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Increased urbanization, infrastructure degradation, and climate change threaten to overwhelm stormwa- 

ter systems across the nation, rendering them ineffective. Green Infrastructure (GI) practices are low cost, 

low regret strategies that can contribute to urban runoff management. However, questions remain as to 

how to best distribute GI practices through urban watersheds given precipitation uncertainty and the 

variable hydrological responses to them. We develop stochastic programming models to determine the 

optimal placement of GI practices across a set of candidate locations in a watershed to minimize the total 

expected runoff under medium-term precipitation uncertainties. Specifically, we first develop a two-stage 

stochastic programming model. Next, we reformulate this model using perturbed parameters to reduce 

the requisite computational time and extend it to multi-stage. In addition, we introduce constraints that 

allow for incorporating sub-catchment-level runoff reduction considerations. We account for hydrological 

connectivity in the watershed using an underlying acyclic connectivity graph of sub-catchments and in- 

corporate various practical considerations into the models. In addition, we develop a systemic approach 

to downscale the existing daily precipitation projections into hourly units and efficiently estimate the cor- 

responding hydrological responses. These advancements are brought together in a case study for an urban 

watershed in a mid-sized city in the U.S., where we perform sensitivity analyses, evaluate the importance 

of the considered constraints, and provide insights. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

One of the most important factors threatening infrastructure in

he U.S. is climate change. Climate change affects the frequency,

ntensity, spatial extent, duration as well as timing of extreme

vents [37] . Over the past decade, we have observed more fre-

uent, intense and untimely events damaging infrastructure and

mpacting people and businesses (e.g., Hurricane Katrina, Super-

torm Sandy). Thus, there are major concerns as to whether cities

re protected against these projected increasing number of ex-

reme weather events. To mitigate these effects, municipalities are

eginning to seek opportunities to improve the resiliency of infras-

ructure through better urban planning and taking advantage of in-

ovative solutions. This is extremely timely, as by the end of next

ecade, 60% of the world population will live in cities [73] . 
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Provision of scientifically-based methodologies for understand-

ng and evaluating climate impacts will be critical to the devel-

pment of adaptation strategies designed to avoid the increas-

ng socioeconomic costs of severe weather-related damages to ur-

an landscapes [60] . Despite this understanding, city managers are

orced to make infrastructure decisions complicated by massive

mounts of data and uncertainty. In a time when multiple, some-

imes conflicting, climate projections exist, tools to distill these

ata into a usable format for such individuals are critical. Hence,

ity managers need a tool which addresses the complexity and

ncertainty of climate projections to allow optimized choices for

uilding resiliency into urban systems. 

In the 2013 “Report Card” for American infrastructure, the na-

ion’s stormwater systems (in combination with wastewater) were

warded a D 

+ , indicating the poor state of these critical compo-

ents of the urban landscape. Exacerbating this need is the specter

f climate change, leading us to the age of non-stationarity, where

ast trends of precipitation may no longer be relevant as a basis of

esign for civil infrastructure. Stormwater systems are particularly
izing green infrastructure placement under precipitation uncer- 
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susceptible, as the size of pipes is selected based on how much

stormwater needs to be conveyed for a given storm of interest or

design storm applied to the watershed. As design storms are deter-

mined based on historical rainfall data, climate change threatens

to overwhelm pipes that are in poor condition and undersized rel-

ative to changing weather patterns. Thus, climate change and the

associated overwhelming of stormwater pipe systems is likely to

cause increased flooding in urban watersheds, escalating the al-

ready present trend of flooding and flash flooding as (on average)

the leading cause of weather-related fatalities in the U.S., beyond

even hurricanes and tornadoes [45] . 

Replacing existing stormwater sewers with pipes of larger ca-

pacity would be prohibitively expensive and time consuming in

many urban environments due to surrounding infrastructure and

social conflicts. However, building resiliency into urban stormwater

systems through the use of green infrastructure (GI) is an increas-

ing trend nationwide. The 2014 Intergovernmental Panel on Cli-

mate Change (IPCC) has identified changes to urban drainage sys-

tems as a key adaption issue for North America and recommends

consideration of lowregret strategies such as GI to reduce runoff

while also providing co-benefits to freshwater provision, ecological

processes, and freshwater fish populations [5,54] . The U.S. Environ-

mental Protection Agency (EPA) is promoting GI as a means to en-

able communities to avoid costly water infrastructure replacement

and repair by using vegetation and soil to manage rainwater where

it falls, thereby reducing the burden on aging sewer pipes [19] .

These systems act as localized storage centers, where stormwater

can enter, be detained, then leave the system as evaporation, infil-

tration, or as runoff with diminished energy and volume. As such,

GI has been deemed as a way to build better infrastructure as part

of the National Academy of Engineering’s Grand Challenge to re-

store and improve urban infrastructure. 

In recent years, researchers have considered the impact of GI on

urban flooding at the watershed scale [23,48] . Kim et al. [46] stud-

ied the impact of urban green spaces on reducing urban flood risk.

As their case study, they considered a flooded area in Seoul, South

Korea. They divided the case study area into four regions based on

topographic and physical characteristics, and used logistic regres-

sion to determine how flooding probabilities change with respect

to green space area. Based on their results, the probability of flood-

ing could be reduced by over 50% depending on the location of

green spaces and their types. In a related study, Liu et al. [49] de-

veloped a simulation model to determine the reduction of peak

flow rate in flooding for an urban community in Beijing, China.

They reported that an integrated GI configuration can reduce peak

flow by 92.8-100%. Liu et al. [50] also investigated the impact of

GI practice types and sizes on reducing urban flooding. They re-

ported that expanding green spaces, concave green space, storage

pond, and porous brick pavements are effective in reducing urban

flooding. Using different sizes of these GI, they studied runoff re-

duction in 5-year recurrence storm and concluded that the proper

GI combination together with appropriate GI sizing is necessary for

urban stormwater runoff management. Thus, the properties of the

GI and how it is configured in a given watershed have shown to be

an important factor in literature for determining the effectiveness

of these interventions [33,34] . 

Although the current body of work provides invaluable insights,

to improve the resiliency of infrastructure, we need to modify our

approach to infrastructure planning to account for future changes

in climate. Accounting for extreme events does not necessarily

translate into planning for the worst-case scenario; instead, it re-

quires policymakers to allocate the budget and effort f or future ur-

ban planning and maintenance actions by accounting for a wide

range of factors under uncertainty . In our context, climate parame-

ters, specifically future precipitation, are the main uncertainty. One

important factor to consider when trying to optimize a measure of
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
nterest under uncertainty, is that not only is knowledge about cli-

ate patterns limited and inherently stochastic, but there are mul-

iple climate models that at times make inconsistent predictions.

or example, Fig. 1 gives the projected annual precipitation, in

nches, between 2018 and 2050 in the City of Knoxville, Tennessee,

sing 10 coupled general circulation models (CGCMs) [40] . As seen

n the figure, there is significant difference between these 10 mod-

ls in terms of annual precipitation levels, e.g., in year 2021, stan-

ard deviation of precipitation is 7.27 in. Hence, if placing GI prac-

ices in an urban watershed is performed under one projected sce-

ario, it may fall extremely short of addressing the true stormwa-

er management needs if another scenario is realized. 

Stochastic programming has been used extensively for decision

aking under uncertainty, e.g., power systems [74] , finance [47] ,

nd many engineering applications [52] . Specifically, this modelling

pproach has been extensively used in modeling facility location

nder uncertainty [66] . To the best of our knowledge, the use

f this important methodology in environmental engineering ap-

lications has been limited, especially when it comes to placing

I practices in an urban environment under various uncertainties.

amshani et al. [61] is perhaps one the few of such studies, and

ses a stochastic programming model to optimally place PV panels

nd green roofs in a mid-sized city under climate change uncer-

ainty to maximize the overall profit from energy generated and

aved. 

In this paper, we use stochastic programming to account for the

ncertainty in future precipitation when placing GI practices in an

rban watershed. Specifically, we first develop a two-stage stochas-

ic programming model to determine the optimal placement of GI

ractices across a set of candidate locations in an urban water-

hed to minimize the total expected surface runoff under medium-

erm precipitation uncertainty. Using statistical analysis on the per-

ormance of GI practices, we then develop a two-stage stochas-

ic programming with perturbed parameters to produce alterna-

ive solutions to the problem of placing GI practices in an urban

atershed Such approach results in a significant reduction in the

equisite pre-processing and computational time. Next, we extend

he formulation to multi-stage. Given the fact that some regions

f the watershed may be of higher priority for runoff manage-

ent, we then introduce constraints that allow for incorporating

ub-catchment-level runoff reduction considerations. We conduct

 case study for a watershed in the City of Knoxville, Tennessee, in

hich we calibrate the model using literature, historical precipita-

ion data, future precipitation projections, watershed hydrological

esponses to precipitation and GI installations, and expert opinion.

e provide the results under various levels of available budget, in-

estigate their differences, conduct extensive sensitivity analyses,

nd provide insights. 

No work has been identified in literature that addresses GI

lacement in an urban watershed under precipitation uncertain-

ies. Perhaps the closet work is Loáiciga et al. [51] . Their objective

as to minimize total construction cost such that volumetric water

alance, stormwater volumes, and water-quality characteristics fell

ithin an allowable range. However, this work does not account

or the uncertainty in future precipitation projections. 

The rest of the paper is organized as follows. First, we formu-

ate the models in Section 2 . Next, in Section 3 , we calibrate the

odels for a watershed in a mid-size city in the U.S. In Section 4 ,

e provide the computational results for our case study and draw

nsights. Finally, we provide a summary and additional insights in

ection 5 . 

. Model formulation 

In this study, our goal is to minimize the expected total runoff

olume over a medium-term planning horizon under future pre-
izing green infrastructure placement under precipitation uncer- 
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Fig. 1. Projected annual precipitation over the city of Knoxville, Tennessee, in inches, between 2018 and 2050 under 10 popular climate models. 
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ipitation uncertainty, given an available budget for investment.

his is consistent with challenges currently facing city planners

hroughout the world. 

Various types of GI differ in their expense, requirements for ad-

anced planning, necessary land allocation, and their efficiency in

educing surface runoff following precipitation. 

Accordingly, in this study, we consider two groups of GI prac-

ices, specifically, large-scale and small-scale GI practices. In our

odels, we allow for placing these GI practices under two set-

ings, namely, ‘restricted’ and ‘relaxed.’ The former refers to the

ase where only GI practices of certain types can be placed in a

iven stage, whereas the latter relaxes this restriction, allowing all

I types to be placed in any stage. The former, although somewhat

estrictive, provides practical benefits regarding investment plan-

ing and managing the effort s required for building the different

ypes of GI practices. 

First, in Section 2.1 we develop a base two-stage stochastic pro-

ramming model under a restricted decision set, where large-scale

nd small-scale practices can only be placed in stages one and

wo, respectively, before and after a scenario is realized. Next, in

ection 2.2 , we re-cast the problem as a two-stage stochastic pro-

ramming model that relies on perturbed parameters, under the

ame restricted decision set. We then relax the decision set as-

umption for this two-stage stochastic programming model and

lso extend this formulation to multi-stage, under the same re-

axed decision set assumption. Finally, in Section 2.3 , we introduce

hance constraints that allow for incorporating sub-catchment-

evel runoff reduction considerations. 

.1. Stochastic programming model 

In this section, we develop a two-stage stochastic program-

ing model. The goal is determine the extent to which each sub-

atchment must be covered by each of the available types of GI,

n the two stages, to minimize the expected total runoff over the

lanning horizon under precipitation uncertainty. For brevity, we

efer to this model as ‘stochastic model’ in the remainder of the

anuscript. 

Let V = { 1 , 2 , . . . , | V |} denote the set of sub-catchments within

 watershed whose impervious areas are candidates for placing GI

ractices. For any given sub-catchment, let G = { 1 , 2 , . . . , | G |} de-
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
ote the set of all available types of GI practices. We assume that

ach GI practice may be installed in various levels within a given

ub-catchment, e.g., to cover 5%, 7.5%, and 10% of the impervious

rea within any given sub-catchment with GI. Let L = { 1 , 2 , . . . , | L |}
enote the set of available levels of installation of GI practices

ithin a given sub-catchment. 

As discussed in Section 1 , although CGCMs may be used to

roject future precipitation in a given region, the resulting projec-

ions from different models do not necessarily agree. Hence, the

ariability across these precipitation projections are the source of

ncertainty in our model. Let T denote the length of the planning

orizon in years and � denote the finite set of projected precipi-

ation time series for the watershed over the planning horizon T .

e let ψ ∈ � denote a projected precipitation time series, corre-

ponding to scenarios in the model, and πψ denote the realization

robability of scenario ψ ∈ � . 

As discussed earlier in Section 2 , we consider two groups of

arge- and small-scale GI practices in this study, where practices

rom the former and latter groups can be placed before and after

 CGCM is realized. Let T ≤ T denote the year in which a precip-

tation scenario is realized. Hence, in the beginning of the plan-

ing horizon, before any scenarios are realized, we make first-

tage decisions. After T years into the planning horizon, we real-

ze a certain CGCM, at which point we make second-stage deci-

ions. Consequently, we continue with the realized CGCM for the

est of the planning horizon. Also, let G 

I and G 

II , where G 

I ∪ G 

II = G,

 

I ∩ G 

II = ∅ , denote the set of possible types of GI practices avail-

ble for placement at t ≤ T − 1 and T ≤ t ≤ T , respectively. Con-

equently, let x t 
i, j,l 

denote the first stage binary decision variable

ndicating whether or not a GI practice of type j ∈ G 

I ⊂ G in level

 is placed within sub-catchment i in year t ≤ T − 1 . Similarly, let

 

ψ,t 

i, j,l 
denote the second stage binary decision variables indicating

hether or not a GI practice of type j ∈ G 

II ⊂ G in level l is placed

ithin sub-catchment i in T ≤ t ≤ T . The decision variables assume

he value 1 if the corresponding practice is installed, and the value

, otherwise. Lastly, we let δi,j,l denote the corresponding area (in

quare feet) of GI practice type j ∈ G installed in level l ∈ L , within

ub-catchment i ∈ V . In this study, we assume only one type of GI

an be placed in each sub-catchment, mainly due to the sizes of GI

ractices considered, compared to the sizes of the sub-catchments.
izing green infrastructure placement under precipitation uncer- 
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Fig. 2. A small portion of a watershed consisting of seven sub-catchments and its 

main stream. 
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Precipitation that is not infiltrated into the soil becomes sur-

face runoff. We incorporate precipitation scenarios into our model

by quantifying their impact on each sub-catchments’ surface runoff

reduction. Let Q 

ψ,t 

i 
denote the total baseline surface runoff under

scenario ψ ∈ � over sub-catchment i ∈ V in year t when no GI

practice is placed. Similarly, let ˆ Q 

ψ,t 

i, j,l 
denote the surface runoff cap-

tured by GI practice of type j ∈ G installed in level l ∈ L within sub-

catchment i ∈ V under scenario ψ ∈ � in year t . Hence, clearly for

any given i ∈ V , the difference between Q 

ψ,t 

i 
and 

ˆ Q 

ψ,t 

i, j,l 
gives the

total surface runoff in sub-catchment i over year t under scenario

ψ ∈ � as a result of installing GI practices of type j ∈ G in level

l ∈ L within the sub-catchment. 

In this study, we assume that once a GI practice is constructed,

it must be maintained annually to preserve its runoff reduction

properties. Let C t 
i, j 

denote the per square feet present total cost of

placing GI practice of type j within sub-catchment i in year t . Also,

let B denote the total available budget at the beginning of the plan-

ning horizon for placing GI practices. 

A key goal to achieve in planning GI is connectivity as it pro-

vides additional resilience against urban runoff [25,29,38,44,55] .

For instance, all else held constant, a series of connected GI prac-

tices is more effective in managing water quantity and quality

than a set of disjoint GI practices that are surrounded by urban

development [64] . This is mainly because runoff that flows from

a sub-catchment to a downstream sub-catchment can be slowed

or captured by GI practices before reaching downstream [38,44] .

This impact is particularly pronounced in adjacent/neighboring

sub-catchments with respect to watershed hydrology as the con-

nected GI practices can further mitigate runoff resulting from ‘di-

rectly connected impervious areas,’ reducing runoff volumes, peak

discharge, and base flow effects [57] . To that end, given that in

this study we consider an urban watershed with many directly

connected impervious areas, we impose certain connectivity con-

straints when placing GI practices to ensure that at least a mini-

mum desired level of connectivity among GI practices is met. 

Consider the following illustrative example that discusses the

impact of various GI placements using a connected system of sub-

catchments. Fig. 2 illustrates a subset of a watershed consisting of

seven sub-catchments and its main stream. Placing GI practices in

any of the sub-catchments reduces the surface runoff in that sub-

catchment. Additionally, dependent on sub-catchments characteris-

tics [24] , placing a GI practice in an upstream sub-catchment, may

further reduce the surface runoff in a downstream sub-catchment.

Lastly, simultaneous placement of GI practices has the potential
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
o further mitigate the surface runoff, if the sub-catchments are

hydrologically connected.’ This is partly due to the fact that such

lacement can further disconnect the directly connected impervi-

us areas within the sub-catchments. For instance, because sub-

atchments 3 and 5 are hydrologically connected, placing GI prac-

ices in sub-catchment 3 can potentially also reduce the amount

f run-off over sub-catchment 5, even if no GI is placed on the lat-

er sub-catchment. Furthermore, placing GI practices in both sub-

atchments 3 and 5 can potentially result in a larger reduction in

urface runoff, compared to that obtained from placing the same

ype/level of GI practices in the two sub-catchments if they were

ot hydrologically connected. 

We capture sub-catchment connectivity in a watershed using a

irected acyclic graph. Specifically, let the directed acyclic graph

 (V, A ) denote the system of sub-catchments where V is the set

f nodes in the graph, corresponding to the sub-catchments in

he watershed, and A denotes the set of sub-catchment connec-

ivity arcs, where there exists an arc a i ′ ,i ∈ A if and only if sub-

atchments i ′ , i ∈ V are connected. 

Consider a given pair of connected sub-catchments i ′ and i ,

 i ′ ,i ∈ A . When accounting for surface run-off reduction over sub-

atchment i due to a GI practice placed upstream, assuming large-

cale GI practice installations only, three distinct cases must be

onsidered: ( a ) a GI practice is placed within upstream sub-

atchment i ′ in year t ′ after a GI is placed within downstream sub-

atchment i in year t such that 0 ≤ t ≤ t ′ ≤ T − 1 ; ( b ) a GI is placed

ithin downstream sub-catchment i in year t after a GI is placed

ithin upstream sub-catchment i ′ in year t ′ such that 0 ≤ t ′ ≤ t ≤
 − 1 ; and ( c ) a GI is placed within upstream sub-catchment i ′ in

ear t ′ and no GI placed in downstream sub-catchment i by the

eginning of year T , i.e., 0 ≤ t ′ ≤ T − 1 . 

To be able to account for the adjustment in surface runoff re-

uction due to GI installations in connected sub-catchments as de-

cribed in cases ( a )-( c ), we introduce the runoff ‘adjustment fac-

or’ β i ′ , j ′ ,l ′ 
i, j,l 

and the variable z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

. Specifically, for any given pair

f connected sub-catchments i ′ and i , where a i ′ ,i ∈ A, we let 0 ≤
i ′ , j ′ ,l ′ 
i, j,l 

≤ 1 denote the runoff ‘adjustment factor’ over the down-

tream sub-catchment i ∈ V , when a GI practice of type j ′ ∈ G 

I 

n level l ′ ∈ L is installed within upstream sub-catchment i ′ ∈ V

nd no GI practice or a GI practice of type j ∈ G 

I in level l ∈ L

s installed within the downstream sub-catchment i ∈ V . We use

j = 0 to indicate that no GI is installed within a sub-catchment.

n addition, we let z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

denote the binary variable indicating

hether or not GI practices of types j ′ , j ∈ G 

I in levels l ′ , l ∈ L are

nstalled within sub-catchment i ′ , i ∈ V in years t ′ , t ≤ T − 1 , re-

pectively. The variable assumes the value 1 if the corresponding

ractices are installed and equals 0, otherwise. In addition, we de-

ne z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, 0 ,l 

= 0 for all t ′ , i ′ , j ′ , l ′ , t, i , and l , to account for cases

hen only the upstream sub-catchment is selected for installing

arge-scale GI practices. Note that a downstream sub-catchment

an be hydrologically connected to more than one upstream sub-

atchment. We assume that the ‘adjustments’ over downstream

ub-catchments are additive. Lastly, for completeness, we define

ˆ 
 

ψ,t 

i, 0 ,l 
= 0 for all ψ , t, i , and l to account for the case where no GI

s installed in sub-catchment i ∈ V . 

In addition to accounting for potential adjustments in runoff re-

uction as a result of hydrological connectivity, we require first

tage decision variables to fulfill a certain connectivity constraint

o ensure that the model provides at least a minimum desired level

f connectivity among large-scale GI practices by the beginning of

ear T . Specifically, we define GI connectivity as a 1-neighbor con-

traint on first stage decision variables, which prescribe large-scale

I practice installations. That is, a first stage GI practice can be in-

talled in sub-catchment i if there exists at least one placed first
izing green infrastructure placement under precipitation uncer- 
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tage GI practice in one of the sub-catchments that are hydrolog-

cally connected to sub-catchment i . For simplicity of notation, in

he remainder we use x = [ x t 
i, j,l 

] , z = [ z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

] , y = [ y 
ψ,t 

i, j,l 
] to refer

o the vectors of the corresponding variables. The notation is sum-

arized in Appendix A . 

We let φS ( x, z, y ) denote the total expected surface runoff across

he watershed G (V, A ) over the planning horizon, T , under the de-

ision variables x, z , and y for the stochastic model. Therefore,

iven the total available budget, B , the following model minimizes

S ( x, z, y ), i.e., 

min 
x,z,y 

φS (x, z, y ) 

= min 
x,z,y 

∑ 

ψ∈ �
πψ ·

[∑ 

i ∈ V 

∑ 

{ t | 0 ≤t ≤T} 
Q 

ψ,t 

i 

−
∑ 

i ∈ V 

∑ 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 

∑ 

{ t ′ | t ≤t ′ ≤T} 
ˆ Q 

ψ,t ′ 
i, j,l 

· x t i, j,l 

−
∑ 

a 
i ′ ,i ∈ A 

∑ 

j∈ G I ∪{ 0 } 

∑ 

j ′ ∈ G I 

∑ 

l∈ L 

∑ 

l ′ ∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 

∑ 

{ t ′ | 0 ≤t ′ ≤T −1 } 

∑ 

{ t ′′ | max { t ·1 { j 
 =0 } ,t ′ }≤t 
′′ ≤T} 

×β i ′ , j ′ ,l ′ 
i, j,l 

(
Q 

ψ,t 
′′ 

i 

(
x t 

′ 
i ′ , j ′ ,l ′ − z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

)
+ 

ˆ Q 

ψ,t 
′′ 

i, j,l 
· z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

)
−

∑ 

a 
i ′ ,i ∈ A 

∑ 

j∈ G I ∪{ 0 } 

∑ 

j ′ ∈ G I 

∑ 

l∈ L 

∑ 

l ′ ∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 

×
∑ 

{ t ′ | 0 ≤t ′ ≤t−1 } 

∑ 

{ t ′′ | t ′ ≤t 
′′ ≤t−1 } 

β i ′ , j ′ ,l ′ 
i, j,l 

· Q 

ψ,t 
′′ 

i 
· z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

−
∑ 

i ∈ V 

∑ 

j∈ G II 

∑ 

l∈ L 

∑ 

{ t | T ≤t ≤T} 

∑ 

{ t ′ | t ≤t ′ ≤T} 
ˆ Q 

ψ,t ′ 
i, j,l 

· y 
ψ,t 

i, j,l 

]
, (1) 

s.t. 
∑ 

i ∈ V 

∑ 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 
C t i, j · δi, j,l · x t i, j,l 

+ 

∑ 

i ∈ V 

∑ 

j∈ G II 

∑ 

l∈ L 

∑ 

{ t | T ≤t ≤T } 
C t i, j · δi, j,l · y 

ψ,t 

i, j,l 
≤ B, 

∀ ψ ∈ �, (2) 

 

t ′ 
i ′ , j ′ ,l ′ + x t i, j,l ≤ z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

+ 1 , 

∀ i ′ , i ∈ V, a i ′ ,i ∈ A, 

∀ j ′ , j ∈ G 

I , ∀ l ′ , l ∈ L, 

0 ≤ t ′ , t ≤ T − 1 , 

(3)

 

t 
i, j,l ≥

∑ 

j ′ ∈ G I 

∑ 

l ′ ∈ L 

∑ 

{ t ′ | 0 ≤t ′ ≤T −1 } 
z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

, 

∀ i, i ′ ∈ V, a i ′ ,i ∈ A, 

∀ j ∈ G 

I , ∀ l ∈ L, 

0 ≤ t ≤ T − 1 , 

(4) 

 

t ′ 
i ′ , j ′ ,l ′ ≥

∑ 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 
z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

, 

∀ i, i ′ ∈ V, a i ′ ,i ∈ A, 

∀ j ′ ∈ G 

I , ∀ l ′ ∈ L, 

0 ≤ t ′ ≤ T − 1 , 

(5) 

 

t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

= 0 , 

∀ i ′ , i ∈ V, a i ′ ,i ∈ A, 

j = 0 , ∀ j ′ ∈ G 

I , ∀ l , l ′ ∈ L, 

0 ≤ t , t ′ ≤ T − 1 , 

(6) 
 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 
x t i, j,l ≤

∑ 

a i ′ ,i ∈ A 

∑ 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 
x t i ′ , j,l , 

∀ i ∈ V, (7) 

∑ 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 
x t i, j,l + 

∑ 

j∈ G II 

∑ 

l∈ L 

∑ 

{ t | T ≤t ≤T } 
y 
ψ,t 

i, j,l 
≤ 1 , 

∀ i ∈ V, ψ ∈ �, (8) 

d  
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t 
i, j,l , y 

ψ,t 
′′ 

i, j ′′ ,l , z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

∈ { 0 , 1 } , 
∀ i ′ , i ∈ V, a i ′ ,i ∈ A, 

∀ j ′ , j ∈ G 

I , ∀ j 
′′ ∈ G 

II , 

∀ l ′ , l ∈ L, ∀ ψ ∈ �, 

0 ≤ t, t ′ ≤ T − 1 , 

T ≤ t 
′′ ≤ T . 

(9)

The objective function (1) minimizes the total expected surface

unoff across the sub-catchments within the watershed over the

lanning horizon. The first term in (1) captures the total baseline

unoff. The second term in (1) presents the reduction in surface

unoff over the sub-catchments as a result of first stage GI in-

tallations within the sub-catchments. The third and forth terms

n (1) address the adjustment in surface runoff reduction due to

I installations in connected sub-catchments (see Appendix B for

ore details). Finally, the last term in (1) presents the reduction in

urface runoff over the sub-catchments as a result of second-stage

I installations within the sub-catchments. 

Constraint (2) enforces budget limitations for placing GI prac-

ices. Constraints (3) –(6) establish the relationship between vari-

bles x and z and enforces the latter to assume the value one

hen large-scale GI practices are installed within two connected

ub-catchments, and to assume the value zero, otherwise. Con-

traint (7) ensures the 1-neighbor connectivity among first-stage

I practices. Constraint (8) assures that at most one GI practice

s installed in any given sub-catchment throughout the planning

orizon. Finally, constraint (9) enforces binary restrictions on the

ecision variables. Let � denote the feasible set of the problem,

.e., � = { χ = (x, z, y ) | (2) − (9) } . Accordingly, we let χ
 
S 

∈ � de-

ote the optimal solution to the stochastic model, i.e., φS (χ

 
S 
) ≤

S (χ ) for all χ ∈ �. 

.2. Stochastic programming model with perturbed parameters 

In this section, we first use the notation introduced in

ection 2.1 to re-cast the problem as a two-stage stochastic pro-

ramming model with perturbed baseline runoff and runoff cap-

uring parameters. We then extend the model to multi-stage (par-

icularly accounting for three stages). For brevity, we refer to these

odels as ‘conservative-stochastic models’ in the remainder of the

anuscript. 

We first present a two-stage conservative-stochastic program-

ing model. Similar to the previous formulation, the model pre-

cribes the extent to which each sub-catchment must be covered

y each type of GI practice in the two stages. Different from the

revious formulation in which the baseline surface runoff volume,

 

ψ,t 

i 
, and surface runoff volume captured by a GI practice, ˆ Q 

ψ,t 

i, j,l 
,

ere assumed to be readily known, in this formulation we assume

here is uncertainty in calculating these runoff volumes. 

Specifically, we redefine Q 

ψ,t 

i 
to denote the average baseline

urface runoff volume within sub-catchment i ∈ V under sce-

ario ψ ∈ � in year t , and let 2 q 
ψ,t 

i 
(α) denote the width of the

00(1 − α) % confidence interval (CI) for the corresponding aver-

ge baseline surface runoff volume. Similarly, we redefine ˆ Q 

ψ,t 

i, j,l 
to

enote the average surface runoff volume captured by GI prac-

ice of type j ∈ G installed in level l ∈ L within sub-catchment

 ∈ V under scenario ψ ∈ � in year t , and let 2 ̂  q 
ψ,t 

i, j,l 
(α) denote the

idth of the 100(1 − α) % CI for the corresponding average surface

unoff volume captured by the GI practice. Consequently, [ Q 

ψ,t 

i 
−

 

ψ,t 

i 
(α) , Q 

ψ,t 

i 
+ q 

ψ,t 

i 
(α)] and [ ̂  Q 

ψ,t 

i, j,l 
− ˆ q 

ψ,t 

i, j,l 
(α) , ˆ Q 

ψ,t 

i,l, j 
+ ˆ q 

ψ,t 

i, j,l 
(α)] give

he corresponding 100(1 − α)% CI for the average baseline surface

unoff volume and runoff volume captured, respectively. Accord- 

ngly, the average baseline runoff volume and runoff volume cap-

ured by the given GI practice within sub-catchment i ∈ V un-

er scenario ψ ∈ � in year t are no worse than the CI upper
izing green infrastructure placement under precipitation uncer- 
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w  
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t  

s

α  

q  

t  
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c  

ξ  

c  ∑
 

h

bound Q 

ψ,t 

i 
+ q 

ψ,t 

i 
(α) and the CI lower bound 

ˆ Q 

ψ,t 

i, j,l 
− ˆ q 

ψ,t 

i, j,l 
(α) , re-

spectively, 100(1 − α)% of the time. 

Finally, consistent with Soyster’s method [67] , in our objective

function of the conservative-stochastic model, compared with that

of the stochastic model in Eq. (1) , we use the 100(1 − α) % CI up-

per bound and lower bounds of the estimated values for Q 

ψ,t 

i 
and

ˆ Q 

ψ,t 

i, j,l 
to take a conservative view. Accordingly, we let φR α (x, z, y )

denote the total expected surface runoff volume across the wa-

tershed G (V, A ) over the planning horizon, T , under the decision

variables x, z , and y for the conservative-stochastic model. There-

fore, given the total available budget, B , the following model mini-

mizes φR α(x,z,y ) . Note that analogous to the stochastic model, we let

χ
 
R ∈ � denote the optimal solution to the conservative-stochastic

model. 

min 
x,z,y 

φR α (x, z, y ) 

= min 
x,z,y 

∑ 

ψ∈ �
πψ ·

[∑ 

i ∈ V 

∑ 

{ t | 0 ≤t ≤T} 
Q 

ψ,t 

i 
+ q 

ψ,t 

i 
(α) 

−
∑ 

i ∈ V 

∑ 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 

∑ 

{ t ′ | t ≤t ′ ≤T} 

(
ˆ Q 

ψ,t ′ 
i, j,l 

− ˆ q 
ψ,t ′ 
i, j,l 

(α) 
)

· x t i, j,l 

−
∑ 

a 
i ′ ,i ∈ A 

∑ 

j∈ G I ∪{ 0 } 

∑ 

j ′ ∈ G I 

∑ 

l∈ L 

∑ 

l ′ ∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 

∑ 

{ t ′ | 0 ≤t ′ ≤T −1 } 

∑ 

{ t ′′ | max { t ·1 { j 
 =0 } ,t ′ }≤t 
′′ ≤T} 

×β i ′ , j ′ ,l ′ 
i, j,l 

((
Q 

ψ,t 
′′ 

i 
− q 

ψ,t 
′′ 

i 
(α) 

)(
x t 

′ 
i ′ , j ′ ,l ′ − z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

)

+ 

(
ˆ Q 

ψ,t 
′′ 

i, j,l 
− ˆ q 

ψ,t 
′′ 

i, j,l 
(α) 

)
· z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

)
−

∑ 

a 
i ′ ,i ∈ A 

∑ 

j∈ G I ∪{ 0 } 

∑ 

j ′ ∈ G I 

∑ 

l∈ L 

∑ 

l ′ ∈ L 

∑ 

{ t | 0 ≤t ≤T −1 } 

∑ 

{ t ′ | 0 ≤t ′ ≤t−1 } 

∑ 

{ t ′′ | t ′ ≤t 
′′ ≤t−1 } 

×β i ′ , j ′ ,l ′ 
i, j,l 

·
(

Q 

ψ,t 
′′ 

i 
− q 

ψ,t 
′′ 

i 
(α) 

)
· z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

−
∑ 

i ∈ V 

∑ 

j∈ G II 

∑ 

l∈ L 

∑ 

{ t | T ≤t ≤T} 

∑ 

{ t ′ | t ≤t ′ ≤T} 

(
ˆ Q 

ψ,t ′ 
i, j,l 

− ˆ q 
ψ,t ′ 
i, j,l 

(α) 
)

· y 
ψ,t 

i, j,l 

]
, 

s.t. χ = (x, z, y ) ∈ �. (10)

Although the objective function in the conservative-stochastic

model may seem overly conservative compared with the one in

the stochastic model, that only accounts for average volumes, we

believe such a model is practical in our context. Note that the in-

tensity of precipitation, i.e., the amount of precipitation in a pe-

riod of time (especially for short periods, e.g., 24 hours) is an im-

portant predictor of, and is negatively correlated with, GI practice

performance [22] . Assuming that the precipitation intensity is rela-

tively similar across all sub-catchments in a relatively small water-

shed, when intense precipitation occurs, the performance of all GI

practices are expected to get worse. This means that the result-

ing runoff across all sub-catchments would increase accordingly

and, in turn, in Eq. (1) all coefficients pertaining to baseline sur-

face runoff volume, Q 

ψ,t 

i 
, and surface runoff volume captured by

GI practices, ˆ Q 

ψ,t 

i, j,l 
, must be adjusted. 

Next, we extend the problem formulation to multi-stage

conservative-stochastic programming (particularly accounting for

three stages). Recall that in the two-stage case, in the beginning of

the planning horizon, before any scenarios are realized, we make

first-stage decisions. After T years into the planning horizon, we

realize a certain CGCM, at which point we make second-stage de-

cisions. In contrast, in the three-stage case, we expand each node

of the second-stage decision tree with scenarios that pertain to all

CGCMs. That is, in the second stage, instead of realizing one single

CGCM for the rest of the planning horizon, we may continue with

any of the CGCMs until stage three. Given the fact that we have

realized a CGCM at the second stage, we assume that this CGCM
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim
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s more likely to occur between this stage and the third stage. Fi-

ally, we realize a certain CGCM at the third stage, at which point

e make third-stage decisions. Consequently, we continue with the

ealized CGCM for the rest of the planning horizon. The complete

iscussion on the model formulation of the multi-stage stochas-

ic programming model with perturbed parameters is included in

ppendix C . 

.3. Incorporating sub-catchment-level runoff reduction 

onsiderations 

Note that the models developed so far aim to minimize the ex-

ected total runoff volume under future precipitation uncertainty,

ithout any requirements for runoff reduction across individual

ub-catchments. However, to increase resilience against precipita-

ion uncertainty, it is important to be able to minimize the ex-

ected total runoff volume across the entire watershed, while ac-

ounting for some level of confidence in runoff mitigation in cer-

ain (or all) sub-catchments. For instance, such measures may be

f particular interest in dense residential regions where higher

unoff may result in significant water quality problems. As such,

ext we introduce a chance constraint that ensures the GI prac-

ices are placed across the watershed such that some level of con-

dence in the degree of runoff volume captured in a given sub-

atchment is achieved. Such constraints enable the prioritization

f sub-catchments when placing GI practices. 

First, we let the random variable ξψ,t 

i 
denote the expected

aseline surface runoff volume over sub-catchment i under sce-

ario ψ in year t , such that E [ ξψ,t 

i 
] = Q 

ψ,t 

i 
. Similarly, we let the

andom variable ˆ ξψ,t 

i, j,l 
denote the expected runoff volume captured

y GI practice of type j installed in level l within sub-catchment i

nder scenario ψ in year t , such that E [ ̂  ξψ,t 

i, j,l 
] = 

ˆ Q 

ψ,t 

i, j,l 
. Let γ t 

i 
denote

 desired minimum threshold for the proportion of runoff volume

aptured due to placing GI practices in sub-catchment i in year t .

n addition, we let 1 − ε denote the desired confidence level for

atisfying this minimum threshold. Therefore, for any given sub-

atchment i , we have 

r 

⎛ 

⎝ 

∑ 

j∈ G 
∑ 

l∈ L ˆ ξψ,t 

i,l, j 

(
x t 

i, j,l 
+ y 

ψ,t 

i,l, j 

)
ξψ,t 

i 

≥ γ t 
i 

⎞ 

⎠ ≥ 1 − ε ∀ ψ ∈ �, 0 ≤ t ≤ T . 

(11)

Note that for simplicity in notation, we present the constraint

hen assuming G 

I = G 

II = G . However, similar constraints may be

ritten when G 

I 
 = G 

II . 

Next, suppose ξψ,t 

i 
and 

ˆ ξψ,t 

i, j,l 
are normally distributed. Note

hat their means equal to Q 

ψ,t 

i 
and 

ˆ Q 

ψ,t 

i, j,l 
, respectively, and their

tandard deviations can be respectively computed from the (1 −
) % CIs defined in Section 2.2 , namely, [ Q 

ψ,t 

i 
− q 

ψ,t 

i 
(α) , Q 

ψ,t 

i 
+

 

ψ,t 

i 
(α)] and [ ̂  Q 

ψ,t 

i, j,l 
− ˆ q 

ψ,t 

i, j,l 
(α) , ˆ Q 

ψ,t 

i,l, j 
+ ˆ q 

ψ,t 

i, j,l 
(α)] . That is, for α = 0 . 05 ,

he 2 q 
ψ,t 

i 
(0 . 05) and 2 ̂  q 

ψ,t 

i, j,l 
(0 . 05) are approximately equal to four

imes the standard deviations of ξψ,t 

i 
and 

ˆ ξψ,t 

i, j,l 
, respectively. Hence,

onsidering α = 0 . 05 , we let ξψ,t 

i 
∼ N (Q 

ψ,t 

i 
, (q 

ψ,t 

i 
(0 . 05)) 2 / 4) and

ˆ ψ,t 

i, j,l 
∼ N ( ̂  Q 

ψ,t 

i, j,l 
, ( ̂  q 

ψ,t 

i, j,l 
(0 . 05)) 2 / 4) . Also, we let �

ψ,t 

i, j,l 
denote the

ovariance of the random variables ξψ,t 

i 
and 

ˆ ξψ,t 

i, j,l 
. Let ζψ,t 

i 
=

 

j∈ G 
∑ 

l∈ L ˆ ξψ,t 

i,l, j 
(x t 

i, j,l 
+ y 

ψ,t 

i,l, j 
) − γ t 

i 
ξψ,t 

i 
. Hence, for fixed x and y , we

ave 

ζψ,t 

i 
∼ N 

(
ζ

ψ,t 

i = 

∑ 

j∈ G 

∑ 

l∈ L 
ˆ Q 

ψ,t 

i,l, j 

(
x t i, j,l + y 

ψ,t 

i,l, j 

)
− γ t 

i Q 

ψ,t 

i 
, 
izing green infrastructure placement under precipitation uncer- 
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3
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s  

p  
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d  

t  

c  

h  
σ 2 

ζψ,t 

i 

= 

∑ 

j∈ G 

∑ 

l∈ L 

( ̂  q 
ψ,t 

i, j,l 
(0 . 05)) 2 

4 

(
x t i, j,l + y 

ψ,t 

i,l, j 

)2 

+ (γ t 
i ) 

2 
(q 

ψ,t 

i 
(0 . 05)) 2 

4 

−
∑ 

j∈ G 

∑ 

l∈ L 
2 γ t 

i �
ψ,t 

i, j,l 

(
x t i, j,l + y 

ψ,t 

i,l, j 

))
. 

Note that according to constraint (8) and binary condition on

ariables, (x + y ) 2 = (x + y ) . Also, due to the constraint, the covari-

nce between 

ˆ ξψ,t 

i,l, j 
variables (for all j and l ) is zero. 

Hence, Eq. (11) simplifies as follows: 

r 

(
ζψ,t 

i 
≥ 0 

)
= Pr 

( 

u ≥ − ζ
ψ,t 

i 

σ
ζψ,t 

i 

) 

≥ 1 − ε ⇐⇒ − ζ
ψ,t 

i 

σ
ζψ,t 

i 

≤ �−1 (ε) .

Finally, by replacing ζ
ψ,t 

i and σ
ζ

ψ,t 
i 

in the above equation and

quaring the sides, chance constraint (11) turns into the following

orm. 

∑ 

j∈ G 

∑ 

l∈ L 

(
ˆ Q 

ψ,t 

i,l, j 

)2 (
x t i, j,l + y 

ψ,t 

i,l, j 

)

−2 γ t 
i Q 

ψ,t 

i 

( ∑ 

j∈ G 

∑ 

l∈ L 
ˆ Q 

ψ,t 

i,l, j 

(
x t i, j,l + y 

ψ,t 

i,l, j 

)) 

×
(
γ t 

i 

)2 
(

Q 

ψ,t 

i 

)2 

+ 

⎛ 

⎜ ⎝ 

∑ 

j∈ G 

∑ 

l∈ L 

(
ˆ q 
ψ,t 

i, j,l 
( 0 . 05 ) 

)2 

4 

(
x t i, j,l + y 

ψ,t 

i,l, j 

)(
γ t 

i 

)2 

(
q 
ψ,t 

i ( 0 . 05 ) 

)2 

4 

+ 

∑ 

j∈ G 

∑ 

l∈ L 
2 γ t 

i �
ψ,t 

i, j,l 

(
x t i, j,l + y 

ψ,t 

i,l, j 

)) (
�−1 ( ε) 

)2 ≤ 0 , 

∀ ψ ∈ �, 

∀ i ∈ V, 

0 ≤ t ≤ T − 1 

. (12) 

. Model calibration 

In this section, we calibrate the mathematical models presented

n Section 2 using literature, historical data, precipitation projec-

ions, and expert opinion for an urban watershed of a mid-sized

ity in the U.S. First, in Section 3.1 we calibrate the parameters as-

ociated with GI practices. Next, in Section 3.2 we discuss the pre-

rocessing performed on precipitation projections to convert them

nto the requisite format. Finally, in Section 3.3 we describe the hy-

rological simulations performed to characterize the surface runoff

esulting from precipitation projections in the sub-catchments, un-

er potential GI placements. 

.1. GI Practices 

The performance of a GI practice can be described as the vol-

me of surface runoff that the practice can infiltrate on an hourly

asis [65] . The performance of GI practices depend on an array of

actors including design specifications (such as surface storage vol-

me, media storage, and media composition and depth, etc.) and

limate patterns (such as precipitation event intensity and dura-

ion, etc.) [26,69] . In addition, maintenance activities must be per-

ormed for GI practices to continue their performance [6] . 

GI types, G, and GI installation levels, L . In this study, we con-

ider two common types of GI practices, namely, bioretention and

ain garden [30] , hence | G | = 2 . The former is typically installed in

elatively large, commercial scales and is held to a higher design

tandard, whereas the latter is a smaller system with lower design

tandards and is placed in residential lots [9] . In two-stage stochas-

ic models, under the restricted decision set assumption, we let the

ioretentions and rain gardens be placed in the first and second

tages, respectively. Hence, in these models we use | G 

I | = 1 and
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim
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 G 

II | = 1 . Under relaxed decision sets, however, we allow bioreten-

ions and rain gardens to be placed in any of the decision stages,

.e., | G | = 2 in all stages. 

The amount of surface runoff reduction by GI practices in any

iven sub-catchment of a watershed is closely related to the sur-

ace area that they cover from the corresponding sub-catchment

63] . We account for three levels of installation for each of the

wo GI practice types considered, i.e., | L | = 3 . National Association

f City Transportation Officials (NACTO) [13] recommends using

he effective im pervious surface area in the drainage region (sub-

atchments) as a key design factor when sizing bioretentions [14] .

o that end, and due to the larger scale of bioretention installa-

ion, in this study we allow bioretentions to cover 5%, 7.5%, and

0% of the impervious area of each sub-catchment. Given the size

f a sub-catchment, these ratios can be translated into square feet

o obtain the corresponding values of δi,j,l . For rain gardens, due

o their residential-scale implementation, we allocate the total ar-

as of 250 0, 50 0 0, and 750 0 square feet for placing the GI prac-

ices within each sub-catchment. Finally, note that for the general

ttributes of the two types of GI practices considered, e.g., mini-

um media depth, ponding depth, media permeability, we use the

tormwater training manuals from State of Tennessee Department

f Environment & Conservation [17] . 

GI costs, C t 
i, j 

. The total cost of placing GI practices includes con-

truction and maintenance costs. Let c t 
i, j 

and c t 
i, j 

denote the per

quare feet construction and annual maintenance costs of a GI

ractice of type j in sub-catchment i in year t ≤ T , respectively.

e assume the maintenance cost incurs annually starting from the

ear of construction and is subject to an annual increase with the

verage annual inflation rate r . Hence, the present value at time

ero of the total per square feet cost of placing GI practice of type

 in sub-catchment i at time t is given by 

 

t 
i, j = 

1 

(1 + r) t 
·
(

c t i, j + 

1 − r T −t 

1 − r 
· c t i, j 

)
. 

We use the inflation-adjusted EPA Opti-Tool [32] and the Uni-

ersity of Texas A&M’s AGRILIFE Report [35] to obtain the per

quare feet construction cost of bioretentions and rain gardens, re-

pectively. For instance, the reported per square feet construction

ost of bioretentions was $15.46 in 2016, and that of rain gardens

as $6.00 in 2012. To estimate the corresponding costs during the

lanning horizon, we adjust the values using the U.S. Labor Depart-

ent’s Consumer Price Index (CPI) inflation calculator [72] . We do

ot consider land cost in this study as we assume all GI practices

re placed on public land or on land parcels offered by private

roperty owners. Based on published reports [68] , the annual GI

aintenance cost ranges between 3% − 6% of its construction cost.

et ρ denote the ratio of maintenance cost to construction cost,

.e., ρ = c t 
i, j 

/ c t 
i, j 

. In this study, we set ρ = 3%. Lastly, we use the

verage annual inflation rate r = 1.86%, which equals the average

nnual U.S. inflation rate over the period 2007–2017 [18] . 

.2. Pre-processing of precipitation projections 

As discussed in Section 1 , CGCMs project future precipitation,

hich are next fed to hydrological simulators to calculate the re-

ulting surface runoff, at various degrees of GI installation. In this

tudy, we use precipitation projections for the City of Knoxville

roduced by ten CGCMs (see Table D.1 in Appendix D for more de-

ail.) Note that using CGCMs to produce projections are computa-

ionally expensive and hence, the projections are usually only pro-

uced in daily units. Let ˆ ψ ∈ 

ˆ � denote a daily precipitation projec-

ion time series produced by one of the ten CGCMs. To accurately

apture the GI response to precipitation, more granular data, i.e.,

ourly precipitation projections, are required due to quick trans-
izing green infrastructure placement under precipitation uncer- 
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Fig. 3. Quartile-based Temporal distributions of daily precipitation, adapted from [20] . 
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port of runoff in urban watersheds. Therefore, the daily precipita-

tion projections must be converted into hourly precipitation pro-

jections, denoted by ψ ∈ � , before they can be fed into hydro-

logical simulators to calculate corresponding amounts of surface

runoff. 

Note that hourly precipitation projections can be uniquely ag-

gregated to produce daily precipitation projections; however, the

reverse is not true. In this section, we present an approach for pre-

processing daily precipitation projections to generate one of the

many likely hourly precipitation projections. Specifically, we use

quartile-based and seasonal-based temporal distributions [20] to

convert a daily precipitation time series into an hourly precipita-

tion time series. Temporal distributions of precipitation summarize

the historical cumulative percentages of precipitation up to any
b  

Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim
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oint during a precipitation event and provide the proportion of

ime that the pattern was observed. 

Fig. 3 presents the quartile-based distributions of 24-hour pre-

ipitation of Ohio river basin (including the City of Knoxville),

dopted from Precipitation-Frequency Atlas of the United

tates [20] . Specifically, Fig. 3 (a)–(d) present the cumulative

robability plots of temporal distributions, where the highest

ercentage of precipitation during the 24-hour period occurred

n the first-fourth quarters of the day, respectively. For instance,

ig. 3 (a) presents the temporal distributions, where the highest

mount of daily precipitation occurred during the first quarter of

he day. The nine cumulative distributions in each panel present

he nine general patterns according to which the corresponding

mount of precipitation was accumulated. The shades of the distri-

utions present the percentage of time that the particular pattern
izing green infrastructure placement under precipitation uncer- 
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Fig. 4. Seasonal-based temporal distributions of daily precipitation. 
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as observed. For instance, given that the highest percentage of

aily precipitation occurred in the first quantile ( Fig. 3 (a)), in 10%

f the cases, 55.1% of total daily precipitation occurred during

he first 8.3% of the time-period, i.e., the first 2 hours of the

ay. 

Note that the quartile-based temporal distributions in Fig. 3 are

enerated under the assumption of the homogeneity of monthly

recipitation. In the absence of monthly precipitation homogene-

ty, seasonality must be considered [59] . Hence, we follow the pro-

edure described in Huff (42) to generate seasonal-based temporal

istributions. As the input, we use 20 years of precipitation data

i.e., year 1997–year 2016) in the City of Knoxville, obtained from

ational Center for Environmental Information (NCEI) [15] , strati-

ed across the four seasons. Fig. 4 presents the resulting seasonal

emporal distributions of daily precipitation. 

Lastly, to analyze the homogeneity of monthly precipitation to

etermine whether quartile-based or seasonal-based temporal dis-
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim
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ributions can be applied to convert the daily projections into

ourly projections, we use a variation of precipitation coefficient

f variability [27,59] . Let p k denote the accumulated precipitation

n month k and let η denote the precipitation coefficient of vari-

bility. The value of η is given by 

= 

∑ 12 
k =1 p 

2 
k 

( 
∑ 12 

k =1 p k ) 
2 
. 

If the value of η ranges between 0 and 0.1, it suggests that pre-

ipitation is relatively uniformly distributed across the months, i.e.,

omogeneity of monthly precipitation. In contrast, if the value of η
anges between 0.1 and 0.2, it indicates seasonal patterns for pre-

ipitation. Note that if the value of η is greater than 0.2, it indicates

hat there are distinct monthly precipitations and thus, monthly
izing green infrastructure placement under precipitation uncer- 
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Fig. 5. Coefficient of variability for the ten precipitation projections for the City of Knoxville, for years 2018 to 2050. 
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precipitations are fully heterogeneous. Fig. 5 presents the coeffi-

cient of variability, η, for the 10 precipitation projections during

the planning time horizon. As seen in the figure, η ranges from

0.085 to 0.125, and is always less than 0.2. 

Finally, we use the following procedure to pre-process any

given daily precipitation projection (from any of the ten CGCMs)

to generate an hourly projection. First, we break down the daily

precipitation projection by year. For any given year, we first ex-

amine the value of coefficient of variability to determine whether

quartile-based or seasonal-based temporal distributions apply. If

quartile-based distributions apply, we first determine the propor-

tion of time that the highest percentage of precipitation occurred

in the first-fourth quarters of the day using the historical precipita-

tion data collected in the Ohio River Basin, which includes the City

of Knoxville [20] . Next, for any given day of the year in the daily

precipitation projections, we generate a weighted random number

according to these proportions to determine which quartile to use.

Next, we generate a weighted random number according to the

probability of observing each of the cumulative distributions in the

corresponding quantile. Finally, once a cumulative distribution is

chosen, we use it to project the amount of precipitation in that

day into an hourly time series. Similarly, if seasonal-based tempo-

ral distributions apply, for any given day in any given season, we

generate a weighted random number according to the probability

of observing each of the cumulative distributions for that season.

We then use the selected cumulative distribution to project the

amount of precipitation in that day into an hourly time series. 

3.3. Hydrological simulations and estimating surface runoff

As discussed in Section 3.2 , precipitation projections need

to be fed into hydrological simulators to calculate the surface

runoff during any given precipitation event, at various degrees

of GI installation. In this study, to perform hydrological simula-

tions we use EPA SWMM [63] , a widely used software in liter-

ature [21,28,43,53,56,62,70,71] . Note that conducting brute-force

SWMM simulations can be time-consuming. Hence, in this section,

we first discuss the computational difficulties of executing such

simulations and then provide an approach for sampling events

to estimate the total baseline surface runoff, Q 

ψ,t 

i 
, and the sur-

face runoff captured by GI practices, ˆ Q 

ψ,t 

i, j,l 
, under various pro-

jected precipitation scenarios, ψ , for the stochastic model. Next,

we describe the approach used for calculating the 100(1 − α)%
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim
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Is for the amount of surface runoff captured by GI practices that

ives the estimated value of ˆ q 
ψ,t 

i, j,l 
(α) for the conservative-stochastic

odel. Finally, we describe the approach used for calculating the

unoff adjustment factor β i ′ , j ′ ,l ′ 
i, j,l 

over any given downstream sub-

atchment. 

SWMM partitions rainfall to runoff and routes it through the

atershed and the potential GI practices, while accounting for sev-

ral adjustments such as ( i ) rainfall interception from depression

torage, ( ii ) infiltration of rainfall into unsaturated soil layers, and

 iii ) percolation of infiltrated water into groundwater layers [63] .

ote that SWMM simulation can be extremely computationally ex-

ensive, given a large watershed and a long time horizon for the

nput precipitation. For instance, based on our experiments, each

WMM simulation performed on a 2.4 GHz CPU (single core) to

btain the surface runoff after placing GI practices within a single

ub-catchment can take on the order of approximately 25 minute

o execute for a time series that spans only one year, expressed

n hourly units. Note that increasing the planning horizon propor-

ionally increases the simulation time. In addition, given the total

umber of the sub-catchments, | V |, the number of GI types to place

n each sub-catchment, | G |, and the number of possible installa-

ion levels, | L |, a total of (| G | · | L | + 1) | V | SWMM simulations must

e executed to calculate the surface runoff for all possible combi-

ations of GI placements if all sub-catchments are hydrologically

onnected. Hence, using a brute-force simulation approach is com-

utationally intractable even for a medium-sized watershed, with

pproximately 100 sub-catchments. 

Therefore, in this study, we exploit three approaches to mit-

gate the prohibitively long simulation time to estimate the sur-

ace runoff. First, we use a sampling method to approximate sur-

ace runoff resulting from precipitation scenarios using only a se-

ies of sampled events instead of the entire precipitation time se-

ies spanning the planning horizon. Note that we use the sampling

ethod along with bootstrapping to also calculate CIs for the es-

imated surface runoff volumes. Second, we run SWMM simula-

ions for all sub-catchments simultaneously, i.e., we execute one

imulation under no GI practice placement to calculate the base-

ine surface runoff over all sub-catchments, and a total of | G | · | L |

imulations where the same GI practice of type j in the same

evel l is placed within all sub-catchments to calculate the cor-

esponding runoff after placement. Clearly, if hydrological con-

ectivity among sub-catchments are not captured in the water-

hed model, the estimated runoff volumes give the parameters
izing green infrastructure placement under precipitation uncer- 
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ψ,t 

i 
and ˆ Q 

ψ,t 

i,l, j 
, respectively. However, if hydrological connectivity 

mong sub-catchments are captured in the watershed model, the

ormer and latter groups of estimated runoff volumes need to be

djusted back by the adjustment factor β i ′ , j ′ ,l ′ 
i, j,l 

to estimate the pa-

ameters Q 

ψ,t 

i 
and 

ˆ Q 

ψ,t 

i,l, j 
, respectively. In our main SWMM simula-

ion model for the watershed, the hydrological connectivity among

ub-catchments is not entirely captured, which simplifies the es-

imation of Q 

ψ,t 

i 
and 

ˆ Q 

ψ,t 

i,l, j 
. However, at the same time, it compli-

ates the process of estimating the adjustment factors β i ′ , j ′ ,l ′ 
i, j,l 

. To

e able to estimate the adjustment factors, we develop a comple-

entary SWMM model, which we calibrate based on the charac-

eristics of the sub-catchments and their hydrological connectivity

n the watershed. Lastly, we stratify sub-catchments based on their

haracteristics and only calculate the adjustment factors β i ′ , j ′ ,l ′ 
i, j,l 

for

 reduced number of sub-catchment type pairs using the set of

ampled events. 

Sampling events and calculating surface runoff parameters, Q 

ψ,t 

i 

nd ˆ Q 

ψ,t 

i,l, j 
, for the stochastic model . As discussed in Section 2 , pre-

ipitation intensity, i.e., the amount of precipitation in a period

f time, is an important predictor of, and is negatively correlated

ith, GI practice performance. Depending on the intensity of pre-

ipitation events, a GI practice may present different performance

evels. For instance, GI practices generally exhibit a lower perfor-

ance under a series of short but intense events, but a higher per-

ormance under long but mild events. Hence, we use precipitation

ntensity as a basis for sampling events. 

Recall that ˆ ψ ∈ 

ˆ � denotes daily precipitation projection time

eries produced by the CGCMs, and ψ ∈ � denotes hourly pre-

ipitation projection time series, corresponding to scenarios in the

tochastic model. As discussed in Section 3.2 , the hourly precipita-

ion projection time series, ψ , resulting from a daily precipitation

rojection time series, ˆ ψ , is not unique. In fact, each of the result-

ng hourly precipitation projection time series can have very differ-

nt daily precipitation intensities in any given day. Therefore, we

ely on repeated sampling to produce a large set of hourly precipi-

ation projection time series, ψ , and then aggregate them based on

recipitation intensities to estimate runoff volumes. The detailed

teps are as follows. 

• Initialization : For each of the ten daily precipitation projec-

tions, ˆ ψ ∈ 

ˆ �, use precipitation coefficient of variability, η,

to identify the relevant set of temporal distributions for any

given rainy day, i.e., when precipitation volume is greater

than zero, over the span of 32 years, i.e., 2018–2050. Next,

for each of these rainy days, randomly select from the cor-

responding set of temporal distributions to project daily pre-

cipitation into hourly basis. Repeat the procedure to gener-

ate 100 time series of hourly precipitation projections for

each of the 10 daily precipitation projections, ˆ ψ ∈ 

ˆ � . This

results in 10 0 0 time series of hourly precipitation projec-

tions, ψ ∈ � , each of which consist of a series of hourly

precipitation events with various intensities. 
• Aggregation : Use all ψ ∈ � to calculate the histogram of

hourly event intensities, using Sturges rule to break the in-

tensity range into categories. 
• SWMM Simulation : For any given 100 hourly precipitation

projections corresponding to daily precipitation projection
ˆ ψ , calculate the histogram of hourly event intensities using

the previously defined categories. Randomly select a set of

10 events from the category to use in SWMM simulations.

If a category has fewer than 10 events, use all in the sim-

ulation. For any chosen event, execute SWMM simulation

when no GI practice is placed in any of the watershed sub-

catchments, i ∈ V . For any given sub-catchment, calculate
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim
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the category’s corresponding baseline average ‘volume-based

runoff coefficient,’ i.e., the ratio of runoff volume to the pre-

cipitation volume [39] , using all selected events in the cat-

egory. Next, for any selected event, execute SWMM simula-

tion when identical GI practice j in level l is placed across

all sub-catchments. For any given sub-catchment i , calculate

the category’s corresponding average ‘runoff coefficient’ with 

respect to the placed GI practice of type j with level l , using

all selected events in the category. Follow the procedure for

all ˆ ψ ∈ 

ˆ � and calculate all runoff coefficients. 
• Estimating Runoff: Given an hourly precipitation projection

ψ ∈ � for sub-catchment i ∈ V , use the expanded rational

method [39] to calculate the baseline runoff using the cor-

responding baseline runoff coefficients of the corresponding

daily precipitation projection 

ˆ ψ ∈ 

ˆ � . That is, for any given

rainy day in the projection ψ ∈ � , calculate the total daily

runoff by multiplying the runoff volume by the runoff co-

efficient that corresponds to the precipitation intensity in

that day, obtained from the corresponding ˆ ψ ∈ 

ˆ � . The over-

all yearly baseline runoff for the hourly precipitation projec-

tion ψ over sub-catchment i , i.e., Q 

ψ,t 

i 
for all 0 ≤ t ≤ T , is the

summation of calculated total daily runoff volumes in that

year. Use the same method to calculate the overall runoff

for sub-catchment i ∈ V with respect to placed GI practice

j ∈ G in level l ∈ L in year t ≤ T . Let ˜ Q 

ψ,t 

i,l, j 
denote the surface

runoff over sub-catchment i ∈ V given that GI practice of

type j ∈ G is installed in level l ∈ L within the sub-catchment

under the hourly precipitation projection ψ ∈ � in year t .

Hence, under hourly precipitation projection ψ , the corre-

sponding surface runoff captured by the GI practice, ˆ Q 

ψ,t 

i, j,l 
,

for all i ∈ V, j ∈ G, l ∈ L , 0 ≤ t ≤ T is obtained as follows:

ˆ Q 

ψ,t 

i, j,l 
= Q 

ψ,t 

i 
− ˜ Q 

ψ,t 

i,l, j 
. Repeat this process for all 10 0 0 hourly

precipitation projections to estimate the corresponding sur-

face runoff volumes Q 

ψ,t 

i 
and 

ˆ Q 

ψ,t 

i, j,l 
for all sub-catchments in

the watershed. 

Fig. 6 presents the variation in the estimated volume-based

unoff coefficient across all sub-catchments in our watershed of

nterest under various GI practice installation. BR and RG stand

or bioretention and rain garden, respectively, and the three levels

f installation are described in Section 3.1 . As seen in the figure,

he runoff coefficient is generally lower after installing GI practices,

ompared with the baseline (i.e., no treatment). In addition, biore-

ention generally have a lower runoff coefficient, hence present a

etter performance in reducing runoff compared with rain gardens.

astly, the larger the GI practice, especially in bioretentions, the

igher the performance. 

Calculating confidence intervals for runoff volumes for the

onservative-stochastic model . Recall that the conservative-

tochastic model requires the 100(1 − α)% CIs for surface runoff

or any given GI practice in any given sub-catchment. We use

ootstrapping to generate these intervals [31] . In contrast to

tochastic model in which we use a total of 10 0 0 hourly precipita-

ion projections as scenarios to estimate the corresponding surface

unoff volumes, in the conservative-stochastic model we redefine

cenarios to be the aggregate measure of 100 hourly precipitation

rojections produced from any given CGCM. We then use these

cenarios to estimate the runoff volumes as follows. 

First, we follow the first three steps in the procedure used

or calibrating the stochastic model, i.e., Initialization, Aggrega-

ion, and SWMM Simulation, from which we obtain volume-based

unoff coefficients for all identified categories for any given CGCM.

ext, for each CGCM, we group all volume-based runoff coeffi-

ients regardless of the categories and use bootstrapping to repli-

ate large enough bootstrap samples to calculate the corresponding
izing green infrastructure placement under precipitation uncer- 
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Fig. 6. Boxplots of the estimated volume-based runoff coefficients for all sub-catchments in the watershed of interest, for all given hourly precipitation projections corre- 

sponding to CGCM ACCESS over the years 2018–2050, under various GI practice installation. BR and RG stand for bioretention and rain garden, respectively. The three levels 

of installation are described in Section 3.1 . 
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K  
100(1 − α)% CI for runoff coefficients for each sub-catchment, un-

der all GI practice placement (and no treatment). Finally, we use

the center and half of the width of each CI in the rational method

to estimate the corresponding ˆ Q 

ψ,t 

i,l, j 
and ˆ q 

ψ,t 

i,l, j 
(α) . 

Calculating runoff adjustment factor , β i ′ , j ′ ,l ′ 
i, j,l 

. As discussed in

Section 2 , the surface runoff volume over a downstream sub-

catchment is not only a function of the amount of precipi-

tation, the sub-catchment’s hydorlogical characteristics, and the

placed GI practices within the sub-catchment, but also it is af-

fected by (large-scale) GI practices placed within upstream sub-

catchment(s) that are hydrologically connected to this downstream

sub-catchment. Also recall that we assume the adjustments over

downstream sub-catchments are additive when large-sale GI prac-

tices are placed within more than one of its upstream sub-

catchments. As discussed earlier in this section, our main SWMM

simulation model for the watershed does not capture the entire

hydrological connectivity among sub-catchments. Hence, to be able

to estimate the adjustment factors, we develop a complementary

SWMM model, which we calibrate based on the characteristics of

the sub-catchments and their hydrological connectivity in the wa-

tershed. 

Specifically, we develop a SWMM model that consists of

two hydrologically connected sub-catchments, where the residual

runoff from the upstream sub-catchment flows onto the down-

stream sub-catchment. We run the simulation for any given pairs

of sub-catchment characteristics to estimate the adjustment fac-

tor, β i ′ , j ′ ,l ′ 
i, j,l 

, under various GI practice placements as well as no

treatment. To further reduce the computation time, we only use

the most important sub-catchment characteristics related to runoff

reduction, as identified in the literature [24] , and stratify sub-

catchments accordingly (see Appendix E for details). 

Fig. 7 presents a subset of the estimated runoff adjustment

factors over the downstream sub-catchment, where a large biore-

tention is placed in upstream and a small bioretention is placed

downstream, for all observed combinations of sub-catchment char-

acteristics as described in Appendix E . Sub-catchment characteris-

tics are shown as tuples, where the three elements correspond to

percent of imperviousness, percent of slope, and Manning’s n for

overland flow over the pervious portion of the sub-catchment, each
 o  

Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
f which are categorized into three levels of 0–2, encoding low,

edium, and high, respectively. As seen in the figure, the adjust-

ent factor varies based on the characteristics of the pair of sub-

atchments, ranging between 0.2% and 0.75%. In general, a higher

evel of imperviousness results in a larger amount of runoff. Hence,

hen the upstream sub-catchment has a higher level of impervi-

usness, it contributes a larger amount of flow onto hydrologically

onnected downstream sub-catchments. As a result, and as seen in

he figure, placing a large bioretention in a highly impervious up-

tream sub-catchment contributes to a larger adjustment in runoff

ver the downstream sub-catchment. In contrast, the impact is less

ronounced when the upstream sub-catchment is relatively pervi-

us. 

. Case study 

In this section, we first conduct a case study for a watershed in

 mid-sized city in the U.S. We then conduct sensitivity analysis,

nvestigate the relationship between 1-neighbor constraint and the

unoff adjustment factor, discuss the findings and provide insights

n the implications of our modeling approaches. 

For computational experiments we use the IBM ILOG CPLEX

2.8 (64-bit edition) on a PC running Microsoft Windows 7 (64-

it edition) with a Core i7, 4 GHz processor and 32 Gigabyte of

AM. In general, solving a stochastic model is much harder than

olving a conservative-stochastic model. On average, the computa-

ional time of two-stage stochastic models is on the order of 3–4

inutes, which is approximately two orders of magnitude larger

han that of two-stage conservative-stochastic models, which takes

n the order of 1 second to solve. Moreover, solving a multi-stage

onservative-stochastic model is much harder than solving a two-

tage conservative-stochastic model. On average, the computational

ime of multi-stage conservative-stochastic model is 14 folds larger

han that of two-stage conservative-stochastic model. 

.1. Case study specifications 

As a case study, we consider the First Creek in the City of

noxville, Tennessee. The creek is located entirely within the City

f Knoxville and have been identified as the principal sources
izing green infrastructure placement under precipitation uncer- 
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Fig. 7. Heat map of the runoff adjustment factors over the downstream sub-catchment, where a large bioretention is placed in upstream and a small bioretention is placed 

downstream, for all observed combinations of sub-catchment characteristics’ categories as described in Appendix E . Sub-catchment characteristics are shown as tuples, where 

the three elements correspond to percent of imperviousness, percent of slope, and Manning’s n for overland flow over the pervious portion of the sub-catchment, each of 

which are categorized into three levels of 0–2, encoding low, medium, and high, respectively. 
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2  

G  

a  

i  
f flooding in Knox County, Tennessee [36] . The watershed’s

ombined area is 14805 acres and encompasses parts of the

ost densely populated regions of the city, including Downtown

noxville. The First Creek hydrological model was provided to us

y the Stormwater Engineering Division of the City [58] . The hy-

rological model divides the creek into 140 sub-catchments, all of

hich are associated with one rain gauge. This model also includes

65 junction nodes and 439 conduit links that direct the flow into

he Tennessee River. 

Fig. 8 illustrates the map of land cover (left panel) and hy-

rological sub-catchments (right panel) of the First Creek. The red

hades on the left panel represent level of development, from low

mostly meadow and forest land cover) to high. As seen in the fig-

re, the southern region of the watershed, which is where Down-

own Knoxville is located, is highly developed. Subsequently, this

ense region has larger amount of impervious area, compared with

ther regions in the watershed (see Appendix F for more details). 

In this case study, we use a planning horizon of length 33 years

 T = 33 ), i.e., for years 2018–2050, for which the precipitation pro-

ections are available. First, in Section 4.2 , we compare the two-

tage stochastic and conservative-stochastic models with restricted

ecision sets. We let the first and second stage decision variables

e respectively taken in the beginning of the planning horizon, i.e.,

n year 2018, and 10 years into the planning horizon, i.e., in year

027 ( T = 10 ), and conduct sensitivity analysis to draw insights.

ext, in Section 4.3 we use the two-stage stochastic and the two-

tage conservative-stochastic models from Section 4.2 to investi-

ate the relationship between 1-neighbor constraint and the runoff

djustment factor. 

Next, in Section 4.4 we use the two-stage conservative-

tochastic model from Section 4.2 and add chance constraints, as

escribed in Section 2.3 , to evaluate the impact of incorporating

ub-catchment-level runoff reduction considerations on the results.

Finally, in Section 4.5 , we compare the results of the two-stage

nd three-stage conservative-stochastic models with relaxed deci-
 a  
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ion sets. In the three-stage model, the 33-year planning horizon

s divided into three 11-year periods, and GI placement occurs at

he beginning of each period. 

.2. Two-stage models: Stochastic vs conservative-stochastic 

In this section, we compare the two-stage stochastic and

onservative-stochastic models with restricted decision sets. That

s, large-scale and small-scale practices can only be placed in the

rst and second stages, respectively, before and after a scenario is

ealized. 

Given the 10 0 0 generated hourly precipitation time projections

iscussed in Section 3.3 , we let �S denote the projected total ex-

ected runoff volume, i.e., �S = 

∑ 

ψ∈ � πψ · ∑ 

i ∈ V 
∑ 

0 ≤t≤T Q 

ψ,t 

i 
, over

he First Creek equals 4.57 × 10 11 gallons. This volume is used as

otal baseline surface runoff under no treatment (i.e., no GI prac-

ice placed) in the stochastic model. For the conservative-stochastic

odel, given the same projections that are aggregated regardless

f their daily precipitation intensity categories, we let �R α denote

he sample average baseline surface runoff under 100(1 − α)% con-

dence level. Accordingly, for the given scenarios, �R 0 . 05 
= 4 . 56 ×

0 11 and the estimated 95% CI for the expected baseline surface

unoff equals 4.56 × 10 11 ± 1.75 × 10 9 . Note that these runoff vol-

mes correspond to no treatment (i.e., no GI practice placed) in the

onservative-stochastic model. In our computational results, we re-

ort the percentage reduction in total expected runoff volume un-

er the optimal GI practice placement across the watershed, i.e.,

�S − φS (χ

 
S ) 

)
/ �S and 

(
�R 0 . 05 

− φR 0 . 05 
(χ
 

R ) 
)
/ �R 0 . 05 

for the stochas-

ic and conservative-stochastic models, respectively. 

First, we solve the models under the available budgets of 10,

0, and 50 million dollars and compare the corresponding optimal

I practice placements. Fig. 9 presents the first stage decision vari-

bles under the optimal solution for all cases considered. That is,

t presents the sub-catchments in which bioretentions are placed

nd their level of installation. In addition, Table 1 summarizes the
izing green infrastructure placement under precipitation uncer- 
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Fig. 8. Map of land cover [41] (left panel) and hydrological sub-catchments (right panel) of the First Creek, Knoxville, Tennessee. 

Table 1 

Average percentages of sub-catchments in which rain gardens are placed, along with the distribution of their level of installation, given that the scenarios from one of the 

ten CGCMs are realized (second stage decision variables) for various levels of available budget. 

Budget 

10 million dollars 20 million dollars 50 million dollars 

Model CGCM % of Sub-Cat. Large Med. Small % of Sub-Cat. Large Med. Small % of Sub-Cat. Large Med. Small 

Stochastic ACCESS 64.1% 11.1% 3.8% 85.1% 47.6% 54.4% 4.2% 41.4% 23.6% 67.3% 10.8% 21.9% 

BCC 63.7% 11.0% 4.8% 84.3% 49.7% 45.3% 13.4% 41.3% 23.4% 70.4% 6.9% 22.7% 

CCSM4 67.1% 9.6% 1.0% 89.4% 53.1% 40.0% 10.9% 49.1% 23.4% 69.6% 7.6% 22.8% 

CMCC 66.4% 5.5% 10.5% 84.0% 52.9% 39.1% 13.7% 47.2% 23.6% 72.7% 0.0% 27.3% 

FGOALS 67.0% 9.6% 1.3% 89.1% 51.0% 46.1% 6.4% 47.4% 23.6% 69.7% 6.1% 24.2% 

GFDL 57.2% 16.1% 8.9% 75.0% 52.8% 39.3% 13.4% 47.3% 23.6% 70.2% 5.1% 24.7% 

IPSL 65.4% 8.2% 7.0% 84.8% 49.2% 49.0% 8.1% 42.9% 22.9% 74.4% 4.3% 21.4% 

MPI 66.3% 5.2% 11.3% 83.5% 47.0% 53.5% 8.9% 37.6% 22.9% 74.9% 3.3% 21.8% 

MRI 54.4% 20.6% 7.3% 72.2% 45.7% 56.3% 9.4% 34.4% 22.6% 68.6% 19.3% 12.1% 

NorESM 68.2% 7.3% 3.6% 89.1% 52.3% 42.3% 9.3% 48.4% 23.1% 71.2% 8.3% 20.6% 

Conservative- 

stochastic 

ACCESS 80.0% 43.8% 9.8% 46.4% 72.9% 51.0% 7.8% 41.2% 40.0% 60.7% 8.9% 30.4% 

BCC 82.1% 43.5% 5.2% 51.3% 74.3% 51.0% 3.8% 45.2% 40.7% 61.4% 3.5% 35.1% 

CCSM4 81.4% 42.1% 9.6% 48.2% 73.6% 49.5% 8.7% 41.7% 38.6% 66.7% 5.6% 27.8% 

CMCC 84.3% 39.8% 7.6% 52.5% 75.7% 47.2% 7.5% 45.3% 40.7% 59.6% 7.0% 33.3% 

FGOALS 84.3% 41.5% 4.2% 54.2% 77.1% 46.3% 5.6% 48.1% 40.7% 63.2% 0.0% 36.8% 

GFDL 82.9% 41.4% 7.8% 50.9% 74.3% 49.0% 7.7% 43.3% 39.3% 63.6% 7.3% 29.1% 

IPSL 83.6% 41.0% 6.8% 52.1% 75.7% 48.1% 5.7% 46.2% 40.7% 61.4% 3.5% 35.1% 

MPI 82.9% 38.8% 12.9% 48.3% 74.3% 47.1% 11.5% 41.3% 39.3% 63.6% 7.3% 29.1% 

MRI 83.6% 40.2% 8.5% 51.3% 75.0% 47.6% 8.6% 43.8% 40.0% 62.5% 5.4% 32.1% 

NorESM 82.9% 40.5% 9.5% 50.0% 74.3% 47.1% 11.5% 41.3% 40.0% 60.7% 8.9% 30.4% 

 

 

 

 

 

 

n  

t  

t  

f

 

g  
second stage decision variables under the optimal solution for all

cases considered. That is, it presents the average percentages of

sub-catchments in which rain gardens are placed, along with the

distribution of their level of installation, given that the scenarios

from one of the ten CGCMs are realized. As expected, and seen

in the figure and table, as the available budget increases, a larger
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
umber of sub-catchments are selected for bioretention installa-

ion in the first stage and the sizes of placed rain gardens stochas-

ically increases in the second stage, under all scenarios generated

rom the ten CGCMs. 

Recall that the unit construction cost of bioretentions (and rain

ardens) are equal across all sub-catchments. However, as dis-
izing green infrastructure placement under precipitation uncer- 
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Fig. 9. Map of placed bioretentions and their level of installation (first stage decision variables) under the optimal solution for various levels of available budget. 
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c  
ussed in Section 3.1 , the area used for bioretention installation

orresponds to the level of imperviousness in that sub-catchment,

.e., a fixed percentage of the impervious area of the sub-catchment

s treated with bioretentions. As a result, it is much more expen-

ive to place bioretentions in highly developed sub-catchments as

he level of development largely correlates with the level of im-

erviousness. Therefore, in Fig. 9 , sub-catchments in the south-

rn region of the watershed, where the highly developed Down-

own Knoxville is located, are not usually selected for bioreten-

ion installation. Indeed, as seen in the figure, given a limited

udget, e.g., 10 million dollars, solutions to both stochastic and

onservative-stochastic models consist of placing bioretention in

ub-catchments with a low level of development, where the con-

truction cost is generally lower. Recall that in both models, the

-neighbor constraint on first stage decision variables ensures con-

ectivity among large-scale GI practice placements. Therefore, if

 highly developed sub-catchment is selected as part of the first
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
tage decisions, the available budget should be enough to cover

he costs of placing bioretentions not only in that sub-catchment,

ut also in at least one of its hydrologically connected neighbors.

his, in turn, makes placing bioretentions in general very costly

ithin highly developed regions, e.g., sub-catchments in the south-

rn region of the watershed, where the highly developed Down-

own Knoxville is located. Accordingly, only as the amount of avail-

ble budget increases, it becomes optimal to place bioretentions

n some of the more developed sub-catchments. It is interest-

ng to note that some of the placed bioretentions in Fig. 9 are

tand-alone. Note that this does not violate the 1-neighbor con-

traint as these sub-catchments are not downstream to any of their

eighboring sub-catchments, i.e, they have no upstream hydrolog-

cally connected sub-catchments and hence, 1-neighbor connectiv-

ty constraint does not apply to them. 

As seen in Fig. 9 , the solutions to the stochastic and

onservative-stochastic models are not necessarily identical under
izing green infrastructure placement under precipitation uncer- 

https://doi.org/10.1016/j.omega.2020.102196


16 M. Barah, A. Khojandi and X. Li et al. / Omega xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: OME [m5G; February 11, 2020;22:18 ] 

Fig. 10. Comparison of percentage reduction in total expected runoff under two-stage stochastic and conservative-stochastic models, where the available budget ranges 

between 10 and 150 million dollars. The shaded area represents the 95% CI for reduction in total expected runoff for the conservative-stochastic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

s

 

t  

i  

n  

t  

i  

r  

a  

v  

a  

a  

w  

r  

t  

i  

i  

h  

r

4

t

 

t  

i  

t  

[  

e  

t

a  

c

 

m  

t  

l  

s  
the given available budget; however, comparing the results shows

similar reduction in total expected surface runoff over the planning

horizon for the two models. For instance, under 50 million dollars

available budget, the optimal GI placement contributes to 12.01%

and 11.30% reduction in total expected runoff for the stochastic

and conservative-stochastic models, respectively. It is interesting

to note that these reductions are achieved under different alloca-

tions of budget in the first and second stages under the two mod-

els. Specifically, in the stochastic model, the percentages of budget

spent in the first stage are 81%, 88%, and 97% under 10, 20, and 50

million dollars available budget, respectively. Compare these per-

centages, respectively, with 64%, 82%, and 96% spent in the first

stage in the conservative-stochastic model. This suggests a slightly

more conservative allocation of budget in the first stage under

the conservative-stochastic model, compared with the stochastic

model, especially when the available budget is relatively low. As

seen in Table 1 , this relatively conservative allocation of budget is

compensated for in the second stage, where the average percent-

ages of sub-catchments in which GI practices are placed is gener-

ally larger under the conservative-stochastic model, compared with

the stochastic model, across the scenarios generated from the ten

CGCMs. 

Next, we more extensively compare the percentage reduction

in total expected runoff under the stochastic and conservative-

stochastic models. Fig. 10 presents a comparison of percentage re-

duction in total expected runoff under stochastic and conservative-

stochastic models, where the available budget ranges between 10

and 150 million dollars. The shaded area represents the 95% CI for

reduction in total expected runoff for the conservative-stochastic

model. Note that in reporting the percentage reduction in total ex-

pected runoff under the conservative-stochastic model, we use the

center of the 95% CI, as depicted in the figure. As seen in Fig. 10 ,

the stochastic model performs relatively better under lower bud-

gets, i.e., 75 million dollars or less. For instance, under 20 mil-

lion dollars available budget, the stochastic model outperforms the

conservative-stochastic model by 1.89% reduction in total expected

runoff. However, this difference between the objective values de-

creases in the amount of available budget and at higher budgets,

the conservative-stochastic model performs relatively better than

the stochastic model. For instance, under 150 million dollars avail-

i  

Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
ble budget, the conservative-stochastic model outperforms the

tochastic model by 0.39% reduction in total expected runoff. 

We conducted analyses to examine the sensitivity of the solu-

ions with respect to some of the important calibrated parameters,

ncluding the years to realize a scenario, T , the ratio of mainte-

ance cost to construction cost, ρ , and the runoff adjustment fac-

or, β i ′ , j ′ ,l ′ 
i, j,l 

on two-stage stochastic models. In both models, real-

zing a scenario sooner, i.e., smaller values of T , results in a larger

eduction in total expected runoff. However, overall, the differences

mong the percentage runoff reductions with respect to various

alues for T , ranging from 5 to 15, is low and decreases in the

mount of available budget. Similarly, as expected, given any avail-

ble budget, the percentage runoff reduction non-increases in ρ ,

here as the budget increases, the impact of ρ on the percentage

unoff reduction diminishes. Finally, in contrast, connectivity, cap-

ured through adjustment factors, β i ′ , j ′ ,l ′ 
i, j,l 

, contributes to reduction

n total runoff under various available budgets, where connectiv-

ty contributes to a higher percentage of runoff reduction under

igher levels of available budget. The detailed sensitivity analyses

esults are available in Appendix G . 

.3. Investigating the relationship between 1-Neighbor constraint and 

he runoff adjustment factor 

In this section, we evaluate the importance of accounting for

he adjustment in surface runoff reduction due to GI placements

n connected sub-catchments using the runoff adjustment fac-

or, β i ′ , j ′ ,l ′ 
i, j,l 

. In this section, for simplicity of notation, we let β =
 β i ′ , j ′ ,l ′ 

i, j,l 
] denote the vector of all adjustment factors. Specifically, we

valuate the expected opportunity loss due to installing a poten-

ially sub-optimal solution as a result of not accounting for runoff

djustment factors. We conduct the analyses with and without

onsidering the 1-neighbor constraint to draw insights. 

First, let ˜ χS ∈ � denote the optimal solution of the stochastic

odel, where all adjustment factors are set to zero in the stochas-

ic objective function (1) , i.e., ˜ χS = arg min χ∈ � φS (χ ;β = 0) . Simi-

arly, let ˜ χR ∈ � denote the optimal solution of the conservative-

tochastic model, where all adjustment factors are set to zero

n the conservative-stochastic objective function (10) , i.e., ˜ χ =
R 

izing green infrastructure placement under precipitation uncer- 
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Table 2 

Percentage reduction in total expected runoff volume under the solutions χ
 
M , χ

′ 
M , and χM , M ∈ { S, R }, where the budget 

available ranges between 10 and 150 million dollars. The corresponding values under ˜ χM and χ
 
M , M ∈ { S, R }, are the 

same; hence the former are not included in the table. 

Budget (million dollars) Stochastic Conservative-stochastic 

�S −φS (χ

 
S ) 

�S 

�S −φS (χ
′ 
S ) 

�S 

�S −φS ( χ S ) 
�S 

�R 0 . 05 
−φR 0 . 05 

(χ
 
R ) 

�R 0 . 05 

�R 0 . 05 
−φR 0 . 05 

(χ ′ 
R ) 

�R 0 . 05 

�R 0 . 05 
−φR 0 . 05 

( χR ) 

�R 0 . 05 

10 6.22% 7.71% 7.16% 5.30% 5.34% 5.34% 

15 7.55% 8.41% 8.40% 6.09% 6.16% 6.16% 

20 8.56% 9.25% 9.25% 6.87% 6.95% 6.95% 

25 9.33% 9.96% 9.95% 7.64% 7.72% 7.70% 

50 12.14% 12.41% 12.40% 10.97% 11.01% 10.99% 

75 13.71% 13.90% 13.90% 13.47% 13.47% 13.47% 

100 14.74% 14.84% 14.83% 14.86% 14.86% 14.86% 

150 15.37% 15.37% 15.37% 15.77% 15.77% 15.77% 
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rg min χ∈ � φR (χ ;β = 0) . Recall that χ
 
S and χ
 

R denote the opti-

al solutions of the stochastic and conservative-stochastic models

nder the estimated values for the adjustment factors, respectively.

learly, φS (χ

 
S ) ≤ φS ( ̃  χS ) and φR (χ


 
R ) ≤ φR ( ̃  χR ) , where the equali-

ies respectively hold when ˜ χS and ˜ χR are optimal solutionsto the

alibrated models with β ≥ 0. 

It is interesting to note that per our numerical experiments,

oth ˜ χS and ˜ χR are indeed optimal solutions to their corresponding

odels, i.e., φS ( ˜ χS ) = φS (χ

 
S 
) and φR 0 . 05 

( ˜ χR ) = φR 0 . 05 
(χ
 

R 
) , where


 
S 
, ˜ χR ∈ �, specifically when the 1-neighbor constraint is included

n the models. Our intuition is that because 1-neighbor connec-

ivity constraint (7) enforces placing large-scale GI practices (first-

tage decisions) in hydrologically connected sub-catchments, it

rotects the solution to remain optimal, regardless of accounting

or adjustment factors. Note that in our watershed of interest, there

re only five sub-catchments (out of a total of 140 sub-catchments)

hat have more than one upstream sub-catchments; these five sub-

atchments each have exactly two upstream sub-catchments. Sur-

risingly, for all these five sub-catchments, the adjustment factors

f the two upstream sub-catchments are rather identical. This fur-

her reduces the importance of including the exact adjustment fac-

ors in the model. Hence, we conclude that for our watershed of

nterest, given the structure of the corresponding graph G (V, A ) ,

nforcing the 1-neighbor constraint (7) is enough to obtain the op-

imal solution, contributing to a dramatic reduction in calibration

ffort s. 

To further verify this hypothesis, we replicate the analysis with-

ut accounting for the 1-neighbor constraint (7) . Specifically, we

et χ ′ 
S 

and χ S denote the optimal solutions to the stochastic model

nder the estimated values for the adjustment factors and where

ll adjustment factors are zero, respectively, when relaxing the 1-

eighbor constraint (7) , i.e., 

′ 
S = arg min 

χ∈ �\{ (7) } 
φS (χ ) , χ S = arg min 

χ∈ �\{ (7) } 
φS (χ ;β = 0) . 

learly, φS (χ
′ 
S ) ≤ φS ( χ S ) , where the equality holds when χ S is an

ptimal solution to the calibrated model with β ≥ 0 when relax-

ng the 1-neighbor constraint (7) . Analogously, we let χ ′ 
R 

and χR 

enote the optimal solutions to the conservative-stochastic model

nder the estimated values for the adjustment factors and where

ll adjustment factors are set to zero, respectively, when relax-

ng the 1-neighbor constraint (7) . Hence, similar to the stochastic

odel, for the conservative-stochastic model we have φR 0 . 05 
(χ ′ 

R ) ≤
R 0 . 05 

( χR ) , where the equality holds when χR is an optimal so-

ution to the calibrated model with β ≥ 0 when relaxing the 1-

eighbor constraint (7) . Consistent with our intuition, our numeri-

al experiments show that χ S and χR are indeed sub-optimal solu-

ions to their corresponding stochastic and conservative-stochastic

roblems, respectively, when relaxing the 1-neighbor constraint,

.e., φS (χ
′ 
S 
) < φS ( χ S ) and φR 0 . 05 

(χ ′ 
R 
) < φR 0 . 05 

( χR ) . 
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim
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Table 2 summarizes the numerical analyses on characterizing

he relationship between 1-neighbor constraint (7) and the runoff

djustment factor, β , at various levels of available budget. The sec-

nd through fourth columns show the percentage reduction in to-

al expected runoff volume under χ
 
S , χ

′ 
S , and χ S , respectively. The

fth through seventh columns show the percentage reduction in

otal expected runoff volume under χ
 
R 
, χ ′ 

R 
, and χR , respectively.

irst note that, as discussed, the percentage reduction in total ex-

ected runoff volume under ˜ χS and ˜ χR are the same as those un-

er χ
 
S 

and χ
 
R 
, respectively; hence, they are not included in the

able. As seen in the table, the values under χ ′ 
S are larger than

hose obtained under χ
 
S 

. Similarly, the values under χ ′ 
R 

are larger

han those obtained under χ
 
R 

. This suggests that, as expected, the

-neighbor constraint (7) is binding under the optimal solutions to

oth stochastic and conservative-stochastic models with the orig-

nal feasible set �. In addition, as discussed, any difference be-

ween the values under χ ′ 
S and χ S , and those under χ ′ 

R and χR 

ndicates that χ S and χR are respectively sub-optimal solutions to

he stochastic and conservative-stochastic models with the feasible

et ��{(7)}. Accordingly, as seen in the table, χ S is sub-optimal at

lmost all budget levels, except 20 and 150 million dollars, in the

tochastic model, and χR is sub-optimal under available budgets of

5 and 50 million dollars in the conservative-stochastic model. 

In summary, this analysis show that, given the structure of

he underlying graph of sub-catchments G (V, A ) in our study, 1-

eighbor constraint (7) guarantees the optimality of a solution, re-

ardless of accounting for adjustment factors. This has the poten-

ial to dramatically reduce the calibration effort s. However, note

hat using a set of well-estimated adjustment factors in models re-

ult in more accurate estimated values for the corresponding ob-

ective functions. 

.4. Incorporating sub-catchment-level runoff reduction 

onsiderations 

In this section, we evaluate the impact of incorporating sub-

atchment-level runoff reduction considerations for certain sub- 

atchments. Specifically, we focus on setting such constraints for

ub-catchments with higher percentages of imperviousness. As dis-

ussed in Section 4.1 and Appendix F , regions 1 and 2 are the

ost populated sub-catchments in our watershed of interest, with

he highest average percentages of impervious areas. Hence, for

hese regions we account for chance constraints, as discussed in

ection 2.3 , where we let γ i 
t = 0 . 15 under confidence level (1 −

) = 0 . 95 . Based on our computational results, for any given sub-

atchment, the correlation between baseline surface runoff and the

urface runoff after placing GI practice was not statistically signif-

cant ( p -value < 0.05). Hence, we ignore the covariance terms in

hance constraint (12) . 
izing green infrastructure placement under precipitation uncer- 
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Table 3 

Comparison of percentage reduction in total expected runoff under two-stage conservative-stochastic model, with and without chance constraints for the sub-catchments 

in regions 1 and 2. Note that γ t 
i 

= 0 . 15 and 1 − ε = 0 . 95 . 

Budget (million dollars) Percent Reduction (Conservative-stochastic) Percent Reduction (conservative-stochastic with chance constraints) Relative Difference 

10 5.30% 5.28% 0.38% 

15 6.09% 6.09% 0.00% 

20 6.87% 6.87% 0.00% 

25 7.64% 7.61% 0.39% 

50 10.97% 10.82% 1.37% 

75 13.47% 13.19% 2.08% 

100 14.86% 14.63% 1.55% 

150 15.77% 15.58% 1.20% 

Fig. 11. Comparison of percentage reduction in total expected runoff under two-stage and multi-stage (three-stage) conservative-stochastic models, where the available 

budget ranges between 10 and 150 million dollars. The shaded areas represent the 95% CI for reduction in total expected runoff for the two models. 
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Table 3 summarizes the results of the two-stage conservative-

stochastic models, with and with chance constraints for the sub-

catchments in regions 1 and 2. As expected, the overall percentage

reduction in total expected runoff is higher when not including the

constraints, suggesting that the constraints are active in the opti-

mal solution. It is worth noting that when the chance constraints

are included, the density of the placed bioretention, of any size, in

region 1 and 2 is higher than when these constraints are not in-

cluded. In general, the observed relative difference in percentage

runoff reduction is generally higher under higher available budget

levels, with the highest relative difference in percentage runoff re-

duction observed under 75 million dollar budget, i.e., 2.08%. 

4.5. Conservative-stochastic models: Two-stage vs multi-stage 

In this section, we present and compare the computational re-

sults obtained from the two-stage and multi-stage conservative-

stochastic models, under relaxed decision sets, i.e., we allow all

GI types to be placed in any of the decision stages. Note that

the projected total expected runoff volume for the multi-stage

conservative-stochastic model is identical to that of two-stage

conservative-stochastic model as reported in Section 4.2 , i.e., for

α = 0 . 5 , the estimated 95% CI for the expected baseline surface

runoff equals 4.56 × 10 11 ± 1.75 × 10 9 . 

Analogous to Figs. 10 , 11 presents a comparison of percentage

reduction in total expected runoff under two-stage and three-stage

conservative-stochastic models, where the available budget ranges

between 10 and 150 million dollars. First note that the results un-

der this two-stage conservative-stochastic model are slightly bet-

ter than those obtained from the two-stage conservative-stochastic
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
odel reported in Section 4.2 . This is mainly because in this sec-

ion we relax the restrictions on decision sets, allowing all GI types

o be placed in any of the stages. However, care needs to be taken

hen comparing the solutions across this section and Section 4.2 ,

s in this section we use T̄ = 11 , whereas in Section 4.2 we had

 ̄= 10 . The choice of T̄ = 11 in this section is mainly to facil-

tate the comparison of two-stage and three-stage conservative-

tochastic models, where in the latter model the 33-year planning

orizon is divided into three 11-year periods, and GI placement oc-

urs at the beginning of each period. 

As seen in Fig. 11 , the results of the two-stage conservative-

tochastic outperforms that of three-stage conservative-stochastic

nder any given budget level. This partly stems from the fact

hat under our problem construction, as discussed in Section 2.2 ,

he two-stage case is a relaxation of the multi-stage case. Lastly,

s seen in the figure, the difference between the percentage re-

uction in total expected runoff under two-stage and multi-stage

three-stage) conservative-stochastic models is not constant across

ll budget levels. The lowest relative difference between the two

ercentage reductions is around 2.36%, occurring under 50 million

ollars budget, whereas the highest difference between the two

ercentage reductions is 20.99%, occurring under 20 million dol-

ars budget. 

. Summary and insights 

Climate change threatens to overwhelm stromwater systems

cross the nation, rendering them ineffective. Green Infrastructure

GI) practices are low cost, low regret strategies that can con-

ribute to urban runoff management. However, questions remain
izing green infrastructure placement under precipitation uncer- 
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s to how to best distribute GI practices through urban watersheds

iven precipitation uncertainty and hydrological responses to their

nstallation. In this work, we showcase an approach that can en-

ble city managers to incorporate the complexity and uncertainty

f climate projections to make optimized choices for building re-

iliency into urban systems. 

In this study, we developed stochastic programming models

o determine the optimal placement of GI practices across a set

f candidate locations in a watershed to minimize the total ex-

ected surface runoff under medium-term precipitation uncer-

ainties, given an available budget. We proposed a novel sce-

ario generation process that allowed us to efficiently evaluate

he impact of precipitation on the entire watershed system un-

er various combinations of GI practice placements. We cali-

rated the model using literature, historical precipitation data, fu-

ure precipitation projections, and expert opinion and conducted

 case study for an urban watershed in the City of Knoxville.

e provided computational results and conducted extensive sen-

itivity analyses. Our results show that the optimal placement

f GI practices within our watershed of interest can contribute

o up to approximately 9.5% reduction in total expected runoff

ver the planning horizon, with a limited budget of 25 million

ollars. 

The reduction in total expected runoff obtained by the two

odeling approaches are comparable. The two models, how-

ver, are quite different with respect to the computational time.

hat is, the computational time of the stochastic model is ap-

roximately two orders of magnitude larger than that of the

onservative-stochastic model. This is mainly because of the lower

umber of scenarios used in the latter approach due to pre-

rocessing of the precipitation projections, i.e., using CIs for the

aseline runoff volume and surface runoff captured by a GI prac-

ice in any given sub-catchment, instead of all 100 scenarios per

GCM. 

In our models, we accounted for hydrological connectivity in

he watershed using an underlying acyclic connectivity graph

f sub-catchments. Specifically, we introduced a 1-neighbor con-

ectivity constraint over the graph to ensure that a large-scale

I practice can be placed in a given sub-catchment if there

xists at least one large-scale GI practice in one of the sub-

atchments that are hydrologically connected to it. In addition,

e carefully calibrated the runoff adjustments over pairs of hy-

rologically connected sub-catchments to more accurately esti-

ate the impact of large-scale GI practices on runoff reduction

ot only within the sub-catchments in which they are placed,

ut also in their downstream sub-catchments. Our analysis shows

hat the 1-neighbor constraint protects the optimality of a so-

ution in our watershed of interest, regardless of accounting

or adjustment factors. This is mainly because of the particu-

ar structure of the connectivity graph of sub-catchments. More

n-depth analysis is needed to establish sufficient conditions un-

er which calibration of runoff adjustment factors is completely

nnecessary. 

To increase resilience against precipitation uncertainty, it is im-

ortant to be able to minimize the expected total runoff volume

cross the entire watershed, while accounting for some level of

onfidence in runoff mitigation in certain (or all) sub-catchments.

ence, we introduced chance constraints that ensure the GI prac-

ices are placed across the watershed such that some level of con-

dence in the degree of runoff volume captured in given sub-
Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optim

tainty, Omega, https://doi.org/10.1016/j.omega.2020.102196 
atchments are achieved. We provided the results for a case study

sing chance constraints, where we included constraints for the

ost populated sub-catchments, with the highest average per-

entages of impervious areas. We opted to include constraints for

hese sub-catchments as higher runoff in densely populated ar-

as may result in significant water quality problems. It is impor-

ant to note that including chance constraints would impose re-

trictions/prioritizations on placing GI practices across the water-

hed. Hence, the selection of candidate sub-catchments for im-

osing restrictions/prioritizations, and the degree of such restric-

ions/prioritizations, should be thoroughly studied and justified for

ny given watershed. 

We also relaxed the restriction on decision sets, i.e., allowing

or all GI types to be placed in any of the decision stages, in our

onservative-stochastic model. As expected, we observed that re-

axing the restriction on decision sets improves the solution. How-

ver, it is important to note that restricting when GI practices of

ertain types can be placed provides practical benefits regarding

nvestment planning and managing the effort s required for imple-

enting the different types of GI practices. For instance, consid-

ring that bioretentions are typically installed in relatively large,

ommercial scales and are held to high design standards, it may be

ore practical for city planners to allocate budget and/or land and

egotiate contracts for their implementation during certain deci-

ion stages. 

We also extended the two-stage conservative-stochastic model

o multi-stage. Under our problem construction, we observed that

he percent reduction in total expected runoff under two-stage

ase is greater than that under the multi-stage (three-stage) case. 

In this study, we only accounted for two relatively similar types

f GI practices, i.e., bioretentions and rain gardens. The selected

ypes of GI practices are considered to be very efficient not only

n reducing runoff volume, but also in treating stormwater qual-

ty. Note that the model developed is very versatile and allows for

ncluding more than two types of GI practices. Hence, accordingly,

ity planners can use the model using a wide array of GI practices

o determine the best course of GI practice planning. 

In this study, we accounted for future precipitation uncertainty

sing an array of CGCMs. This enabled us to account for climate

hange uncertainty when planning GI practices. Although we ac-

ounted for precipitation uncertainty, in this study we did not ac-

ount for population growth and future urban development that

an give rise to an increase in impervious area. Additional studies

re needed to account for a close-loop system where a more liv-

ble city leads to urban population growth, which in turn leads to

ore runoff. 

Lastly, in this study, we only accounted for runoff capturing

roperties of GI practices. As thoroughly discussed in the literature,

I practices provide a wide array of benefits, e.g., improving water

nd air quality, contributing to urban aesthetics, etc. Future multi-

bjective mathematical programs need to be developed to account

or all benefits of GI practices when optimizing GI practice place-

ent within an urban watershed. 
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rcs 

 of GI practices 

series for the watershed, referred to as scenarios 

time series for the watershed, produced by the CGCMs 

eferred to as time to realize a scenario 

 V is connected to the downstream sub-catchment i ∈ V 
r sub-catchment i ∈ V in year t ≤ T when no GI practice is placed 

face runoff volume within sub-catchment i ∈ V under scenario ψ ∈ � in year t ≤ T 

talled in level l ∈ L within sub-catchment i ∈ V under scenario ψ ∈ � in year t ≤ T . 

unoff captured by GI practice of type j ∈ G installed in level l ∈ L within 

T 

tchment i ∈ V , when a GI practice of type j ′ ∈ G I in level l ′ ∈ L is placed within 

GI practice of type j ∈ G I in level l ∈ L is placed within the downstream 

 of type j ∈ G within sub-catchment i ∈ V in year t ≤ T 

e j ∈ G in sub-catchment i ∈ V in year t ≤ T 

e of type j ∈ G in sub-catchment i ∈ V in year t ≤ T 

j ∈ G installed in level l ∈ L , within sub-catchment i ∈ V 

or not a GI practice of type j ∈ G I ⊂ G in level l ∈ L is placed within sub-catchment 

 practices of types j ′ , j ∈ G I in levels l ′ , l ∈ L are placed within sub-catchment i ′ , 
 , j ′ ,l ′ 
 ,l 

= 0 . 

er or not a GI practice of type j ∈ G II ⊂ G in level l ∈ L is placed within 

lacement in connected sub-catchments 

ments are additive. Hence, without loss of generality, here we simply 

i when a large-scale GI practice is placed within the single upstream 

or surface run-off reduction over the downstream sub-catchment i due 

∈ A, when accounting for large-scale practices only: 

b-catchment i ′ in year t ′ after GI practice of type j in level l is placed 

t ≤ t ′ ≤ T − 1 . In this case, run-off adjustment is needed only after the 
 in year t ′ . Hence the adjusted runoff reduction begins in year t ′ ; 
b-catchment i ′ in year t ′ before GI practice of type j in level l is placed 

 

′ ≤ t ≤ T − 1 . In this case, two levels of run-off adjustment are needed: 

 and the second adjustment is needed on and after year t , i.e., after 

-catchment i ′ in year t ′ and no GI placed in downstream sub-catchment 

e, run-off adjustment over downstream sub-catchment i is needed on 
Appendix A. Notation 

Table A.1 

The sets. 

Set Description 

V Set of sub-catchments 

A Set of sub-catchment connectivity a

G I Set of large-scale GI practices 

G II Set of small-scale GI practices 

G = G I ∪ G II Set of GI practices 

L Set of available levels of installation

� Set of projected precipitation time 
ˆ � Set of projected daily precipitation 

Table A.2 

The parameters. 

Parameter Description 

T Length of the planning horizon in years 

T The year in which a precipitation scenario is realized, r

πψ Probability of scenario ψ ∈ �
a i ′ i ∈ A An arc indicating that the upstream sub-catchment i ′ ∈
Q 

ψ,t 

i 
Total baseline surface runoff under scenario ψ ∈ � ove

2 q 
ψ,t 

i 
(α) The width of the 100(1- α)% CI for average baseline sur

ˆ Q 
ψ,t 

i, j,l 
Surface runoff captured by GI practice of type j ∈ G ins

We also define ˆ Q 
ψ,t 

i, 0 , 0 
= 0 . 

2 ̂ q 
ψ,t 

i, j,l 
(α) The width of the 100(1- α)% CI for the average surface r

sub-catchment i ∈ V under scenario ψ ∈ � in year t ≤
βt,i, j,l 

t ′ ,i ′ , j ′ ,l ′ Runoff ‘adjustment factor’ over the downstream sub-ca

upstream sub-catchment i ′ ∈ V and no GI practice or a 

sub-catchment i ∈ V 
C t 

i, j 
Per square feet present total cost of placing GI practice

c t 
i, j 

Per square feet construction cost of a GI practice of typ

c t 
i, j 

Per square feet annual maintenance cost of a GI practic

r Average annual inflation rate 

δi,j,l Corresponding area (in square feet) of GI practice type 

η Precipitation coefficient of variability 

Table A.3 

The Variables. 

Variable Description 

x t 
i, j,l 

First stage binary decision variable indicating whether 

i ∈ V in year t ≤ T − 1 

z t 
′ ,i ′ , j ′ ,l ′ 

t,i, j,l 
First stage binary variable indicating whether or not GI

i ∈ V at times t ′ , t ≤ T , respectively. We also define z t 
′ ,i ′

t,i, 0

y 
ψ,t 

i, j,l 
Second stage binary decision variables indicating wheth

sub-catchment i ∈ V year t , T ≤ t ≤ T 

Appendix B. Adjustment in surface runoff reduction due to GI p

Note that we assume ‘adjustments’ over downstream sub-catch

present adjusting the runoff over the downstream sub-catchment 

sub-catchment i ′ ∈ V , a i ′ ,i ∈ A . 

Fig. B.1 presents the three cases to consider when accounting f

to placing a GI practice within the upstream sub-catchment i ′ , a i ′ ,i 
(a) GI practice of type j ′ in level l ′ is placed within upstream su

within downstream sub-catchment i in year t such that 0 ≤
placement of a GI practice in the upstream sub-catchment i ′

(b) GI practice of type j ′ in level l ′ is placed within upstream su

within downstream sub-catchment i in year t such that 0 ≤ t

The first adjustment is needed between years t ′ and t − 1 ,

placing a GI practice in downstream sub-catchment i ; 

(c) GI practice of type j ′ in level l ′ is placed within upstream sub

i by the beginning of year T , i.e., 0 ≤ t ′ ≤ T − 1 : In this cas
′ 
and after year t . 
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Fig. B.1. The three cases to consider when accounting for surface run-off reduction over a downstream sub-catchment due to a GI practice placement upstream, where the 

downstream and upstream sub-catchments are placed in years t and t ′ , respectively. Attention is restricted to large-scale practices only. 

(B.1) 

stream sub-catchment i ′ . Also, consider the fourth term in the objective 

f

− (B.2) 

E tream sub-catchment i ′ if it occurs before placing a GI practice in the 

d

ment i for the years in which GI practices are placed in both sub- 

c given by Eq. (B.1) , where the indicator function 1 { j 
 =0 } returns 1, 

a nce both x t 
′ 

i ′ , j ′ ,l ′ and z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

are equal to one. Therefore, in case (a) 

E

−

ced in both sub-catchments i ′ and i , i.e., in year t ′′ such that t ≤ t 
′′ ≤ T , 

E

−

d in upstream sub-catchment i ′ and yet no GI is placed in downstream 

s is active and simplifies as follows: 

−

b

ced in upstream sub-catchment i ′ , i.e., in year t 
′′ 

such that t ′ ≤ t 
′′ ≤ T , 

t

−

0 } , t ′ } returns t ′ . Note that variable x t 
′ 

i ′ , j ′ ,l ′ is equal to one and variable 

z

equals to zero in this case. 

A ing GI practices 

roach. Let K denote the number of stages withing which we place GI 

o  time period of stage κ where 0 < T 
1 

< · · · < T 
κ

< T 
κ+1 

< · · · < T 
K = T . 

A
κ ≤ t κ < T 

κ+1 
under realization of random variable ψ . We let φS κ (x, z) 
First, consider the third term in the objective function (1) , i.e., 

−
∑ 

{ t ′′ | max { t ·1 { j 
 =0 } ,t ′ }≤t ′′ ≤T } 
β i ′ , j ′ ,l ′ 

i, j,l 

(
Q 

ψ,t 
′′ 

i 

(
x t 

′ 
i ′ , j ′ ,l ′ − z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

)

+ 

ˆ Q 

ψ,t 
′′ 

i, j,l 
· z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

)
. 

Eq. (B.1) adjusts the run-off after placing a GI practice in the up

unction (1) , i.e., ∑ 

{ t ′′ | t ′ ≤t ′′ ≤t−1 } 
β i ′ , j ′ ,l ′ 

i, j,l 
· Q 

ψ,t 
′′ 

i 
· z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

. 

q. (B.2) adjusts the run-off after placing a GI practice in the ups

ownstream sub-catchment i . 

In case (a), the runoff adjustment over downstream sub-catch

atchments i ′ and i , i.e., in year t ′′ such that t ′ ≤ t ′′ ≤ T is 

nd max { t · 1 { j 
 =0 } , t ′ } returns t ′ . Note that x t 
′ 

i ′ , j ′ ,l ′ − z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

= 0 si

q. (B.1) simplifies as follows: ∑ 

{ t ′′ | t ′ ≤t ′′ ≤T } 
β i ′ , j ′ ,l ′ 

i, j,l 
· ˆ Q 

ψ,t 
′′ 

i, j,l 
. 

Also, clearly, in case ( a ), Eq. (B.2) is not valid since t ≤ t ′ . 
Similarly, for case ( b ), for the years in which GI practices are pla

q. (B.1) simplifies as follows: ∑ 

{ t ′′ | t ≤t ′′ ≤T } 
β i ′ , j ′ ,l ′ 

i, j,l 
· ˆ Q 

ψ,t 
′′ 

i, j,l 
. 

Also, for case ( b ), for the years in which the GI practice is place

ub-catchment i , i.e., in year t 
′′ 

such that t ′ ≤ t 
′′ ≤ t − 1 , Eq. (B.2) ∑ 

{ t ′′ | t ′ ≤t ′′ ≤t−1 } 
β i ′ , j ′ ,l ′ 

i, j,l 
· Q 

ψ,t 
′′ 

i 
, 

ecause z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

equals one. 

Lastly, for case ( c ), for the years in which the GI practice is pla

he Eq. (B.1) simplifies as follows: ∑ 

{ t ′′ | t ′ ≤t ′′ ≤T } 
β i ′ , j ′ ,l ′ 

i, j,l 
· Q 

ψ,t 
′′ 

i 
. 

The indicator function 1 { j 
 =0 } returns 0 and hence, max { t · 1 { j 
 =
 

t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

is equal to zero as j = 0 . 

Also, note that Eq. (B.2) is equal to zero since variable z 
t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

ppendix C. Multi-stage stochastic programming model for plac

Here we introduce the multi-stage stochastic programming app

f types G in the sub-catchments of interest. We let T 
κ

denote the

ccordingly, we let t κ denote a year during decision stage κ , i.e. T 

α
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 total expected surface runoff volume across the watershed of interest, 

n 

z ) 
φS K α

( x, z ) 

]
· · ·

]
, 

(C.3) 

ψ 

[ T 
κ
,T ) 

in stage κ which also can be written as ψ 

[ T 
κ
, T 

κ+1 
) 
| ψ 

[ T 
κ−1 

, T 
κ
) 
·

e stage-wise independence of probability distributions. That is, 

 expectation operators, we then have 

(C.4) 

 assume there exists a discrete support for the probability distribu- 
| 
, T 

κ+1 
) 

: πψ 

| �| } in which πψ is the probability of each discrete sup- 

riable denoting if GI of type j with size i is placed in sub-catchment 

ble alias to x 
ψ,t 

i, j,l 
. Regarding the interaction between sub-catchments, 

GI practices of types j ′ , j ∈ G 

I in levels l ′ , l ∈ L are installed within 

io ψ , respectively. Therefore, the extended formulation of E ψ 

[ T 
K−1 

,T ) 

(C.5) 

∀ ψ ∈ �K , (C.6) 

∀ ψ ∈ �K , ∀ i ′ , i ∈ V, 

a i ′ ,i ∈ A, 

∀ j ′ , j ∈ G 

I , ∀ l ′ , l ∈ L, 

0 ≤ t ′ , t ≤ T − 1 , 

(C.7) 

∀ ψ ∈ �K , ∀ i, i ′ ∈ V, 

a i ′ ,i ∈ A, 

∀ j ∈ G 

I , ∀ l ∈ L, 

T K−1 ≤ t ≤ T , 

(C.8) 

∀ ψ ∈ �K , ∀ i, i ′ ∈ V, 

a i ′ ,i ∈ A, 

∀ j ′ ∈ G 

I , ∀ l ′ ∈ L, 

T K−1 ≤ t ′ ≤ T , 

(C.9) 

∀ ψ ∈ �K , 

∀ i ′ , i ∈ V, a i ′ ,i ∈ A, 

j = 0 , ∀ j ′ ∈ G 

I , 

∀ l , l ′ ∈ L, 

T K−1 ≤ t , t ′ ≤ T , 

(C.10) 
denote the multi-stage conservative-stochastic model that denotes

which is given by 

min 

x,z 
φS α ( x, z ) = E ψ 

[ 0 , T 1 ) 

[
min 

( x,z ) 
φS 1 α

( x, z ) + · · · + E ψ 

[ T K−1 
,T ) 

[
mi
( x,

where E ψ 

[ T 
κ

, T 
κ+1 

) 

is the expectation of probability distribution of 

ψ 

[ T 
κ−1 

, T 
κ
) 
. To simplify our multi-stage formulation, we assum

ψ 

[ T 
κ
, T 

κ+1 
) 
| ψ 

[ T 
κ−1 

, T 
κ
) 
= ψ 

[ T 
κ
, T 

κ+1 
) 
. Hence, by swapping the min and

min 

x,z 
φS α (x, z) = min 

(x,z) 
E ψ [0 ,T ) 

[
φS 1 α

(x, z) + · · · + φS K α
(x, z) · · ·

]
, 

Also, consistent with our extended two-stage formulation, we

tion of ψ 

[ T 
κ
, T 

κ+1 
) 
, denoted by the set { ψ 

1 

[ T 
κ
, T 

κ+1 
) 

: πψ 

1 
, · · · , ψ 

| �
[ T 

κ

port member ( 
∑ 

ψ∈ � πψ = 1 ). Hence, we let x 
ψ,t 

i, j,l 
be a binary va

i under scenario ψ , ψ ∈ �κ . Also, we let x ′ ψ,t 

i, j,l 
be binary varia

we let z 
ψ,t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

denote the binary variable indicating whether 

sub-catchment i ′ , i ∈ V in years T κ−1 ≤ t ′ , t < T κ under scenar

[ min (x,z) ∈ � φ
S K α

(x, z)] is given by 

E ψ 
[ T 

K−1 
,T ) 

[
min 

(x,z) ∈ �
φ

S K α
(x, z) 

]

= 

∑ 

ψ∈ �K 

πψ ·
[∑ 

i ∈ V 

∑ 

{ t | T K−1 ≤t ≤T} 
Q 

ψ,t 

i 
+ q 

ψ,t 

i 
(α) 

−
∑ 

i ∈ V 

∑ 

j∈ G 

∑ 

l∈ L 

∑ 

{ t | T K−1 ≤t K−1 ≤T−1 } 

∑ 

{ t ′ | t K−1 ≤t ′ ≤T} 

(
ˆ Q 

ψ,t ′ 
i, j,l 

− ˆ q 
ψ,t ′ 
i, j,l 

(α) 
)

· x 
ψ,t 

i, j,l 

−
∑ 

a 
i ′ ,i ∈ A 

∑ 

j∈ G I ∪{ 0 } 

∑ 

j ′ ∈ G I 

∑ 

l∈ L 

∑ 

l ′ ∈ L 

∑ 

{ t | T K−1 ≤t ≤T} 

∑ 

{ t ′ | T K−1 ≤t ′ ≤T} 

∑ 

{ t ′′ | max { t ·1 { j 
 =0 } ,t ′ }≤t 
′′ ≤T} 

×β i ′ , j ′ ,l ′ 
i, j,l 

((
Q 

ψ,t 
′′ 

i 
− q 

ψ,t 
′′ 

i 
(α) 

)(
x 
ψ,t ′ 
i ′ , j ′ ,l ′ − z t 

′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

)

+ 

(
ˆ Q 

ψ,t 
′′ 

i, j,l 
− ˆ q 

ψ,t 
′′ 

i, j,l 
(α) 

)
· z 

ψ,t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

)
−

∑ 

a 
i ′ ,i ∈ A 

∑ 

j∈ G I ∪{ 0 } 

∑ 

j ′ ∈ G I 

∑ 

l∈ L 

∑ 

l ′ ∈ L 

∑ 

{ t | T K−1 ≤t ≤T} 

∑ 

{ t ′ | T K−1 ≤t ′ ≤t−1 } 

∑ 

{ t ′′ | t ′ ≤t 
′′ ≤t−1 } 

β i ′ , j ′ ,l ′ 
i, j,l 

·
(

Q 

ψ,t 
′′ 

i 
− q 

ψ,t 
′′ 

i 
(α) 

)
· z 

ψ,t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

]
. 

s.t. 
∑ 

i ∈ V 

∑ 

j∈ G 

∑ 

l∈ L 

∑ 

{ t | T K−1 ≤t ≤T } 
C t i, j · δi, j,l ·

(
x 
ψ,t 

i, j,l 
− x ′ ψ,t 

i, j,l 

)
≤ B 

�K 

, 

x 
ψ,t ′ 
i ′ , j ′ ,l ′ + x 

ψ,t 

i, j,l 
≤ z 

ψ,t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

+ 1 , 

x 
ψ,t 

i, j,l 
≥

∑ 

j ′ ∈ G I 

∑ 

l ′ ∈ L 

∑ 

{ t ′ | T K−1 ≤t ′ ≤T } 
z 
ψ,t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

, 

x 
ψ,t ′ 
i ′ , j ′ ,l ′ ≥

∑ 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | T K−1 ≤t ≤T } 
z 
ψ,t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

, 

z 
ψ,t ′ ,i ′ , j ′ ,l ′ 
t,i, j,l 

= 0 , 
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∑
x 
ψ,t 

i ′ , j,l 
, ∀ i ∈ V, (C.11) 

∑ ∀ ψ ∈ �K , ∀ i ∈ V, (C.12) 

x

∀ ψ ∈ �K , ∀ ψ 

′ ∈ �K−1 , 

�K sub-tree �K−1 

∀ i ∈ V, ∀ j ∈ G, ∀ l ∈ L, 

T 
K−1 ≤ t ≤ T , 

T 
K−2 ≤ t ′ < T 

K−1 
, 

(C.13) 

2

∀ ψ ∈ �K , ∀ ψ 

′ ∈ �K−1 , 

�K sub-tree �K−1 

∀ i ∈ V, ∀ j ∈ G, ∀ l ∈ L, 

T 
K−1 ≤ t ≤ T , 

T 
K−2 ≤ t ′ < T 

K−1 
, 

(C.14) 

x

∀ ψ ∈ �K , ∀ ψ 

′ ∈ �K−1 , 

�K sub-tree �K−1 

∀ i ∈ V, ∀ j ∈ G, ∀ l ∈ L, 

T 
K−1 ≤ t ≤ T , 

T 
K−2 ≤ t ′ < T 

K−1 
, 

(C.15) 

x

∀ i ′ , i ∈ V, a i ′ ,i ∈ A, 

∀ j ∈ G, ∀ j ′ , j ′′ ∈ G 

I , 

∀ l ′ , l ∈ L, ∀ ψ ∈ �, 

T K−1 ≤ t, t ′ ≤ T . 

(C.16) 

w he placed GI practices in parent nodes of �K , i.e., stages 0 to K − 1 . The 

o volume in stage K . Definitions of constraints (C.6) –(C.12) are similar to 

c s non-anticipativity constraints for multi-stage stochastic programming. 

T  in its sub-trees. We set constraints (C.14) and (C.15) to ensue that cost 

o , would not be double counted in the sub-tree of the scenario. Lastly, 

c riables. 
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Institute of Atmospheric Physics, Chinese Academy of Sciences, State Key 
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j∈ G I 

∑ 

l∈ L 

∑ 

{ t | T K−1 ≤t ≤T } 
x t i, j,l ≤

∑ 

a i ′ ,i ∈ A 

∑ 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | T K−1 ≤t ≤T } 

 

j∈ G I 

∑ 

l∈ L 

∑ 

{ t | T K−1 ≤t ≤T } 
x 
ψ,t 

i, j,l 
≤ 1 , 

 

ψ,t 

i, j,l 
− x 

ψ 

′ ,t ′ 
i, j,l 

≥ 0 , 

 x ′ ψ,t 

i, j,l − x 
ψ,t 

i, j,l 
− x 

ψ 

′ ,t ′ 
i, j,l 

≥ 0 , 

 

ψ 

′ ,t ′ 
i, j,l 

−x ′ ψ,t 

i, j,l ≥ 0 , 

 

ψ,t 

i, j,l 
, z 

ψ,t ′ ,i ′ , j ′ ,l ′ 
t,i, j ′′ ,l ∈ { 0 , 1 } , 

here B �
K 
, denotes the remaining of total allocated budget, given t

bjective function (C.5) minimizes the total expected surface runoff

ounterpart constraints defined in �. Equations defined in (C.13) i

hat is, a decision made on a node in the scenario tree is sustained

f GI practices that are already placed on a node under a scenario

onstraint (C.16) maintains the binary conditions of the decision va

ppendix D. Coupled Global Circulation Models (CGCMs) 

Table D.1 

Ten coupled global circulation models used for projecting future precipitation. 

Model Name 

ACCESS : The Australian Community Climate and Earth-System Simulator [1] 

BCC-CSM : Beijing Climate Center Climate System Model [2] , referred to as 

‘BCC’ in the text 

CCSM4 : The NCAR’s Community Climate System Model [3] 

CMCC-CM : The Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate 

Model [4] , referred to as ‘CMCC’ in the text 

FGOALS : Flexible Global Ocean Atmosphere Land System [7] 

GFDL-ESM2M : Geophysical Fluid Dynamics Laboratory Earth System 

Model [8] , referred to as ‘GFDL’ in the text 

IPSL-CM5A : The Institut Pierre Simon Laplace Climate Model [10] , referred 

to as ‘IPSL’ in the text 

MPI-ESM-MR : Max-Planck-Institute Earth System Model Mixed 

Resolution [11] , referred to as ‘MPI’ in the text 

MRI-CGCM3 : Japanese Meteorological Research Institute Coupled Global 

Climate Model [12] , referred to as ‘MRI’ in the text 

NorESM1-M : Norwegian Earth System Model [16] , referred to as ‘NorESM’ in 

the text 
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Table E.1 

Summary characteristics of the 140 sub-catchments within our watershed of interest, categorized by percent of imperviousness, percent of slope, and Manning’s n for 

overland flow over the pervious portion of the sub-catchment. 

% of Imp. % of Slope Manning’s n Number of Sub-catchments Average Area (acres) Average Imp. (%) Average Slope (%) Average Manning’s n 

low low med 2 117.95 7.85 1.56 0.248 

low low high 9 153.24 4.64 1.68 0.281 

low med high 8 139.16 3.94 2.86 0.290 

low high high 16 98.50 4.78 6.59 0.282 

med low med 2 92.14 11.60 1.46 0.250 

med low high 2 80.65 8.80 1.86 0.262 

med med med 3 154.36 10.43 2.74 0.255 

med med high 9 76.10 9.69 2.75 0.272 

med high med 5 85.88 10.62 7.29 0.248 

med high high 13 90.97 9.47 8.27 0.266 

high low low 8 66.28 20.53 1.58 0.211 

high low med 7 139.53 16.57 1.58 0.247 

high low high 5 147.74 16.62 1.78 0.283 

high med low 10 88.49 23.39 3.02 0.219 

high med med 3 43.49 18.93 2.46 0.247 

high med high 2 121.45 23.15 3.15 0.283 

high high low 18 67.87 19.82 5.11 0.211 

high high med 12 90.44 14.36 6.70 0.247 

high high high 6 121.26 17.87 6.09 0.282 

ream sub-catchment 

nt factor over a downstream sub-catchment for any given pair of hy- 

re [24] , we only use the most significant sub-catchment characteristics 

nts’ percent of imperviousness, percent of slope, and Manning’s n for 

t, we use the values of these characteristics for the sub-catchments in 

les. Accordingly, we stratify each characteristic into three categories of 

he first quartile, between first and third quartiles, and above the third 

 with the number of observed sub-catchments within each one for our 

b-catchments, given the average values for the categories in our wa- 

y selected precipitation events in the ‘SWMM Simulation’ step of the 

ver a downstream sub-catchment is then estimated as the average dif- 

ation events when a certain GI practice is placed within the upstream 

.1 presents the heat map of runoff adjustment factors over the down- 

hment characteristics’ categories in the watershed of interest. 

nts in first creek, Knoxville, TN 

sub-catchments in First Creek as labeled in 

e Impervious Area (%) Average slope (%) 

3.65 

4.74 

3.83 

6.12 

4.31 

 respect to some of the important calibrated parameters, including the 

struction cost, ρ , and the runoff adjustment factor, β i ′ , j ′ ,l ′ 
i, j,l 

. In all cases, 

 budgets. 

nario, T , under different budget limitations. Fig. G.1 shows the percent- 

the total available budget ranging between 10 and 150 million dollars. 

es of T , results in a larger reduction in total expected runoff. However, 

ree cases is low, and decreases in the amount of available budget. For 

 difference among the percentage runoff reductions equals 1.00% and 

ctively. This maximum difference decreases to almost zero for budgets 

se under a large enough available budget, large-scale bioretentions are 
Appendix E. Calculating runoff adjustment factor over a downst

We designed a set of experiments to calculate runoff adjustme

drologically connected sub-catchments. Consistent with the literatu

related to surface runoff in our experiments, namely, sub-catchme

overland flow over the pervious portion of the sub-catchment. Nex

the watershed of interest and calculate their corresponding quarti

low, medium, and high, if the corresponding value is at or below t

quartile. Table E.1 summarizes the combination of categories along

watershed of interest. 

Consequently, we execute the SWMM model for all pairs of su

tershed of interest. We run these simulations under the randoml

procedure described in Section 3.3 . The runoff adjustment factor o

ference in runoff coefficient in the sub-catchment over all precipit

sub-catchment and no GI is placed there (i.e., no treatment). Fig. E

stream sub-catchment, given all observed combinations of sub-catc

Appendix F. Summary of the characteristics of the sub-catchme

Table F.1 

Summary of the characteristics of the 

Fig. F.1 . 

Region Total Area (Acres) Averag

1 1292.05 23.36 

2 3187.31 18.01 

3 4915.84 8.07 

4 807.43 8.31 

5 3745.82 12.61 

Appendix G. Sensitivity analyses 

In this section, we examine the sensitivity of the solutions with

years to realize a scenario, T , the ratio of maintenance cost to con

we conduct the sensitivity analysis under a wide range of available

First, we perform sensitivity analysis on the years to realize a sce

age reduction in total expected runoff for T = 5 , 10, and 15, with 

As seen in the figure, realizing a scenario sooner, i.e., smaller valu

the differences among the percentage runoff reductions for the th

instance, given 10 million dollars available budget, the maximum

0.85% for the stochastic and conservative-stochastic models, respe

larger than 50 million dollars for both models. This is mainly becau
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Fig. E.1. Heat map of the runoff adjustment factors over the downstream sub-catchment, given all observed combinations of sub-catchment characteristics’ categories in the 

watershed of interest. Sub-catchment characteristics are shown as tuples, where the first element corresponds to the GI level – 0 encodes no treatment and 1–3 refer to the 

levels low, medium, and large bioretentions, respectively. Elements 2–4 of the tuple correspond to percent of imperviousness, percent of slope, and Manning’s n for overland 

flow over the pervious portion of the sub-catchment, each of which are categorized into three levels of 0–2, encoding low, medium, and high, respectively. 

Fig. F.1. Watershed of First Creek, grouped based on similarities in sub-catchment characteristics. 
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Fig. G.1. Percentage reduction in total expected runoff for T = 5 , 10, and 15 years, where the available budget ranges between 10 and 150 million dollars. 

Table G.1 

Percentage reduction in total expected runoff for different ratios of maintenance cost to construction cost, ρ , where the available budget ranges between 

10 and 150 million dollars. 

Budget (million 

dollars) Ratio of maintenance cost to construction cost, ρ

Stochastic Model conservative-stochastic Model 

1% 3% 6% 10% 1% 3% 6% 10% 

10 6.26% 6.22% 6.16% 6.09% 5.32% 5.30% 5.27% 5.23% 

15 7.59% 7.55% 7.50% 7.43% 6.12% 6.09% 6.05% 6.00% 

20 8.61% 8.56% 8.51% 8.44% 6.90% 6.87% 6.81% 6.75% 

25 9.36% 9.33% 9.26% 9.20% 7.68% 7.64% 7.58% 7.49% 

50 12.18% 12.14% 12.07% 11.98% 11.04% 10.97% 10.88% 10.76% 

75 13.75% 13.71% 13.65% 13.58% 13.52% 13.47% 13.37% 13.25% 

100 14.78% 14.74% 14.69% 14.62% 14.90% 14.86% 14.79% 14.70% 

150 15.37% 15.37% 15.37% 15.37% 15.77% 15.77% 15.77% 15.77% 

Table G.2 

Percentage reduction in total expected runoff under different levels of runoff adjustment factors, where the available budget ranges between 10 and 150 

million dollars. 

Budget (million dollars) Levels of Runoff Adjustment Factor 

Stochastic Model conservative-stochastic Model 

No Adj. -50% Estimated Adj. 50% No Adj. -50% Estimated Adj. 50% 

10 6.16% 6.19% 6.22% 6.25% 5.25% 5.28% 5.30% 5.32% 

15 7.46% 7.50% 7.55% 7.60% 6.03% 6.06% 6.09% 6.12% 

20 8.46% 8.51% 8.56% 8.62% 6.78% 6.83% 6.87% 6.92% 

25 9.21% 9.26% 9.33% 9.39% 7.53% 7.59% 7.64% 7.70% 

50 11.99% 12.07% 12.14% 12.22% 10.78% 10.88% 10.97% 11.07% 

75 13.57% 13.64% 13.71% 13.78% 13.20% 13.33% 13.47% 13.60% 

100 14.58% 14.66% 14.74% 14.83% 14.64% 14.74% 14.86% 14.97% 

150 15.22% 15.30% 15.37% 15.45% 15.60% 15.69% 15.77% 15.85% 

re, because at most one type of GI practice can be placed within any 

n which rain gardens can be placed after realizing a scenario at time T 

age decisions, resulting in almost no significant difference between the 

nance cost. As discussed in Section 3.1 , we set the annual annual GI 

. Table G.1 presents the percentage reduction in total expected runoff

nging between 1% and 10%, where the available budget ranges between 

lable budget, the percentage runoff reduction non-increases in ρ . This 
placed within almost all sub-catchments in the first stage. Therefo

given sub-catchment, there would be few vacant sub-catchments i

in the second stage. This, in turn, decreases the impact of second st

three cases under larger amounts of budget. 

Next, we conduct sensitivity analysis on the amount of mainte

maintenance cost equal to 3% of its construction cost, i.e., ρ = 3%

under different ratios of maintenance cost to construction cost, ρ , ra

10 and 150 million dollars. In general, as expected, given any avai
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i llocated to maintain the GI practices to be placed. For instance, under 

1 unoff reduction decreases by 0.13% when ρ increases from 3% to 10%. 

S runoff reduction decrease equals to 0.07%. Note that for large amounts 

o , changing ρ no longer impacts the solution as the available budget is 

h

 of runoff adjustment factor, β i ′ , j ′ ,l ′ 
i, j,l 

. Table G.2 presents the percentage 

r  factors, no adjustment, and where the estimated adjustment is modi- 

fi 0 million dollars. As seen in the table, connectivity, captured through 

a  in total runoff under various available budgets for the stochastic and 

c ctivity contributes to a higher percentage of runoff reduction under 

h ses, a larger number of bioretentions are placed across the watershed, 

w ally connected sub-catchments. 

S

d, in the online version, at doi: 10.1016/j.omega.2020.102196 . 
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