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Increased urbanization, infrastructure degradation, and climate change threaten to overwhelm stormwa-
ter systems across the nation, rendering them ineffective. Green Infrastructure (GI) practices are low cost,
low regret strategies that can contribute to urban runoff management. However, questions remain as to
how to best distribute GI practices through urban watersheds given precipitation uncertainty and the
variable hydrological responses to them. We develop stochastic programming models to determine the
optimal placement of GI practices across a set of candidate locations in a watershed to minimize the total
expected runoff under medium-term precipitation uncertainties. Specifically, we first develop a two-stage
stochastic programming model. Next, we reformulate this model using perturbed parameters to reduce
the requisite computational time and extend it to multi-stage. In addition, we introduce constraints that
allow for incorporating sub-catchment-level runoff reduction considerations. We account for hydrological
connectivity in the watershed using an underlying acyclic connectivity graph of sub-catchments and in-
corporate various practical considerations into the models. In addition, we develop a systemic approach
to downscale the existing daily precipitation projections into hourly units and efficiently estimate the cor-
responding hydrological responses. These advancements are brought together in a case study for an urban
watershed in a mid-sized city in the U.S., where we perform sensitivity analyses, evaluate the importance
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of the considered constraints, and provide insights.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important factors threatening infrastructure in
the US. is climate change. Climate change affects the frequency,
intensity, spatial extent, duration as well as timing of extreme
events [37]. Over the past decade, we have observed more fre-
quent, intense and untimely events damaging infrastructure and
impacting people and businesses (e.g., Hurricane Katrina, Super-
storm Sandy). Thus, there are major concerns as to whether cities
are protected against these projected increasing number of ex-
treme weather events. To mitigate these effects, municipalities are
beginning to seek opportunities to improve the resiliency of infras-
tructure through better urban planning and taking advantage of in-
novative solutions. This is extremely timely, as by the end of next
decade, 60% of the world population will live in cities [73].
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Provision of scientifically-based methodologies for understand-
ing and evaluating climate impacts will be critical to the devel-
opment of adaptation strategies designed to avoid the increas-
ing socioeconomic costs of severe weather-related damages to ur-
ban landscapes [60]. Despite this understanding, city managers are
forced to make infrastructure decisions complicated by massive
amounts of data and uncertainty. In a time when multiple, some-
times conflicting, climate projections exist, tools to distill these
data into a usable format for such individuals are critical. Hence,
city managers need a tool which addresses the complexity and
uncertainty of climate projections to allow optimized choices for
building resiliency into urban systems.

In the 2013 “Report Card” for American infrastructure, the na-
tion’s stormwater systems (in combination with wastewater) were
awarded a D*, indicating the poor state of these critical compo-
nents of the urban landscape. Exacerbating this need is the specter
of climate change, leading us to the age of non-stationarity, where
past trends of precipitation may no longer be relevant as a basis of
design for civil infrastructure. Stormwater systems are particularly
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susceptible, as the size of pipes is selected based on how much
stormwater needs to be conveyed for a given storm of interest or
design storm applied to the watershed. As design storms are deter-
mined based on historical rainfall data, climate change threatens
to overwhelm pipes that are in poor condition and undersized rel-
ative to changing weather patterns. Thus, climate change and the
associated overwhelming of stormwater pipe systems is likely to
cause increased flooding in urban watersheds, escalating the al-
ready present trend of flooding and flash flooding as (on average)
the leading cause of weather-related fatalities in the U.S., beyond
even hurricanes and tornadoes [45].

Replacing existing stormwater sewers with pipes of larger ca-
pacity would be prohibitively expensive and time consuming in
many urban environments due to surrounding infrastructure and
social conflicts. However, building resiliency into urban stormwater
systems through the use of green infrastructure (GI) is an increas-
ing trend nationwide. The 2014 Intergovernmental Panel on Cli-
mate Change (IPCC) has identified changes to urban drainage sys-
tems as a key adaption issue for North America and recommends
consideration of lowregret strategies such as GI to reduce runoff
while also providing co-benefits to freshwater provision, ecological
processes, and freshwater fish populations [5,54]. The U.S. Environ-
mental Protection Agency (EPA) is promoting GI as a means to en-
able communities to avoid costly water infrastructure replacement
and repair by using vegetation and soil to manage rainwater where
it falls, thereby reducing the burden on aging sewer pipes [19].
These systems act as localized storage centers, where stormwater
can enter, be detained, then leave the system as evaporation, infil-
tration, or as runoff with diminished energy and volume. As such,
GI has been deemed as a way to build better infrastructure as part
of the National Academy of Engineering’s Grand Challenge to re-
store and improve urban infrastructure.

In recent years, researchers have considered the impact of GI on
urban flooding at the watershed scale [23,48]. Kim et al. [46] stud-
ied the impact of urban green spaces on reducing urban flood risk.
As their case study, they considered a flooded area in Seoul, South
Korea. They divided the case study area into four regions based on
topographic and physical characteristics, and used logistic regres-
sion to determine how flooding probabilities change with respect
to green space area. Based on their results, the probability of flood-
ing could be reduced by over 50% depending on the location of
green spaces and their types. In a related study, Liu et al. [49] de-
veloped a simulation model to determine the reduction of peak
flow rate in flooding for an urban community in Beijing, China.
They reported that an integrated GI configuration can reduce peak
flow by 92.8-100%. Liu et al. [50] also investigated the impact of
GI practice types and sizes on reducing urban flooding. They re-
ported that expanding green spaces, concave green space, storage
pond, and porous brick pavements are effective in reducing urban
flooding. Using different sizes of these GI, they studied runoff re-
duction in 5-year recurrence storm and concluded that the proper
GI combination together with appropriate GI sizing is necessary for
urban stormwater runoff management. Thus, the properties of the
GI and how it is configured in a given watershed have shown to be
an important factor in literature for determining the effectiveness
of these interventions [33,34].

Although the current body of work provides invaluable insights,
to improve the resiliency of infrastructure, we need to modify our
approach to infrastructure planning to account for future changes
in climate. Accounting for extreme events does not necessarily
translate into planning for the worst-case scenario; instead, it re-
quires policymakers to allocate the budget and effort for future ur-
ban planning and maintenance actions by accounting for a wide
range of factors under uncertainty. In our context, climate parame-
ters, specifically future precipitation, are the main uncertainty. One
important factor to consider when trying to optimize a measure of

interest under uncertainty, is that not only is knowledge about cli-
mate patterns limited and inherently stochastic, but there are mul-
tiple climate models that at times make inconsistent predictions.
For example, Fig. 1 gives the projected annual precipitation, in
inches, between 2018 and 2050 in the City of Knoxville, Tennessee,
using 10 coupled general circulation models (CGCMs) [40]. As seen
in the figure, there is significant difference between these 10 mod-
els in terms of annual precipitation levels, e.g., in year 2021, stan-
dard deviation of precipitation is 7.27 in. Hence, if placing GI prac-
tices in an urban watershed is performed under one projected sce-
nario, it may fall extremely short of addressing the true stormwa-
ter management needs if another scenario is realized.

Stochastic programming has been used extensively for decision
making under uncertainty, e.g., power systems [74], finance [47],
and many engineering applications [52]. Specifically, this modelling
approach has been extensively used in modeling facility location
under uncertainty [66]. To the best of our knowledge, the use
of this important methodology in environmental engineering ap-
plications has been limited, especially when it comes to placing
GI practices in an urban environment under various uncertainties.
Ramshani et al. [61] is perhaps one the few of such studies, and
uses a stochastic programming model to optimally place PV panels
and green roofs in a mid-sized city under climate change uncer-
tainty to maximize the overall profit from energy generated and
saved.

In this paper, we use stochastic programming to account for the
uncertainty in future precipitation when placing GI practices in an
urban watershed. Specifically, we first develop a two-stage stochas-
tic programming model to determine the optimal placement of GI
practices across a set of candidate locations in an urban water-
shed to minimize the total expected surface runoff under medium-
term precipitation uncertainty. Using statistical analysis on the per-
formance of GI practices, we then develop a two-stage stochas-
tic programming with perturbed parameters to produce alterna-
tive solutions to the problem of placing GI practices in an urban
watershed Such approach results in a significant reduction in the
requisite pre-processing and computational time. Next, we extend
the formulation to multi-stage. Given the fact that some regions
of the watershed may be of higher priority for runoff manage-
ment, we then introduce constraints that allow for incorporating
sub-catchment-level runoff reduction considerations. We conduct
a case study for a watershed in the City of Knoxville, Tennessee, in
which we calibrate the model using literature, historical precipita-
tion data, future precipitation projections, watershed hydrological
responses to precipitation and GI installations, and expert opinion.
We provide the results under various levels of available budget, in-
vestigate their differences, conduct extensive sensitivity analyses,
and provide insights.

No work has been identified in literature that addresses GI
placement in an urban watershed under precipitation uncertain-
ties. Perhaps the closet work is Lodiciga et al. [51]. Their objective
was to minimize total construction cost such that volumetric water
balance, stormwater volumes, and water-quality characteristics fell
within an allowable range. However, this work does not account
for the uncertainty in future precipitation projections.

The rest of the paper is organized as follows. First, we formu-
late the models in Section 2. Next, in Section 3, we calibrate the
models for a watershed in a mid-size city in the U.S. In Section 4,
we provide the computational results for our case study and draw
insights. Finally, we provide a summary and additional insights in
Section 5.

2. Model formulation

In this study, our goal is to minimize the expected total runoff
volume over a medium-term planning horizon under future pre-
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Fig. 1. Projected annual precipitation over the city of Knoxville, Tennessee, in inches, between 2018 and 2050 under 10 popular climate models.

cipitation uncertainty, given an available budget for investment.
This is consistent with challenges currently facing city planners
throughout the world.

Various types of GI differ in their expense, requirements for ad-
vanced planning, necessary land allocation, and their efficiency in
reducing surface runoff following precipitation.

Accordingly, in this study, we consider two groups of GI prac-
tices, specifically, large-scale and small-scale GI practices. In our
models, we allow for placing these GI practices under two set-
tings, namely, ‘restricted’ and ‘relaxed.” The former refers to the
case where only GI practices of certain types can be placed in a
given stage, whereas the latter relaxes this restriction, allowing all
GI types to be placed in any stage. The former, although somewhat
restrictive, provides practical benefits regarding investment plan-
ning and managing the efforts required for building the different
types of GI practices.

First, in Section 2.1 we develop a base two-stage stochastic pro-
gramming model under a restricted decision set, where large-scale
and small-scale practices can only be placed in stages one and
two, respectively, before and after a scenario is realized. Next, in
Section 2.2, we re-cast the problem as a two-stage stochastic pro-
gramming model that relies on perturbed parameters, under the
same restricted decision set. We then relax the decision set as-
sumption for this two-stage stochastic programming model and
also extend this formulation to multi-stage, under the same re-
laxed decision set assumption. Finally, in Section 2.3, we introduce
chance constraints that allow for incorporating sub-catchment-
level runoff reduction considerations.

2.1. Stochastic programming model

In this section, we develop a two-stage stochastic program-
ming model. The goal is determine the extent to which each sub-
catchment must be covered by each of the available types of GI,
in the two stages, to minimize the expected total runoff over the
planning horizon under precipitation uncertainty. For brevity, we
refer to this model as ‘stochastic model’ in the remainder of the
manuscript.

Let V. ={1,2,...,|V|} denote the set of sub-catchments within
a watershed whose impervious areas are candidates for placing GI
practices. For any given sub-catchment, let G ={1,2,...,|G|} de-

note the set of all available types of GI practices. We assume that
each GI practice may be installed in various levels within a given
sub-catchment, e.g., to cover 5%, 7.5%, and 10% of the impervious
area within any given sub-catchment with GI. Let L = {1, 2, ..., |L|}
denote the set of available levels of installation of GI practices
within a given sub-catchment.

As discussed in Section 1, although CGCMs may be used to
project future precipitation in a given region, the resulting projec-
tions from different models do not necessarily agree. Hence, the
variability across these precipitation projections are the source of
uncertainty in our model. Let T denote the length of the planning
horizon in years and W denote the finite set of projected precipi-
tation time series for the watershed over the planning horizon T.
We let ¢ € W denote a projected precipitation time series, corre-
sponding to scenarios in the model, and 7¥ denote the realization
probability of scenario ¢ € W.

As discussed earlier in Section 2, we consider two groups of
large- and small-scale GI practices in this study, where practices
from the former and latter groups can be placed before and after
a CGCM is realized. Let T < T denote the year in which a precip-
itation scenario is realized. Hence, in the beginning of the plan-
ning horizon, before any scenarios are realized, we make first-
stage decisions. After T years into the planning horizon, we real-
ize a certain CGCM, at which point we make second-stage deci-
sions. Consequently, we continue with the realized CGCM for the
rest of the planning horizon. Also, let G' and G/, where G' UG = G,
G'n G =g, denote the set of possible types of GI practices avail-
able for placement at t <T—1 and T <t < T, respectively. Con-
sequently, let Xf,j,l denote the first stage binary decision variable

indicating whether or not a Gl practice of type j € G'cG in level
I is placed within sub-catchment i in year t < T — 1. Similarly, let

y;/’ﬁ denote the second stage binary decision variables indicating

whether or not a GI practice of type j € G! G in level I is placed
within sub-catchment i in T < t < T. The decision variables assume
the value 1 if the corresponding practice is installed, and the value
0, otherwise. Lastly, we let §;;; denote the corresponding area (in
square feet) of GI practice type j € G installed in level [ € L, within
sub-catchment i € V. In this study, we assume only one type of GI
can be placed in each sub-catchment, mainly due to the sizes of GI
practices considered, compared to the sizes of the sub-catchments.
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Fig. 2. A small portion of a watershed consisting of seven sub-catchments and its
main stream.

Precipitation that is not infiltrated into the soil becomes sur-
face runoff. We incorporate precipitation scenarios into our model
by quantifying their impact on each sub-catchments’ surface runoff
reduction. Let Q,.‘//’t denote the total baseline surface runoff under
scenario ¢ € W over sub-catchment i € V in year t when no GI
practice is placed. Similarly, let Q,‘b]l[ denote the surface runoff cap-

tured by GI practice of type j e G installed in level I L within sub-
catchment i € V under scenario ¥ € W in year t. Hence, clearly for
any given i € V, the difference between Qf“ and Qlw]lt gives the
total surface runoff in sub-catchment i over year t under scenario
Y e W as a result of installing GI practices of type j € G in level
I € L within the sub-catchment.

In this study, we assume that once a GI practice is constructed,
it must be maintained annually to preserve its runoff reduction
properties. Let C; i denote the per square feet present total cost of
placing GI practice of type j within sub-catchment i in year t. Also,
let B denote the total available budget at the beginning of the plan-
ning horizon for placing GI practices.

A key goal to achieve in planning GI is connectivity as it pro-
vides additional resilience against urban runoff [25,29,38,44,55].
For instance, all else held constant, a series of connected GI prac-
tices is more effective in managing water quantity and quality
than a set of disjoint GI practices that are surrounded by urban
development [64]. This is mainly because runoff that flows from
a sub-catchment to a downstream sub-catchment can be slowed
or captured by GI practices before reaching downstream [38,44].
This impact is particularly pronounced in adjacent/neighboring
sub-catchments with respect to watershed hydrology as the con-
nected GI practices can further mitigate runoff resulting from ‘di-
rectly connected impervious areas,” reducing runoff volumes, peak
discharge, and base flow effects [57]. To that end, given that in
this study we consider an urban watershed with many directly
connected impervious areas, we impose certain connectivity con-
straints when placing GI practices to ensure that at least a mini-
mum desired level of connectivity among GI practices is met.

Consider the following illustrative example that discusses the
impact of various GI placements using a connected system of sub-
catchments. Fig. 2 illustrates a subset of a watershed consisting of
seven sub-catchments and its main stream. Placing GI practices in
any of the sub-catchments reduces the surface runoff in that sub-
catchment. Additionally, dependent on sub-catchments characteris-
tics [24], placing a GI practice in an upstream sub-catchment, may
further reduce the surface runoff in a downstream sub-catchment.
Lastly, simultaneous placement of GI practices has the potential

to further mitigate the surface runoff, if the sub-catchments are
‘hydrologically connected.” This is partly due to the fact that such
placement can further disconnect the directly connected impervi-
ous areas within the sub-catchments. For instance, because sub-
catchments 3 and 5 are hydrologically connected, placing GI prac-
tices in sub-catchment 3 can potentially also reduce the amount
of run-off over sub-catchment 5, even if no GI is placed on the lat-
ter sub-catchment. Furthermore, placing GI practices in both sub-
catchments 3 and 5 can potentially result in a larger reduction in
surface runoff, compared to that obtained from placing the same
type/level of GI practices in the two sub-catchments if they were
not hydrologically connected.

We capture sub-catchment connectivity in a watershed using a
directed acyclic graph. Specifically, let the directed acyclic graph
G(V,A) denote the system of sub-catchments where V is the set
of nodes in the graph, corresponding to the sub-catchments in
the watershed, and A denotes the set of sub-catchment connec-
tivity arcs, where there exists an arc ay; € A if and only if sub-
catchments i, i € V are connected.

Consider a given pair of connected sub-catchments i’ and i,
ay ; € A. When accounting for surface run-off reduction over sub-
catchment i due to a GI practice placed upstream, assuming large-
scale GI practice installations only, three distinct cases must be
considered: (a) a Gl practice is placed within upstream sub-
catchment i’ in year t’ after a GI is placed within downstream sub-
catchment i in year t such that 0 <t <t/ <T — 1; (b) a Gl is placed
within downstream sub-catchment i in year ¢t after a GI is placed
within upstream sub-catchment i’ in year t' such that 0 <t/ <t <
T —1; and (c) a GI is placed within upstream sub-catchment i’ in
year t' and no GI placed in downstream sub-catchment i by the
beginning of year T, i.e, 0 <t/ <T —1.

To be able to account for the adjustment in surface runoff re-
duction due to GI installations in connected sub-catchments as de-
scribed in cases (a)-(c), we introduce the runoff ‘adjustment fac-

] TR,
tor’ B; ]:f," and the variable zi il]:{ ' specifically, for any given pair

of connected sub-catchments i’ and i, where a;; € A, we let 0 <

ﬂi"./j:,fll”/ <1 denote the runoff ‘adjustment factor’ over the down-
stream sub-catchment i € V, when a GI practice of type j/ € G
in level I’ € L is installed within upstream sub-catchment i’ € V
and no GI practice or a GI practice of type j € G! in level | € L
is installed within the downstream sub-catchment i € V. We use
j=0 to indicate that no GI is installed within a sub-catchment.

In addition, we let zifli";:{/"/ denote the binary variable indicating

whether or not GI practices of types j/, j € G' in levels I, | € L are
installed within sub-catchment i, i € V in years t/,t <T — 1, re-
spectively. The variable assumes the value 1 if the corresponding
practices are installed and equals 0, otherwise. In addition, we de-
fine zf/;.ié)";/"/ =0 forall t, 7, j, I, ¢t i and I, to account for cases
when ‘o.nyly the upstream sub-catchment is selected for installing
large-scale GI practices. Note that a downstream sub-catchment
can be hydrologically connected to more than one upstream sub-
catchment. We assume that the ‘adjustments’ over downstream
sub-catchments are additive. Lastly, for completeness, we define
Q,‘botl =0 for all ¥, ¢, i, and I to account for the case where no GI
is installed in sub-catchment i € V.

In addition to accounting for potential adjustments in runoff re-
duction as a result of hydrological connectivity, we require first
stage decision variables to fulfill a certain connectivity constraint
to ensure that the model provides at least a minimum desired level
of connectivity among large-scale GI practices by the beginning of
year T. Specifically, we define GI connectivity as a 1-neighbor con-
straint on first stage decision variables, which prescribe large-scale
GI practice installations. That is, a first stage GI practice can be in-
stalled in sub-catchment i if there exists at least one placed first
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stage GI practice in one of the sub-catchments that are hydrolog-
ically connected to sub-catchment i. For simplicity of notation, in
the remainder we use x = [xf]l] z=]| ili;:{/'l/], y= [y;{’j‘j] to refer
to the vectors of the corresponding variables. The notation is sum-
marized in Appendix A.

We let ¢s(x, z, y) denote the total expected surface runoff across
the watershed G(V, A) over the planning horizon, T, under the de-
cision variables x, z, and y for the stochastic model. Therefore,
given the total available budget, B, the following model minimizes

os(x, z, y), ie.,
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The objective function (1) minimizes the total expected surface
runoff across the sub-catchments within the watershed over the
planning horizon. The first term in (1) captures the total baseline
runoff. The second term in (1) presents the reduction in surface
runoff over the sub-catchments as a result of first stage GI in-
stallations within the sub-catchments. The third and forth terms
n (1) address the adjustment in surface runoff reduction due to
GI installations in connected sub-catchments (see Appendix B for
more details). Finally, the last term in (1) presents the reduction in
surface runoff over the sub-catchments as a result of second-stage
Gl installations within the sub-catchments.

Constraint (2) enforces budget limitations for placing GI prac-
tices. Constraints (3)—(6) establish the relationship between vari-
ables x and z and enforces the latter to assume the value one
when large-scale GI practices are installed within two connected
sub-catchments, and to assume the value zero, otherwise. Con-
straint (7) ensures the 1-neighbor connectivity among first-stage
GI practices. Constraint (8) assures that at most one GI practice
is installed in any given sub-catchment throughout the planning
horizon. Finally, constraint (9) enforces binary restrictions on the
decision variables. Let 2 denote the feasible set of the problem,
ie, Q={x=&zy)|2)-(9)}. Accordingly, we let x¢ e 2 de-
note the optimal solution to the stochastic model, ie., ¢s(x$) <
¢s(x) forall x € Q.

2.2. Stochastic programming model with perturbed parameters

In this section, we first use the notation introduced in
Section 2.1 to re-cast the problem as a two-stage stochastic pro-
gramming model with perturbed baseline runoff and runoff cap-
turing parameters. We then extend the model to multi-stage (par-
ticularly accounting for three stages). For brevity, we refer to these
models as ‘conservative-stochastic models’ in the remainder of the
manuscript.

We first present a two-stage conservative-stochastic program-
ming model. Similar to the previous formulation, the model pre-
scribes the extent to which each sub-catchment must be covered
by each type of GI practice in the two stages. Different from the
previous formulation in which the baseline surface runoff volume
Qi.‘b't, and surface runoff volume captured by a GI practice, Q'JI,
were assumed to be readily known, in this formulation we assume
there is uncertainty in calculating these runoff volumes.

Specifically, we redefine Qi'/"t to denote the average baseline
surface runoff volume within sub catchment i € V under sce-
nario ¢ € W in year t, and let 2q Y(a) denote the width of the
100(1 — )% confidence interval (CI) for the corresponding aver-
age baseline surface runoff volume. Similarly, we redefine Q:’gl[ to
denote the average surface runoff volume captured by GI prac-
tice of type j € G installed in level | € L within sub-catchment
i € V under scenario ¥ € W in year t, and let 2“” [(a) denote the
width of the 100(1 — «)% CI for the correspondmg average surface
runoff volume captured by the GI practice. Consequently, [ Q,‘/”t

g/ (@), Q" +a" @] and [Q/; - a!}1(@). Q) +a!}1(@)] give
the corresponding 100(1 — «)% CI for the average baseline surface
runoff volume and runoff volume captured, respectively. Accord-
ingly, the average baseline runoff volume and runoff volume cap-
tured by the given GI practice within sub-catchment i € V un-
der scenario ¥ € W in year t are no worse than the CI upper

tainty, Omega, https://doi.org/10.1016/j.0mega.2020.102196

Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optimizing green infrastructure placement under precipitation uncer-



https://doi.org/10.1016/j.omega.2020.102196

JID: OME

[m5G;February 11, 2020;22:18]

6 M. Barah, A. Khojandi and X. Li et al./ Omega xxx (XXXX) XXX

bound in + q;l"t(a) and the CI lower bound Ql'p] A:”J;(a) re-
spectively, 100(1 — «)% of the time.

Finally, consistent with Soyster's method [67], in our objective
function of the conservative-stochastic model, compared with that
of the stochastic model in Eq. (1), we use the 100(1 — )% CI up-
per bound and lower bounds of the estimated values for in’t and

Q;/;lt to take a conservative view. Accordingly, we let ¢g, (x.z,y)
denote the total expected surface runoff volume across the wa-
tershed G(V,A) over the planning horizon, T, under the decision
variables x, z, and y for the conservative-stochastic model. There-
fore, given the total available budget, B, the following model mini-
mizes Pg, (xzy)- Note that analogous to the stochastic model, we let
X4 € 2 denote the optimal solution to the conservative-stochastic
model.

min Pry (X.2,Y)

=min > 7¥- [Z > QM et @

YeW ieV {t|0<t<T}

“YEY X X (@ -a @),

i€V jegl el {t|o<t<T-1}{t/|t<t/<T}

EPAPDID B VD SENEDS z

Ay ;€A jeGlu{o} j/eGl 1€l IV el {t]0<t<T-1} {t’\Ost’sf—l)(t”|max{[_n(j#0)vt/}5t”5”
/ l/ 1//t 1//t /.1-/'}-/.,/
(0 —a @) (-2
At Awt o
+ (Qi.j,l —4ij (“)> “Zeigi

P EDDID I DD DENEDY 2

ayr ;€A jeGlufo} /<Gl el el {tlo<t<T-1} {t/|0=t’ <t—1) (¢ |/ <" <t—1)
i, l’ v, t wt t/l i’
/31 il Ql (@) 2, J. ’

EYY ¥y (@ -a@) ]

i€V jeGll leL {t[T<t<T}{t/|t<t/<T}
st. x =(x,z,y) € Q. (10)

Although the objective function in the conservative-stochastic
model may seem overly conservative compared with the one in
the stochastic model, that only accounts for average volumes, we
believe such a model is practical in our context. Note that the in-
tensity of precipitation, i.e., the amount of precipitation in a pe-
riod of time (especially for short periods, e.g., 24 hours) is an im-
portant predictor of, and is negatively correlated with, GI practice
performance [22]. Assuming that the precipitation intensity is rela-
tively similar across all sub-catchments in a relatively small water-
shed, when intense precipitation occurs, the performance of all GI
practices are expected to get worse. This means that the result-
ing runoff across all sub-catchments would increase accordingly
and, in turn, in Eq. (1) all coefficients pertaining to baseline sur-
face runoff volume Q;/”, and surface runoff volume captured by

GI practices, Q , must be adjusted.

Next, we extend the problem formulation to multi-stage
conservative-stochastic programming (particularly accounting for
three stages). Recall that in the two-stage case, in the beginning of
the planning horizon, before any scenarios are realized, we make
first-stage decisions. After T years into the planning horizon, we
realize a certain CGCM, at which point we make second-stage de-
cisions. In contrast, in the three-stage case, we expand each node
of the second-stage decision tree with scenarios that pertain to all
CGCMs. That is, in the second stage, instead of realizing one single
CGCM for the rest of the planning horizon, we may continue with
any of the CGCMs until stage three. Given the fact that we have
realized a CGCM at the second stage, we assume that this CGCM

is more likely to occur between this stage and the third stage. Fi-
nally, we realize a certain CGCM at the third stage, at which point
we make third-stage decisions. Consequently, we continue with the
realized CGCM for the rest of the planning horizon. The complete
discussion on the model formulation of the multi-stage stochas-
tic programming model with perturbed parameters is included in
Appendix C.

2.3. Incorporating sub-catchment-level runoff reduction
considerations

Note that the models developed so far aim to minimize the ex-
pected total runoff volume under future precipitation uncertainty,
without any requirements for runoff reduction across individual
sub-catchments. However, to increase resilience against precipita-
tion uncertainty, it is important to be able to minimize the ex-
pected total runoff volume across the entire watershed, while ac-
counting for some level of confidence in runoff mitigation in cer-
tain (or all) sub-catchments. For instance, such measures may be
of particular interest in dense residential regions where higher
runoff may result in significant water quality problems. As such,
next we introduce a chance constraint that ensures the GI prac-
tices are placed across the watershed such that some level of con-
fidence in the degree of runoff volume captured in a given sub-
catchment is achieved. Such constraints enable the prioritization
of sub-catchments when placing GI practices.

First, we let the random variable Ei‘/"t denote the expected
baseline surface runoff volume over sub-catchment i under sce-
nario ¥ in year t, such that E[éw’[] Q:/”t Similarly, we let the
random variable E £Vt denote the expected runoff volume captured
by GI practice of type j installed in level [ w1thm sub catchment i
under scenario ¥ in year t, such that E[&l ]l Q . Let yf denote
a desired minimum threshold for the proportion of runoff volume
captured due to placing GI practices in sub-catchment i in year t.
In addition, we let 1 — ¢ denote the desired confidence level for
satisfying this minimum threshold. Therefore, for any given sub-
catchment i, we have

ZjeG ZIELE;I[/:} ( il +yl 1, })
A
i

Pr

Z)/,-[ >1-€ VeV, 0<t<T.

(11)

Note that for simplicity in notation, we present the constraint
when assuming G' = G = G. However, similar constraints may be
written when G # G,

Next, suppose E‘b't and é"” are normally distributed. Note

that their means equal to Qi‘“ and Q:/’ , respectively, and their
standard deviations can be respectively computed from the (1 —
@)% Cls defined in Section 2.2, namely, [Q" - g/ (a), Q" +
w “(a)] and [Qul - q:/’ﬁ(oz) Ql'/"t U,(a)] That is, for o = 0.05,
the 2q‘“(0 05) and 2(7 (0 05) are approximately equal to four
times the standard dev1atlons of Si‘/’ and &i‘ﬁ. |» respectively. Hence,
considering a =0.05, we let 5‘/” N(Q:/"t 1/"t(O 05))2/4) and
£Vl ~ N @1 (@7](0.05))2/4). Also, we let BV

covariance of the random variables S‘/’t and S

denote the
Vit _
U, Let ;“

Yicc Z,dél”(x‘]l +y,”) - yl“;“/’ !, Hence, for fixed x and y, we
have

Ciwl ~ N(E:/“ =

1

ZZQ‘/? ( ijil +Y”]> -y,

jeG lel
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(0 05))? 2
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;W—ZZ <x111+-yi,l.j>
jeG lel
_Zzzyl E:ﬁ;( i,jl +yll]>)

jeG lel

) (q” f<o 05))2

Note that according to constraint (8) and binary condition on
variables, (x + y)2 (x +y). Also, due to the constraint, the covari-
ance between gi,l.j variables (for all j and ) is zero.

Hence, Eq. (11) simplifies as follows:

—t

—yit
pr<§i‘/"t20>:Pr uz—gi— >1-€— — qurl(é)-
{iw.t {i'l/-f

Finally, by replacing E:/jt and crgw in the above equation and

1
squaring the sides, chance constraint (11) turns into the following

form.
2
I CHNCIR)
]EG lel
_oyt ¥t '(//[
yiQi ZZQ ']’+yll}

jeG lel

“() (@)

2
“ﬁf V.t
(0.05) q7"(0.05)
ijl i
+ - Z(Al)(le+y1lklj)(y)<4)
jeG lel
Yy eWw,
+ZZZVIEI”,§<,J, ,”’,j))(dﬂ(e))z <0, Viev, . (12)
JjeG lel 0<t<T_1

3. Model calibration

In this section, we calibrate the mathematical models presented
in Section 2 using literature, historical data, precipitation projec-
tions, and expert opinion for an urban watershed of a mid-sized
city in the U.S. First, in Section 3.1 we calibrate the parameters as-
sociated with GI practices. Next, in Section 3.2 we discuss the pre-
processing performed on precipitation projections to convert them
into the requisite format. Finally, in Section 3.3 we describe the hy-
drological simulations performed to characterize the surface runoff
resulting from precipitation projections in the sub-catchments, un-
der potential GI placements.

3.1. GI Practices

The performance of a GI practice can be described as the vol-
ume of surface runoff that the practice can infiltrate on an hourly
basis [65]. The performance of GI practices depend on an array of
factors including design specifications (such as surface storage vol-
ume, media storage, and media composition and depth, etc.) and
climate patterns (such as precipitation event intensity and dura-
tion, etc.) [26,69]. In addition, maintenance activities must be per-
formed for GI practices to continue their performance [6].

GI types, G, and GI installation levels, L. In this study, we con-
sider two common types of GI practices, namely, bioretention and
rain garden [30], hence |G| = 2. The former is typically installed in
relatively large, commercial scales and is held to a higher design
standard, whereas the latter is a smaller system with lower design
standards and is placed in residential lots [9]. In two-stage stochas-
tic models, under the restricted decision set assumption, we let the
bioretentions and rain gardens be placed in the first and second
stages, respectively. Hence, in these models we use |G/| =1 and

|G| = 1. Under relaxed decision sets, however, we allow bioreten-
tions and rain gardens to be placed in any of the decision stages,
i.e,, |G| =2 in all stages.

The amount of surface runoff reduction by GI practices in any
given sub-catchment of a watershed is closely related to the sur-
face area that they cover from the corresponding sub-catchment
[63]. We account for three levels of installation for each of the
two GI practice types considered, i.e., |L| = 3. National Association
of City Transportation Officials (NACTO) [13] recommends using
the effective impervious surface area in the drainage region (sub-
catchments) as a key design factor when sizing bioretentions [14].
To that end, and due to the larger scale of bioretention installa-
tion, in this study we allow bioretentions to cover 5%, 7.5%, and
10% of the impervious area of each sub-catchment. Given the size
of a sub-catchment, these ratios can be translated into square feet
to obtain the corresponding values of 4;;;. For rain gardens, due
to their residential-scale implementation, we allocate the total ar-
eas of 2500, 5000, and 7500 square feet for placing the GI prac-
tices within each sub-catchment. Finally, note that for the general
attributes of the two types of Gl practices considered, e.g., mini-
mum media depth, ponding depth, media permeability, we use the
stormwater training manuals from State of Tennessee Department
of Environment & Conservation [17].

GI costs, C{ i The total cost of placing GI practices includes con-

struction and maintenance costs. Let cl{ i and cl{ i denote the per
square feet construction and annual maintenance costs of a GI
practice of type j in sub-catchment i in year t < T, respectively.
We assume the maintenance cost incurs annually starting from the
year of construction and is subject to an annual increase with the
average annual inflation rate r. Hence, the present value at time
zero of the total per square feet cost of placing GI practice of type
j in sub-catchment i at time t is given by

1 1—T-t
t t t
Gi= a+nt (C"f R 'c"vf)

We use the inflation-adjusted EPA Opti-Tool [32] and the Uni-
versity of Texas A&M'’s AGRILIFE Report [35] to obtain the per
square feet construction cost of bioretentions and rain gardens, re-
spectively. For instance, the reported per square feet construction
cost of bioretentions was $15.46 in 2016, and that of rain gardens
was $6.00 in 2012. To estimate the corresponding costs during the
planning horizon, we adjust the values using the U.S. Labor Depart-
ment’s Consumer Price Index (CPI) inflation calculator [72]. We do
not consider land cost in this study as we assume all GI practices
are placed on public land or on land parcels offered by private
property owners. Based on published reports [68], the annual GI
maintenance cost ranges between 3% — 6% of its construction cost.
Let p denote the ratio of maintenance cost to construction cost,
ie, p= ‘f,j/cf,j' In this study, we set p = 3%. Lastly, we use the
average annual inflation rate r = 1.86%, which equals the average
annual U.S. inflation rate over the period 2007-2017 [18].

3.2. Pre-processing of precipitation projections

As discussed in Section 1, CGCMs project future precipitation,
which are next fed to hydrological simulators to calculate the re-
sulting surface runoff, at various degrees of GI installation. In this
study, we use precipitation projections for the City of Knoxville
produced by ten CGCMs (see Table D.1 in Appendix D for more de-
tail.) Note that using CGCMs to produce projections are computa-
tionally expensive and hence, the projections are usually only pro-
duced in daily units. Let 1/} e W denote a daily precipitation projec-
tion time series produced by one of the ten CGCMs. To accurately
capture the GI response to precipitation, more granular data, i.e.,
hourly precipitation projections, are required due to quick trans-
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Fig. 3. Quartile-based Temporal distributions of daily precipitation, adapted from [20].

port of runoff in urban watersheds. Therefore, the daily precipita-
tion projections must be converted into hourly precipitation pro-
jections, denoted by ¥ € W, before they can be fed into hydro-
logical simulators to calculate corresponding amounts of surface
runoff.

Note that hourly precipitation projections can be uniquely ag-
gregated to produce daily precipitation projections; however, the
reverse is not true. In this section, we present an approach for pre-
processing daily precipitation projections to generate one of the
many likely hourly precipitation projections. Specifically, we use
quartile-based and seasonal-based temporal distributions [20] to
convert a daily precipitation time series into an hourly precipita-
tion time series. Temporal distributions of precipitation summarize
the historical cumulative percentages of precipitation up to any

point during a precipitation event and provide the proportion of
time that the pattern was observed.

Fig. 3 presents the quartile-based distributions of 24-hour pre-
cipitation of Ohio river basin (including the City of Knoxville),
adopted from Precipitation-Frequency Atlas of the United
States [20]. Specifically, Fig. 3(a)-(d) present the cumulative
probability plots of temporal distributions, where the highest
percentage of precipitation during the 24-hour period occurred
in the first-fourth quarters of the day, respectively. For instance,
Fig. 3(a) presents the temporal distributions, where the highest
amount of daily precipitation occurred during the first quarter of
the day. The nine cumulative distributions in each panel present
the nine general patterns according to which the corresponding
amount of precipitation was accumulated. The shades of the distri-
butions present the percentage of time that the particular pattern
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Fig. 4. Seasonal-based temporal distributions of daily precipitation.

was observed. For instance, given that the highest percentage of
daily precipitation occurred in the first quantile (Fig. 3(a)), in 10%
of the cases, 55.1% of total daily precipitation occurred during
the first 8.3% of the time-period, i.e., the first 2 hours of the
day.

Note that the quartile-based temporal distributions in Fig. 3 are
generated under the assumption of the homogeneity of monthly
precipitation. In the absence of monthly precipitation homogene-
ity, seasonality must be considered [59]. Hence, we follow the pro-
cedure described in Huff (42) to generate seasonal-based temporal
distributions. As the input, we use 20 years of precipitation data
(i.e., year 1997-year 2016) in the City of Knoxville, obtained from
National Center for Environmental Information (NCEI) [15], strati-
fied across the four seasons. Fig. 4 presents the resulting seasonal
temporal distributions of daily precipitation.

Lastly, to analyze the homogeneity of monthly precipitation to
determine whether quartile-based or seasonal-based temporal dis-

tributions can be applied to convert the daily projections into
hourly projections, we use a variation of precipitation coefficient
of variability [27,59]. Let p, denote the accumulated precipitation
in month k and let n denote the precipitation coefficient of vari-
ability. The value of 7 is given by

= leil pi
(i1 pr)?

If the value of 1 ranges between 0 and 0.1, it suggests that pre-
cipitation is relatively uniformly distributed across the months, i.e.,
homogeneity of monthly precipitation. In contrast, if the value of n
ranges between 0.1 and 0.2, it indicates seasonal patterns for pre-
cipitation. Note that if the value of n is greater than 0.2, it indicates
that there are distinct monthly precipitations and thus, monthly
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Fig. 5. Coefficient of variability for the ten precipitation projections for the City of Knoxville, for years 2018 to 2050.

precipitations are fully heterogeneous. Fig. 5 presents the coeffi-
cient of variability, n, for the 10 precipitation projections during
the planning time horizon. As seen in the figure, n ranges from
0.085 to 0.125, and is always less than 0.2.

Finally, we use the following procedure to pre-process any
given daily precipitation projection (from any of the ten CGCMs)
to generate an hourly projection. First, we break down the daily
precipitation projection by year. For any given year, we first ex-
amine the value of coefficient of variability to determine whether
quartile-based or seasonal-based temporal distributions apply. If
quartile-based distributions apply, we first determine the propor-
tion of time that the highest percentage of precipitation occurred
in the first-fourth quarters of the day using the historical precipita-
tion data collected in the Ohio River Basin, which includes the City
of Knoxville [20]. Next, for any given day of the year in the daily
precipitation projections, we generate a weighted random number
according to these proportions to determine which quartile to use.
Next, we generate a weighted random number according to the
probability of observing each of the cumulative distributions in the
corresponding quantile. Finally, once a cumulative distribution is
chosen, we use it to project the amount of precipitation in that
day into an hourly time series. Similarly, if seasonal-based tempo-
ral distributions apply, for any given day in any given season, we
generate a weighted random number according to the probability
of observing each of the cumulative distributions for that season.
We then use the selected cumulative distribution to project the
amount of precipitation in that day into an hourly time series.

3.3. Hydrological simulations and estimating surface runoff

As discussed in Section 3.2, precipitation projections need
to be fed into hydrological simulators to calculate the surface
runoff during any given precipitation event, at various degrees
of GI installation. In this study, to perform hydrological simula-
tions we use EPA SWMM [63], a widely used software in liter-
ature [21,28,43,53,56,62,70,71]. Note that conducting brute-force
SWMM simulations can be time-consuming. Hence, in this section,
we first discuss the computational difficulties of executing such
simulations and then provide an approach for sampling events

to estimate the total baseline surface runoff, Ql.‘b'[, and the sur-
face runoff captured by GI practices, Q'/’]lt under various pro-

jected precipitation scenarios, ¥, for the stochastic model. Next,
we describe the approach used for calculating the 100(1 — )%

CIs for the amount of surface runoff captured by GI practices that
gives the estimated value of d;”}i (o) for the conservative-stochastic
model. Finally, we describe the approach used for calculating the
runoff adjustment factor ﬁl,'fj'.fll"/ over any given downstream sub-
catchment.

SWMM partitions rainfall to runoff and routes it through the
watershed and the potential GI practices, while accounting for sev-
eral adjustments such as (i) rainfall interception from depression
storage, (ii) infiltration of rainfall into unsaturated soil layers, and
(iii) percolation of infiltrated water into groundwater layers [63].
Note that SWMM simulation can be extremely computationally ex-
pensive, given a large watershed and a long time horizon for the
input precipitation. For instance, based on our experiments, each
SWMM simulation performed on a 2.4 GHz CPU (single core) to
obtain the surface runoff after placing GI practices within a single
sub-catchment can take on the order of approximately 25 minute
to execute for a time series that spans only one year, expressed
in hourly units. Note that increasing the planning horizon propor-
tionally increases the simulation time. In addition, given the total
number of the sub-catchments, |V|, the number of GI types to place
in each sub-catchment, |G|, and the number of possible installa-
tion levels, |L|, a total of (|G| - |L| + 1)IV| SWMM simulations must
be executed to calculate the surface runoff for all possible combi-
nations of GI placements if all sub-catchments are hydrologically
connected. Hence, using a brute-force simulation approach is com-
putationally intractable even for a medium-sized watershed, with
approximately 100 sub-catchments.

Therefore, in this study, we exploit three approaches to mit-
igate the prohibitively long simulation time to estimate the sur-
face runoff. First, we use a sampling method to approximate sur-
face runoff resulting from precipitation scenarios using only a se-
ries of sampled events instead of the entire precipitation time se-
ries spanning the planning horizon. Note that we use the sampling
method along with bootstrapping to also calculate ClIs for the es-
timated surface runoff volumes. Second, we run SWMM simula-
tions for all sub-catchments simultaneously, i.e., we execute one
simulation under no GI practice placement to calculate the base-
line surface runoff over all sub-catchments, and a total of |G| - |L]|
simulations where the same GI practice of type j in the same
level | is placed within all sub-catchments to calculate the cor-
responding runoff after placement. Clearly, if hydrological con-
nectivity among sub-catchments are not captured in the water-
shed model, the estimated runoff volumes give the parameters
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Qj'p’t and QA;”; respectively. However, if hydrological connectivity
among sub-catchments are captured in the watershed model, the
former and latter groups of estimated runoff volumes need to be

adjusted back by the adjustment factor ﬁi"/]’.jl/’l/ to estimate the pa-

rameters Q;/’ and Qj/’ t respectively. In our main SWMM simula-
tion model for the watershed the hydrological connectivity among
sub-catchments is not entirely captured, which simplifies the es-
timation of Qi'/”t and Ql‘/f]t However, at the same time, it compli-

cates the process of estimating the adjustment factors ﬂl’/]’,/’/ To
be able to estimate the adjustment factors, we develop a comple-
mentary SWMM model, which we calibrate based on the charac-
teristics of the sub-catchments and their hydrological connectivity
in the watershed. Lastly, we stratify sub-catchments based on their
characteristics and only calculate the adjustment factors ﬂiifjﬂ/‘l/ for
a reduced number of sub-catchment type pairs using the set of
sampled events.

Sampling events and calculating surface runoff parameters, Qi'p'[
and Q"’j for the stochastic model. As discussed in Section 2, pre-
cipitation intensity, i.e., the amount of precipitation in a period
of time, is an important predictor of, and is negatively correlated
with, GI practice performance. Depending on the intensity of pre-
cipitation events, a GI practice may present different performance
levels. For instance, GI practices generally exhibit a lower perfor-
mance under a series of short but intense events, but a higher per-
formance under long but mild events. Hence, we use precipitation
intensity as a basis for sampling events.

Recall that w e W denotes daily precipitation projection time
series produced by the CGCMs, and ¢ € W denotes hourly pre-
cipitation projection time series, corresponding to scenarios in the
stochastic model. As discussed in Section 3.2, the hourly precipita-
tion projection time series, ¥, resulting from a daily precipitation
projection time series, 15 is not unique. In fact, each of the result-
ing hourly precipitation projection time series can have very differ-
ent daily precipitation intensities in any given day. Therefore, we
rely on repeated sampling to produce a large set of hourly precipi-
tation projection time series, 1, and then aggregate them based on
precipitation intensities to estimate runoff volumes. The detailed
steps are as follows.

« Initialization: For each of the ten daily precipitation projec-
tions, 1/; e W, use precipitation coefficient of variability, n,
to identify the relevant set of temporal distributions for any
given rainy day, i.e., when precipitation volume is greater
than zero, over the span of 32 years, i.e.,, 2018-2050. Next,
for each of these rainy days, randomly select from the cor-
responding set of temporal distributions to project daily pre-
cipitation into hourly basis. Repeat the procedure to gener-
ate 100 time series of hourly precipitation projections for
each of the 10 daily precipitation projections, ¥ € U. This
results in 1000 time series of hourly precipitation projec-
tions, ¥ € W, each of which consist of a series of hourly
precipitation events with various intensities.

o Aggregation: Use all ¥ € W to calculate the histogram of
hourly event intensities, using Sturges rule to break the in-
tensity range into categories.

« SWMM Simulation: For any given 100 hourly precipitation
projections corresponding to daily precipitation projection
15, calculate the histogram of hourly event intensities using
the previously defined categories. Randomly select a set of
10 events from the category to use in SWMM simulations.
If a category has fewer than 10 events, use all in the sim-
ulation. For any chosen event, execute SWMM simulation
when no GI practice is placed in any of the watershed sub-
catchments, i € V. For any given sub-catchment, calculate

the category’s corresponding baseline average ‘volume-based
runoff coefficient,’ i.e., the ratio of runoff volume to the pre-
cipitation volume [39], using all selected events in the cat-
egory. Next, for any selected event, execute SWMM simula-
tion when identical GI practice j in level [ is placed across
all sub-catchments. For any given sub-catchment i, calculate
the category’s corresponding average ‘runoff coefficient’ with
respect to the placed GI practice of type j with level I, using
all selected events in the category. Follow the procedure for
all ¥ € ¥ and calculate all runoff coefficients.

Estimating Runoff: Given an hourly precipitation projection
Y e W for sub-catchment i € V, use the expanded rational
method [39] to calculate the baseline runoff using the cor-
responding baseline runoff coefficients of the corresponding
daily precipitation projection v e W. That is, for any given
rainy day in the projection i € W, calculate the total daily
runoff by multiplying the runoff volume by the runoff co-
efficient that corresponds to the precipitation intensity in
that day, obtained from the corresponding 1// e W. The over-
all yearly baseline runoff for the hourly precipitation projec-
tion i over sub-catchment i, i.e., Q;N forall 0 <t <T,is the
summation of calculated total daily runoff volumes in that
year. Use the same method to calculate the overall runoff
for sub-catchment i € V with respect to placed GI practice
jeGinlevel | € Lin year t < T. Let Q;/f][ denote the surface
runoff over sub-catchment i € V given that GI practice of
type j € G is installed in level | € L within the sub-catchment
under the hourly precipitation projection ¥ € W in year t.
Hence, under hourly precipitation projection i, the corre-
sponding surface runoff captured by the GI practice, Q"b
forallieV, je G lelL 0 <t <Tis obtained as follows
QA:/;; = in it fQ:/f]t Repeat this process for all 1000 hourly
precipitation projections to estimate the corresponding sur-
face runoff volumes Q" and QI‘/;I[ for all sub-catchments in
the watershed.

Fig. 6 presents the variation in the estimated volume-based
runoff coefficient across all sub-catchments in our watershed of
interest under various GI practice installation. BR and RG stand
for bioretention and rain garden, respectively, and the three levels
of installation are described in Section 3.1. As seen in the figure,
the runoff coefficient is generally lower after installing GI practices,
compared with the baseline (i.e., no treatment). In addition, biore-
tention generally have a lower runoff coefficient, hence present a
better performance in reducing runoff compared with rain gardens.
Lastly, the larger the GI practice, especially in bioretentions, the
higher the performance.

Calculating confidence intervals for runoff volumes for the
conservative-stochastic  model. Recall that the conservative-
stochastic model requires the 100(1 — )% CIs for surface runoff
for any given GI practice in any given sub-catchment. We use
bootstrapping to generate these intervals [31]. In contrast to
stochastic model in which we use a total of 1000 hourly precipita-
tion projections as scenarios to estimate the corresponding surface
runoff volumes, in the conservative-stochastic model we redefine
scenarios to be the aggregate measure of 100 hourly precipitation
projections produced from any given CGCM. We then use these
scenarios to estimate the runoff volumes as follows.

First, we follow the first three steps in the procedure used
for calibrating the stochastic model, i.e., Initialization, Aggrega-
tion, and SWMM Simulation, from which we obtain volume-based
runoff coefficients for all identified categories for any given CGCM.
Next, for each CGCM, we group all volume-based runoff coeffi-
cients regardless of the categories and use bootstrapping to repli-
cate large enough bootstrap samples to calculate the corresponding
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Fig. 6. Boxplots of the estimated volume-based runoff coefficients for all sub-catchments in the watershed of interest, for all given hourly precipitation projections corre-
sponding to CGCM ACCESS over the years 2018-2050, under various GI practice installation. BR and RG stand for bioretention and rain garden, respectively. The three levels

of installation are described in Section 3.1.

100(1 — )% CI for runoff coefficients for each sub-catchment, un-
der all GI practice placement (and no treatment). Finally, we use
the center and half of the width of each CI in the rational method
to estimate the corresponding in“t and (jl‘/’lj ().

Calculating runoff adjustment factor, ,31'/]1[/’/ As discussed in
Section 2, the surface runoff volume over a downstream sub-
catchment is not only a function of the amount of precipi-
tation, the sub-catchment’s hydorlogical characteristics, and the
placed GI practices within the sub-catchment, but also it is af-
fected by (large-scale) GI practices placed within upstream sub-
catchment(s) that are hydrologically connected to this downstream
sub-catchment. Also recall that we assume the adjustments over
downstream sub-catchments are additive when large-sale GI prac-
tices are placed within more than one of its upstream sub-
catchments. As discussed earlier in this section, our main SWMM
simulation model for the watershed does not capture the entire
hydrological connectivity among sub-catchments. Hence, to be able
to estimate the adjustment factors, we develop a complementary
SWMM model, which we calibrate based on the characteristics of
the sub-catchments and their hydrological connectivity in the wa-
tershed.

Specifically, we develop a SWMM model that consists of
two hydrologically connected sub-catchments, where the residual
runoff from the upstream sub-catchment flows onto the down-
stream sub-catchment. We run the simulation for any given pairs
of sub-catchment characteristics to estimate the adjustment fac-
tor, ﬂ:/J],/V under various GI practice placements as well as no

treatment. To further reduce the computation time, we only use
the most important sub-catchment characteristics related to runoff
reduction, as identified in the literature [24], and stratify sub-
catchments accordingly (see Appendix E for details).

Fig. 7 presents a subset of the estimated runoff adjustment
factors over the downstream sub-catchment, where a large biore-
tention is placed in upstream and a small bioretention is placed
downstream, for all observed combinations of sub-catchment char-
acteristics as described in Appendix E. Sub-catchment characteris-
tics are shown as tuples, where the three elements correspond to
percent of imperviousness, percent of slope, and Manning’s n for
overland flow over the pervious portion of the sub-catchment, each

of which are categorized into three levels of 0-2, encoding low,
medium, and high, respectively. As seen in the figure, the adjust-
ment factor varies based on the characteristics of the pair of sub-
catchments, ranging between 0.2% and 0.75%. In general, a higher
level of imperviousness results in a larger amount of runoff. Hence,
when the upstream sub-catchment has a higher level of impervi-
ousness, it contributes a larger amount of flow onto hydrologically
connected downstream sub-catchments. As a result, and as seen in
the figure, placing a large bioretention in a highly impervious up-
stream sub-catchment contributes to a larger adjustment in runoff
over the downstream sub-catchment. In contrast, the impact is less
pronounced when the upstream sub-catchment is relatively pervi-
ous.

4. Case study

In this section, we first conduct a case study for a watershed in
a mid-sized city in the U.S. We then conduct sensitivity analysis,
investigate the relationship between 1-neighbor constraint and the
runoff adjustment factor, discuss the findings and provide insights
on the implications of our modeling approaches.

For computational experiments we use the IBM ILOG CPLEX
12.8 (64-bit edition) on a PC running Microsoft Windows 7 (64-
bit edition) with a Core i7, 4 GHz processor and 32 Gigabyte of
RAM. In general, solving a stochastic model is much harder than
solving a conservative-stochastic model. On average, the computa-
tional time of two-stage stochastic models is on the order of 3-4
minutes, which is approximately two orders of magnitude larger
than that of two-stage conservative-stochastic models, which takes
on the order of 1 second to solve. Moreover, solving a multi-stage
conservative-stochastic model is much harder than solving a two-
stage conservative-stochastic model. On average, the computational
time of multi-stage conservative-stochastic model is 14 folds larger
than that of two-stage conservative-stochastic model.

4.1. Case study specifications
As a case study, we consider the First Creek in the City of

Knoxville, Tennessee. The creek is located entirely within the City
of Knoxville and have been identified as the principal sources
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Fig. 7. Heat map of the runoff adjustment factors over the downstream sub-catchment, where a large bioretention is placed in upstream and a small bioretention is placed
downstream, for all observed combinations of sub-catchment characteristics’ categories as described in Appendix E. Sub-catchment characteristics are shown as tuples, where
the three elements correspond to percent of imperviousness, percent of slope, and Manning’s n for overland flow over the pervious portion of the sub-catchment, each of
which are categorized into three levels of 0-2, encoding low, medium, and high, respectively.

of flooding in Knox County, Tennessee [36]. The watershed’s
combined area is 14805 acres and encompasses parts of the
most densely populated regions of the city, including Downtown
Knoxville. The First Creek hydrological model was provided to us
by the Stormwater Engineering Division of the City [58]. The hy-
drological model divides the creek into 140 sub-catchments, all of
which are associated with one rain gauge. This model also includes
365 junction nodes and 439 conduit links that direct the flow into
the Tennessee River.

Fig. 8 illustrates the map of land cover (left panel) and hy-
drological sub-catchments (right panel) of the First Creek. The red
shades on the left panel represent level of development, from low
(mostly meadow and forest land cover) to high. As seen in the fig-
ure, the southern region of the watershed, which is where Down-
town Knoxville is located, is highly developed. Subsequently, this
dense region has larger amount of impervious area, compared with
other regions in the watershed (see Appendix F for more details).

In this case study, we use a planning horizon of length 33 years
(T =33), i.e,, for years 2018-2050, for which the precipitation pro-
jections are available. First, in Section 4.2, we compare the two-
stage stochastic and conservative-stochastic models with restricted
decision sets. We let the first and second stage decision variables
be respectively taken in the beginning of the planning horizon, i.e.,
in year 2018, and 10 years into the planning horizon, i.e., in year
2027 (T =10), and conduct sensitivity analysis to draw insights.
Next, in Section 4.3 we use the two-stage stochastic and the two-
stage conservative-stochastic models from Section 4.2 to investi-
gate the relationship between 1-neighbor constraint and the runoff
adjustment factor.

Next, in Section 4.4 we use the two-stage conservative-
stochastic model from Section 4.2 and add chance constraints, as
described in Section 2.3, to evaluate the impact of incorporating
sub-catchment-level runoff reduction considerations on the results.

Finally, in Section 4.5, we compare the results of the two-stage
and three-stage conservative-stochastic models with relaxed deci-

sion sets. In the three-stage model, the 33-year planning horizon
is divided into three 11-year periods, and GI placement occurs at
the beginning of each period.

4.2. Two-stage models: Stochastic vs conservative-stochastic

In this section, we compare the two-stage stochastic and
conservative-stochastic models with restricted decision sets. That
is, large-scale and small-scale practices can only be placed in the
first and second stages, respectively, before and after a scenario is
realized.

Given the 1000 generated hourly precipitation time projections
discussed in Section 3.3, we let &5 denote the projected total ex-
pected runoff volume, ie., s =3,y 7Y iy Yo<ter Qi"”t, over
the First Creek equals 4.57 x 10! gallons. This volume is used as
total baseline surface runoff under no treatment (i.e., no GI prac-
tice placed) in the stochastic model. For the conservative-stochastic
model, given the same projections that are aggregated regardless
of their daily precipitation intensity categories, we let &, denote
the sample average baseline surface runoff under 100(1 — )% con-
fidence level. Accordingly, for the given scenarios, ®g . =4.56 x
10" and the estimated 95% CI for the expected baseline surface
runoff equals 4.56 x 10! + 1.75 x 10°. Note that these runoff vol-
umes correspond to no treatment (i.e., no GI practice placed) in the
conservative-stochastic model. In our computational results, we re-
port the percentage reduction in total expected runoff volume un-
der the optimal GI practice placement across the watershed, i.e.,
(Ps — Ps(x$))/Ps and (Pgy o — Pry g5 (X7))/ Pro s fOT the stochas-
tic and conservative-stochastic models, respectively.

First, we solve the models under the available budgets of 10,
20, and 50 million dollars and compare the corresponding optimal
GI practice placements. Fig. 9 presents the first stage decision vari-
ables under the optimal solution for all cases considered. That is,
it presents the sub-catchments in which bioretentions are placed
and their level of installation. In addition, Table 1 summarizes the
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Fig. 8. Map of land cover [41] (left panel) and hydrological sub-catchments (right panel) of the First Creek, Knoxville, Tennessee.

Table 1

Average percentages of sub-catchments in which rain gardens are placed, along with the distribution of their level of installation, given that the scenarios from one of the
ten CGCMs are realized (second stage decision variables) for various levels of available budget.

Budget
10 million dollars 20 million dollars 50 million dollars
Model CGCM % of Sub-Cat.  Large Med. Small % of Sub-Cat.  Large Med. Small % of Sub-Cat.  Large Med. Small
Stochastic ACCESS 64.1% 11.1% 3.8% 85.1% 47.6% 54.4% 4.2% 41.4% 23.6% 67.3% 10.8% 21.9%
BCC 63.7% 11.0% 4.8% 84.3% 49.7% 45.3% 13.4% 41.3% 23.4% 70.4% 6.9% 22.7%
CCSM4 67.1% 9.6% 1.0% 89.4% 53.1% 40.0% 10.9% 49.1% 23.4% 69.6% 7.6% 22.8%
CcMCC 66.4% 5.5% 10.5%  84.0%  52.9% 39.1%  13.7%  47.2%  23.6% 72.7%  0.0% 27.3%
FGOALS 67.0% 9.6% 1.3% 89.1% 51.0% 46.1% 6.4% 47.4% 23.6% 69.7% 6.1% 24.2%
GFDL 57.2% 16.1% 8.9% 75.0% 52.8% 39.3% 13.4% 47.3% 23.6% 70.2% 5.1% 24.7%
IPSL 65.4% 8.2% 7.0% 84.8%  49.2% 49.0%  8.1% 429%  22.9% 74.4%  4.3% 21.4%
MPI 66.3% 5.2% 11.3% 83.5% 47.0% 53.5% 8.9% 37.6% 22.9% 74.9% 3.3% 21.8%
MRI 54.4% 20.6% 7.3% 72.2% 45.7% 56.3% 9.4% 34.4% 22.6% 68.6% 19.3% 12.1%
NorESM 68.2% 7.3% 3.6% 89.1% 52.3% 42.3% 9.3% 48.4% 23.1% 71.2% 8.3% 20.6%
Conservative- ACCESS 80.0% 43.8% 9.8% 46.4% 72.9% 51.0% 7.8% 41.2% 40.0% 60.7% 8.9% 30.4%
stochastic BCC 82.1% 43.5% 5.2% 51.3% 74.3% 51.0% 3.8% 45.2% 40.7% 61.4% 3.5% 35.1%
CCSM4 81.4% 42.1% 9.6% 48.2% 73.6% 49.5% 8.7% 41.7% 38.6% 66.7% 5.6% 27.8%
CMCC 84.3% 39.8%  7.6% 52.5%  75.7% 47.2%  7.5% 45.3%  40.7% 59.6%  7.0% 33.3%
FGOALS 84.3% 41.5% 4.2% 54.2% 77.1% 46.3% 5.6% 48.1% 40.7% 63.2% 0.0% 36.8%
GFDL 82.9% 41.4% 7.8% 50.9% 74.3% 49.0% 7.7% 43.3% 39.3% 63.6% 7.3% 29.1%
IPSL 83.6% 41.0%  6.8% 52.1%  75.7% 48.1%  5.7% 46.2%  40.7% 61.4%  3.5% 35.1%
MPI 82.9% 38.8% 12.9% 48.3% 74.3% 47.1% 11.5% 41.3% 39.3% 63.6% 7.3% 29.1%
MRI 83.6% 40.2% 8.5% 51.3% 75.0% 47.6% 8.6% 43.8% 40.0% 62.5% 5.4% 32.1%
NorESM 82.9% 40.5% 9.5% 50.0% 74.3% 47.1% 11.5% 41.3% 40.0% 60.7% 8.9% 30.4%

second stage decision variables under the optimal solution for all
cases considered. That is, it presents the average percentages of
sub-catchments in which rain gardens are placed, along with the
distribution of their level of installation, given that the scenarios
from one of the ten CGCMs are realized. As expected, and seen
in the figure and table, as the available budget increases, a larger

number of sub-catchments are selected for bioretention installa-
tion in the first stage and the sizes of placed rain gardens stochas-
tically increases in the second stage, under all scenarios generated
from the ten CGCMs.

Recall that the unit construction cost of bioretentions (and rain
gardens) are equal across all sub-catchments. However, as dis-
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Fig. 9. Map of placed bioretentions and their level of installation (first stage decision variables) under the optimal solution for various levels of available budget.

cussed in Section 3.1, the area used for bioretention installation
corresponds to the level of imperviousness in that sub-catchment,
i.e.,, a fixed percentage of the impervious area of the sub-catchment
is treated with bioretentions. As a result, it is much more expen-
sive to place bioretentions in highly developed sub-catchments as
the level of development largely correlates with the level of im-
perviousness. Therefore, in Fig. 9, sub-catchments in the south-
ern region of the watershed, where the highly developed Down-
town Knoxville is located, are not usually selected for bioreten-
tion installation. Indeed, as seen in the figure, given a limited
budget, e.g., 10 million dollars, solutions to both stochastic and
conservative-stochastic models consist of placing bioretention in
sub-catchments with a low level of development, where the con-
struction cost is generally lower. Recall that in both models, the
1-neighbor constraint on first stage decision variables ensures con-
nectivity among large-scale GI practice placements. Therefore, if
a highly developed sub-catchment is selected as part of the first

stage decisions, the available budget should be enough to cover
the costs of placing bioretentions not only in that sub-catchment,
but also in at least one of its hydrologically connected neighbors.
This, in turn, makes placing bioretentions in general very costly
within highly developed regions, e.g., sub-catchments in the south-
ern region of the watershed, where the highly developed Down-
town Knoxville is located. Accordingly, only as the amount of avail-
able budget increases, it becomes optimal to place bioretentions
in some of the more developed sub-catchments. It is interest-
ing to note that some of the placed bioretentions in Fig. 9 are
stand-alone. Note that this does not violate the 1-neighbor con-
straint as these sub-catchments are not downstream to any of their
neighboring sub-catchments, i.e, they have no upstream hydrolog-
ically connected sub-catchments and hence, 1-neighbor connectiv-
ity constraint does not apply to them.

As seen in Fig. 9, the solutions to the stochastic and
conservative-stochastic models are not necessarily identical under
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Fig. 10. Comparison of percentage reduction in total expected runoff under two-stage stochastic and conservative-stochastic models, where the available budget ranges
between 10 and 150 million dollars. The shaded area represents the 95% CI for reduction in total expected runoff for the conservative-stochastic model.

the given available budget; however, comparing the results shows
similar reduction in total expected surface runoff over the planning
horizon for the two models. For instance, under 50 million dollars
available budget, the optimal GI placement contributes to 12.01%
and 11.30% reduction in total expected runoff for the stochastic
and conservative-stochastic models, respectively. It is interesting
to note that these reductions are achieved under different alloca-
tions of budget in the first and second stages under the two mod-
els. Specifically, in the stochastic model, the percentages of budget
spent in the first stage are 81%, 88%, and 97% under 10, 20, and 50
million dollars available budget, respectively. Compare these per-
centages, respectively, with 64%, 82%, and 96% spent in the first
stage in the conservative-stochastic model. This suggests a slightly
more conservative allocation of budget in the first stage under
the conservative-stochastic model, compared with the stochastic
model, especially when the available budget is relatively low. As
seen in Table 1, this relatively conservative allocation of budget is
compensated for in the second stage, where the average percent-
ages of sub-catchments in which GI practices are placed is gener-
ally larger under the conservative-stochastic model, compared with
the stochastic model, across the scenarios generated from the ten
CGCMs.

Next, we more extensively compare the percentage reduction
in total expected runoff under the stochastic and conservative-
stochastic models. Fig. 10 presents a comparison of percentage re-
duction in total expected runoff under stochastic and conservative-
stochastic models, where the available budget ranges between 10
and 150 million dollars. The shaded area represents the 95% CI for
reduction in total expected runoff for the conservative-stochastic
model. Note that in reporting the percentage reduction in total ex-
pected runoff under the conservative-stochastic model, we use the
center of the 95% CI, as depicted in the figure. As seen in Fig. 10,
the stochastic model performs relatively better under lower bud-
gets, i.e.,, 75 million dollars or less. For instance, under 20 mil-
lion dollars available budget, the stochastic model outperforms the
conservative-stochastic model by 1.89% reduction in total expected
runoff. However, this difference between the objective values de-
creases in the amount of available budget and at higher budgets,
the conservative-stochastic model performs relatively better than
the stochastic model. For instance, under 150 million dollars avail-

able budget, the conservative-stochastic model outperforms the
stochastic model by 0.39% reduction in total expected runoff.

We conducted analyses to examine the sensitivity of the solu-
tions with respect to some of the important calibrated parameters,

including the years to realize a scenario, T, the ratio of mainte-
nance cost to construction cost, p, and the runoff adjustment fac-

tor, /31.1'_/]’.']‘,/”/ on two-stage stochastic models. In both models, real-
izing a scenario sooner, i.e., smaller values of T, results in a larger
reduction in total expected runoff. However, overall, the differences
among the percentage runoff reductions with respect to various
values for T, ranging from 5 to 15, is low and decreases in the
amount of available budget. Similarly, as expected, given any avail-
able budget, the percentage runoff reduction non-increases in p,
where as the budget increases, the impact of p on the percentage
runoff reduction diminishes. Finally, in contrast, connectivity, cap-
tured through adjustment factors, ﬂi’jﬂ/'l/, contributes to reduction
in total runoff under various available budgets, where connectiv-
ity contributes to a higher percentage of runoff reduction under
higher levels of available budget. The detailed sensitivity analyses
results are available in Appendix G.

4.3. Investigating the relationship between 1-Neighbor constraint and
the runoff adjustment factor

In this section, we evaluate the importance of accounting for
the adjustment in surface runoff reduction due to GI placements
in connected sub-catchments using the runoff adjustment fac-

tor, ,3,’,111,1, In this section, for simplicity of notation, we let 8 =

[ ﬂiifjiﬂ/’l/] denote the vector of all adjustment factors. Specifically, we
evaluate the expected opportunity loss due to installing a poten-
tially sub-optimal solution as a result of not accounting for runoff
adjustment factors. We conduct the analyses with and without
considering the 1-neighbor constraint to draw insights.

First, let }s € 2 denote the optimal solution of the stochastic
model, where all adjustment factors are set to zero in the stochas-
tic objective function (1), i.e., Xs=argmin,.q ¢s(x: B =0). Simi-
larly, let Xr € © denote the optimal solution of the conservative-
stochastic model, where all adjustment factors are set to zero
in the conservative-stochastic objective function (10), i.e., Xgr =
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[m5G;February 11, 2020;22:18]

Percentage reduction in total expected runoff volume under the solutions xj;, x;,. and Xy, M € {S, R}, where the budget
available ranges between 10 and 150 million dollars. The corresponding values under ¥y and x3. M < {S, R}, are the

same; hence the former are not included in the table.

Budget (million dollars)  Stochastic Conservative-stochastic
Ds—¢s (1) s-s(x)  Ds—bs(Xe)  Proos —Proos Xi) Proos —Proos XR)  Pgos ~Proos Kn)
Ps @5 s Pro 05 Ro.05 Pro 5

10 6.22% 7.71% 7.16% 5.30% 5.34% 5.34%
15 7.55% 8.41% 8.40% 6.09% 6.16% 6.16%
20 8.56% 9.25% 9.25% 6.87% 6.95% 6.95%
25 9.33% 9.96% 9.95% 7.64% 7.72% 7.70%
50 12.14% 12.41% 12.40% 10.97% 11.01% 10.99%
75 13.71% 13.90% 13.90% 13.47% 13.47% 13.47%
100 14.74% 14.84% 14.83% 14.86% 14.86% 14.86%
150 15.37% 15.37% 15.37% 15.77% 15.77% 15.77%

17

argmin, .o ¢r(x; B =0). Recall that x¢ and x; denote the opti-
mal solutions of the stochastic and conservative-stochastic models
under the estimated values for the adjustment factors, respectively.
Clearly, ¢s(x$) < ¢s(Xs) and @r(x) < $r(Xr), where the equali-
ties respectively hold when ¥s and ¥y are optimal solutionsto the
calibrated models with 8 > 0.

It is interesting to note that per our numerical experiments,
both ¥s and ky are indeed optimal solutions to their corresponding
models, i.e., ¢s(Xs) = ds(x¢) and @r . (XR) = Pryqs (X3), Where
X&. Xr € 2, specifically when the 1-neighbor constraint is included
in the models. Our intuition is that because 1-neighbor connec-
tivity constraint (7) enforces placing large-scale GI practices (first-
stage decisions) in hydrologically connected sub-catchments, it
protects the solution to remain optimal, regardless of accounting
for adjustment factors. Note that in our watershed of interest, there
are only five sub-catchments (out of a total of 140 sub-catchments)
that have more than one upstream sub-catchments; these five sub-
catchments each have exactly two upstream sub-catchments. Sur-
prisingly, for all these five sub-catchments, the adjustment factors
of the two upstream sub-catchments are rather identical. This fur-
ther reduces the importance of including the exact adjustment fac-
tors in the model. Hence, we conclude that for our watershed of
interest, given the structure of the corresponding graph G(V, A),
enforcing the 1-neighbor constraint (7) is enough to obtain the op-
timal solution, contributing to a dramatic reduction in calibration
efforts.

To further verify this hypothesis, we replicate the analysis with-
out accounting for the 1-neighbor constraint (7). Specifically, we
let x¢ and s denote the optimal solutions to the stochastic model
under the estimated values for the adjustment factors and where
all adjustment factors are zero, respectively, when relaxing the 1-
neighbor constraint (7), i.e.,

Xs = argmin ¢s(x). X5 = argmin ¢s(x: B = 0).
xeQ\()} XeQ\((D)

Clearly, ¢s(x$) < ¢s(Xs), where the equality holds when ¥ is an
optimal solution to the calibrated model with 8 > 0 when relax-
ing the 1-neighbor constraint (7). Analogously, we let x; and X
denote the optimal solutions to the conservative-stochastic model
under the estimated values for the adjustment factors and where
all adjustment factors are set to zero, respectively, when relax-
ing the 1-neighbor constraint (7). Hence, similar to the stochastic
model, for the conservative-stochastic model we have ¢g, . (xz) <
Ry 0s (Xr), Where the equality holds when ¥ is an optimal so-
lution to the calibrated model with 8 > 0 when relaxing the 1-
neighbor constraint (7). Consistent with our intuition, our numeri-
cal experiments show that X5 and X are indeed sub-optimal solu-
tions to their corresponding stochastic and conservative-stochastic
problems, respectively, when relaxing the 1-neighbor constraint,

Le, ¢s(xs) < ¢s(Xs) and @ry o (Xg) < PRy s (XR)-

Table 2 summarizes the numerical analyses on characterizing
the relationship between 1-neighbor constraint (7) and the runoff
adjustment factor, B, at various levels of available budget. The sec-
ond through fourth columns show the percentage reduction in to-
tal expected runoff volume under x¢, x¢. and ¥, respectively. The
fifth through seventh columns show the percentage reduction in
total expected runoff volume under xj, xz. and Xy, respectively.
First note that, as discussed, the percentage reduction in total ex-
pected runoff volume under ¥s and j}y are the same as those un-
der x¢ and xg. respectively; hence, they are not included in the
table. As seen in the table, the values under x( are larger than
those obtained under y¢. Similarly, the values under y; are larger
than those obtained under xj. This suggests that, as expected, the
1-neighbor constraint (7) is binding under the optimal solutions to
both stochastic and conservative-stochastic models with the orig-
inal feasible set 2. In addition, as discussed, any difference be-
tween the values under ¢ and ¥s. and those under x} and
indicates that x5 and ) are respectively sub-optimal solutions to
the stochastic and conservative-stochastic models with the feasible
set ©2\{(7)}. Accordingly, as seen in the table, s is sub-optimal at
almost all budget levels, except 20 and 150 million dollars, in the
stochastic model, and X is sub-optimal under available budgets of
25 and 50 million dollars in the conservative-stochastic model.

In summary, this analysis show that, given the structure of
the underlying graph of sub-catchments G(V,A) in our study, 1-
neighbor constraint (7) guarantees the optimality of a solution, re-
gardless of accounting for adjustment factors. This has the poten-
tial to dramatically reduce the calibration efforts. However, note
that using a set of well-estimated adjustment factors in models re-
sult in more accurate estimated values for the corresponding ob-
jective functions.

4.4. Incorporating sub-catchment-level runoff reduction
considerations

In this section, we evaluate the impact of incorporating sub-
catchment-level runoff reduction considerations for certain sub-
catchments. Specifically, we focus on setting such constraints for
sub-catchments with higher percentages of imperviousness. As dis-
cussed in Section 4.1 and Appendix F, regions 1 and 2 are the
most populated sub-catchments in our watershed of interest, with
the highest average percentages of impervious areas. Hence, for
these regions we account for chance constraints, as discussed in
Section 2.3, where we let 3 = 0.15 under confidence level (1 —
€) = 0.95. Based on our computational results, for any given sub-
catchment, the correlation between baseline surface runoff and the
surface runoff after placing GI practice was not statistically signif-
icant (p-value < 0.05). Hence, we ignore the covariance terms in
chance constraint (12).

tainty, Omega, https://doi.org/10.1016/j.0mega.2020.102196

Please cite this article as: M. Barah, A. Khojandi and X. Li et al., Optimizing green infrastructure placement under precipitation uncer-



https://doi.org/10.1016/j.omega.2020.102196

JID: OME

[m5G;February 11, 2020;22:18]

18 M. Barah, A. Khojandi and X. Li et al./ Omega xxx (XXXX) XXX

Table 3

Comparison of percentage reduction in total expected runoff under two-stage conservative-stochastic model, with and without chance constraints for the sub-catchments

in regions 1 and 2. Note that y = 0.15 and 1 —€ = 0.95.

Budget (million dollars)  Percent Reduction (Conservative-stochastic)

Percent Reduction (conservative-stochastic with chance constraints)

Relative Difference

10 5.30% 5.28%
15 6.09% 6.09%
20 6.87% 6.87%
25 7.64% 7.61%
50 10.97% 10.82%
75 13.47% 13.19%
100 14.86% 14.63%
150 15.77% 15.58%

0.38%
0.00%
0.00%
0.39%
1.37%
2.08%
1.55%
1.20%

16.0%+

Percentage Reduction in Total Expected Runoff

T '
10 15 20 25 50

%
Budget (million dollars)

Model
] Muli-stage
4] Two-stage

Fig. 11. Comparison of percentage reduction in total expected runoff under two-stage and multi-stage (three-stage) conservative-stochastic models, where the available
budget ranges between 10 and 150 million dollars. The shaded areas represent the 95% CI for reduction in total expected runoff for the two models.

Table 3 summarizes the results of the two-stage conservative-
stochastic models, with and with chance constraints for the sub-
catchments in regions 1 and 2. As expected, the overall percentage
reduction in total expected runoff is higher when not including the
constraints, suggesting that the constraints are active in the opti-
mal solution. It is worth noting that when the chance constraints
are included, the density of the placed bioretention, of any size, in
region 1 and 2 is higher than when these constraints are not in-
cluded. In general, the observed relative difference in percentage
runoff reduction is generally higher under higher available budget
levels, with the highest relative difference in percentage runoff re-
duction observed under 75 million dollar budget, i.e., 2.08%.

4.5. Conservative-stochastic models: Two-stage vs multi-stage

In this section, we present and compare the computational re-
sults obtained from the two-stage and multi-stage conservative-
stochastic models, under relaxed decision sets, i.e., we allow all
GI types to be placed in any of the decision stages. Note that
the projected total expected runoff volume for the multi-stage
conservative-stochastic model is identical to that of two-stage
conservative-stochastic model as reported in Section 4.2, i.e., for
o =0.5, the estimated 95% CI for the expected baseline surface
runoff equals 4.56 x 10! + 1.75 x 10°.

Analogous to Figs. 10, 11 presents a comparison of percentage
reduction in total expected runoff under two-stage and three-stage
conservative-stochastic models, where the available budget ranges
between 10 and 150 million dollars. First note that the results un-
der this two-stage conservative-stochastic model are slightly bet-
ter than those obtained from the two-stage conservative-stochastic

model reported in Section 4.2. This is mainly because in this sec-
tion we relax the restrictions on decision sets, allowing all GI types
to be placed in any of the stages. However, care needs to be taken
when comparing the solutions across this section and Section 4.2,
as in this section we use T = 11, whereas in Section 4.2 we had
T =10. The choice of T =11 in this section is mainly to facil-
itate the comparison of two-stage and three-stage conservative-
stochastic models, where in the latter model the 33-year planning
horizon is divided into three 11-year periods, and GI placement oc-
curs at the beginning of each period.

As seen in Fig. 11, the results of the two-stage conservative-
stochastic outperforms that of three-stage conservative-stochastic
under any given budget level. This partly stems from the fact
that under our problem construction, as discussed in Section 2.2,
the two-stage case is a relaxation of the multi-stage case. Lastly,
as seen in the figure, the difference between the percentage re-
duction in total expected runoff under two-stage and multi-stage
(three-stage) conservative-stochastic models is not constant across
all budget levels. The lowest relative difference between the two
percentage reductions is around 2.36%, occurring under 50 million
dollars budget, whereas the highest difference between the two
percentage reductions is 20.99%, occurring under 20 million dol-
lars budget.

5. Summary and insights

Climate change threatens to overwhelm stromwater systems
across the nation, rendering them ineffective. Green Infrastructure
(GI) practices are low cost, low regret strategies that can con-
tribute to urban runoff management. However, questions remain
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as to how to best distribute GI practices through urban watersheds
given precipitation uncertainty and hydrological responses to their
installation. In this work, we showcase an approach that can en-
able city managers to incorporate the complexity and uncertainty
of climate projections to make optimized choices for building re-
siliency into urban systems.

In this study, we developed stochastic programming models
to determine the optimal placement of GI practices across a set
of candidate locations in a watershed to minimize the total ex-
pected surface runoff under medium-term precipitation uncer-
tainties, given an available budget. We proposed a novel sce-
nario generation process that allowed us to efficiently evaluate
the impact of precipitation on the entire watershed system un-
der various combinations of GI practice placements. We cali-
brated the model using literature, historical precipitation data, fu-
ture precipitation projections, and expert opinion and conducted
a case study for an urban watershed in the City of Knoxville.
We provided computational results and conducted extensive sen-
sitivity analyses. Our results show that the optimal placement
of GI practices within our watershed of interest can contribute
to up to approximately 9.5% reduction in total expected runoff
over the planning horizon, with a limited budget of 25 million
dollars.

The reduction in total expected runoff obtained by the two
modeling approaches are comparable. The two models, how-
ever, are quite different with respect to the computational time.
That is, the computational time of the stochastic model is ap-
proximately two orders of magnitude larger than that of the
conservative-stochastic model. This is mainly because of the lower
number of scenarios used in the latter approach due to pre-
processing of the precipitation projections, i.e., using Cls for the
baseline runoff volume and surface runoff captured by a GI prac-
tice in any given sub-catchment, instead of all 100 scenarios per
CGCM.

In our models, we accounted for hydrological connectivity in
the watershed using an underlying acyclic connectivity graph
of sub-catchments. Specifically, we introduced a 1-neighbor con-
nectivity constraint over the graph to ensure that a large-scale
Gl practice can be placed in a given sub-catchment if there
exists at least one large-scale GI practice in one of the sub-
catchments that are hydrologically connected to it. In addition,
we carefully calibrated the runoff adjustments over pairs of hy-
drologically connected sub-catchments to more accurately esti-
mate the impact of large-scale GI practices on runoff reduction
not only within the sub-catchments in which they are placed,
but also in their downstream sub-catchments. Our analysis shows
that the 1-neighbor constraint protects the optimality of a so-
lution in our watershed of interest, regardless of accounting
for adjustment factors. This is mainly because of the particu-
lar structure of the connectivity graph of sub-catchments. More
in-depth analysis is needed to establish sufficient conditions un-
der which calibration of runoff adjustment factors is completely
unnecessary.

To increase resilience against precipitation uncertainty, it is im-
portant to be able to minimize the expected total runoff volume
across the entire watershed, while accounting for some level of
confidence in runoff mitigation in certain (or all) sub-catchments.
Hence, we introduced chance constraints that ensure the GI prac-
tices are placed across the watershed such that some level of con-
fidence in the degree of runoff volume captured in given sub-

catchments are achieved. We provided the results for a case study
using chance constraints, where we included constraints for the
most populated sub-catchments, with the highest average per-
centages of impervious areas. We opted to include constraints for
these sub-catchments as higher runoff in densely populated ar-
eas may result in significant water quality problems. It is impor-
tant to note that including chance constraints would impose re-
strictions/prioritizations on placing GI practices across the water-
shed. Hence, the selection of candidate sub-catchments for im-
posing restrictions/prioritizations, and the degree of such restric-
tions/prioritizations, should be thoroughly studied and justified for
any given watershed.

We also relaxed the restriction on decision sets, i.e., allowing
for all GI types to be placed in any of the decision stages, in our
conservative-stochastic model. As expected, we observed that re-
laxing the restriction on decision sets improves the solution. How-
ever, it is important to note that restricting when GI practices of
certain types can be placed provides practical benefits regarding
investment planning and managing the efforts required for imple-
menting the different types of GI practices. For instance, consid-
ering that bioretentions are typically installed in relatively large,
commercial scales and are held to high design standards, it may be
more practical for city planners to allocate budget and/or land and
negotiate contracts for their implementation during certain deci-
sion stages.

We also extended the two-stage conservative-stochastic model
to multi-stage. Under our problem construction, we observed that
the percent reduction in total expected runoff under two-stage
case is greater than that under the multi-stage (three-stage) case.

In this study, we only accounted for two relatively similar types
of GI practices, i.e., bioretentions and rain gardens. The selected
types of GI practices are considered to be very efficient not only
in reducing runoff volume, but also in treating stormwater qual-
ity. Note that the model developed is very versatile and allows for
including more than two types of GI practices. Hence, accordingly,
city planners can use the model using a wide array of GI practices
to determine the best course of GI practice planning.

In this study, we accounted for future precipitation uncertainty
using an array of CGCMs. This enabled us to account for climate
change uncertainty when planning GI practices. Although we ac-
counted for precipitation uncertainty, in this study we did not ac-
count for population growth and future urban development that
can give rise to an increase in impervious area. Additional studies
are needed to account for a close-loop system where a more liv-
able city leads to urban population growth, which in turn leads to
more runoff.

Lastly, in this study, we only accounted for runoff capturing
properties of GI practices. As thoroughly discussed in the literature,
GI practices provide a wide array of benefits, e.g., improving water
and air quality, contributing to urban aesthetics, etc. Future multi-
objective mathematical programs need to be developed to account
for all benefits of GI practices when optimizing GI practice place-
ment within an urban watershed.
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Appendix A. Notation

Table A1
The sets.
Set Description
\ Set of sub-catchments
A Set of sub-catchment connectivity arcs
G Set of large-scale GI practices
G Set of small-scale GI practices

G=G'uG" Set of GI practices

L Set of available levels of installation of GI practices

v Set of projected precipitation time series for the watershed, referred to as scenarios

] Set of projected daily precipitation time series for the watershed, produced by the CGCMs

Table A.2
The parameters.
Parameter Description
T Length of the planning horizon in years
T The year in which a precipitation scenario is realized, referred to as time to realize a scenario
44 Probability of scenario ¢ € W
ayjeA An arc indicating that the upstream sub-catchment i’ € V is connected to the downstream sub-catchment i € V
in"[ Total baseline surface runoff under scenario i € W over sub-catchment i € V in year t < T when no GI practice is placed
qu"[(oz) The width of the 100(1-«)% CI for average baseline surface runoff volume within sub-catchment i € V under scenario ¢ € W in yeart < T
Q:‘l;,[ Surface runoff captured by GI practice of type j € G installed in level | € L within sub-catchment i € V under scenario ¥ € W in year t < T.
We also define @/} =0.
Zégf’jﬁ(a) The width of the 100(1-«)% CI for the average surface runoff captured by GI practice of type j € G installed in level | € L within
sub-catchment i € V under scenario ¢ € W inyeart <T
/3:’11]11 Runoff ‘adjustment factor’ over the downstream sub-catchment i € V, when a GI practice of type j/ € G' in level I' € L is placed within

upstream sub-catchment i € V and no GI practice or a Gl practice of type j € G' in level | € L is placed within the downstream
sub-catchment i € V

Ct. Per square feet present total cost of placing GI practice of type j € G within sub-catchmenti e Vinyeart <T

e Per square feet construction cost of a GI practice of type j € G in sub-catchment i ¢ Vinyeart <T

Per square feet annual maintenance cost of a GI practice of type j € G in sub-catchment i € Vin year t < T

r Average annual inflation rate

8iji Corresponding area (in square feet) of GI practice type j € G installed in level | € L, within sub-catchment i € V
n Precipitation coefficient of variability
Table A3
The Variables.
Variable Description
xl{j., First stage binary decision variable indicating whether or not a GI practice of type j € G' G in level | e L is placed within sub-catchment

ieVinyeart<T -1
E,’]f’ First stage binary variable indicating whether or not GI practices of types j/, j € G' in levels I, | € L are placed within sub-catchment ',

icVattimes r', t < T, respectively. We also define z/;:J" = 0.
yf’]i Second stage binary decision variables indicating whether or not a GI practice of type j € G! c G in level | € L is placed within

sub-catchment i € Vyeart, T <t <T

Appendix B. Adjustment in surface runoff reduction due to GI placement in connected sub-catchments

Note that we assume ‘adjustments’ over downstream sub-catchments are additive. Hence, without loss of generality, here we simply
present adjusting the runoff over the downstream sub-catchment i when a large-scale GI practice is placed within the single upstream
sub-catchment ' € V, ay ; € A.

Fig. B.1 presents the three cases to consider when accounting for surface run-off reduction over the downstream sub-catchment i due
to placing a GI practice within the upstream sub-catchment i, a; ; € A, when accounting for large-scale practices only:

(a) GI practice of type j’ in level I’ is placed within upstream sub-catchment i’ in year t’ after GI practice of type j in level [ is placed
within downstream sub-catchment i in year t such that 0 <t <t/ <T — 1. In this case, run-off adjustment is needed only after the
placement of a GI practice in the upstream sub-catchment i’ in year t’. Hence the adjusted runoff reduction begins in year t’;

(b) GI practice of type j’ in level I is placed within upstream sub-catchment i’ in year t' before GI practice of type j in level [ is placed
within downstream sub-catchment i in year t such that 0 <t’ <t < T — 1. In this case, two levels of run-off adjustment are needed:
The first adjustment is needed between years t' and t — 1, and the second adjustment is needed on and after year ¢, i.e., after
placing a GI practice in downstream sub-catchment i;

(c) GI practice of type j’ in level I’ is placed within upstream sub-catchment i’ in year t' and no GI placed in downstream sub-catchment
i by the beginning of year T, i.e., 0 <t’ <T — 1: In this case, run-off adjustment over downstream sub-catchment i is needed on
and after year t'.
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Fig. B.1. The three cases to consider when accounting for surface run-off reduction over a downstream sub-catchment due to a GI practice placement upstream, where the
downstream and upstream sub-catchments are placed in years t and t’, respectively. Attention is restricted to large-scale practices only.

First, consider the third term in the objective function (1), i.e.,

Juf vt (o R
- Z 1]l (Qz ( ’I’_Zt,ifj.{ )

{t" | max{t-1j.0).t'}<t” <T}
Apd
+Q A ) B

Eq. (B.1) adjusts the run-off after placing a GI practice in the upstream sub-catchment i’. Also, consider the fourth term in the objective
function (1), i.e.,

g 1//[ t" J
- Z :]Jl Ql [11]1 . (B.Z)

¢ er<t" <t-1}

Eqg. (B.2) adjusts the run-off after placing a GI practice in the upstream sub-catchment i’ if it occurs before placing a GI practice in the
downstream sub-catchment i.

In case (a), the runoff adjustment over downstream sub-catchment i for the years in which GI practices are placed in both sub-
catchments i' and i, ie, in year t” such that ¢ < ¢’ < T is given by Eq. (B.1), where the indicator function 1, returns 1,
¢ ¢

tul tijp are equal to one. Therefore, in case (a)

and max{t - 1{j,0y.t'} returns t. Note that x{ =2
Eq. (B.1) simplifies as follows:

Pl AUt
- Z ’Blljjl Q:l/ :

{t"|t'<t" <T}

=0 since both X:/ i and z

Also, clearly, in case (a), Eq. (B.2) is not valid since t < t'.
Similarly, for case (b), for the years in which GI practices are placed in both sub-catchments i’ and i, i.e., in year t” such that t <t” < T,
Eq. (B.1) simplifies as follows:

il Av.t’
- Z /3111 ’Qi,j,z :
{t"|t<t”" <T}

Also, for case (b), for the years in which the GI practice is placed in upstream sub-catchment i’ and yet no Gl is placed in downstream
sub-catchment i, i.e., in year t” such that ¢’ <t” <t —1, Eq. (B.2) is active and simplifies as follows:

_ 1 gL wt
Z 1]l Q1
{t"|t'<t" <t-1}

J

because z IJ

Lastly, for case (c), for the years in which the GI practice is placed in upstream sub-catchment 7, i.e., in year t” such that t’ <t” < T,
the Eq. (B.1) simplifies as follows:

TP
- Z 'Bil,j,Jl Q7

(¢ le<t"<T)

equals one.

The indicator function 1;) returns 0 and hence, max({t - 1;.q},t’} returns t’. Note that variable xf,/ i is equal to one and variable
t/,i/.j/,l/
tijl

Also, note that Eq. (B.2) is equal to zero since variable Zﬁlii}if/"/ equals to zero in this case.

z is equal to zero as j = 0.

Appendix C. Multi-stage stochastic programming model for placing GI practices

Here we introduce the multi-stage stochastic programming approach. Let K denote the number of stages Withing which we place GI
. . = . . =1 = = =K
of types G in the sub-catchments of interest. We let T" denote the time period of stage Kk where 0 <T <---<T < T TN = T.

. . .. .= =41 o
Accordingly, we let t° denote a year during decision stage , ie. T <t* < T"' under realization of random variable Y. We let ¢ (x,2)
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denote the multi-stage conservative-stochastic model that denotes total expected surface runoff volume across the watershed of interest,
which is given by

r212n¢5a x,z) = E‘/’[o.fl) |:1(1)112r)1¢5& x,2)+--- +Ey () |:mm¢>5,< (x, z):| i| (€3)
where Ew is the expectation of probability distribution of 1/f[T S in stage x« which also can be written as w,,( 7, |1// ol
w 71 g6 To snmpllfy our multi-stage formulation, we assume stage-wise independence of probability dlstrlbutlons That is,
w[.r»( ) IW o1 7 wﬁk o) Hence, by swapping the min and expectation operators, we then have
mmd)s (x,2) = mm]E%T) [¢51 (*,2) +--- + P (x,2) - ] (C4)

Also, consistent with our extended two-stage formulation, we assume there exists a discrete support for the probability distribu-
tion of w ey denoted by the set {w,,( AN ,w‘;'fm :7¥"™} in which 7V is the probability of each discrete sup-

7k+1

)
port member (Zwe\p 7V =1). Hence, we let x“" be a binary variable denoting if GI of type j with size i is placed in sub-catchment
i under scenario V¥, ¥ e W¥. Also, we let x:/’], be binary variable alias to xl‘/’]tl Regarding the interaction between sub-catchments,

we let ztl//ifj '[' I denote the binary variable indicating whether GI practices of types j/, j € G! in levels I, | € L are installed within

sub-catchment #, i € V in years T<~1 <t’.t < T¥ under scenario V, respectively. Therefore, the extended formulation of Ey
i

[ming ;o ¢5{§ (x,2)] is given by

E min X,z
V-t ) |:(X nin, b ( )j|

:Zﬂ‘“[z Y Qg

Yewk eV (K1 ey

DO DD > (@ - @)

i€V jeG leL {t|TK=1<tK=1 <11} {¢/|tK=1 <t/ <T}

ADIEDIDID I DD 2 2

ayr ;€A jeGlufo) j/eGl el el {¢|TK=1<¢<T} {¢/|TK=1 <t/ <T) (r”|max(t.1{j#0)
Yot 1// t 2 t i
ﬂul <<Q: (0‘))< o T A
*1//[ z//,t’,i’,j’.l/
(Qul —4ij (0‘)> 2l

DD MDD 2 2

4. ;€A jeGlufo} Gl 1el el {t|TK=1<t<TH{t/|TK=1 <t/ <t—1} (¢ |t/ <t <t—1)

lrJJl/zr (Q:/,r 1//t (a)) “5/’,/]/1,] (C.S)

st YN Y s (x:’fj‘j —x’fjﬁ) < BY", Vi e WK, (C.6)

iV jeG lel {t|T¥K-1<t<T}

=t <1)

Y e WK Vi i
N2 Vit i ay; €A,
Xy ¥ <2500 Vil jeG VI lel (C7)
0<tt<T-1,
Vi e WK Vi i eV,
XUt RN ay; €A,
Xij1 = )OI Zeiil "o vj el(;’,‘v’l el, (C8)
j'eGl Vel {t'|TK-1<t’'<T} Tk-1 <t<T,
Vi e UK Vi, i eV,
lﬁ',t’,i’.j/,l/ a-,’- S A’
ATED DD DD DR VieG VI el (€9)
jeG! leL {t|TK-1<t<T} TK-1 <t/ <T,
Vi e UK,
P Vi/, ie V, ayi € A,
Zii It =o, j=0.vj' ed, (C.10)
VI,I e,

TK-T <t/ <T,
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jeG! lel {t|Tk-1<t<T} ay ;€A jeGl lel {t|TX-1<t<T}
> > K=t Vi e WK VieV, (C12)
jeGl lel {t|TK-1<t<T}
Vi e UK V' € WK1,
WK sub-tree WK-1
xS VieV,VjeGVlel, (C13)
i,j.l il = =K-1
T <t<T,
TK—Z < < TK—]7
Yy € WK Vo)’ € WK-1,
WK sub-tree wk-1
V.t Yt Y VieV,VjeG,Vlel,
25— =X =0 67,(’_]] € € (C14)
T  <t<T,
T2 < <T
YV € WK Y/ e Wk-1,
WK sub-tree Wk-1
It ¥t . .
X;{/ﬂ 7)(/1_']:1 >0, Vi GivK,:'{_] € G, Vil e L, (C15)
T =<t=<T,
™2y T
Vi',ieV, Ay i € A,
PR i il g 1
N e Y VieGVJ.J" <G, (C.16)

ijl " gl

VI, leL VY eV,
T <t ¢/ <T.

where B¥", denotes the remaining of total allocated budget, given the placed GI practices in parent nodes of WX, i.e., stages 0 to K — 1. The
objective function (C.5) minimizes the total expected surface runoff volume in stage K. Definitions of constraints (C.6)-(C.12) are similar to
counterpart constraints defined in 2. Equations defined in (C.13) is non-anticipativity constraints for multi-stage stochastic programming.
That is, a decision made on a node in the scenario tree is sustained in its sub-trees. We set constraints (C.14) and (C.15) to ensue that cost
of GI practices that are already placed on a node under a scenario, would not be double counted in the sub-tree of the scenario. Lastly,

constraint (C.16) maintains the binary conditions of the decision variables.

Appendix D. Coupled Global Circulation Models (CGCMs)

Table D.1
Ten coupled global circulation models used for projecting future precipitation.

Model Name

Institution

ACCESS: The Australian Community Climate and Earth-System Simulator [1]
BCC-CSM: Beijing Climate Center Climate System Model [2], referred to as
‘BCC’ in the text

CCSM4: The NCAR’s Community Climate System Model [3]

CMCC-CM: The Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate

Model [4], referred to as ‘CMCC’ in the text
FGOALS: Flexible Global Ocean Atmosphere Land System [7]

GFDL-ESM2M: Geophysical Fluid Dynamics Laboratory Earth System
Model [8], referred to as ‘GFDL’ in the text

IPSL-CM5A: The Institut Pierre Simon Laplace Climate Model [10], referred
to as ‘IPSL’ in the text

MPI-ESM-MR: Max-Planck-Institute Earth System Model Mixed

Resolution [11], referred to as ‘MPI’ in the text

MRI-CGCM3: Japanese Meteorological Research Institute Coupled Global
Climate Model [12], referred to as ‘MRI’ in the text

NorESM1-M: Norwegian Earth System Model [16], referred to as ‘NorESM’ in

the text

Commonwealth Scientific and Industrial Research Organisation
Beijing Climate Center, China Meteorological Administration

Climate and Global Dynamics Laboratory (CGD) at the National Center for
Atmospheric Research (NCAR)

Euro-Mediterranean Center on Climate Change

Institute of Atmospheric Physics, Chinese Academy of Sciences, State Key
Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical
Fluid Dynamics

Geophysical Fluid Dynamics Laboratory (Princeton University)

Institut Pierre Simon Laplace

Max Planck Institute for Meteorology

Meteorological Research Institute (MRI) of the Japan Meteorological Agency

Multi-institutional, coordinated climate research in Norway

tainty, Omega, https://doi.org/10.1016/j.0mega.2020.102196
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Table E1

Summary characteristics of the 140 sub-catchments within our watershed of interest, categorized by percent of imperviousness, percent of slope, and Manning's n for
overland flow over the pervious portion of the sub-catchment.

% of Imp. % of Slope ~ Manning’s n Number of Sub-catchments  Average Area (acres)  Average Imp. (%)  Average Slope (%)  Average Manning’s n

low low med 2 117.95 7.85 1.56 0.248
low low high 9 153.24 4.64 1.68 0.281
low med high 8 139.16 3.94 2.86 0.290
low high high 16 98.50 4.78 6.59 0.282
med low med 2 92.14 11.60 1.46 0.250
med low high 2 80.65 8.80 1.86 0.262
med med med 3 154.36 10.43 2.74 0.255
med med high 9 76.10 9.69 2.75 0.272
med high med 5 85.88 10.62 7.29 0.248
med high high 13 90.97 9.47 8.27 0.266
high low low 8 66.28 20.53 1.58 0.211
high low med 7 139.53 16.57 1.58 0.247
high low high 5 147.74 16.62 1.78 0.283
high med low 10 88.49 23.39 3.02 0.219
high med med 3 43.49 18.93 2.46 0.247
high med high 2 121.45 23.15 3.15 0.283
high high low 18 67.87 19.82 5.11 0.211
high high med 12 90.44 14.36 6.70 0.247
high high high 6 121.26 17.87 6.09 0.282

Appendix E. Calculating runoff adjustment factor over a downstream sub-catchment

We designed a set of experiments to calculate runoff adjustment factor over a downstream sub-catchment for any given pair of hy-
drologically connected sub-catchments. Consistent with the literature [24], we only use the most significant sub-catchment characteristics
related to surface runoff in our experiments, namely, sub-catchments’ percent of imperviousness, percent of slope, and Manning’s n for
overland flow over the pervious portion of the sub-catchment. Next, we use the values of these characteristics for the sub-catchments in
the watershed of interest and calculate their corresponding quartiles. Accordingly, we stratify each characteristic into three categories of
low, medium, and high, if the corresponding value is at or below the first quartile, between first and third quartiles, and above the third
quartile. Table E.1 summarizes the combination of categories along with the number of observed sub-catchments within each one for our
watershed of interest.

Consequently, we execute the SWMM model for all pairs of sub-catchments, given the average values for the categories in our wa-
tershed of interest. We run these simulations under the randomly selected precipitation events in the ‘SWMM Simulation’ step of the
procedure described in Section 3.3. The runoff adjustment factor over a downstream sub-catchment is then estimated as the average dif-
ference in runoff coefficient in the sub-catchment over all precipitation events when a certain GI practice is placed within the upstream
sub-catchment and no GI is placed there (i.e., no treatment). Fig. E.1 presents the heat map of runoff adjustment factors over the down-
stream sub-catchment, given all observed combinations of sub-catchment characteristics’ categories in the watershed of interest.

Appendix F. Summary of the characteristics of the sub-catchments in first creek, Knoxville, TN
Table F1

Summary of the characteristics of the sub-catchments in First Creek as labeled in
Fig. F.1.

Region  Total Area (Acres)  Average Impervious Area (%)  Average slope (%)

1 1292.05 23.36 3.65
2 3187.31 18.01 4.74
3 4915.84 8.07 3.83
4 807.43 8.31 6.12
5 3745.82 12.61 4.31

Appendix G. Sensitivity analyses

In this section, we examine the sensitivity of the solutions with respect to some of the important calibrated parameters, including the
years to realize a scenario, T, the ratio of maintenance cost to construction cost, p, and the runoff adjustment factor, /3,.’_,]1.’1,‘1,. In all cases,
we conduct the sensitivity analysis under a wide range of available budgets. '

First, we perform sensitivity analysis on the years to realize a scenario, T, under different budget limitations. Fig. G.1 shows the percent-
age reduction in total expected runoff for T =5, 10, and 15, with the total available budget ranging between 10 and 150 million dollars.
As seen in the figure, realizing a scenario sooner, i.e., smaller values of T, results in a larger reduction in total expected runoff. However,
the differences among the percentage runoff reductions for the three cases is low, and decreases in the amount of available budget. For
instance, given 10 million dollars available budget, the maximum difference among the percentage runoff reductions equals 1.00% and
0.85% for the stochastic and conservative-stochastic models, respectively. This maximum difference decreases to almost zero for budgets
larger than 50 million dollars for both models. This is mainly because under a large enough available budget, large-scale bioretentions are
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Fig. E.1. Heat map of the runoff adjustment factors over the downstream sub-catchment, given all observed combinations of sub-catchment characteristics’ categories in the
watershed of interest. Sub-catchment characteristics are shown as tuples, where the first element corresponds to the GI level - 0 encodes no treatment and 1-3 refer to the
levels low, medium, and large bioretentions, respectively. Elements 2-4 of the tuple correspond to percent of imperviousness, percent of slope, and Manning’s n for overland
flow over the pervious portion of the sub-catchment, each of which are categorized into three levels of 0-2, encoding low, medium, and high, respectively.

Fig. F1. Watershed of First Creek, grouped based on similarities in sub-catchment characteristics.
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Fig. G.1. Percentage reduction in total expected runoff for T = 5, 10, and 15 years, where the available budget ranges between 10 and 150 million dollars.

Table G.1
Percentage reduction in total expected runoff for different ratios of maintenance cost to construction cost, p, where the available budget ranges between
10 and 150 million dollars.

Budget (million

dollars) Ratio of maintenance cost to construction cost, p

Stochastic Model conservative-stochastic Model

1% 3% 6% 10% 1% 3% 6% 10%
10 6.26% 6.22% 6.16% 6.09% 5.32% 5.30% 5.27% 5.23%
15 7.59% 7.55% 7.50% 7.43% 6.12% 6.09% 6.05% 6.00%
20 8.61% 8.56% 8.51% 8.44% 6.90% 6.87% 6.81% 6.75%
25 9.36% 9.33% 9.26% 9.20% 7.68% 7.64% 7.58% 7.49%
50 12.18% 12.14% 12.07% 11.98% 11.04% 10.97% 10.88% 10.76%
75 13.75% 13.71% 13.65% 13.58% 13.52% 13.47% 13.37% 13.25%
100 14.78% 14.74% 14.69% 14.62% 14.90% 14.86% 14.79% 14.70%
150 15.37% 15.37% 15.37% 15.37% 15.77% 15.77% 15.77% 15.77%

Table G.2

Percentage reduction in total expected runoff under different levels of runoff adjustment factors, where the available budget ranges between 10 and 150
million dollars.

Budget (million dollars) Levels of Runoff Adjustment Factor

Stochastic Model conservative-stochastic Model

No Adj. -50% Estimated Adj. 50% No Adj. -50% Estimated Adj. 50%
10 6.16% 6.19% 6.22% 6.25% 5.25% 5.28% 5.30% 5.32%
15 7.46% 7.50% 7.55% 7.60% 6.03% 6.06% 6.09% 6.12%
20 8.46% 8.51% 8.56% 8.62% 6.78% 6.83% 6.87% 6.92%
25 9.21% 9.26% 9.33% 9.39% 7.53% 7.59% 7.64% 7.70%
50 11.99% 12.07% 12.14% 12.22% 10.78% 10.88% 10.97% 11.07%
75 13.57% 13.64% 13.71% 13.78% 13.20% 13.33% 13.47% 13.60%
100 14.58% 14.66% 14.74% 14.83% 14.64% 14.74% 14.86% 14.97%
150 15.22% 15.30% 15.37% 15.45% 15.60% 15.69% 15.77% 15.85%

placed within almost all sub-catchments in the first stage. Therefore, because at most one type of GI practice can be placed within any
given sub-catchment, there would be few vacant sub-catchments in which rain gardens can be placed after realizing a scenario at time T
in the second stage. This, in turn, decreases the impact of second stage decisions, resulting in almost no significant difference between the
three cases under larger amounts of budget.

Next, we conduct sensitivity analysis on the amount of maintenance cost. As discussed in Section 3.1, we set the annual annual GI
maintenance cost equal to 3% of its construction cost, i.e., p = 3%. Table G.1 presents the percentage reduction in total expected runoff
under different ratios of maintenance cost to construction cost, p, ranging between 1% and 10%, where the available budget ranges between
10 and 150 million dollars. In general, as expected, given any available budget, the percentage runoff reduction non-increases in p. This
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is because as p increases, a larger portion of the budget must be allocated to maintain the GI practices to be placed. For instance, under
10 million dollars available budget, in the stochastic model, the runoff reduction decreases by 0.13% when p increases from 3% to 10%.
Similarly, in the conservative-stochastic model, the corresponding runoff reduction decrease equals to 0.07%. Note that for large amounts
of available budget, i.e., under 150 million dollars available budget, changing o no longer impacts the solution as the available budget is
high enough that covers all construction and maintenance costs.

Finally, we conduct sensitivity analysis with respect to the value of runoff adjustment factor, ﬂl‘/j]l/l/ Table G.2 presents the percentage

reduction in total expected runoff under the estimated adjustment factors, no adjustment, and where the estimated adjustment is modi-
fied by 50%, where the available budget ranges between 10 and 150 million dollars. As seen in the table, connectivity, captured through
adjustment factors, contributes to up to 0.16% and 0.27% reduction in total runoff under various available budgets for the stochastic and
conservative-stochastic models, respectively. Also, note that connectivity contributes to a higher percentage of runoff reduction under
higher levels of available budget. This is mainly because in such cases, a larger number of bioretentions are placed across the watershed,
which potentially results in a higher number of pairs of hydrologically connected sub-catchments.

Supplementary material
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.omega.2020.102196.
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