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ABSTRACT



General methods to achieve better physical insight about nanoparticle aggregation and assembly
are needed because of the potential role of aggregation in a wide range of materials, environmental,
and biological outcomes. Scanning electron microscopy (SEM) is fast and affordable compared to
transmission electron microscopy, but SEM micrographs lack contrast and resolution due to lower
beam energy, topographic contrast, edge effects, and charging. We present a new segmentation
algorithm called SEMseg that is robust to the challenges inherent in SEM micrograph analysis and
demonstrate its utility for analyzing gold (Au) nanorod aggregates. SEMseg not only supports
nanoparticle size analysis for dispersed nanoparticles, but also discriminates between
nanoparticles within an aggregate. We compare our algorithm to those incorporated into the
commonly used software ImageJ and demonstrate improved segmentation of aggregate structures.
New physical insight about aggregation is demonstrated by the introduction of an order parameter
describing side-by-side structure in nanoparticle aggregates. We also present the segmentation and
fitting algorithms included in SEMseg within a user-friendly graphical user interface. The resulting
code is provided with an open-source interface to provide quantitative image processing tools for
researchers to characterize both dispersed nanoparticles and nanoparticle assemblies in SEM

micrographs with high throughput.
INTRODUCTION

Understanding nanoparticle size, shape, and aggregation is a key consideration in

nanotechnology research and development.!!* Nanoparticle structure, aggregation, and

16-24

assembly!® relate to a range of applications including surface-enhanced Raman scattering

25-27 8 29-34 7, 35-37

spectroscopy, opto-electronic devices,?® catalysis, and other sensing platforms.

Nanoparticle aggregate structure can be detected using techniques such as dynamic light

1,39-40

scattering,*® small-angle X-ray scattering, grazing-incidence wide-angle X-ray diffraction,?"



4!'and electron microscopy.*? The quantitative parameters provided by these methods (e.g., radius

)47

of gyration, radial distribution, fractal dimension provide averaged descriptions of the long-

range structure and can under- or over- reflect underlying heterogeneity, small aggregates and
assemblies, or short-range order.
Scanning electron microscopy (SEM) is a fast and affordable means of imaging nanoparticle

assemblies. Electron micrographs are regularly used to measure nanoparticle size/morphology,®

33, 37, 48-50 1

surface coverage,’! and the effectiveness of nanoparticle assembly methods.’> More

expensive and time consuming, transmission electron microscopy (TEM) produces high-contrast
and high-resolution micrographs suitable for quantitative structural analysis, whereas SEM has
lower contrast and resolution and exhibits topographic contrast, edge effects, and charging.>* The

low relative quality of SEM generally relegates it to qualitative sample assessment, but image

48, 54-61

segmentation algorithms offer the possibility of quantitative SEM analysis that may not be

provided by common tools included in programs such as ImagelJ or Photoshop.®

Image segmentation is an image processing method®-%* that classifies each pixel in an image as
belonging to one of some number of object classes.®® The positions and intensities of pixels
assigned to an object via segmentation provide quantitative descriptors that can be extracted from
segmented images with high throughput. Segmentation algorithms are problem-specific, utilizing
various image processing techniques depending on the complexity of the segmentation problem.*®
3461 Compared to well-separated nanoparticles, segmentation of aggregated nanoparticles is a

greater challenge because algorithms can over- or under-segment closely spaced nanoparticles.%

67

The challenges involved in categorizing long- and short-range ordering,*® relative

21, 68-71 40, 69 7,70, 72

orientations, surface-chemistry driven forces, and optical properties motivate the



need for image-processing algorithms that can accurately segment nanoparticles in aggregates and
assemblies.

Here we present SEMseg, a segmentation algorithm that is robust to the challenges inherent in
analyzing SEM micrographs of nanoparticle aggregates to demonstrate principles of effective
segmentation algorithm design and to provide a practical tool for nanoparticle aggregate
characterization. The presented algorithm consists of three steps: background masking, the marker-
controlled watershed method, and nanorod fitting. SEMseg is designed to be robust for a variety
of nanoparticle shapes, preparations, and aggregation scales, and also offers user optimization
through a graphical user interface (GUI) called SEMseg. We combine SEMseg with a fitting
function appropriate for rod- or circle-shaped nanoparticle profiles, but the algorithm can be
generalized to other nanoparticle geometries by changing the fitting function. The nanoparticle fits
are used to characterize detected nanoparticles, and calculation of a side-by-side order parameter

is introduced as a possible means of characterizing intra-aggregate structure.

EXPERIMENTAL METHODS

Nanoparticle Aggregate Preparation. Nanorod aggregate samples were prepared based on our
previously published protocol’ by a 1:1 mixture of ~1 nM mercaptoundecyltrimethylammonium
bromide (MUTAB) functionalized Au nanorods (NRs, C12-40-750, Nanopartz Inc.) with 1.5 uM
BSA (lyophilized powder, >96%, Sigma-Aldrich, Inc.) in phosphate buffer (0.1M, pH 7.5, Sigma-
Aldrich, Inc.). 10 pL of commercial MUTAB-Au NRs solution were mixed with 90 puL 0.1 mM
hexadecyltrimethylammonium bromide (CTAB, >99%, Sigma Aldrich) before use for aggregation.
Nanorods were given 2, 5, or 7 minutes of aggregation time. Au nanorod aggregates were spin-

cast (500 rpm for 15 s followed by 2500 rpm for 60 s) onto oxygen plasma cleaned (2 min) ITO



coated microscope slides (CG-50IN-S107, Rs = 8-12 Q, Delta Technologies, Ltd.). Surfactants
were not removed from the nanorods prior to imaging.

Dewetted Film Preparation. Nano-island samples characterized with SEMseg were fabricated
via dewetting of thin films.”® Electron beam evaporation was used to deposit a 3 nm Au film onto
ITO coated glass coverslips (22 x 22 mm) (55 Q/sq., Evaporated Coatings Inc.). The Au films
were annealed on a hot plate for 12 h at 150°C. Spherical Au nano-islands, supporting a surface
plasmon resonance, were formed on the surface of the ITO substrate.

Electron-Beam Lithography. Au nanorod dimers with approximately 40 nm widths, 80 nm
lengths, and 20 nm gaps were fabricated in a method similar to that previously described.”® Briefly,
ITO coated microscope slides (CG-50IN-S107, Rs = 8-12 Q, Delta Technologies, Ltd.) were
cleaned through 10 min sonication steps in 2% Liquinox® detergent, Milli-Q® water, and ethanol
(Decon Labs, Inc., 190 proof). Next, positive-tone electron resist (polymethyl methacrylate A4,
Kayaku Advanced Materials, Inc.) was spin-coated at 3000 rpm for 60 s followed by baking at
180°C for 90 s. Patterns were written via a Nanometer Pattern Generation System on an FEI
Quanta™ 650 SEM with a voltage of 30 kV, a beam current of 40 pA, and a working distance of
7 mm. The beam-exposed resist was then developed in a 1:3 methyl isobutyl ketone : isopropanol
solution for 70 s followed by a 60 s rinse in isopropanol. Finally, an electron beam evaporator was
used to deposit a 40 nm Au film. Lift-off was completed by an overnight soak in acetone followed
by gentle sonication and drying with a stream of Na. The structures were then imaged on the same
microscope used for fabrication under the same conditions.

Electron Microscopy. SEM micrographs of Au nanorod aggregates for 2-, 5-, and 7-min
aggregation time, lithographic rods, and nanoislands were collected with a FEI Helios Nanolab

660 Dualbeam SEM (10 kV, Thermo Fisher Scientific).



COMPUTATIONAL METHODS

ImageJ Segmentation and Fitting. ImageJ analysis consisted of two applications of the built-
in Smooth process, a manually selected Threshold adjustment, the binary Watershed process, and

running the Analyze Particles routine.

SEMseg: an Algorithm for Segmentation and Fitting of Nanoparticle Aggregates

SEM micrographs were processed using SEMseg, a custom-designed GUI for image processing
and analysis in MATLAB. The methods in this section describe the key steps of the segmentation
and fitting algorithms included in SEMseg. See Supporting Information for further detail and
instructions on the GUI SEMseg and its operation. SEMseg is available for download through a
GitHub repository (https://github.com/LandesLab?tab=repositories).

Weak contrast of inter-particle boundaries and topographical contrast variation on nanoparticle
surfaces in SEM micrographs of aggregates and assemblies is the first challenge for
segmentation.>® Bright regions in SEM micrographs occur on nanorod ends and edges and do not
directly correspond to topographic features (Figure 1a).>® These bright edges can result in inter-
particle boundaries with higher intensities than regions inside of particles, inhibiting traditional
intensity thresholding techniques from isolating single nanoparticles (Figure S1). High-frequency
variation in topographical contrast leads to erroneous edge detection and contributes to over-
segmentation, in which single nanoparticles are subdivided into multiple objects. These challenges

are overcome in SEMseg through a combination of background masking, internal and external



marker calculation, the watershed transform of the gradient magnitude, and nanorod fitting and
parameter estimation, as presented in the workflow outlined in Figure 1.

Background Masking

Background masking (Figure 1b) removes background features and isolates nanoparticles, a step
that is crucial for SEM samples, which require conductive substrates such as indium tin oxide
(ITO) coated glass that has distinct grain edges (Figure S1a). First, raw micrographs are cropped
to isolate the aggregate of interest, converted to grayscale, and scaled so intensities fall in the range
[0, 1]. The spatial scale of each micrograph is maintained so the pixel-to-nanometer conversion
provided by the SEM scale bar is still applicable. ITO grain structure is suppressed through the
morphological opening operation®® (Figure S2) performed on the grayscale micrograph. The radius
of the circular morphological structuring element, the intensity threshold, and the minimum size
threshold are variable parameters of the background masking operation. The radius of the
structuring element can be set manually or can be estimated by a parameter sweep as shown in
Figure S3. The threshold value of 0.2 used for this study was found to be robust for a variety of
micrograph contrasts. The background mask is used with the preprocessed micrograph to isolate
nanoparticle aggregates for the calculation of internal and external markers described below.
&
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Figure 1. SEMseg segmentation algorithm for SEM micrographs of planar nanorod
aggregates. Dashed lines represent image processing applied to a single micrograph
and plus symbols indicate multiple sub-micrographs combined together before image
processing. (a) Preprocessing includes cropping the SEM micrograph and scaling
intensity values to [0,1]. (b) Background masking isolates nanoparticles from the ITO
substrate. (c) Internal markers for each nanoparticle are calculated by sharpening and
cleaning the preprocessed micrograph (a) masked with (b). (d) External markers
indicating the inter-nanoparticle boundaries and background. (e) Gradient image
calculated from the preprocessed micrograph (a) using the Sobel method. (f)
Watershed segmentation contours (red outlines) overlaid on the preprocessed

micrograph.
Internal and External Marker Calculation

Artificially imposed minima that mark the interior of each nanoparticle and the boundaries
between them, called internal and external markers, respectively, are established to identify each
individual nanoparticle in an aggregate or assembly. The first step in internal marker calculation
(Figure 1c¢) is to increase the contrast between nanoparticle surfaces and boundaries by unsharp
masking using the MATLAB imsharpen function. Unsharp masking enhances contrast by
summing an image and the output of a high-pass filter.”> The radius of the unsharp mask determines
the scale on which the mask increases contrast and should be close to the mean separation between
nanoparticles in the micrographs (~8 pixels here). The strength of the unsharp masking is
determined by the intensity parameter, and a value on the order of ~70 was found to provide
sufficient contrast for thresholding to separate individual nanoparticle markers. We clean up the

noisy sharpened image (Figure S4) and obtain the final internal markers shown in Figure 1¢ using



morphological operators. We calculate external markers using the union of the internal markers
and the complement of the background mask, reduced to a morphological skeleton with a single-
pixel width using the bwskel function in MATLAB.?® The resultant morphological skeleton is
combined with the complement of the background mask to prevent the segmentation of the
background, resulting in the external markers shown in Figure 1d.

Watershed Transform of the Gradient Magnitude

We implement a variation of the watershed transform for segmentation using internal and
external markers,*® 7® functioning effectively as the flooding of a topographic landscape.’’ For this
application, we define the height of this topographic landscape as the gradient magnitude of the
SEM micrograph, shown in Figure 1e. The minima in the gradient image, called catchment basins,
are treated as the bottoms of water pools that are filled up by the watershed transform. Wherever
the water from two pools touch, a crest line is drawn to define segmentation contours between
them. Ideally, each object in a micrograph would have a single local minimum near its center and
local minima around the edges. The noise and intensity variation in SEM micrographs result in
over-segmentation (Figure S5), but this problem is overcome by performing the watershed after
the internal and external markers®’ are calculated (Figure 1c—d). The internal and external markers
are combined through union and imposed as minima on the gradient magnitude image using the
imimposemin function in the MATLAB Image Processing Toolbox. Imposing minima defines the
catchment basin for each nanoparticle using the calculated markers. The watershed transform is
applied to this augmented gradient image and the contours of each contiguous region of pixels
provides the nanoparticle segmentation contours as shown in Figure 1f. Nanorod contours are fit
to a stadium geometry to estimate parameters describing each nanorod in the aggregate, as

discussed below.



Nanorod Fitting

Figure 2. Calculating nanorod dimensions and orientation using a stadium model that
is fit in polar coordinates. (a) Vectors defining the stadium fit: offset between
estimated centroid and actual centroid, r.= (x,, y,), nanorod length and orientation
vector, rz, and nanorod endcap vector, rg. The nanorod length is L+2R and the width
is 2R, where L =2 | rr | and R =| rg|. (b) Angles describing the limits of the piecewise

function defining the stadium model: 6, = ®{7. + 7, + 7}, 0, = ®{F. — 7, + 7r},
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0; = O{F. — 7, — 17}, 0, = ®{7. + 7, — 1}, where ®{Z} = arctan C—y) We define
X

the piecewise function of the stadium model in the Supporting Information.

Accurate fitting requires a functional model that appropriately describes the nanoparticle
morphology,*® which, in the case of nanorods imaged by SEM, is best described as the two-
dimensional projection of a hemispherically-capped cylinder,”’ called a stadium (Figure 2).
Because a functional definition of a stadium is, to the best of our knowledge, not defined in the
literature, we derived our own expression. The stadium is a piecewise function defined by five
parameters, (xg, Yo, @, L, R), which describe the x and y coordinates of the nanorod center xg, y,,
the orientation ¢ of the nanorod axis, the length L of the body (neglecting the end-caps), and the
radius R of the end-caps, respectively. Figure 2 shows the polar formulation of the stadium for
fitting nanoparticle contours using vector notation. We express the segmentation contour in polar
coordinates as p(6) by calculating the distance, p, and the angle, 8, relative to the nanoparticle’s
centroid for each pixel on the contour.*® The origin of the coordinate system is the centroid of the
watershed contour points, with (x,,y,) accounting for the deviation from the true nanoparticle
centroid and ¢ representing the rotation about the true nanoparticle centroid. Figure 2b illustrates
the angles that define the intervals of the piecewise function, measured relative to the estimated
centroid from the watershed contours. The segmentation contour for each nanorod is iteratively fit
to the stadium model using nonlinear least squares fitting in MATLAB. We adopt the least absolute
residual method to make the fit robust to outliers that may be present on the nanorod contour. The
stadium function is also appropriate for fitting nanoparticles with circular profiles, as a stadium

where L = 0 is simply a circle.

RESULTS AND DISCUSSION
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Nanoparticle Parameter Estimation

With the segmentation and fitting performed by SEMseg, structural parameters of nanoparticles
(e.g., centroid position, major and minor axis, orientation) can be calculated from the stadium
parameters as described in Figure 2 and in the Supporting Information. Micrographs segmented
using ImageJ and SEMseg are shown in Figure S6 and Figure 3, respectively. Table 1 gives the
mean and standard deviation of the nanoparticle parameters calculated with each method. The inset
of Figure 3a compares estimated lengths using SEMseg and manually measured lengths in ImageJ
for 58 nanorods, demonstrating accurate nanorod parameter estimation with a root-mean-square

error of 3.2 nm.

12
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Figure 3. Output from SEMseg analysis of example nanoparticle images. (a) Colloidal
Au nanorod aggregate, (b) lithographic Au nanorod dimer, and (c) Au nanoislands
formed through dewetting of a 3 nm Au film on an ITO substrate. All scale bars are
100 nm. Red outlines depict the stadium fit for each nanoparticle. Outlines are omitted

from (c) to improve particle visibility. Individual nanoparticles were segmented using
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SEMseg, a GUI implementation of the segmentation and stadium fitting algorithm.
Tabulated data shown in Table 1 are calculated from the nanoparticle fits,
summarizing particle parameters that can be used for further analysis. Inset of (a)
shows SEMseg fit nanorod length vs. nanorod lengths manually measured in ImageJ
for N=58 nanorods, showing the accuracy of SEMseg (root-mean-square error = 3.2

nm for ~111 nm long nanorods).

Table 1. Sample output of nanoparticle parameters estimated from segmentation and fitting

performed on SEM micrographs’

Sample # particles  Major Axis ~ Minor Axis Area Median gap

ImageJ segmentation

A 6 82+28 nm 48+ 3 nm (3 £ 1)x10° nm? n/a

B 2 87+ 5nm 48+ 6nm (3.3£0.2)x10° nm? n/a

C 69 15£5nm  14+4nm (1.8 £0.9)x10° nm? n/a
SEMseg

A 4 109+6nm  39+3nm (3.9 +0.4)x10° nm? 8 nm

B 2 79+3nm  39+6nm (2.7 0.2)x10° nm? 24 nm

C 61 14+2nm  11+2nm (1.3 £0.4)x10° nm? 87 nm

" Nanoparticle parameter estimates calculated using ImageJ and SEMseg. Parameters
are listed as mean value and standard deviation where appropriate. Samples (A—C)

refer to Figure 3a—c, respectively.

Calculating nanoparticle parameters from electron micrographs in an automated manner enables
high throughput analysis of different types of nanoparticle assemblies without compromising
accuracy. SEMseg can be applied to densely packed nanoparticles (Figure 3a), and also for

samples with dispersed nanoparticles (Figure 3b—c). Due to the general nature of the watershed
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transform, this algorithm could also be applicable to images of particles with edges defined by an
intensity gradient, such as those collected by atomic force microscopy, opening up the possibilities
of improving analysis of other broader types of imaging platforms.

SEMseg effectively analyzes aggregated nanoparticles in micrographs that cannot be segmented
by other widely available tools (Figure 4). For example, the open-source software Imagel is
effective for segmenting well-dispersed particles but generally fails to segment individual
nanoparticles in aggregates or assemblies that SEMseg can accurately segment (Figure 4a, Figure
S6). The watershed implementation built into ImagelJ, based on the distance transform, leads to
over-segmentation of oblong particles (Figure 4b, Figure S6a), while thresholding without the
watershed transform leads to under-segmentation of aggregated particles. Similar to the stadium
fitting implemented in SEMseg, the Analyze Particles ImageJ routine fits each contiguous patch
of pixels to an ellipse (Figure 4d) and calculates properties such as the short and long axes and
orientation, as summarized in Table 1. Other tools in ImageJ can be used to aid in segmenting
particles, such as morphological operators and filtering to clean images, or manual input to
segment or throw out particles.*” ® Machine learning segmentation methods relying on hand-
labeled training data have also been implemented in Imagel.®! Other published algorithms that
segment closely spaced nanoparticles require the high resolution and contrast of TEM

4878 and do not function for SEM micrographs. SEMseg is a training-free alternative

micrographs
that can successfully segment both dispersed nanoparticles and nanoparticle aggregates from SEM

micrographs.
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Figure 4. Comparison of SEMseg and ImageJ for nanorod aggregate watershed
segmentation by displaying the resultant mask over the preprocessed image. (a-b)
Watershed segmentation contours using SEMseg (a) and built-in ImageJ methods (b).
(c) Segmentation contours in (a) fit to the stadium model included in SEMseg. (d)
Segmentation contours in (b) fit to an elliptical model using the ImageJ Analyze
Particles routine. Red crosses in (c—d) indicate the calculated centroid of each
segmented region. As shown in (b) and (d), the watershed algorithm implemented in

Imagel leads to over-segmentation.

Describing Ordering in Nanorod Aggregates

By allowing accurate segmentation in SEM micrographs, SEMseg can provide insight into

previously unknown structural order of small aggregates of nanorods (Figure 5). The two-
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dimensional nematic liquid crystal order parameter, S,, = (cos 28) suitably describes order in
nanorod chains and large nanorod assemblies with long-range order, where an S2p of 0 is fully
disordered and S2p of 1 is ordered.”* 7* The ordering described by S2p is a measure of uniformity
of orientation, where the orientation of each nanoparticle long axis is compared to the average
orientation vector of all nanoparticles, called the nematic director.’> 7> S:p is not a suitable
descriptor for small aggregates and assemblies with differently-oriented domains. We demonstrate
the ability to identify new types of ordering within aggregate in Figure 5a-b, where aggregates
both with and without side-by-side ordering lead to the same S2p order parameter values. We
quantify the ordering in various unaligned domains defining a side-by-side order parameter Sr

given in Equation 1,’

Nnr ..

S = T M,

R ™ 2Ny, —1)
nr

Equation 1

where Ny is the number of nanorods in the aggregate and M; is the number of side-by-side
nearest neighbors for nanorod i € {1,2, ..., N,,}. We define side-by-side nanorods as nearest
neighbors that have an orientation within 10° of each other and where the vector connecting their
midpoints, projected onto the long nanorod orientation, is less than half the longer nanorod’s
length. Sk = 1 for the most ordered structure, is a continuous line of side-by-side nanorods, while
a disordered aggregate with no side-by-side ordering has Sz= 0.

By using Sr as an order parameter, we find Au nanorod aggregates that appear disordered by
S2p may contain side-by-side ordering structure (Figure 5c). We have previously applied Sr in the
reported use of biomolecules as templates for chiral nanoparticle assembly’ to measure side-by-
side arrangement of nanorods. To demonstrate the effectiveness of SEMseg for quantifying side-

by-side ordering in experimental nanorod aggregates, Figure 5d—e compares Szp and Sr for a

population of bovine serum albumin (BSA)-induced nanorod aggregates. While S2p produces a

17



broad distribution of order parameters across the population of aggregates, Sr displays a
comparatively narrow range of ordering. This narrower distribution is a boon for statistical analysis
of aggregate population ordering, and is likely due to the sensitivity of Sr to side-by-side ordering
even when split up over multiple, differently oriented domains. By utilizing SEMseg and
establishing quantitative image analysis parameters, it may be possible to attain insight into

previously unknown aggregate and assembly structures from SEM micrographs.
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Figure 5. Comparison of the order parameters Sr and S2p to describe side-by-side
ordering in segmented nanorod aggregate images. (a—b) Simulated nanorod aggregates
where Sr quantifies the side-by-side ordering that is not described by Szp. Red outlines
show nanorod fit results using SEMseg and red arrows indicate the average nanorod
orientation. (¢) SEM micrograph of an Au nanorod aggregate with S2p and Sr values
that lead to different interpretations of the aggregate’s ordering (scale bar 200 nm).

Sop reports an almost completely disordered aggregate, while Sr reveals the
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prevalence of side-by-side arrangement in the aggregate structure. (d—e) Histograms
of S2p and Sr values, respectively, for a population of Au nanorods aggregates (N=71)

formed by the addition of BSA (See Experimental Methods).

CONCLUSION

Nanoparticle aggregation and assembly is an area of active research that benefits from the
availability of analysis tools and software that provide insight into their structure. We described
an image segmentation algorithm with a GUI implementation for SEM micrographs, called
SEMseg. SEMseg can segment well-dispersed nanoparticles and lithographic structures similarly
to the popular software Imagel, with the additional capability of distinguishing individual
nanorods in closely packed assemblies and aggregates to quickly determine the size and orientation
of each particle and the gap-size between particles. We derived a nanorod fit model using the
stadium geometry for parameterizing nanorods and discussed the effectiveness of the side-by-side
order parameter Sk for providing structural insight into populations of nanoparticle aggregates.
Our open-source GUI for SEMseg provides a resource for researchers to explore nanoparticle
aggregation and perform nanoparticle size analysis using cost-effective SEM with high throughput
compared to other methods. Dissemination of such high throughput computational methods opens
the door for statistical analysis of aggregate structure without the prohibitive time expense of

manual segmentation of large datasets.
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