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ABSTRACT KEYWORDS
There are many different approaches to automated content analysis. automated content analysis;
This paper focuses on dictionaries and supervised learning; in addi- machine learning; content-

tion to comparing the effectiveness of the two, we argue for the analytic dictionaries; policy
advantages of using them in combination. We do so in a research feedback; public
area in which we have an independent objective referent: govern- responsiveness
ment spending. With an eye toward capturing the accuracy of media

coverage on public policy, we apply both hierarchical dictionary

counts and supervised learning to measure mass media coverage of

change in US defense spending. Both approaches appear to do well

at capturing a media “policy signal” in the area, which provides an

important test of convergent validity. While the results highlight the

value of both dictionary and machine learning methods used inde-

pendently, they also illustrate ways in which the two can be used in

combination.

The earliest applications of large-scale automated content analysis relied almost exclu-
sively on dictionaries. In the early days of readily-available digital text, dictionaries such as
the General Inquirer (Stone et al., 1966) and Linguistic Inquiry and Word Count (LIWC;
Pennebaker et al., 2001), alongside more specialized approaches such as Diction (Hart,
2000), were the standard approaches to extracting signals from large bodies of text. Over
time, however, supervised-based approaches have proliferated. (See Grimmer & Stewart,
2013 for a particularly valuable review of the field.)

Many scholars suppose that supervised-learning approaches dominate those relying on
dictionaries, predicated mainly on the supposition that computers are better able to
capture the quantities of interest. Because supervised methods are able to take into
account relationships between multiple words, quite possibly at different places in
a document, they may be better able than simple dictionary-based word count approaches
to capture the context in which words occur. This belief is reasonable and also supported
by recent research.

This paper considers a third way, namely, the combination of dictionary-based and
supervised-learning approaches. Indeed, supervised-learning applications almost always
use dictionaries, if only implicitly (Hopkins & King, 2010; Monroe et al., 2008; also see
Wilkerson & Casas, 2017), and we attempt here to demonstrate the advantages of a more
explicit dictionary-plus-supervised-learning approach. We assess the success of the
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methodology by comparing content analyses of media coverage of public policy with an
independent objective referent — government spending. The substantive importance of
this test case is discussed in the next section.

Below, we apply hierarchical dictionary counts and supervised learning to media
coverage of change in US defense spending, a publicly salient domain in which there is
strong evidence of thermostatic public responsiveness (Wlezien, 1995, 1996; Soroka &
Wlezien, 2010). We rely on a corpus of roughly 2 million articles from 17 newspapers
over the period between 1980 and 2018, applying a combination of hierarchical dic-
tionary searches as well as a random forest machine learning algorithm trained on
sentences extracted using dictionaries and coded by humans - an approach which we
label the dictionary-plus-supervised-learning approach. Results using this method per-
form only slightly better than do the hierarchical-dictionary results in terms of capturing
a media “policy signal” that moves alongside spending change. Whether the improve-
ment is enough to justify the use of supervised learning rather than hierarchical diction-
aries in this instance is not entirely clear. We nevertheless see supervised learning as
a way to augment and extend dictionary-based approaches, and vice versa. We thus
consider several ways in which the two approaches can be used in tandem. Substantively
speaking, we regard our results as highlighting the accuracy of US media coverage of
defense spending; methodologically speaking, our emphasis is on the potential value of
combining dictionary- and machine-learning-based methods of automated content
analysis.

Background

The initial motivation for our research is to better understand the role of mass media as
a mechanism(s) of policy feedback. Some research demonstrates negative feedback, where
the public adjusts its public preference “inputs” thermostatically in response to policy
“outputs” (Wlezien, 1995; Erikson et al., 2002; Eichenberg & Stoll, 2003; Jennings, 2009;
Soroka & Wlezien, 2010; Ellis & Faricy, 2011; Ura & Ellis, 2012; Wlezien & Soroka, 2012;
Pacheco, 2013). Other research finds positive feedback, where an increase in policy leads
people to want more spending in that domain (see the excellent review of the large and
diverse literature in Beland & Schlager, 2019). Both relationships, and perhaps especially
the thermostatic one, require that the public receives information about policy outputs.
Our substantive interest is in assessing the role of the mass media in communicating this
information; and doing so requires a method of capturing, across large bodies of media
content, measures of mass-mediated policy information.

Previous research on media coverage of policy has typically not focused on policy
outputs. Scholars have tended to concentrate on media priorities (and frames) and their
impact on policy decision-making (Baumgartner & Jones, 1993; Boydstun, 2013; Card
et al., 2015; McCombs & Shaw, 1972). While important and relevant to policymaking (and
the public), this work does not help us understand whether mass media content reflects
what policymakers actually do.

Some other recent research does address media coverage of policy, focusing particularly
on defense spending (Neuner et al., 2019; Soroka & Wlezien, 2019). That work proposes
a measure of media coverage that focuses on policy change, not the actual levels of policy.
There are two main reasons for this. First, it may be that the change in policy is what the
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media coverage reflects, much as is the case for the economy (see Soroka et al., 2015;
Wlezien et al., 2017). Second, we can directly measure media coverage of change using
relatively simple dictionaries. That research shows that the resulting media signal (“M,)
closely follows spending change (AP;) itself, per the following equation:

AM= f{AP,}. (1)

Prior research concentrates on a single domain in a single country, spending on defense in
the US. We follow that lead in the analysis that follows. We thus regard this paper as (a)
building directly on previous work relying solely on dictionary-based content analysis of
defense, but also (b) adding to a growing body of work addressing the role that mass
media play in public opinion formation and political representation.

The Media Corpus

Examining the possibility that media coverage is a mechanism for public responsive-
ness requires a reliable measure of the media policy signal. What is the best way to
identify this signal? Our examination focuses on a combination of dictionary- and
supervised-learning-based techniques applied to a massive corpus of newspaper stories.
This corpus can be drawn from a number of full-text resources, of course; we rely on
Lexis-Nexis due to access to the Web Services Kit (WSK), which facilitates the down-
loading of several hundred thousand stories, formatted in xml, in a single search
request. A search request can be based on either pre-coded subjects, or full-text
keywords, or both. We use a combination, as follows: STX001996 or BODY (national
defense) or BODY(national security) or BODY(defense spending) or BODY(military
spending) or BODY (military procurement) or body (weapons spending).1 STX001996
is the “National Security” index term, one of five sub-topics with the “International
Relations and National Security” topic. It captures the lion’s share of articles on
defense policy, spending and otherwise. Of course, Lexis-Nexis’ assignment of topics
is most likely a function of their own dictionary-based word search, and our assump-
tion is that their search is more developed than ours would be. Even so, in order to
not miss other spending-related articles, we add the full-text (BODY) search terms
identified above.

We arrive at the above search terms based on some preliminary tests, exploring the
reliability with which different searches capture relevant articles and avoid too many
irrelevant ones. Even so, we invariably miss some articles relevant to spending, and
our analyses identify a considerable volume of irrelevant material as well. We suspect
that using the “National Security” index term means that we err on the side of Type
I rather than Type II errors, i.e., we are more likely to include items that we shouldn’t
than exclude ones we should include. That said, we expect that most irrelevant articles
do not factor into our measure of the net media signal, since we use a combination of
layered dictionaries to identify the instances of spending mentions most likely to
pertain to change in defense spending. Diagnostic analyses support this expectation,
as we will see.

Our working database relies on the following newspapers: Arizona Republic, Arkansas
Democrat-Gazette, Atlanta Journal-Constitution, Boston Globe, Chicago Tribune, Denver
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Post, Houston Chronicle, LA Times, Minneapolis Star-Tribune, New York Times, Orange
County Register, Philadelphia Inquirer, Seattle Times, St. Louis Post-Dispatch, Tampa Bay
Tribune, USA Today, and Washington Post. Not all newspaper databases start in 1980 -
most enter the dataset in the early 1990s. All are gathered up to the end of the 2018
fiscal year, i.e., September 30.

Our selection of newspapers is based on availability, alongside circulation, with some
consideration given to regional coverage. In the end, we have 17 of the highest-
circulation newspapers in the US, three of which aim for national audiences, and
seven of which cover considerably large regions in the northeastern, southern, midwes-
tern, and western parts of the country. Combining these newspapers offers, we think,
a reasonable representation of the national news stream, at least where newspapers are
concerned. Using a relatively wide range of newspapers has an additional advantage: to
the extent that the language and/or focus of defense stories varies across outlets, there
are advantages to building both dictionaries and supervised learning models across
a corpus that is relatively broad. The total database includes 2,171,189 stories, albeit
with more from the mid-1990s onwards, when all of our 17 newspapers are in the
database. This can be seen in Appendix Figure A1, which plots the number of articles
by year across each of our 17 newspapers.

Not all of this content is focused on defense spending. The analyses that follow are not
based on this text, then, but rather all sentences within this corpus that focus on spending,
as defense spending change is our concept of interest. To be clear: our working database in
the analyses that follow is at the sentence level, where sentences are extracted from the
larger database using a simple keyword-in-context (KWIC) search identifying all sentences
with a keyword related to government spending. We do this using a SPEND dictionary,
which includes the following words:

SPEND: allocat*, appropriation*, budget*, cost*, earmark*, expend*, fund*, grant*,
outlay*, resourc*, spend*

This dictionary search (and all subsequent dictionary searches) is implemented in the
quanteda package in R (Benoit et al., 2018). Note that the dictionary has been subjected to
testing in Soroka and Wlezien (2019), and was constructed from a reading of keyword-in-
context (kwic) retrievals, augmented by thesaurus searches. The dictionary-building pro-
cedure, in a nutshell, was as follows: (1) read a random draw of articles extracted using
Lexis-Nexis keywords, and establish a simple set of words that seem to capture “spend-
ing,” (2) augment that list using a thesaurus, and (3) search for each dictionary word,
extracting kwic entries and reviewing those entries to ensure that every word is used, most
of the time, in the way in which we anticipate - in this instance, in the context of
a sentence about spending. Applying this dictionary to our news-story corpus results in
a database of 1,775,008 sentences. Figure 1 plots the number of spending sentences in our
database by fiscal year. This is the raw material for the analyses that follow.

Capturing a “Media Policy Signal”

Having produced the corpus, we now need to implement our content analyses. As noted
above, there are many approaches to computer-automated content analysis. The earliest
ones employed dictionaries created by investigators, and this approach still is widely used
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Figure 1. Defense spending sentences, by fiscal year.

today. Increasingly, however, data analysts rely on machine learning approaches, some of
which are entirely unsupervised by humans and others supervised. (There also is
a combined “semi-supervised” approach.) For our purposes, dictionaries and supervised
methods are most appropriate, because we know our classification categories.

Dictionaries

Our working corpus is already premised on two dictionary searches: first, in the use of
Lexis-Nexis topics (derived from proprietary dictionaries) and additional full-text search
terms relating to national security, and second, in the application of the SPEND dictionary
to extract sentences related to spending. Even this database will include content not
directly related to spending change, however. Our aim is thus to narrow our focus further.

First, we narrow to sentences that mention both spending and direction. We identify
direction using UP and DOWN dictionaries, built and implemented using the same
process described above. The dictionaries are as follows:

UP:  accelerat*, accession, accru*, accumulat*, arise*, arose, ascen*, augment®,
boom*, boost, climb*, elevat*, exceed*, expand*, expansion, extend*, gain*,
grow*, heighten*, higher, increas*, increment*, jump*, leap*, more, multiply*,
peak*, rais*, resurg®, rise*, rising, rose, skyrocket*, soar*, surg*, escalat*, up,
upraise, upsurge, upward

DOWN: collaps*, contract*, cut*, decay”, declin*, decompos*, decreas®, deflat*, deplet*,
depreciat*, descend*, diminish*, dip*, drop*, dwindl*, fall*, fell, fewer, less,
lose, losing, loss, lost, lower*, minimiz*, plung*, reced*, reduc*, sank, sink*,
scarcit*, shrank, shrink*, shrivel*, shrunk, slash*, slid*, slip*, slow*, slump*,
sunk*, toppl*, trim*, tumbl*, wane, waning, wither*

Applying these dictionaries to our sentence-level corpus identifies 575,602 “spending”
sentences that also include “direction” keywords.

Second, in order to reduce the number of false positives, i.e., sentences that are
captured in our search but are in fact not directly related to defense spending, we run
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a simple dictionary search over the set of spending change sentences to confirm that each
includes at least one of the following DEFENSE words:

DEFENSE: army, navy, naval, air force, marines, defense, military, soldier, war, cia,
homeland, weapon, terror, security, pentagon, submarine, warship, battle-
ship, destroyer, airplane, aircraft, helicopter, bomb, missile, plane, service
men, base, corps, iraq, afghanistan, nato, naval, cruiser, intelligence

Doing so isolates 206,426 “spending” sentences that contain “direction” keywords and
words clearly related to defense.”

To summarize the hierarchy of dictionaries employed, we begin with articles from
Lexis-Nexis that relate to “national security,” from which we extract sentences relating to
“spending” and then isolate those that also indicate “direction” and explicitly relate to
“defense.” Note that the ordering of the sentence-level dictionaries does not matter, as
they technically are not nested but rather are applied jointly. There is reason to think that
the dictionaries will produce an increasingly reliable measure (see Soroka & Wlezien,
2019). This is not assured, however, and even if successful, there still may be irrelevant
sentences in our database.

Note that our approach here is identical to the use of hierarchical dictionary counts as
implemented in past work (e.g., Bélanger & Soroka 2012; Young & Soroka 2012). We also
regard this application of dictionaries as very similar to the “learning” inherent in
supervised learning methods used for large-N content analysis (e.g., Jurka et al., 2012.)
There sometimes is a perception that dictionaries are necessarily general, not specific to
particular domains of interest, and that they are simple word lists, concocted based only
on a thesaurus, where words are not subjected to testing, and where results are thus likely
to either miss much relevant material or capture a good deal of irrelevant material. This
certainly can be true, but the use of several iterations of testing during the dictionary-
building stage, and the subsequent use of multiple dictionaries that essentially removes
false positives, i.e., a spending word that is in fact not related to defense, makes for a rather
different dictionary-based analysis — one that has used a corpus and human coding to
“learn” about the terms most relevant to the analysis. Admittedly, this is not as easy and
cheap as using generic off-the-shelf dictionaries but it also is not as intensive (and
expensive) as supervised learning approaches. The analytical benefits of context-specific
dictionaries have been explored in other work (Muddiman et al., 2019), and it is worth
noting that just because a dictionary is domain specific does not mean it cannot be used by
other scholars for related research. The dictionaries used here may be useful for analyses
of different types of media, and the SPEND and UP/DOWN dictionaries may be useful for
analysis of spending information across other policy domains. Of course, these possibi-
lities would require testing these dictionaries on other datasets.

Previous research details how the application of successive dictionaries works (Soroka
& Wlezien, 2019); another paper further highlights the strong connection between this
dictionary-based approach and human coding (Neuner et al.,, 2019). Both articles also
demonstrate a means by which to create a measure of the “media policy signal,” based on
this sentence-level coding, and compare it with actual spending change. We use a slightly
different (but functionally equivalent) approach here: we code sentences in which there are
more UP words than DOWN words as “1” and sentences in which there are more DOWN
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words than UP words are coded as “-1,” while other sentences are coded “0.” (Note that
the vast majority of sentences have just one direction keyword.) We then sum these values
across sentences, by fiscal year (October-September). The resulting measure captures both
direction and magnitude, and can be calculated for all newspapers or single newspapers.
The resulting signal is shown below, in Figure 3, but before we turn to that, we review our
dictionary-plus-supervised learning approach.

Dictionary-plus-Supervised-Learning

Figure 2 illustrates the steps taken for the layered dictionary approach alongside the steps
taken for the dictionary-plus-supervised-learning approach. The latter relies on the same
body of sentence-level data as the purely dictionary-based approach, that is, the sentences
identified using the “spending” dictionaries on national security articles from Lexis-Nexis.
In this case, however, we supervise learning based on a subset of human-coded data to
identify defense spending change.

It is of course possible to use a machine-learning approach mostly independent of the
dictionaries, although the initial identification of the corpus would in most cases still
require some kind of dictionary-based search. As noted in Figure 2, however, our
combined approach relies on dictionaries to identify the sentences that humans code in
order to train our machine learning algorithm. Doing so allows us to focus human coding
on a more balanced corpus, ie., a corpus with a sufficiently high rate of spending
mentions.

We proceeded with human coding in four rounds. In the first two rounds, in order to
ensure at least a minimal amount of human coding across all keywords in our SPEND
dictionary, we draw a random sample of 25 sentences from each of our 11 keywords.
These rounds were used in part to test the relevance of dictionary keywords (see Soroka &
Wlezien, 2019), so a third round then draws 40 sentences from seven of the most common
and reliable spending keywords. The cumulative results of these three rounds of coding
produce a somewhat imbalanced coding set, where a majority of sentences are still not

Dictionary/subject-based article extraction

1 l

SPEND dictionary to

identify sentences SPEND dictionary to
UP/DOWN dictionary to identify sentences
capture direction DEFENSE dictionary to
DEFENSE dictionary to confirm relevance
confirm relevance l

HUMAN CODING + MACHINE
LEARNING to capture direction
and relevance

Dictionary-plus-Supervised-

Dictionary Approach Learning Approach

Figure 2. Dictionary and dictionary-plus-supervised-learning approaches.
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Figure 3. The media signals and spending change.

coded as indicating changes in defense spending (see coding details below), so a fourth
round draws 100 sentences from each of our seven keywords, but this time also including
at least one word from the DEFENSE dictionary. This is done to improve balance in the
human-coded data, which is critical to the training of an effective model, i.e., one that
discriminates among sentences instead of simply predicting the most common category in
the training set for the overwhelming majority of sentences.

Note that this approach may increase the baseline correspondence between our dic-
tionary-based and supervised-learning approaches - the latter begins with a similar set of
dictionary-derived content, and is trained on dictionary-derived sentences as well. But this
partial reliance on a dictionary will produce more balanced data, which is critical to
effective machine-learning. Because our objective is to see if we can improve on diction-
ary-only results with a dictionary-plus-supervised-learning approach, we explicitly use the
dictionary to assist the machine learning algorithm in this way.

We follow this approach for two additional samples of coding. In total, we draw 5,441
sentences from the sentences that include spending cues, with a particular focus on
sentences that also include a defense keyword. We randomly selected 80% (4,353) of the
sample to train the computer, and leave the remaining 20% (1,088) to test the resulting
algorithm.

Human coding is done online through Amazon Mechanical Turk (MTurk). We collect
5 codes for each sentence; and we ask for codes on both the relevance and direction of
each sentence. We ask (1) whether a sentence is about defense spending, and then, if so,
(2) the direction of spending change. We collapse the resulting codes into 4 categories:
0 = not about defense spending; 1 = about defense spending but with no information
about the direction of change; 2 = about a spending decrease; 3 = about a spending
increase. We then aggregate human codes based on the following decision rule: we require
at least 60%, i.e., 3 or more, of the 5 MTurk coders to agree a sentence is relevant and at
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least 60% to agree on a direction code. In exploratory analyses, we found that our
algorithm performed slightly better in our test set (measured both in overall accuracy
and average class precision/recall) when we assigned classes based on 60% agreement
rather than 80% agreement.’

In sum, the MTurk data is transformed into sentence-level codes as follows:

(a) If <60% of MTurkers say a sentence is relevant, the sentence gets a 0;

(b) If 260% of MTurkers say a sentence is relevant but <60% of MTurkers agree on
a direction, the sentence gets a 1;

(c) If 260% of MTurkers say a sentence is relevant and >60% of MTurkers say
spending is going down, the sentence gets a 2; and

(d) If 260% of MTurkers say a sentence is relevant and 260% of MTurkers say
spending is going up, the sentence gets a 3.

Note that this is similar to the dictionary approach, taking into account the combined
application of the SPEND, DIRECTION and DEFENSE dictionaries.

The supervised-learning model requires a document frequency matrix, in which we
retain unigrams and bigrams,* and stem all text features. We remove English stop words
as well as all words/word pairs that occur less than two times in the training dataset, and
then discard all features in the uncoded sentences that are not in the training set. Doing so
retains 10,834 features to use in prediction; this is known as a “bag of words” feature set.
We subset that document frequency matrix into the training (80% of the sample) and test
(20% of the sample) sets, as described above.

Random forest analyses are carried out using the randomForest and rfUtilities packages
in R. We selected the random forest classifier (Breiman, 2001) because it is generally
considered one of the more accurate and efficient multi-class algorithms.” We trained our
random forest model using 250 trees, which we found offered a good balance between
prediction accuracy and computing time.® To further improve model performance, we ran
a tuning function,” assuming a 250-tree model, to determine the optimal number of
variables available to the model for splitting at each tree node - this is known in random
forest analyses as the “mtry” parameter. The tuning function suggested that setting
mtry = 416 minimized prediction error in data not used in model training.®

After determining the appropriate number of trees for the model to “grow,” as well as
the optimal value of mtry to program in model specifications, we instruct the random
forest model to weight samples drawn from each training category (0, 1, 2 and 3) in
inverse proportion to how often they show up in the training set. We do this because the
training set is unbalanced - we still have too many 0’s — and inverse weighting should lead
the random forest model to produce more accurate predictions in uncategorized data. (For
more detail on random forest models, see, e.g., Montgomery & Olivella, 2018; Siroky,
2009.) We do not run k-fold cross validation to test the effectiveness of our final model, as
random forest models generally are not prone to overfitting.’

We use two indicators to judge model performance in our test set: precision and recall.
Recall is the proportion of correct predictions made by the model out of all human coded
sentences in a class (correct predictions divided by column sums in our confusion
matrices presented in Table 1). Precision is the proportion of correct predictions made
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by the model out of all model predictions made in a class (correct predictions divided by
row sums in our confusion matrices).

Panel 1la of Table 1 shows that our algorithm generalizes to out-of-sample data fairly
well. Precision and recall in the test set (la) are reasonably high, although reliably
capturing spending change and direction (codes 2 and 3) appears here to be more difficult
than identifying irrelevance (code 0). Panel 1b produces similar metrics using the dic-
tionary results. Indeed, these metrics are strikingly close to the ones in 1a,'* although the
dictionary is slightly worse at predicting Os and 3s than the random forest classifier.

In an ideal world, we could work to improve the random forest model’s precision
and recall. It seems likely that model performance is partly limited by the fact that
humans who read these sentences don’t always have the same interpretation of what is
“relevant” to defense spending, and what sentences specify an “increase” or “decrease”
in spending. The fact that the dictionary and algorithm both struggle the most with
“3” sentences suggests that the words used to specify a spending increase may be either
(a) ambiguous or (b) also used in ways that do not always indicate a spending
increase. If this is correct, there is a ceiling on how accurate our model can be,
given the training data we have.

In spite of these limitations, results in Table 1 give us some preliminary indication of
how well a random forest model can predict defense-spending categories designated by
humans. These averages do not necessarily indicate how well the algorithm will perform in
classification of the entire dataset, of course. As noted in Hand (2006, p. 10), the
supervised learning paradigm assumes that “there is some fixed clear external criterion
which is used to produce class labels.” We have designed our classification categories to fit
a specific research task, but our categories do not have objective thresholds. This class
ambiguity is, we suspect, reflected in the accuracy. Accuracy alone is thus not always the
ideal benchmark for model performance. Luckily, we can compare out-of-sample predic-
tions to an objective referent: change in defense spending. This is a relatively rare
opportunity in machine learning analyses.

Table 1. Confusion matrices.

1a. Algorithm Performance in Test Set

Human Codes

0 1 2 3 Precision Recall

Predictions 0 306 58 6 29 Class 0 0.77 0.83
1 40 233 27 83 Class 1 0.61 0.61

2 8 35 66 7 Class 2 0.57 0.60

3 15 55 11 109 Class 3 0.57 0.48

Accuracy in Test Set: 65.63%

1b. Dictionary Performance in Test Set

Human Codes

0 1 2 3 Precision Recall

Predictions 0 220 28 1 16 Class 0 0.83 0.60
1 94 247 25 110 Class 1 0.52 0.65

2 26 59 78 17 Class 2 0.43 0.71

3 29 47 6 85 Class 3 0.51 0.37

Accuracy in Test Set: 57.9%
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Comparing Aggregate Results

In order to compare the results from our two approaches, we generate a second “media
signal” similar to the one described above based on dictionaries, but this time based on the
supervised learning results. To do so, we first code the entire 1.7 million sentences
(excluding those 5,441 sentences used in training and testing) using the trained model.""
We then aggregate the resulting codes by fiscal year, to produce a media signal. Figure 3
plots the resulting media signals, for both dictionary and supervised-learning results,
alongside spending change, based on defense appropriations (budget authority) in
FY2000 US dollars, drawn from the Historical Tables distributed by the OMB. In order
to plot these series on the same axis, each is standardized to have a range of 1, and then
centered to have a mean of 0.5.

The correspondence between the two media signals is striking, as is their correspon-
dence with spending. The two media signals — one based entirely on dictionaries, and the
other based on supervised learning — have a Pearson’s correlation of 0.85. How does each
measure compare with spending change? The correlation with spending change is only
marginally larger for the supervised learning signal (0.63) than for the dictionary signal
(0.60), and the difference is not reliable (N = 39; for the difference in correlation
coeflicients, p = .84). In sum, dictionary-plus-supervised-learning approach yields only
a very small gain in the accuracy of our media policy signal.

Is the marginal gain in accuracy enough to justify the additional costs of the supervised
learning, in terms of both human coding and computational resources? In this particular
case, we would arrive at the same conclusion with both measures; either way, we would
find a relatively strong correspondence between media coverage and defense spending
change. We take this as evidence of the measurement validity of both the dictionary and
dictionary-plus-machine-learning approaches. It is reassuring to know that dictionaries
and machine-learning produce, in this case at least, roughly similar results.

It is possible that machine learning methods would offer greater analytical benefits in
other research domains. The hint of an increase in accuracy here does signal the potential
for supervised-learning to find (meaningful) variation that is missed by dictionaries alone.
Our take-away from this analysis, therefore, is not that supervised learning always adds
little to what we can extract from media content using dictionaries. However, we do take
our results to suggest that high quality, well-developed dictionaries remain a clearly
valuable tool for content analysts. Given that they are more straightforward - and often
less costly - to implement, this seems an important methodological finding.

Combining Approaches

Recall that our objective is only partly to consider the dictionary and dictionary-plus-
supervised-learning approaches independently - we also want to the consider the two
approaches used in tandem. We expect that there are several ways in which this might be
fruitful.

The first way in which approaches can be combined is already widespread, although the
dictionary portion often is implicit rather than explicit. In order to either identify the corpus,
or to achieve balance in a training set used for machine learning, or both, a simple dictionary
search can be critical. Calling our method “dictionary-plus-supervised-learning” is intended
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to make the dictionary-based identification of the corpus especially clear - it recognizes more
explicitly that dictionaries are regularly a precursor to machine learning.

Another straightforward combination of the two approaches is to use dictionaries as
a check on supervised learning, and vice versa. This involves no more than what has been
done above. The central quantity of interest — in this case, a fiscal-year measure of the media
signal - is estimated using each approach independently, and the results are compared.
Doing so offers a valuable test of the concurrent validity of each measure. Where the
dictionary is concerned, we now know hierarchical dictionaries produce a result that is in
line with supervised learning based on human coding. Where the dictionaries-plus-
supervised-learning approach is concerned, confirming that results are similar to a set of
dictionaries including words that are very clearly connected to the quantities of interest
provides a valuable check on what is otherwise a somewhat opaque coding mechanism, i.e.,
one in which the words guiding the analysis are determined by the algorithm.

A third, more ambitious combined approach is to use supervised learning to improve
the dictionary, and vice versa: using supervised learning to identify words not already
included in the dictionary, and then using the improved dictionary to rebuild a corpus for
supervised learning, and so on. Table 2 offers an illustration of the first step in this
process. The table relies on the dictionary-plus-supervised-learning results from the
preceding section. We take the resulting codes from the random forest coding, return to
the corpus, and extract the words from our entire dataset that are highly correlated with
each code. Doing so offers a glimpse of the words that are doing most of the work in the

Table 2. Words associated with machine-learning codes.

Relevant, Spending Increase Relevant, Spending Decrease
Word Correlation Word Correlation
Billion 0.42 Cuts 0.39
Homeland 0.29 Reductions 0.32
Increase 0.21 Cut 0.27
Billions 0.19 Reduction 0.27
Defense 0.17 Defense 0.24
Security 0.16 Spending 0.24
Military 0.16 Military 0.16
Spending 0.14 Cutting 0.14
Increases 0.12 Reduce 0.12
Pentagon 0.12 Automatic 0.1
Increased 0.1 Deficit 0.1
Iraq 0.1 Budget 0.1
Afghanistan 0.09 Domestic 0.1
Year 0.09 Billion 0.09
Dollars 0.09 Reduced 0.09
Department 0.08 Cutbacks 0.09
Increasing 0.08 Acrosstheboard 0.09
Next 0.08 Tax 0.08
War 0.07 Reducing 0.07
Bill 0.07 Deep 0.07
Inflation 0.06 Proposed 0.06
Fiscal 0.06 Programs 0.06
Wars 0.06 Taxes 0.06
Request 0.06 Pentagon 0.06
Weapons 0.05 Reagan 0.06
Missile 0.05 Deeper 0.06
Nearly 0.05 Savings 0.05

Pentagons 0.05 Sequestration 0.05
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automated coding (and, by implication, the words that humans interpret most clearly as
indicating our quantities of interest). Doing so also allows us to consider words that were
not, but maybe should have been, part of the dictionaries.

Table 2 shows all words that correlate at r = 0.05 or higher with codes 2 (relevant, and
indicating a spending decrease) and 3 (relevant, and indicating a spending increase) from
the supervised learning. For the most part, words are as we should expect - they clearly
signify the quantities of interest, and they are for the most part already included in the
dictionaries. Consider some of the top words in the increase column, i.e., “billion” and
“increase”; and some of the top words in the decrease column, i.e., “cuts” and “reduc-
tions”. Some words appear in both columns, such as “spending”; these are likely the words
that identify relevance. And there are some words that seem to indicate spending that are
not already in our spending dictionary, i.e., “supplemental” and “request.”

Generally speaking, neither of the latter two words - supplemental and request — are
necessarily spending words. But given that we are working with a corpus that includes only
defense-related articles, it may be that these words are reliably about spending. If that is the
case, then the sentence-based corpus that we extract using the SPEND dictionary may be
missing some relevant data. What might results look like if we tested and then added the word
supplemental to our spending dictionary, added some human coding based on sentences with
the new keyword, and then re-estimated the supervised-learning model? Our estimates of the
media signal may improve slightly. And further examination of the words correlated with the
supervised-learning codes might reveal yet additional revisions to the dictionaries.

We do not go down that path for the time being, but we want to highlight it as one
potentially fruitful outcome of combining the approaches illustrated above. The hierarch-
ical-dictionary and dictionary-plus-supervised-learning approaches may each be useful in
certain circumstances; in others, they may both be useful.

Discussion

A carefully constructed measure of media coverage of policy outputs is of real importance
for those interested in policy responsiveness and representation. As noted above, many
citizens learn about most policies indirectly, often through mass media. The opinion-
policy link thus depends heavily not just on the volume but on the accuracy of media
coverage of policy. Where media provide accurate policy cues, there are good reasons to
expect public responsiveness and policy representation. Where media cues are system-
atically different from actual policy, the potential for responsiveness and representation is
limited (see Neuner et al., 2019). Identifying an accurate media policy signal allows us to
assess the potential for representative democracy, policy domain by policy domain, across
time and space.

If the aim of a media policy signal is to assess the accuracy of the information citizens
receive, then the degree to which the measure reflects (a) accurate versus inaccurate coverage,
or (b) valid measurement versus invalid measurement, is of critical importance. Put differ-
ently, if we find that media do not reflect spending change, we would like to know that the
finding reflects biases in media coverage, not simply the methodological difficulties of large-
scale content analysis. This is the main motivation for this paper. We would like to be
confident that we have given media coverage its “best shot” at reflecting spending change.
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We considered here the possibility that adding a supervised-learning approach to
dictionary-based analyses would lead to an improved measure of the media policy signal,
focusing specifically on defense spending. Our analysis reveals that the hierarchical-
dictionary approach does about as well as the dictionary-plus-supervised-learning method
in capturing the signal in newspaper coverage. This may be due to the fact that there is
a ceiling on how well media content reflects policy change, and we are reaching that
ceiling in both the dictionary and machine learning approaches. It also may be that that
the dictionary approach actually does not fully capture the underlying signal and machine
learning just adds little. Both may be at work.

We are not staking a claim on the success of dictionary-based approaches in all instances,
of course. As Grimmer and Stewart (2013) note, the best content-analytic approach will vary
widely depending on the requirements of the data and theory. Dictionaries may be especially
effective in this case because of the limited and readily-identifiable words referring to both
spending and direction and the need to identify explicit cues that would be clear to media
consumers. The former likely reduces the gains from supervised learning methods, since
human coding augmented by computational methods may offer little gain in reliability. The
latter reduces the advantages of automated clustering methods such as latent Dirichlet
allocation (LDA; e.g., Blei et al,, 2003) or structural topic modeling (STM; e.g., Roberts
et al,, 2014), which capture correlations between words that need not be proximate or related
in ways that would be meaningful for the average reader. Each of these other approaches
obviously are of real value in other types of content analysis.

Approaches to automated content analysis need not compete, however, as they can
be used in combination. That has been our primary emphasis in the final sections of
this paper. We already have seen benefits of dictionaries in creating a more relevant
corpus for use in supervised learning. It also may be that supervised learning can help
improve dictionaries, by identifying relevant and irrelevant words. These seem to be
important subjects for future research in communications studies and political science.

Notes

1. Note that full-text search terms are searched as phrases, e.g., “national security,” not
“national” and “security” separately.

2. Note that for our analyses below that compare the dictionary and machine learning
approaches on uncoded sentences, all sentences used in machine learning model training
also had to be removed from the dictionary dataset. This slightly reduces the total number of
dictionary sentences with a spending word, direction word, and defense word to 204,565.

3. We do not provide detailed results based on somewhat different ways of aggregating human
coding (e.g., requiring 80% agreement), but results do not differ significantly from what is
reported here, and are available upon request. Since articles are assigned direction codes only
when they are relevant, and there are instances in which not all coders agree on relevance,
there are a small number of relevant articles for which there are only 3-4 direction codes.
This is one reason why the 3-coder cutoff used here is advantageous. Syntax and data to
replicate reported results are available at https://doi.org/DOI:10.17605/OSF.IO/TPA6U

4. We also tested the model including trigrams in the feature set. The performance of this model
was so similar to that of the unigram-bigram model that we decided the additional computa-
tional resources required to estimate a unigram-bigram-trigram model were not justifiably
offset by model improvements.

5. A multi-class SVM model leads in this instance to less accurate predictions than the random
forest approach.
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6. We also tested the model with 500 trees and found that this offered only a small improvement
(measured in accuracy, precision, and recall) over 250 trees, but took substantially longer to
train.

7. For this we used the tuneRF() function in the R package randomForest.

8. The tuning function also took into account class weights, or the inverse proportion of each
prediction class in the total training sentences.

9. See, e.g., https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home htm#ooberr.

10. Dictionary test set codes were generated as follows: if the dictionary counts indicated the
sentence had at least one defense word but no direction word (or equal numbers of “up” and
“down” words), the sentence got a “1”. If the dictionary counts indicated that the sentence
had > 1 defense word, and the sentence had more spending “down” words than “up” words,
the sentence got a “2”. Lastly, if dictionary counts indicated a sentence had > 1 defense word,
and the sentence had more spending “up” words than “down” words, the sentence got a “3”.

11. A total of 5,673 sentences were coded by either MTurkers or students. In initial model testing
to determine how to maximize model performance, we used the student codes as well as the
MTurker codes. The sentences we use for model prediction are all sentences not coded by
either MTurkers or students. The remaining 1,769,335 uncoded sentences are what we use in
prediction.
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