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ABSTRACT 
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General methods to achieve better physical insight about nanoparticle aggregation and assembly 

are needed because of the potential role of aggregation in a wide range of materials, environmental, 

and biological outcomes. Scanning electron microscopy (SEM) is fast and affordable compared to 

transmission electron microscopy, but SEM micrographs lack contrast and resolution due to lower 

beam energy, topographic contrast, edge effects, and charging. We present a new segmentation 

algorithm called SEMseg that is robust to the challenges inherent in SEM micrograph analysis and 

demonstrate its utility for analyzing gold (Au) nanorod aggregates. SEMseg not only supports 

nanoparticle size analysis for dispersed nanoparticles, but also discriminates between 

nanoparticles within an aggregate. We compare our algorithm to those incorporated into the 

commonly used software ImageJ and demonstrate improved segmentation of aggregate structures. 

New physical insight about aggregation is demonstrated by the introduction of an order parameter 

describing side-by-side structure in nanoparticle aggregates. We also present the segmentation and 

fitting algorithms included in SEMseg within a user-friendly graphical user interface. The resulting 

code is provided with an open-source interface to provide quantitative image processing tools for 

researchers to characterize both dispersed nanoparticles and nanoparticle assemblies in SEM 

micrographs with high throughput. 

INTRODUCTION 

Understanding nanoparticle size, shape, and aggregation is a key consideration in 

nanotechnology research and development.1-14 Nanoparticle structure, aggregation, and 

assembly15 relate to a range of applications16-24 including surface-enhanced Raman scattering 

spectroscopy,25-27 opto-electronic devices,28 catalysis,29-34 and other sensing platforms.7, 35-37 

Nanoparticle aggregate structure can be detected using techniques such as dynamic light 

scattering,38 small-angle X-ray scattering,1, 39-40 grazing-incidence wide-angle X-ray diffraction,20, 
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41 and electron microscopy.42 The quantitative parameters provided by these methods (e.g., radius 

of gyration, radial distribution, fractal dimension)43-47 provide averaged descriptions of the long-

range structure and can under- or over- reflect underlying heterogeneity, small aggregates and 

assemblies, or short-range order.  

Scanning electron microscopy (SEM) is a fast and affordable means of imaging nanoparticle 

assemblies. Electron micrographs are regularly used to measure nanoparticle size/morphology,8, 

33, 37, 48-50 surface coverage,51 and the effectiveness of nanoparticle assembly methods.52 More 

expensive and time consuming, transmission electron microscopy (TEM) produces high-contrast 

and high-resolution micrographs suitable for quantitative structural analysis, whereas SEM has 

lower contrast and resolution and exhibits topographic contrast, edge effects, and charging.53 The 

low relative quality of SEM generally relegates it to qualitative sample assessment, but image 

segmentation algorithms48, 54-61 offer the possibility of quantitative SEM analysis that may not be 

provided by common tools included in programs such as ImageJ or Photoshop.62  

Image segmentation is an image processing method63-64 that classifies each pixel in an image as 

belonging to one of some number of object classes.65 The positions and intensities of pixels 

assigned to an object via segmentation provide quantitative descriptors that can be extracted from 

segmented images with high throughput. Segmentation algorithms are problem-specific, utilizing 

various image processing techniques depending on the complexity of the segmentation problem.48, 

54-61 Compared to well-separated nanoparticles, segmentation of aggregated nanoparticles is a 

greater challenge because algorithms can over- or under-segment closely spaced nanoparticles.66 

The challenges involved in categorizing long- and short-range ordering,38, 67 relative 

orientations,21, 68-71 surface-chemistry driven forces,40, 69 and optical properties7, 70, 72 motivate the 
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need for image-processing algorithms that can accurately segment nanoparticles in aggregates and 

assemblies. 

Here we present SEMseg, a segmentation algorithm that is robust to the challenges inherent in 

analyzing SEM micrographs of nanoparticle aggregates to demonstrate principles of effective 

segmentation algorithm design and to provide a practical tool for nanoparticle aggregate 

characterization. The presented algorithm consists of three steps: background masking, the marker-

controlled watershed method, and nanorod fitting. SEMseg is designed to be robust for a variety 

of nanoparticle shapes, preparations, and aggregation scales, and also offers user optimization 

through a graphical user interface (GUI) called SEMseg. We combine SEMseg with a fitting 

function appropriate for rod- or circle-shaped nanoparticle profiles, but the algorithm can be 

generalized to other nanoparticle geometries by changing the fitting function. The nanoparticle fits 

are used to characterize detected nanoparticles, and calculation of a side-by-side order parameter 

is introduced as a possible means of characterizing intra-aggregate structure. 

 

EXPERIMENTAL METHODS 

Nanoparticle Aggregate Preparation. Nanorod aggregate samples were prepared based on our 

previously published protocol7 by a 1:1 mixture of ~1 nM mercaptoundecyltrimethylammonium 

bromide (MUTAB) functionalized Au nanorods (NRs, C12-40-750, Nanopartz Inc.) with 1.5 µM 

BSA (lyophilized powder, ≥96%, Sigma-Aldrich, Inc.) in phosphate buffer (0.1M, pH 7.5, Sigma-

Aldrich, Inc.). 10 μL of commercial MUTAB-Au NRs solution were mixed with 90 μL 0.1 mM 

hexadecyltrimethylammonium bromide (CTAB, ≥99%, Sigma Aldrich) before use for aggregation. 

Nanorods were given 2, 5, or 7 minutes of aggregation time. Au nanorod aggregates were spin-

cast (500 rpm for 15 s followed by 2500 rpm for 60 s) onto oxygen plasma cleaned (2 min) ITO 
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coated microscope slides (CG-50IN-S107, Rs = 8-12 Ω, Delta Technologies, Ltd.). Surfactants 

were not removed from the nanorods prior to imaging. 

Dewetted Film Preparation. Nano-island samples characterized with SEMseg were fabricated 

via dewetting of thin films.73 Electron beam evaporation was used to deposit a 3 nm Au film onto 

ITO coated glass coverslips (22 × 22 mm) (55 Ω/sq., Evaporated Coatings Inc.). The Au films 

were annealed on a hot plate for 12 h at 150°C. Spherical Au nano-islands, supporting a surface 

plasmon resonance, were formed on the surface of the ITO substrate. 

Electron-Beam Lithography. Au nanorod dimers with approximately 40 nm widths, 80 nm 

lengths, and 20 nm gaps were fabricated in a method similar to that previously described.74 Briefly, 

ITO coated microscope slides (CG-50IN-S107, Rs = 8-12 Ω, Delta Technologies, Ltd.) were 

cleaned through 10 min sonication steps in 2% Liquinox® detergent, Milli-Q® water, and ethanol 

(Decon Labs, Inc., 190 proof). Next, positive-tone electron resist (polymethyl methacrylate A4, 

Kayaku Advanced Materials, Inc.) was spin-coated at 3000 rpm for 60 s followed by baking at 

180°C for 90 s. Patterns were written via a Nanometer Pattern Generation System on an FEI 

QuantaTM 650 SEM with a voltage of 30 kV, a beam current of 40 pA, and a working distance of 

7 mm. The beam-exposed resist was then developed in a 1:3 methyl isobutyl ketone : isopropanol 

solution for 70 s followed by a 60 s rinse in isopropanol. Finally, an electron beam evaporator was 

used to deposit a 40 nm Au film. Lift-off was completed by an overnight soak in acetone followed 

by gentle sonication and drying with a stream of N2. The structures were then imaged on the same 

microscope used for fabrication under the same conditions. 

Electron Microscopy. SEM micrographs of Au nanorod aggregates for 2-, 5-, and 7-min 

aggregation time, lithographic rods, and nanoislands were collected with a FEI Helios Nanolab 

660 Dualbeam SEM (10 kV, Thermo Fisher Scientific).  
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COMPUTATIONAL METHODS 

 

ImageJ Segmentation and Fitting. ImageJ analysis consisted of two applications of the built-

in Smooth process, a manually selected Threshold adjustment, the binary Watershed process, and 

running the Analyze Particles routine. 

 

SEMseg: an Algorithm for Segmentation and Fitting of Nanoparticle Aggregates 

SEM micrographs were processed using SEMseg, a custom-designed GUI for image processing 

and analysis in MATLAB. The methods in this section describe the key steps of the segmentation 

and fitting algorithms included in SEMseg. See Supporting Information for further detail and 

instructions on the GUI SEMseg and its operation. SEMseg is available for download through a 

GitHub repository (https://github.com/LandesLab?tab=repositories). 

Weak contrast of inter-particle boundaries and topographical contrast variation on nanoparticle 

surfaces in SEM micrographs of aggregates and assemblies is the first challenge for 

segmentation.53 Bright regions in SEM micrographs occur on nanorod ends and edges and do not 

directly correspond to topographic features (Figure 1a).53 These bright edges can result in inter-

particle boundaries with higher intensities than regions inside of particles, inhibiting traditional 

intensity thresholding techniques from isolating single nanoparticles (Figure S1). High-frequency 

variation in topographical contrast leads to erroneous edge detection and contributes to over-

segmentation, in which single nanoparticles are subdivided into multiple objects. These challenges 

are overcome in SEMseg through a combination of background masking, internal and external 
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marker calculation, the watershed transform of the gradient magnitude, and nanorod fitting and 

parameter estimation, as presented in the workflow outlined in Figure 1. 

Background Masking 

Background masking (Figure 1b) removes background features and isolates nanoparticles, a step 

that is crucial for SEM samples, which require conductive substrates such as indium tin oxide 

(ITO) coated glass that has distinct grain edges (Figure S1a). First, raw micrographs are cropped 

to isolate the aggregate of interest, converted to grayscale, and scaled so intensities fall in the range 

[0, 1]. The spatial scale of each micrograph is maintained so the pixel-to-nanometer conversion 

provided by the SEM scale bar is still applicable. ITO grain structure is suppressed through the 

morphological opening operation58 (Figure S2) performed on the grayscale micrograph. The radius 

of the circular morphological structuring element, the intensity threshold, and the minimum size 

threshold are variable parameters of the background masking operation. The radius of the 

structuring element can be set manually or can be estimated by a parameter sweep as shown in 

Figure S3. The threshold value of 0.2 used for this study was found to be robust for a variety of 

micrograph contrasts. The background mask is used with the preprocessed micrograph to isolate 

nanoparticle aggregates for the calculation of internal and external markers described below. 
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Figure 1. SEMseg segmentation algorithm for SEM micrographs of planar nanorod 

aggregates. Dashed lines represent image processing applied to a single micrograph 

and plus symbols indicate multiple sub-micrographs combined together before image 

processing. (a) Preprocessing includes cropping the SEM micrograph and scaling 

intensity values to [0,1]. (b) Background masking isolates nanoparticles from the ITO 

substrate. (c) Internal markers for each nanoparticle are calculated by sharpening and 

cleaning the preprocessed micrograph (a) masked with (b). (d) External markers 

indicating the inter-nanoparticle boundaries and background. (e) Gradient image 

calculated from the preprocessed micrograph (a) using the Sobel method. (f) 

Watershed segmentation contours (red outlines) overlaid on the preprocessed 

micrograph. 

Internal and External Marker Calculation 

Artificially imposed minima that mark the interior of each nanoparticle and the boundaries 

between them, called internal and external markers, respectively, are established to identify each 

individual nanoparticle in an aggregate or assembly. The first step in internal marker calculation 

(Figure 1c) is to increase the contrast between nanoparticle surfaces and boundaries by unsharp 

masking using the MATLAB imsharpen function. Unsharp masking enhances contrast by 

summing an image and the output of a high-pass filter.75 The radius of the unsharp mask determines 

the scale on which the mask increases contrast and should be close to the mean separation between 

nanoparticles in the micrographs (~8 pixels here). The strength of the unsharp masking is 

determined by the intensity parameter, and a value on the order of ~70 was found to provide 

sufficient contrast for thresholding to separate individual nanoparticle markers. We clean up the 

noisy sharpened image (Figure S4) and obtain the final internal markers shown in Figure 1c using 
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morphological operators. We calculate external markers using the union of the internal markers 

and the complement of the background mask, reduced to a morphological skeleton with a single-

pixel width using the bwskel function in MATLAB.58 The resultant morphological skeleton is 

combined with the complement of the background mask to prevent the segmentation of the 

background, resulting in the external markers shown in Figure 1d. 

Watershed Transform of the Gradient Magnitude 

We implement a variation of the watershed transform for segmentation using internal and 

external markers,56, 76 functioning effectively as the flooding of a topographic landscape.57 For this 

application, we define the height of this topographic landscape as the gradient magnitude of the 

SEM micrograph, shown in Figure 1e. The minima in the gradient image, called catchment basins, 

are treated as the bottoms of water pools that are filled up by the watershed transform. Wherever 

the water from two pools touch, a crest line is drawn to define segmentation contours between 

them. Ideally, each object in a micrograph would have a single local minimum near its center and 

local minima around the edges. The noise and intensity variation in SEM micrographs result in 

over-segmentation (Figure S5), but this problem is overcome by performing the watershed after 

the internal and external markers57 are calculated (Figure 1c–d). The internal and external markers 

are combined through union and imposed as minima on the gradient magnitude image using the 

imimposemin function in the MATLAB Image Processing Toolbox. Imposing minima defines the 

catchment basin for each nanoparticle using the calculated markers. The watershed transform is 

applied to this augmented gradient image and the contours of each contiguous region of pixels 

provides the nanoparticle segmentation contours as shown in Figure 1f. Nanorod contours are fit 

to a stadium geometry to estimate parameters describing each nanorod in the aggregate, as 

discussed below. 
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Nanorod Fitting 

 

Figure 2. Calculating nanorod dimensions and orientation using a stadium model that 

is fit in polar coordinates. (a) Vectors defining the stadium fit: offset between 

estimated centroid and actual centroid, rc= 〈𝑥𝑥0, 𝑦𝑦0〉, nanorod length and orientation 

vector, rL, and nanorod endcap vector, rR. The nanorod length is L+2R and the width 

is 2R, where L = 2 • | rL | and R = | rR |. (b) Angles describing the limits of the piecewise 

function defining the stadium model: 𝜃𝜃1 = Φ{𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿 + 𝑟𝑟𝑅𝑅}, 𝜃𝜃2 = Φ{𝑟𝑟𝑐𝑐 − 𝑟𝑟𝐿𝐿 + 𝑟𝑟𝑅𝑅}, 
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𝜃𝜃3 = Φ{𝑟𝑟𝑐𝑐 − 𝑟𝑟𝐿𝐿 − 𝑟𝑟𝑅𝑅}, 𝜃𝜃4 = Φ{𝑟𝑟𝑐𝑐 + 𝑟𝑟𝐿𝐿 − 𝑟𝑟𝑅𝑅}, where Φ{𝑧𝑧} = arctan �𝑧𝑧𝑦𝑦
𝑧𝑧𝑥𝑥
�. We define 

the piecewise function of the stadium model in the Supporting Information. 

Accurate fitting requires a functional model that appropriately describes the nanoparticle 

morphology,48 which, in the case of nanorods imaged by SEM, is best described as the two-

dimensional projection of a hemispherically-capped cylinder,77 called a stadium (Figure 2). 

Because a functional definition of a stadium is, to the best of our knowledge, not defined in the 

literature, we derived our own expression. The stadium is a piecewise function defined by five 

parameters, (𝑥𝑥0, 𝑦𝑦0,𝜑𝜑, 𝐿𝐿,𝑅𝑅), which describe the x and y coordinates of the nanorod center 𝑥𝑥0, 𝑦𝑦0, 

the orientation 𝜑𝜑 of the nanorod axis, the length L of the body (neglecting the end-caps), and the 

radius R of the end-caps, respectively. Figure 2 shows the polar formulation of the stadium for 

fitting nanoparticle contours using vector notation. We express the segmentation contour in polar 

coordinates as 𝜌𝜌(𝜃𝜃) by calculating the distance, 𝜌𝜌, and the angle, 𝜃𝜃, relative to the nanoparticle’s 

centroid for each pixel on the contour.48 The origin of the coordinate system is the centroid of the 

watershed contour points, with (𝑥𝑥0,𝑦𝑦0) accounting for the deviation from the true nanoparticle 

centroid and 𝜑𝜑 representing the rotation about the true nanoparticle centroid. Figure 2b illustrates 

the angles that define the intervals of the piecewise function, measured relative to the estimated 

centroid from the watershed contours. The segmentation contour for each nanorod is iteratively fit 

to the stadium model using nonlinear least squares fitting in MATLAB. We adopt the least absolute 

residual method to make the fit robust to outliers that may be present on the nanorod contour. The 

stadium function is also appropriate for fitting nanoparticles with circular profiles, as a stadium 

where L = 0 is simply a circle. 

 

RESULTS AND DISCUSSION 
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Nanoparticle Parameter Estimation 

With the segmentation and fitting performed by SEMseg, structural parameters of nanoparticles 

(e.g., centroid position, major and minor axis, orientation) can be calculated from the stadium 

parameters as described in Figure 2 and in the Supporting Information. Micrographs segmented 

using ImageJ and SEMseg are shown in Figure S6 and Figure 3, respectively. Table 1 gives the 

mean and standard deviation of the nanoparticle parameters calculated with each method. The inset 

of Figure 3a compares estimated lengths using SEMseg and manually measured lengths in ImageJ 

for 58 nanorods, demonstrating accurate nanorod parameter estimation with a root-mean-square 

error of 3.2 nm.  

 



 13 

 

Figure 3. Output from SEMseg analysis of example nanoparticle images. (a) Colloidal 

Au nanorod aggregate, (b) lithographic Au nanorod dimer, and (c) Au nanoislands 

formed through dewetting of a 3 nm Au film on an ITO substrate. All scale bars are 

100 nm. Red outlines depict the stadium fit for each nanoparticle. Outlines are omitted 

from (c) to improve particle visibility. Individual nanoparticles were segmented using 
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SEMseg, a GUI implementation of the segmentation and stadium fitting algorithm. 

Tabulated data shown in Table 1 are calculated from the nanoparticle fits, 

summarizing particle parameters that can be used for further analysis. Inset of (a) 

shows SEMseg fit nanorod length vs. nanorod lengths manually measured in ImageJ 

for N=58 nanorods, showing the accuracy of SEMseg (root-mean-square error = 3.2 

nm for ~111 nm long nanorods). 

Table 1. Sample output of nanoparticle parameters estimated from segmentation and fitting 

performed on SEM micrographs† 

Sample # particles Major Axis Minor Axis Area Median gap 

ImageJ segmentation 
A 6 82 ± 28 nm 48 ± 3 nm (3 ± 1)×103 nm2 n/a 

B 2 87 ± 5 nm 48 ± 6 nm (3.3 ± 0.2)×103 nm2 n/a 

C 69 15 ± 5 nm 14 ± 4 nm (1.8 ± 0.9)×102 nm2 n/a 

SEMseg 

A 4 109 ± 6 nm 39 ± 3 nm (3.9 ± 0.4)×103 nm2 8 nm 

B 2 79 ± 3 nm 39 ± 6 nm (2.7 ± 0.2)×103 nm2 24 nm 

C 61 14 ± 2 nm 11 ± 2 nm (1.3 ± 0.4)×102 nm2 87 nm 
† Nanoparticle parameter estimates calculated using ImageJ and SEMseg. Parameters 

are listed as mean value and standard deviation where appropriate. Samples (A–C) 

refer to Figure 3a–c, respectively. 

Calculating nanoparticle parameters from electron micrographs in an automated manner enables 

high throughput analysis of different types of nanoparticle assemblies without compromising 

accuracy. SEMseg can be applied to densely packed nanoparticles (Figure 3a), and also for 

samples with dispersed nanoparticles (Figure 3b–c). Due to the general nature of the watershed 
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transform, this algorithm could also be applicable to images of particles with edges defined by an 

intensity gradient, such as those collected by atomic force microscopy, opening up the possibilities 

of improving analysis of other broader types of imaging platforms. 

SEMseg effectively analyzes aggregated nanoparticles in micrographs that cannot be segmented 

by other widely available tools (Figure 4). For example, the open-source software ImageJ is 

effective for segmenting well-dispersed particles but generally fails to segment individual 

nanoparticles in aggregates or assemblies that SEMseg can accurately segment (Figure 4a, Figure 

S6). The watershed implementation built into ImageJ, based on the distance transform, leads to 

over-segmentation of oblong particles (Figure 4b, Figure S6a), while thresholding without the 

watershed transform leads to under-segmentation of aggregated particles. Similar to the stadium 

fitting implemented in SEMseg, the Analyze Particles ImageJ routine fits each contiguous patch 

of pixels to an ellipse (Figure 4d) and calculates properties such as the short and long axes and 

orientation, as summarized in Table 1. Other tools in ImageJ can be used to aid in segmenting 

particles, such as morphological operators and filtering to clean images, or manual input to 

segment or throw out particles.42, 65 Machine learning segmentation methods relying on hand-

labeled training data have also been implemented in ImageJ.61 Other published algorithms that 

segment closely spaced nanoparticles require the high resolution and contrast of TEM 

micrographs48, 78 and do not function for SEM micrographs. SEMseg is a training-free alternative 

that can successfully segment both dispersed nanoparticles and nanoparticle aggregates from SEM 

micrographs.  
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Figure 4. Comparison of SEMseg and ImageJ for nanorod aggregate watershed 

segmentation by displaying the resultant mask over the preprocessed image. (a-b) 

Watershed segmentation contours using SEMseg (a) and built-in ImageJ methods (b). 

(c) Segmentation contours in (a) fit to the stadium model included in SEMseg. (d) 

Segmentation contours in (b) fit to an elliptical model using the ImageJ Analyze 

Particles routine. Red crosses in (c–d) indicate the calculated centroid of each 

segmented region. As shown in (b) and (d), the watershed algorithm implemented in 

ImageJ leads to over-segmentation. 

Describing Ordering in Nanorod Aggregates 

By allowing accurate segmentation in SEM micrographs, SEMseg can provide insight into 

previously unknown structural order of small aggregates of nanorods (Figure 5). The two-
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dimensional nematic liquid crystal order parameter, 𝑆𝑆2𝐷𝐷 = 〈cos 2𝜃𝜃〉 suitably describes order in 

nanorod chains and large nanorod assemblies with long-range order, where an S2D of 0 is fully 

disordered and S2D of 1 is ordered.52, 72 The ordering described by S2D is a measure of uniformity 

of orientation, where the orientation of each nanoparticle long axis is compared to the average 

orientation vector of all nanoparticles, called the nematic director.52, 72 S2D is not a suitable 

descriptor for small aggregates and assemblies with differently-oriented domains. We demonstrate 

the ability to identify new types of ordering within aggregate in Figure 5a-b, where aggregates 

both with and without side-by-side ordering lead to the same S2D order parameter values. We 

quantify the ordering in various unaligned domains defining a side-by-side order parameter SR 

given in Equation 1,7 

𝑆𝑆𝑅𝑅 =
∑ 𝑀𝑀𝑖𝑖
𝑁𝑁𝑛𝑛𝑛𝑛
𝑖𝑖=1

2(𝑁𝑁𝑛𝑛𝑛𝑛−1)
, Equation 1 

where Nnr is the number of nanorods in the aggregate and Mi is the number of side-by-side 

nearest neighbors for nanorod 𝑖𝑖 ∈ {1,2, … ,𝑁𝑁𝑛𝑛𝑛𝑛}. We define side-by-side nanorods as nearest 

neighbors that have an orientation within 10° of each other and where the vector connecting their 

midpoints, projected onto the long nanorod orientation, is less than half the longer nanorod’s 

length. SR = 1 for the most ordered structure, is a continuous line of side-by-side nanorods, while 

a disordered aggregate with no side-by-side ordering has SR = 0.  

By using SR as an order parameter, we find Au nanorod aggregates that appear disordered by 

S2D may contain side-by-side ordering structure (Figure 5c). We have previously applied SR in the 

reported use of biomolecules as templates for chiral nanoparticle assembly7 to measure side-by-

side arrangement of nanorods. To demonstrate the effectiveness of SEMseg for quantifying side-

by-side ordering in experimental nanorod aggregates, Figure 5d–e compares S2D and SR for a 

population of bovine serum albumin (BSA)-induced nanorod aggregates. While S2D produces a 
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broad distribution of order parameters across the population of aggregates, SR displays a 

comparatively narrow range of ordering. This narrower distribution is a boon for statistical analysis 

of aggregate population ordering, and is likely due to the sensitivity of SR to side-by-side ordering 

even when split up over multiple, differently oriented domains. By utilizing SEMseg and 

establishing quantitative image analysis parameters, it may be possible to attain insight into 

previously unknown aggregate and assembly structures from SEM micrographs.  

 

Figure 5. Comparison of the order parameters SR and S2D to describe side-by-side 

ordering in segmented nanorod aggregate images. (a–b) Simulated nanorod aggregates 

where SR quantifies the side-by-side ordering that is not described by S2D. Red outlines 

show nanorod fit results using SEMseg and red arrows indicate the average nanorod 

orientation. (c) SEM micrograph of an Au nanorod aggregate with S2D and SR values 

that lead to different interpretations of the aggregate’s ordering (scale bar 200 nm). 

S2D reports an almost completely disordered aggregate, while SR reveals the 
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prevalence of side-by-side arrangement in the aggregate structure. (d–e) Histograms 

of S2D and SR values, respectively, for a population of Au nanorods aggregates (N=71) 

formed by the addition of BSA (See Experimental Methods).  

CONCLUSION 

Nanoparticle aggregation and assembly is an area of active research that benefits from the 

availability of analysis tools and software that provide insight into their structure. We described 

an image segmentation algorithm with a GUI implementation for SEM micrographs, called 

SEMseg. SEMseg can segment well-dispersed nanoparticles and lithographic structures similarly 

to the popular software ImageJ, with the additional capability of distinguishing individual 

nanorods in closely packed assemblies and aggregates to quickly determine the size and orientation 

of each particle and the gap-size between particles. We derived a nanorod fit model using the 

stadium geometry for parameterizing nanorods and discussed the effectiveness of the side-by-side 

order parameter SR for providing structural insight into populations of nanoparticle aggregates. 

Our open-source GUI for SEMseg provides a resource for researchers to explore nanoparticle 

aggregation and perform nanoparticle size analysis using cost-effective SEM with high throughput 

compared to other methods. Dissemination of such high throughput computational methods opens 

the door for statistical analysis of aggregate structure without the prohibitive time expense of 

manual segmentation of large datasets. 
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