5(t) = {b 450

2 Localized Isoperimetric Function

One of the central ideas in [21] was the development and use of a generalized Pélya—Szeg6 inequality to reduce
the second-order I'-liminf of (1.1) to a one-dimensional problem. This generalized Pélya—Szegd inequality
relied on comparing the perimeter of the level sets of arbitrary functions with values of Zn. On the one hand,
this approach is simple and very general. On the other hand, it is clearly not sharp in our setting because the
minimizers of (1.7) may be widely separated in L', while the transition layers we are considering are known
to converge in L'. Hence, the isoperimetric function may be too pessimistic in estimating the perimeter of
the level sets of transition layers.

In light of this, following [27], we use instead a localized version of the isoperimetric function. Specifically,
given a set Ey, and some § > 0, we define the local isoperimetric function of parameter § about the set Ejy
to be

2% (v) := inf{P(E,Q) : E C Q Borel, L(E) = v, a(Ey, E) < §}, (2.1)

where
O((El, EQ) = mln{ﬁ"(El \ EQ), En(EQ \ El)} (22)

for any Borel sets F, E5 C €.
The following proposition, which connects the definition of Ig""s with L' convergence, can be found in
[27]. We present its proof for the convenience of the reader.

Proposition 2.1. Let @ C R™ be an open set, Ey C Q be a Borel set and let ug, be as in (1.14). Then
a(Ep,{u<s})<é (2.3)

for all uw € L*(Q) such that
lu — upyllLr < (b—a)d, (2.4)

and for every s € R, where the function « is given in (2.2).

Proof. Fix § > 0, and for s € R define F, := {x € Q : u(x) < s}. If a < s < b, then by (2.4),

(b—a)éZ/ \u—uE0|dx+/ |lu — ug,|dz
F,\Ey Eo\Fs

> (b—8)L™(F, \ Eo) + (s — a)L™(Eo \ Fy) > (b— a)o(Eo, Fl),

so that (2.3) is proved in this case. If s > b, again by (2.4),
(b—a)s > / = gy |dz > (s — a)L"(Bo \ Fs) > (b — a)a(Eo, Fy).
EO\FS

The case s < a is analogous. O

By construction, we know that Ig 00 > T, Furthermore, by BV compactness and lower-semicontinuity,

and the fact that « is continuous in L', we have that Igo’é is lower semi-continuous. The next proposition
; : Eo,6
establishes a stronger type of regularity for Z,,°"".



Proposition 2.2. Assume that Q satisfies (1.15) and let Ey C Q be a local volume-constrained perimeter
minimizer, with L*(Ey) = v,,. Then for § small enough there exists a neighborhood Js of v,, so that Ig"’&
is semi-concave on Jg.

Before proving this proposition, we state and prove a technical lemma. In what follows we say that an
open set U C R™ has piecewise C? boundary if OU can be written as the union of finitely many connected
(n—1)-dimensional manifolds with boundary of class C? up to the boundary, with pairwise disjoint relatively
interiors.

Lemma 2.3. Let U = Q\Ey for some volume constrained perimeter minimizer Eq. Given 7 > 0, let
Ur :={ze€U:d(z,R"\U) >} (2.5)
Then there exist a A > 0 and Cy,Co > 0 so that for all T sufficiently small and all v € (C17, A),
Ty, () > Copn=1/m,

Proof. We remark that the the boundary of U will have piecewise C? with components that meet transver-
sally. Furthermore the components of the boundary of U can be locally extended without intersecting U.

Step 1: We begin by constructing a C' vector field T which points into the domain U.

Let M;, i = 1,...,m, be the finitely many connected (n — 1)-dimensional manifolds of class C? with
boundary whose union gives OU. Extend each M; in such a way that M; is a subset of the boundary of
an open set V; of class C? with V; N U = (. Set F; = 0V;. Next we extend the normal vector field v,
to a vector field T; € CY(R™;R™). If M; and M; intersect transversally, then for x € 9M; N OM; we have
T;(x) - Tj(z) = vr,(x) - vp,(z) = 0 and thus by continuity we can find 5 > 0 such that |T;(z) - Tj(z)| < 5=
for all z in a p-neighborhood (denoted by U; ;) of dM; NIM;. By taking p even smaller, if necessary, we can
assume that the same p works for all 7 and j such that M; and M; intersect transversally. Next, set

do = mind(M;\Us,j, Mj\Us,5) > 0
1]

and let p :=1/2min(p, dy) > 0.

We then choose smooth cutoff functions ¢; which are valued 1 on M; and 0 at distance p/2 from the
same sets and consider the vector field T := > | ¢;T;. Note that T € C1(R™;R"), with ||T]|c < C and
IVT||oo < C for some constant C' > 0.

We claim that

T(x)-Vdy,(z) > 1/4 (2.6)

for all points x € U in a pg-neighborhood of F;, where dy, is the signed distance to the set V; enclosed by
F;. By Theorem 3 in [20] we have that dy, is a C? function in a neighborhood of Fj;.
Suppose & € M;. Then T;(z) = vp,(x) = Vdy,(z), and so

m
T(z) - Vdy,(z) = 14> ¢;(x)T;(z) - Ti(x). (2.7)
J#i
If z is in p-neighborhood of OM; N OM;, then Tj(z) - T;(z) > —5- otherwise ¢;(x) = 0. Thus, in both
cases T'(z) - Vdy,(z) > 3. By continuity of T and Vdy;, the inequality (2.7) implies that (2.6) holds in a
neighborhood of M;.
Step 2: We consider the flow along 7', meaning that for € R™ we take the initial value problem

{ G (1) =T((t)),
U(0) = z.

Since T is Lipschitz continuous, there exists a unique global solution ¥ defined for all ¢ € R. To highlight
the dependence on x we write ¥ (-, z) and we define W, (z) := ¥(t,z). Let U* := ¥, (U). By construction ¥,
satisfies

(1=Ct)|lz —y| < |We(z) — Wu(y)| < 1+ Ct)|z —yl.



This implies that for any set £ C U? of finite perimeter,
(1-Ct"L™(B) < L™V Y(E)) < (1+Ct)"L"(E), (2.8)
(1—Ct"'P(E;U") < P(T;1(E):U) < (1+Ct)" ' P(B;UY).

We claim that U, C U%", where ¢3 := 1/||T||co. To see this, let y € U,. For every t € R we have
[Wi(y) =yl < [t T, and so

d(¥(y), R*\U) > d(y, R*" \U) = [Ws(y) = y[ > 7 = [t|[|T]c = 0

provided |t| < 7/||T|loc- In turn, ¥i(y) € U for |t| < 7/||T||sc. Define z, := ¥U_.,(y). and consider the
function ¥(-, ). Since the system of differential equations is autonomous and solutions are unique, we have
that Ueyr () = Uiyr (V_ryr(y)) = y, which shows that y € U™ = U, (U).

Next, we claim that U™ C U,,, for all 7 sufficiently small, and for some constant c4. Let z € U be in a
po/2 neighborhood of M;, where py was given in Step 1. Since dy, is C2, by the chain rule we may write

Ay (W) = dv; (@ / Vv, (W (2)) - T(W,(2)) ds
t
> dy, (@) + & > e RD) +
where we have used (2.6), and where we have assumed that ¢ < m\gﬁ' As this is true for all ¢, and as

d(z,R"\U) = min; dy, (z) for z € U, we find that
d(¥y(x), R"\U) > d(z,R"\U) + t/4

for  near QU and for t sufficiently small. This proves the claim for x close to the boundary, and for x far
away from the boundary there is nothing to prove.

In summary, we know that U, C U™ C U,.,,, as along as 7 is sufficiently small, for c3, ¢4 independent
of 7. These two inclusions, along with (2.8), imply that for any set E of finite perimeter we have that

P(E;U,) > P(E;U®/7)

and that £"(U,\U®/%7) < cs7, with ¢5 > 0 independent of 7.
Finally, let E C U, be a set of finite perimeter satisfying L™(E) > 2¢57. By (2.8), the previous inequali-
ties, and the isoperimetric inequality (which applies as U must be Lipschitz) we have that
P(E;U,) > P(E;U®/*T)
>CP(U Y (EnU®/“T),U)

cg/caT

> (L”(\I! L

c3/eat

(n—1)/n
(Enus/em))

>C (,C"(E ) UC3/C4T))(n71)/n

> C(L(E) - c5m)" D" > oLm(B)nD/m,

This completes the proof.

Now we prove Proposition 2.2.
Proof of Proposition 2.2. Let Eg be a minimizer of

min{P(E;Q) : £ C Q Borel, L™"(E) =0, a(Fo, F) < 4},

with 6 € J5 = (0, — /2,0, +/2). Since JEj is regular and intersects the boundary of Q orthogonally, we
know that » »
Tang,(v) > Co | To\E,(0) > Co (2.9)



for all v sufficiently small (see, e.g., Corollary 3 in Section 5.2.1 of [24]). We pick ¢ small enough that (2.9)
holds for v € (0,26).
Next, we claim that we can construct a smooth function ¢g defined on a neighborhood of t so that
65(0) =Z5""(6), ¢5(0) 2Ig""(v), ¢} <C, (2.10)
where C' does not depend on ©, but may depend on d.

To prove this claim, we consider two different cases. First, suppose that «(F;, Ey) < d. Then by (2.1),
E; is actually a volume-constrained local perimeter minimizer, and hence we can prove (2.10) by using a
normal perturbation and the fact that 0 is smooth, see Lemma 4.3 in [27] for details.

Now suppose that «(Fg, Eg) = ¢. In view of (2.2) we may assume, without loss of generality, that
a(Es, Eg) = L™(Eo\FE;) (the opposite case is analogous). Hence, we may locally perturb Ej inside the set
O\ Ey without increasing the value of «(FEg, Fy). In particular, by (2.1), Eg\Ey is a local minimizer of the
problem

min{ P(E; Q\Ey) : E C Q\Ey Borel, L"(E) = L™"(E;\Ep)}.

Hence, by [15], 0F; N (2\Ep) is analytic.
We note that

0 — L"(E5\Eo) = L"(Eo\Eg) — L"(E5\Eo)
= E”(Eo) - ,Cn(Ef,) =0, —0¢€ (—6/2,5/2).

Hence, we know that L™"(E;\Ep) € [0, 32—6] Since Ey is a local volume constrained perimeter minimizer by
[15] and [17], its boundary is smooth inside 2 and intersects 9 transversally. In particular, it may only
have finitely many connected components, and hence by selecting § sufficiently small we may assume that
OF; N (2\Ep) is non-empty.

Next, let U := Q\Ep. Let d € C®(R"\QU) be a regularized distance function from R"\U, satisfying the
properties

O < - A0) 0, forwerv, |Vil.<C, (2.11)

(z, R\U)
where d(z, R™\U) is the signed distance function. Such a regularized distance function, as well as the
aforementioned properties, is constructed in [29].

Let ¢ : R — R™ be a smooth function satisfying ¢,(s) = 0 for all s < 7/2, ¢,(s) =1 for all s > 7, with
¢ strictly increasing for 7/2 < s < 7, and ||¢] || < g with 7 to be chosen. We define @, (z) := ¢, (d(x)).

Let T € C°(U;R™) be an extension of the vector field ®,vpp,. Define a one parameter family of
diffeomorphisms given by fi(z) = z + tT(z), where ¢ is sufficiently small. Note that fi(z) = z for all
x € Eg and all ¢ sufficiently small. Hence by (2.1) the sets f;(Eg) satisfy P(f:(FEg); Q) > IgO’é(ﬁn(ft(Eﬁ)))
since a(Eg, Fy) = L"(Eyp\E;). Using the formulas in Chapter 17 of [22], there exists a function ¢ =
P(fi(v)(E3); Q) such that for all v in a neighborhood of b:

$(0) = Z5°(8),  og(v) > T (v),
. f@Eﬁ |V3Ee (I)T|2 - q)z“AEa H2 dHt

§(0) = 2
(Jom, @ drr1)

where ||Ag, || is the Frobenius norm of the second fundamental form of the boundary of Ej, and where the
mapping t(v) — v is a smooth, increasing map with ¢(0) = 0. The second derivative formula can be proved
as in [22], [31].

In order to prove (2.10) we thus only need to prove that

)

Jop, [Vor, ®-[2 dH"—!

(fo, @ cmnfl)2

(2.12)



To this end, using (2.11) and the fact that [|¢. || < € we have that

C C
/ [Vom, ®-* dH" ™! < S P(Ey; Q) < . (2.13)
dE; T T
On the other hand, denoting the set U := {®, > 1} = {d > 7}, we have that
/ O, dH" ! > / _dH"' = P(OEg; U). (2.14)
OE; OE;NU

By (2.11) and the fact that U has Lipschitz boundary, we have that
LU\ < L"({z: 0 < d(z,R"\U) < Cor}) < O,

Using the notation (2.5) we also have, by (2.11), that U, ¢, C U, and that C”(U\UT/CQ) < Cy7. Hence
using (1.7) and Lemma 2.3 we find that
. n—1)/n
Z5(0) > né%i Ty e, (0—m) = Clo— Cyr) =1/

as long as v — Cy7 € (CT, A).

Again recalling that L™(E;\Ep) € [6, %] we find that, for § sufficiently small and 7 = ¢§ with sufficiently
small ¢ > 0, ~

P(Eg;U) > Csn=b/m,

This inequality, together with (2.13) and (2.14), proves (2.12).

By then using an argument as in the proof of Lemma 2.7 in [31] (see also [27]) we find that Ig"’é is
semi-concave on Js, which is the desired conclusion. O

As Ig 09 is semi-concave, it has a left derivative (Ig 9)" and a right derivative (Ig 0’5)’+ at every point

v in Js, with (Igﬁ"s)’_(n) > (Igo’é)’_s_(n). Furthermore, by considering a normal perturbation of Ey, we have
that (n—1)kg, € [(Igo’é)’_ (bo), (Igo"s);(no)]. The following result gives a simple, yet important observation.

Proposition 2.4. Assume that Q satisfies (1.15) and let Ey C 2 be a volume-constrained local perimeter
minimizer in ), with L"(Ey) = v,,. Then as 6 — 0, (Igo’é)L(Um) — (n—1)kg, and (Igo’é);(nm) —
(n —1)kg,, where kg, is the mean curvature of Ey.

Proof. We will prove the result for the left derivative. For any fixed §, pick a sequence of points vy T vy at
which 150,5 is differentiable. This is possible as Ig"’é is semi-concave. Also, as Ig‘)’é is semi-concave we

have that (150’6)/(Uk) — (Ig"’é)’_(no). Let Ey, be a minimizer of
min{P(E;) : E C Q Borel, L"(E) = v, a(Eo, F) < §}.

We claim that there exists a volume-constrained perimeter minimizer EJ, satisfying a(Eg, Eo) < 6,
L"(ES) = vg, and with mean curvature xj = (150"5)'_(%).
First, suppose that we can pick a subsequence of vy (not relabeled), such that

min{L"(Ey, \Eo), L"(Eo\Ev, )} = L™ (Eo, \Eo)-

Suppose furthermore that liminfy_, o L7 (Ep\Ey,) > 0.

Under these assumptions, and as long as ¢ is small enough and vy is close enough to vy, we have that
0E,, N Ey is a non-empty set. Furthermore, taking local variations with support in Ey will not increase the
value of a(Ey,, Fo). Hence, the mean curvature of Ey, inside the set Eo, which we will denote xj,, will
satisfy ( see Chapter 17 in [22])

(n = D)5 = (Zg"") (ox)-

We remark that since (Igo’é)’(nk) — (Igo"s)L(uo), we immediately have that 7}, is bounded.



By BV compactness, xg, — Xpg in LY(9), for some set EJ with finite perimeter. By lower semi-

continuity of the perimeter, we have that P(E3;Q) = Igo’é(ro) < P(Ey; Q). As Ej is a local volume-
constrained perimeter minimizer, for § small enough we have that Eg is a local volume-constrained perime-
ter minimizer as well. In particular, OE] is a surface of constant mean curvature. Furthermore, by the
assumption that liminfy_,o. L™ (Eo\Ey, ) > § we know that aEg N Ey is a set with positive perimeter.

By using the uniform bound on the curvatures, along with elliptic regularity, we then have that E,, — EJ
in C* in compact subsets of Ey (see the proof of Theorem 1.9 in [27]). Hence the mean curvature 3 of EJ
satisfies (n — 1)k = (IgO’é)L(uo).

The case where liminfy oo L"(Eo\Ey,) < ¢ is in fact simpler, because the a-constraint will not be
saturated and any local perturbation is permissible. On the other hand, if we cannot pick a subsequence of
vy, satisfying min{L"(Fy, \Eo), L"(Eo\Eys, )} = L"(E,, \Eo), then we must be able to pick a subsequence
satisfying min{L"(Ey, \Eo), L"(Eo\Ev,)} = L"(Eo\Fy,). We then conduct the same steps, but this time
in Q\Ey. This proves the claim.

Finally, we recall that a(EJ, Ey) < 6. Hence we have that Xps = XEB, in LY(Q) as § — 0. By again
using the same argument, Eg must in fact converge in C* to Ejy, and hence /@8 — KE,, or in other words,
(Igo";)L — (n — 1)kg,. This concludes the proof. O

3 Rearrangements and Weighted Problem

Let I = (A, B) for some A < B and consider a function n : I — [0, 00) which satisfies the following:

neC(I)NCH (A to]) N CH([to, B)),  n>0 inl (3.1)
di(t— A <n(t) <do(t— A" fort € (A, A+1t*), (3.2)
d3(B — )" <n(t) < dy(B—t)"+ fort € (B —t*,B), (3.3)
dsn(t

00 < ey Pt T\ {bo) o t0) > o), (3.4

to
/A ndt = 0, /Indt =1, (3.5)

for some A < tg < B and for some constants dq, ..., ds > 0 and t* > 0.

Next, define the energy

2|12 . 1 B
G.(v) == {f[(W(U)+E [W'[P)ndt if v e Hy(I) and [;ondt =m,
00

otherwise.

Under the hypotheses (3.1)—(3.5), following the proof of Theorem 4.4 in [21], it can be shown that G =
16, 5 Ggl), where Gél) is given by

oW _ %C_a |Dv|,(I) if v € BV, (I) and f[ vndt = m,
o (v):

oo otherwise,

with ey the constant given in (1.21). In view of (1.8) and (3.5), it can also be shown as in Theorem 4.6 in

[21] that vo = aX[at,) + bX[t,,B] 15 an isolated L'-local minimizer of Ggl), and hence for some ¢ sufficiently
small we have that vy is the unique limit of minimizers v. of the functionals

J.(v) Ge(v) ifve H)I), [;undt=m and HU—’UOHL}]SS,
v) =
: 00 otherwise.

Note that v, satisfies the Euler-Lagrange equation

2e*(vln)" — W' (ve)n = eAen.

Our goal is to prove the following theorem:
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Theorem 3.1. Assume that W satisfies hypotheses (1.16)—(1.19) and that n satisfies (3.1)—(3.5). Let v, be
a minimizer of G. with ve — vy in L}] ase — 0. Then,

G (v.) — 2ewn(to)

0
lim inf > 21" (to) / W2(2(s — 10))2' (s — 10)s ds
e—0t € o
oo Ad =1
= 2n'+(t0)/ W2 (o(s — )2/ (s — m)sds + 4 F0@ S dt g =1, (3.6)
0 0 ifq<1,
where Csym 1s the constant given in (1.22),
. 2ewnly(to)  2cwn’(to) }
lim \.. = )\g € , 3.7
e =0 |G G 7
for some subsequence £; — 0%, and the number 7 is given by
Ao
n(to) A 2(s = 7o) — sgnap(s) ds = W (a) Iﬁ(t) dt, (3.8)

with z the solution to (1.23).

Proof. By taking a subsequence (not relabeled), without loss of generality, we may assume that the lim inf
on the left-hand side of (3.6) is actually a limit. Also, for simplicity we take to = 0.

Step 1. We claim that (3.7) holds. This proof follows as in Theorem 4.9 in [21]. The only difference is that
at the last part of the proof we can no longer use the fact that 7 is of class C' and we need to show that

lim [ W2 (v wlln'y dt = cw(0)m,
e—0+ T

for some 71 € [1.(0),7"(0)]. Following the proof cited above, we know that W/2(v.)|v.|nLt|[A, B] =
ewn(0)do. Hence by picking an appropriate subsequence, we have, for some 6 € [0, 1],

W2 (v) Wl nL [[A, 0] = Oeywn(0)do,
W2 (o) [vlnt [0, B] = (1 — 0)ewn(0)do.

Hence,
lim [ WY2(v.) ol ln's dt = ew(0)(9n_(0) + (1 — 0)17,(0)),

e—0t J1
which is the desired conclusion.
Step 2. We claim that there exists a sequence of numbers 7. — 79, where 79 is given in (3.8), so that the
functions we(s) := v. (es), s € (Ae~t, Be™1), converge weakly to the profile wg := z(- — 79) in H'((—1,1))
for any fixed [ > 0, and satisfy
wE(TE) = Ce¢,

where c. is the central zero of W’ + ..

This follows from the proofs of Lemmas 4.18 and 4.19 in [21] (see also [11]). We note that those proofs
use significant machinery from that work, including detailed decay estimates, but do not require anything
more than a Lipschitz estimate on 7 near 0 and (3.2), (3.3), and (3.4).

Step 3. We claim that (3.6) holds. Define n.(s) := n(se), s € (Ae~!, Be~!). After changing variables, and

11



setting . := C|loge|, we obtain

G (v,) = ! /

—1.

lE ls
(W2 (w.) — w!)?ne ds + 21 / W2 (w)wl (5. — n(0)) ds
—l.

le
+et / (W(wg) + (w;)Q) e ds + e 12n(0) (/ Wl/Q(wE)wfE ds — cw>
[AsilvBeil]\(_lsylE) _ls

ls
> 9e-1 / W2(w.)w! (n. — 1(0)) ds
—l.
1

le
+e” / W (w.)n. ds + e 12n(0) / W2 (w)w! ds — ew | .
[AgilvBsil]\(_lsyls) _ls

The last term goes to zero, see 4.105 in [21]. Following the proof of 4.106 in [21], the second to last term
satisfies

Al e
lim 5_1/ W(we)ne ds = 2W'9(a) f[ndt if ¢ =1,
em07 [Ae=1, Be= 1]\ (~le,lc) 0 if g < 1.

Finally, by (3.1) the function 7 satisfies the following Taylor’s formula:
n(t) = n(0) — t7n2(0) + t L (0)| + [t Ru (t),

where R;(t) — 0 as t — 0. Hence, we find that

le le
2=t [ W)l () () — n(0) ds =2 [ WV w (o)) (ol )5+, (057 ds
—l. —l.
le
+2/ W2 (w, (5))wl.(s)|s| Ry (¢5) ds.
1.
As in [21], we now break the integrals over [—I., -], [=1,1], [I, 1] for any fixed [ > 0. Since by Step 2, {w.}

converges weakly to z(- — 1) in H*((—1,1)), we can follow the computations after formula (4.106) in [21]
using the exponential decay (see (4.95) and (4.96) in [21]) in [—I., —I] and [l,[.] to obtain that

le
A, 2 /_lg W2 (e ()l (s) (—n(0)s™ + 7 (0)s+) ds
=21’ (0) / W1/2(z(s —10))%'(s — 70)s ds + 21/, (0) /OO Wl/z(z(s —70))2' (s — 10)sds.

oo 0

Similarly, using the facts that R;(t) — 0 as t — 0 and ¢|s| < el. < Celloge| for |s| < I, we can use Step 2
to show that

l
lim 2 / W2(w.(s))w' (s)|s|Ry(es) ds = 0,
e—0* —1

while by Lemma 4.19 and (4.96) in [21],

le le
2 [ W (sl (9l (e9) s < 2R et o s [ W ()l ds = 0

as € — 07. A similar estimate holds in [—I., —]. This concludes the proof of (3.6).

4 Proof of the Main Results

Now we give a proof of Theorem 1.3.
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Proof of Theorem 1.3. We only give the proof in the case ¢ = 1 in (1.17), the case ¢ < 1 being similar.
Since Zq < Ig"’é (see (1.7) and (2.1)), reasoning as in Proposition 3.1 in [21] we can construct a function

ZeC(0,1)NC(0,0,,]) N CH([om,0)) satisfying
5 > T >0in (0,1),
I(om) = 5" (0m),  Thlom) = (Zg"°)% (0m), (4.1)

n—

I(v) = Coo™+ forve (0,r), Z(v)=Co(1—v)+ forve (1—r1)
for some constant Cy > 0 and some 0 < r < 1/2 small. Let  :=Z o Vy, where Vj, satisfies
d
ﬁ‘/g)(t) =Z(Va(t), Va(0)=1o,,. (4.2)

As in the proof of Theorem 5.1 in [27] one can show that n satisfies all of the assumptions (3.1)—(3.5).
Let u. be a minimizer of F. and let v, := f,,_ be the increasing function given in Remark 3.11 of [21].
Following the proof of Theorem 5.1 in [21] (see also [26] or [27] for more details), we have that

.F‘s(l)(ue) B miIl]:O > Ggl)(vf) — ZCWn(tO)
c - 9

)

Hence, by Theorem 3.1, we have that

1) Uz ) — Mmin 2 0
e 220D T o O a1 [ WA = ) - m(6)sds
+ 21/ (to) /000 W2(2(s — 10(0)))2 (s — 70(6))s ds,
where
2ewny (to)  2cwn’(to)
W0 < [ T a) 3
and 79(0) is given by s
n(to) /Rz(s —70(9)) — sgnqp(s)ds = WO”((cz) /In(t) dt. (4.4)

By Proposition 2.4, (4.1), and (4.2), we find that as 6 — 0 the quantities 1’ (¢y) and 7/, (to) converge to
the same value, namely, (n — 1)kg,, and hence by (4.3) and (4.4) we have that Ao(d) — A, and 70(0) — 7,
converge as well. Thus by taking 6 — 0 we obtain

(1)( ; 2 2

. ¢ (ue) —min Fy 2y (n—1)7 4

lim ff ———2 > Tia o ) Hem + ewr)(n = D P({u = a}: )

which is the desired result. O

The proofs of Theorems 1.4 and 1.5 now follow from Theorems 1.2 and 1.7 and Theorem 1.4 in [27],
respectively, with the only change that we apply Theorem 1.3 of this paper in place of Theorem 1.1. in [21].
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