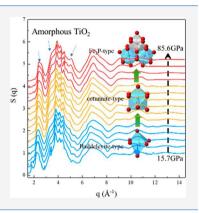
PHYSICAL CHEMISTRY Letters Cite This: J. Phys. Chem. Lett. 2020, 11, 374–379 Pu Observation of 9-Fold Coordinated Amorphous TiO₂ at High

Yu Shu,[†][®] Yoshio Kono,^{*,‡,⊥} Itaru Ohira,[‡] Quanjun Li,[§][®] Rostislav Hrubiak,[†] Changyong Park,[†][®] Curtis Kenney-Benson,[†] Yanbin Wang,^{||} and Guoyin Shen^{*,†}[®]

[†]High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

[‡]Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, United States

[§]State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China


^{II}Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States

Supporting Information

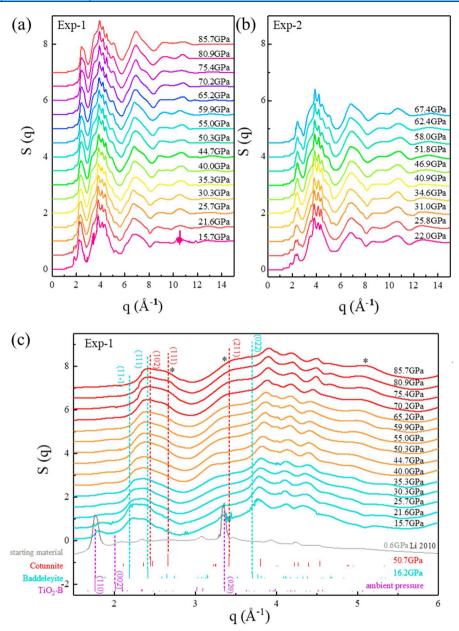
THE JOURNAL OF

Pressure

ABSTRACT: Knowledge of the structure in amorphous dioxides is important in many fields of science and engineering. Here we report new experimental results of high-pressure polyamorphism in amorphous TiO₂ (a-TiO₂). Our data show that the Ti coordination number (CN) increases from 7.2 \pm 0.3 at ~16 GPa to 8.8 \pm 0.3 at ~70 GPa and finally reaches a plateau at 8.9 \pm 0.3 at \leq 86 GPa. The evolution of the structural changes under pressure is rationalized by the ratio (γ) of the ionic radius of Ti to that of O. It appears that the CN \approx 9 plateau correlates with the two 9-fold coordinated polymorphs (cotunnite, Fe₂P) with different γ values. This CN- γ relationship is compared with those of a-SiO₂ and a-GeO₂, displaying remarkably consistent behavior between CN and γ . The unified CN- γ relationship may be generally used to predict the compression behavior of amorphous AO₂ compounds under extreme conditions.

Letter

pubs.acs.org/JPCL


nformation about pressure-induced structural changes in \mathbf{I} amorphous dioxides (a-AO₂) is critical for understanding macroscopic properties (e.g., refractive index, density, elasticity, strength, etc.) under extreme compression. As prototype network-forming glasses, pressure-induced structural changes of amorphous SiO_2 (a-SiO₂) and GeO_2 (a-GeO₂) have been extensively studied.¹⁻¹⁵ At ambient pressure, both a-SiO₂ and a-GeO₂ are characterized by 4-fold coordinated Si and Ge, respectively, forming corner-linked AO4 tetrahedral networks.³ Upon compression, the coordination number (CN) of the A cation in a-SiO₂ and a-GeO₂ gradually increases from 4 to 6 at pressures of 18-40 GPa⁴⁻⁶ and 5-15 GPa^{,7-10} respectively. A CN = 6 plateau is reached at $\sim 40-100$ GPa⁵ and ~15-50 GPa^{9,11} for a-SiO₂ and a-GeO₂, respectively. Whether additional transformations with CN > 6 can occur under further compression is controversial. X-ray spectroscopy studies show that CNs in a-SiO₂¹³ and a-GeO₂¹⁴ remain at \sim 6 over wide pressure ranges of 65-120 and 15-100 GPa, respectively. X-ray diffraction (XRD) experiments, however, show continuous and nearly linear increases in CN, with the CNs of a-SiO₂ and a-GeO₂ increasing to \sim 7 at 172 GPa¹² and \sim 7.4 at 92 GPa,¹¹ respectively. So far, no CN > 6 plateau has been found in any amorphous dioxides.

 TiO_2 is a low-pressure analogue of SiO_2 in studying its highpressure structural polymorphs.¹⁶ Investigation of amorphous TiO_2 (a-TiO₂) should provide new insight into further CN changes. It is reported that nanograined TiO_2 undergoes pressure-induced amorphization at ~13–16 GPa,^{17,18} with the characteristic structural motifs similar to that of 7-fold coordinated crystalline baddeleyite TiO_2 .¹⁷ An *ab initio* simulation study¹⁹ predicts that the CN of Ti in a-TiO₂ gradually increases from 6 to 7 with an increase in pressure up to 55 GPa. Experimentally, however, the pressure corresponding to the change in CN from 6 to 7 is significantly lower^{17,18} than those in the simulation.¹⁹ The simulation study also predicts a further change in CN to 8 at 60 GPa, above which CN stays unchanged up to 75 GPa, implying that the next energetically favored structure of a-TiO₂ may have CN = 8.

We compressed TiO₂-B nanoribbons that display amorphization at a pressure range of ~13.4–16.3 GPa¹⁷ and measured the structure *in situ* using a double-stage large-volume Paris– Edinburgh cell¹¹ combined with the multiangle energy dispersive X-ray diffraction technique.²⁰ We found that the CN of Ti of a-TiO₂ continuously increases from 7.2 \pm 0.3 at 15.7 GPa to 8.8 \pm 0.3 at 70.2 GPa. Over a wide pressure range of 70.2–85.7 GPa, CN remains constant at 8.9 \pm 0.3. These results shed new light on pressure-induced polyamorphism in a-AO₂, suggesting that the CN plateau above 6 is 9 for dioxide glasses under extreme compression.

Received: November 15, 2019 Accepted: December 23, 2019 Published: December 23, 2019

Letter

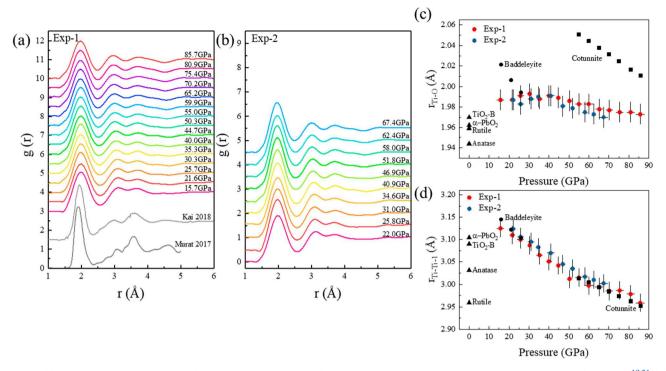


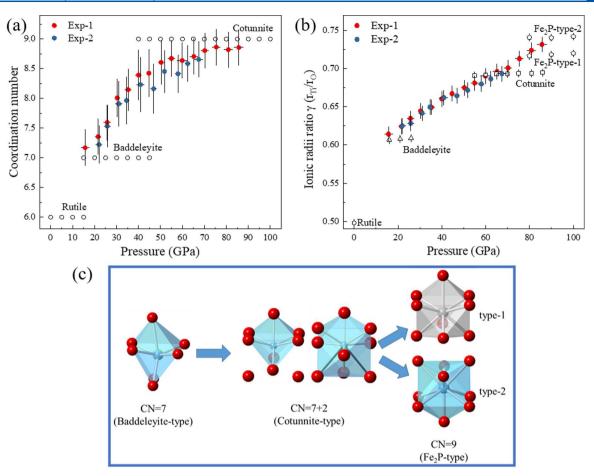
Figure 1. Obtained structure factors S(q) of a-TiO₂ from (a) Exp-1 and (b) Exp-2. (c) S(q) data from Exp-1 (from q = 1.5 to 6 Å⁻¹) are compared with those of the starting material (gray line)¹⁷ and the diffraction peaks of various crystalline polymorphs of TiO₂. Ticks at the bottom indicate peak positions of the crystalline polymorphs: TiO₂-B (purple), baddeleyite (blue), and cotunnite (red). Main peak positions are indicated by long dashed vertical lines. The asterisks indicate the newly formed amorphous peaks under high pressure.

Structure factors, S(q), of a-TiO₂ were determined at pressures of \leq 85.7 GPa (Exp-1) and \leq 67.4 GPa (Exp-2) in two experimental runs (panels a and b, respectively, of Figure 1). Over the entire pressure ranges, S(q) exhibits five peaks centered around 2.4, 4, 7, 8.5, and 11 Å⁻¹. All of these peak positions are close to the S(q) peaks from a simulation study at ambient pressure,²¹ except a small one located around 8.5 Å⁻¹. Three weak nanocrystalline peaks are superimposed on the second amorphous peak at ~4 Å⁻¹, which persists over the entire pressure range. These peaks correspond to the (023), (-222), and (313) planes of the TiO₂-B phase.¹⁷ As shown in the Supporting Information, the presence of these remaining crystalline peaks does not significantly affect the structural analysis of the a-TiO₂ sample.

At 15.7 GPa, two characteristic peaks near 1.8 and 3.35 $Å^{-1}$, corresponding to the (110) and (020) planes of the TiO₂-B

structure, respectively, were visible (Figure 1c). With an increase in pressure, these two peaks completely disappeared above 30.3 GPa, which is consistent with the result reported previously.¹⁷ The first amorphous peak displays a broad top from ~2.2 to 2.4 Å⁻¹ at 15.7 GPa. This *q* range corresponds to the interplane distances of (11–1) ($q \approx 2.19$ Å⁻¹) and (111) ($q \approx 2.42$ Å⁻¹) of baddeleyite TiO₂ at 16.2 GPa.²² With an increase in pressure, the shape of the first peak gradually changed to be asymmetrical. Above 50.3 GPa, a new shoulder appeared at the high *q* side (~2.65 Å⁻¹) with its intensity increasing as pressure was further increased. Eventually, above 70.2 GPa, the fist peak developed a new broad top from ~2.4 to 2.65 Å⁻¹ corresponding to the (102) ($q \approx 2.45$ Å⁻¹) and (111) ($q \approx 2.66$ Å⁻¹) planes of the 9-fold coordinated cotunnite TiO₂ at 50.7 GPa.²² Meanwhile, above 40.0 GPa, two peaks emerged at ~3.25 and ~4.95 Å⁻¹

Figure 2. (a) Pair distribution functions g(r) from Exp-1 (colored lines) together with that from simulation at ambient pressure (gray line).^{19,21} (b) g(r) from Exp-2. (c and d) Colored circles are r_{Ti-O} and $r_{Ti-Ti-1}$ obtained from the first and second peak positions of g(r), respectively. Black symbols are the calculated average r_{Ti-O} and $r_{Ti-Ti-1}$ of TiO₂ crystalline polymorphs.²²


positions shifting to high q as the pressure was increased to 70.2 GPa. These changes in S(q) indicate a gradual structural change from 15.7 to 70.2 GPa. At higher pressures from 70.2 to 85.7 GPa, no clear changes in S(q) were observed (Figure 1(c)).

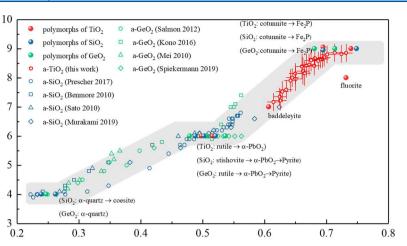
Pair distribution functions, g(r), were derived for a-TiO₂ as shown in Figure 2. The first three g(r) peaks near 1.99, 3.1, and 3.7 Å are assigned to represent Ti–O (r_{Ti-O}) , Ti–Ti–1 $(r_{Ti-Ti-1})$, and Ti-Ti-2 $(r_{Ti-Ti-2})$ distances, respectively. The O–O distance (r_{O-O}) expected to be centered roughly around 2.4 $Å^{19}$ is barely recognizable. This may be due to (1) the relative weak scattering power of oxygen and (2) the r_{O-O} peak, which decreases rapidly with an increase in pressure, overlapping with the intense r_{Ti-O} peak.¹⁹ All peaks in the obtained g(r) are broader than those from simulations,^{19,21} partly because the Lorch modification function was applied in our Fourier transformation process. $r_{Ti-Ti-1}$ and $r_{Ti-Ti-2}$ are attributed to the distances of two Ti atoms with edge-sharing (or face-sharing) and corner-sharing polytopes, respectively. The intensity ratios of the Ti-Ti-1 versus Ti-Ti-2 peaks are reversed when compared to the ambient-pressure simulation g(r) (Figure 2a,b). This suggests that the fractions of edgesharing and face-sharing interpolytope connections in compressed a-TiO₂ are higher than the 6-fold-coordinated a-TiO₂ at ambient pressure.

Major factors affecting the A–O distance in a-AO₂ under high pressure include compression and local structural changes. Compression tends to decrease the A–O distance, while structural changes, often involving an increase in CN, tend to increase the A–O distance with an increase in pressure. In the latter case, the increased distance is commonly expressed as the increased (apparent) ionic radius for the A cation.²³ Figure 2c shows clearly that the r_{Ti-O} values of a-TiO₂ above 10 GPa are greater than the average ambient-pressure Ti–O distances in 6-fold crystalline structures (TiO₂-B, rutile, α -PbO₂, and anatase),²² suggesting that the CN of Ti is likely higher than 6. Figure 2c also shows that $r_{\text{Ti-O}}$ is more or less constant at ~1.99 Å between 15.7 and 40.0 GPa, suggesting that the competing effects of compression and structural change nearly cancel each other. Because the effect of compression on Ti–O distance is generally a gradual and smooth process,¹⁷ the CN in a-TiO₂ likely increases gradually with an increase in pressure from 15.7 to 40 GPa. Above 40 GPa, $r_{\text{Ti-O}}$ becomes negatively dependent on pressure, from 1.99 Å at 40.0 GPa to 1.97 Å at 85.7 GPa, with a slope much smaller than those of crystalline TiO₂ phases (Figure 2c). The decrease in $r_{\text{Ti-O}}$ with pressure suggests that the effect of compression becomes greater than that of the CN change between 40 and 85.7 GPa.

Figure 2d shows that $r_{\text{Ti}-\text{Ti}-1}$ in a-TiO₂ decreases almost linearly with an increase in pressure. Interestingly, the compression behavior of $r_{\text{Ti}-\text{Ti}-1}$ in a-TiO₂ is similar to the average edge-sharing Ti-Ti distance of baddeleyite TiO₂ and the average face-sharing Ti-Ti distance of cotunnite TiO₂. Because $r_{\text{Ti}-\text{Ti}-1}$ represents how closely each TiO_x polyhedron is connected to its neighbors, the compression behavior of $r_{\text{Ti}-\text{Ti}-1}$ in a-TiO₂ suggests that the interpolyhedron connection in a-TiO₂ may be close to those in the 7- and 9-fold coordinated crystalline structures.

We determined the CN of Ti in a-TiO₂ by fitting the first peak of g(r) with the pair function method²⁴ (more details in the Supporting Information). The CN was determined to be 7.2 ± 0.3 at 15.7 GPa, and then it quickly increased to 8.4 ± 0.3 at 40.0 GPa (Figure 3a). Upon further compression, the CN increased to 8.8 ± 0.3 at 70.2 GPa and then remained constant around 8.8–8.9 up to the highest pressure of 85.7 GPa. With all of the results from the S(q), g(r), atomic distances, and CNs (Figures 1–3), structural evolution of a-

Figure 3. (a) Coordination number (CN) of Ti in a-TiO₂ as a function of pressure. Numerical values of the CN are summarized in the table in the Supporting Information. (b) Ionic radius ratio ($\gamma = r_{Ti}/r_O$) as a function of pressure. Here, a-TiO₂ data (filled circles) are compared with those of TiO₂ crystalline polymorphs (empty black symbols). (c) Schematics showing geometric features of different coordination motifs in crystalline TiO₂. Red and blue spheres represent oxygen and titanium atoms, respectively.


 TiO_2 may be divided into three stages over the pressure range. From 15.7 to 40.0 GPa, a-TiO₂ is dominated by 7-fold coordinated baddeleyite-like motifs. Above 40.0 GPa, the fraction of 9-fold coordinated cotunnite-like motifs increases with pressure to become the dominant component at 70.2 GPa. Above 70.2 GPa, it is dominantly in 9-fold coordinated up to the highest pressure of 85.7 GPa in this study, displaying a plateau.

To understand the plateau at CN \approx 9 above 70.2 GPa, we examine both crystalline and amorphous structures of TiO₂. We note that, unlike the 7-fold coordinated baddeleyite, there are two 9-fold coordinated polymorphs (cotunnite and Fe₂P) that have similar calculated enthalpies (the difference is <0.1 eV/f.u. at 0 K)^{25,26} and are stable over a very wide range of pressure (35-636 GPa).²⁶ It has been proposed in AB binary compounds²⁷ that the dense packing configuration strongly depends on the ratio (γ) of the ionic radii of the A (r_A) and B $(r_{\rm B})$ atoms. We also note that the structural features of local maxima of densely packed binary hard spheres with varying γ depend on the CN of the A atoms. Kummerfeld's study² provides an inspiration for correlating pressure-induced CN changes of both crystalline and amorphous materials. To investigate the relationship between CN and $\gamma = r_A/r_O$ in TiO₂, we use simulation results of known TiO₂ polymorphs, namely, rutile (CN = 6), baddeleyite (CN = 7), cotunnite (CN = 9), and Fe_2P (CN = 9),^{22,25} under different pressures, and then

calculate the γ values of these polymorphs by using the mean fictive ionic radius (MEFIR) method,²⁸ which weighs shorter bond distances more than longer bond distances. As shown in Figure 3b, within any given crystalline polymorph, γ only exhibits a slight increase (~0.0002 GPa⁻¹) upon compression. However, across different polymorphs, γ changes rapidly: ~0.61 for baddeleyite, ~0.69 for cotunnite, ~0.72 for Fe₂P type 1, and ~0.74 for Fe₂P type 2. Thus, the ratio γ may provide a key to understanding the CN \approx 9 plateau of a-TiO₂.

We assume that the r_0 in a-TiO₂ is the same as that of crystalline polymorphs in the corresponding pressure ranges.²² The r_0 values for the baddeleyite TiO₂ at 15.7–25.8 GPa and cotunnite TiO₂ at 55.0–85.7 GPa may be expressed by a linear relation (Figure S2). This linear relation is also consistent with a simulation study that shows that the O–O distance of a-TiO₂ exhibits a nearly linear shift.¹⁹ By applying this r_0 relation to a-TiO₂, we calculate $r_{\text{Ti}} = r_{\text{Ti}-\text{O}} - r_{\text{O}}$ based on our g(r) results. The obtained γ value is 0.614 at 15.7 GPa, which is similar to that of baddeleyite TiO₂ (Figure 3b). At 70.2 GPa, γ is 0.701, similar to that of cotunnite TiO₂. In the pressure range of 15.7–70.2 GPa, the increase in γ is mainly due to the increase in CN, which results in a significant increase in r_{Ti} . At pressures of >70.2 GPa, γ of a-TiO₂ increases continuously from 0.701 to 0.732, a value between that of Fe₂P type 1 ($\gamma \approx 0.72$) and Fe₂P type 2 ($\gamma \approx 0.74$).

Coordination Number of A cation

Ionic radii ratio (γ)

Figure 4. Relationship between the ionic radius ratio and the coordination number of cations. The data of $a-AO_2$ (empty symbols) are compared with those of crystalline polymorphs (filled circles) with different coordinated structures.

If the structural motifs of a-TiO₂ are assumed to be similar to those of crystalline polymorphs at the corresponding pressures, the above comparisons of γ values provide a hint about the origin of the CN \approx 9 plateau. The geometric features of different coordination motifs are shown in Figure 3c. For a cotunnite-type polyhedron, the two longest bonds (colored black) are ~18% longer than the mean Ti-O distance. Thus, cotunnite may be viewed as a (7+2) coordinated structure with a TiO₇ polyhedron modified from baddeleyite-type and two other secondary oxygen ions. Under compression, a cotunnitetype polyhedron may undergo continuous modifications from (7+2) coordination to a more uniform TiO_o Fe₂P-type polyhedron. As shown in Figure 3b, even though γ continues to increase with pressure above 70.2 GPa, the basic coordination motifs in $a-TiO_2$ remain a configuration with $CN \sim 9$, thus forming a coordination plateau. With further compression, a-TiO₂ may transform to a higher CN with other structural motifs (such as one similar to the I4/mmm phase with CN = 10.²⁶

Finally, to examine the applicability of the relationship mentioned above to a-AO₂ (A = Ti, Si, or Ge), we calculate γ values for them^{4,5,8,10-12,14,15} and associated crystalline polymorphs [α -quartz, coesite (CN = 4), rutile/stishovite, α -PbO₂, pyrite (CN = 6), cotunnite, and Fe_2P (CN = 9)] of 32 and GeO₂^{25,29,33} by the MEFIR method. All three SiO_2^2 compounds, regardless of whether they are crystalline and amorphous, show remarkably consistent behavior (Figure 4). CNs of the A cations exhibit plateaus at CN values of 4, 6, and 9 over wide ranges of γ . For crystalline materials, each of these plateaus is associated with at least two polymorphs over the γ range. The CN of amorphous materials follows closely these plateaus. Between the plateaus, the CN of amorphous materials increases gradually and almost linearly. This $CN-\gamma$ relationship for a-AO₂ shows that the local structure change in a-AO₂ is closely related to the pressure-induced AO₂ crystalline polymorphs. These data imply a unified relationship between CN and γ in a-AO₂. The existence of 9-fold coordinated a- TiO_2 and the plateau at CN \approx 9 strongly suggests that similar amorphous structures and plateau may exist in a-SiO₂ and a-GeO₂ at higher pressures. Furthermore, the CN of many forms of a-AO₂ under high pressure is often difficult to determine experimentally, but values of r_{A-O} can be directly obtained

from the first peak position in g(r). Thus, the CN in a-AO₂ may be inferred by using the CN- γ relationship.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.9b03378.

Details of the experimental and analytical methods (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: kono.yoshio.rj@ehime-u.ac.jp. *E-mail: gyshen@anl.gov.

ORCID

Yu Shu: 0000-0002-0903-435X Quanjun Li: 0000-0002-4718-4156 Changyong Park: 0000-0002-3363-5788

Guoyin Shen: 0000-0001-5146-1147

Present Address

¹Y.K.: Geodynamics Research Center, Ehime University, Ehime 790-8577, Japan.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research is supported by the National Science Foundation (NSF) under Grant EAR-1722495 (Y.K. and G.S.) and the Department of Energy (DOE), Office of Science/Division of Materials Science and Engineering, under Award DE-FG02-99ER45775 (G.S.). Y.W. acknowledges NSF Grant EAR-1620548. High-pressure experiments were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA's Office of Experimental Sciences. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. We thank the helpful discussion with Clemens Prescher in the calculations of coordination number.

378

REFERENCES

(1) Deb, S. K.; Wilding, M.; Somayazulu, M.; McMillan, P. F. Pressure-Induced Amorphization and an Amorphous-amorphous Transition in Densified Porous Silicon. *Nature* **2001**, *414*, 528.

(2) McMillan, P. F.; Wilson, M.; Daisenberger, D.; Machon, D. A Density-Driven Phase Transition Between Semiconducting and Metallic Polyamorphs of Silicon. *Nat. Mater.* **2005**, *4*, 680–4.

(3) Kohara, S.; Suzuya, K. Intermediate-range Order in Vitreous SiO₂ and GeO₂. J. Phys.: Condens. Matter **2005**, 17, S77–S86.

(4) Benmore, C. J.; Soignard, E.; Amin, S. A.; Guthrie, M.; Shastri, S. D.; Lee, P. L.; Yarger, J. L. Structural and Topological Changes in Silica Glass at Pressure. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2010**, *81*, 054105.

(5) Sato, T.; Funamori, N. High-pressure Structural Transformation of SiO₂ Glass Up to 100 GPa. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2010**, *82*, 184102.

(6) Zeidler, A.; Wezka, K.; Rowlands, R. F.; Whittaker, D. A.; Salmon, P. S.; Polidori, A.; Drewitt, J. W.; Klotz, S.; Fischer, H. E.; Wilding, M. C.; Bull, C. L.; Tucker, M. G.; Wilson, M. High-pressure Transformation of SiO₂ Hlass from a Tetrahedral to an Octahedral Network: a Joint Approach Using Neutron Diffraction and Molecular Dynamics. *Phys. Rev. Lett.* **2014**, *113*, 135501.

(7) Guthrie, M.; Tulk, C. A.; Benmore, C. J.; Xu, J.; Yarger, J. L.; Klug, D. D.; Tse, J. S.; Mao, H. K.; Hemley, R. J. Formation and Structure of a Dense Octahedral Glass. *Phys. Rev. Lett.* **2004**, *93*, 115502.

(8) Mei, Q.; Sinogeikin, S.; Shen, G.; Amin, S.; Benmore, C. J.; Ding, K. High-Pressure x-ray Diffraction Measurements on Vitreous GeO₂ Under Hydrostatic Conditions. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2010**, *81*, 174113.

(9) Hong, X.; Ehm, L.; Duffy, T. S. Polyhedral Units and Network Connectivity in GeO_2 glass at High Pressure: an x-ray Total Scattering Investigation. *Appl. Phys. Lett.* **2014**, *105*, 081904.

(10) Salmon, P. S.; Drewitt, J. W. E.; Whittaker, D. A. J.; Zeidler, A.; Wezka, K.; Bull, C. L.; Tucker, M. G.; Wilding, M. C.; Guthrie, M.; Marrocchelli, D. Erratum: Density-driven Structural Transformations in Network Forming Glasses: a high-pressure Neutron Diffraction Study of GeO₂ Glass Up to 17.5 GPa. *J. Phys.: Condens. Matter* **2012**, *24*, 439601.

(11) Kono, Y.; Kenney-Benson, C.; Ikuta, D.; Shibazaki, Y.; Wang, Y.; Shen, G. Ultrahigh-Pressure Polyamorphism in GeO₂ Glass with Coordination Number> 6. *Proc. Natl. Acad. Sci. U. S. A.* **2016**, *113*, 3436–3441.

(12) Prescher, C.; Prakapenka, V. B.; Stefanski, J.; Jahn, S.; Skinner, L. B.; Wang, Y. Beyond Sixfold Coordinated Si in SiO₂ Glass at Ultrahigh Pressures. *Proc. Natl. Acad. Sci. U. S. A.* **2017**, *114*, 10041–10046.

(13) Petitgirard, S.; Sahle, C.; Weis, C.; Gilmore, K.; Spiekermann, G.; Tse, J.; Wilke, M.; Cavallari, C.; Cerantola, V.; Sternemann, C. Magma Properties at Deep Earth's Conditions from Electronic Structure of Silica. *Geochem. Persp. Lett.* **2019**, *9*, 32–37.

(14) Spiekermann, G.; Harder, M.; Gilmore, K.; Zalden, P.; Sahle, C. J.; Petitgirard, S.; Wilke, M.; Biedermann, N.; Weis, C.; Morgenroth, W.; et al. Persistent Octahedral Coordination in Amorphous GeO₂ Up to 100 GPa by K β " X-Ray Emission Spectroscopy. *Phys. Rev. X* **2019**, *9*, 011025.

(15) Murakami, M.; Kohara, S.; Kitamura, N.; Akola, J.; Inoue, H.; Hirata, A.; Hiraoka, Y.; Onodera, Y.; Obayashi, I.; Kalikka, J.; et al. Ultrahigh-pressure Form of SiO₂ Glass with Dense Pyrite-Type Crystalline Homology. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2019**, *99*, 045153.

(16) Leger, J. M.; Haines, J.; Pereira, A. S. Structural Investigations Under High Pressure. *Koatsuryoku no Kagaku to Gijutsu* **1998**, *7*, 295–297.

(17) Li, Q.; Liu, B.; Wang, L.; Li, D.; Liu, R.; Zou, B.; Cui, T.; Zou, G.; Meng, Y.; Mao, H.-k.; Liu, Z.; Liu, J.; Li, J. Pressure-Induced Amorphization and Polyamorphism in One-Dimensional Single-Crystal TiO₂ Nanomaterials. *J. Phys. Chem. Lett.* **2010**, *1*, 309–314.

(19) Durandurdu, M. Two Successive Amorphous-to-Amorphous Phase Transformations in TiO₂. J. Am. Ceram. Soc. **2017**, 100, 3903–3911.

(20) Kono, Y.; Park, C.; Kenney-Benson, C.; Shen, G.; Wang, Y. Toward Comprehensive Studies of Liquids at High Pressures and High Temperatures: Combined Structure, Elastic Wave Velocity, and Viscosity Measurements in the Paris–Edinburgh Cell. *Phys. Earth Planet. Inter.* **2014**, *228*, 269–280.

(21) Yang, K.; Kachmar, A.; Wang, B.; Krishnan, N. A.; Balonis, M.; Sant, G.; Bauchy, M. New Insights into the Atomic Structure of Amorphous TiO₂ Using Tight-Binding Molecular Dynamics. *J. Chem. Phys.* **2018**, *149*, 094501.

(22) Nishio-Hamane, D.; Shimizu, A.; Nakahira, R.; Niwa, K.; Sano-Furukawa, A.; Okada, T.; Yagi, T.; Kikegawa, T. The Stability and Equation of State for the Cotunnite Phase of TiO_2 Up to 70 GPa. *Phys. Chem. Miner.* **2010**, *37*, 129–136.

(23) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* 1976, 32, 751–767.

(24) Narten, A. Diffraction Pattern and Structure of Noncrystalline BeF_2 and SiO_2 at 25 C. J. Chem. Phys. **1972**, 56, 1905–1909.

(25) Dekura, H.; Tsuchiya, T.; Kuwayama, Y.; Tsuchiya, J. Theoretical and Experimental Evidence for a New Post-Cotunnite Phase of Titanium Dioxide with Significant Optical Absorption. *Phys. Rev. Lett.* **2011**, *107*, 045701.

(26) Lyle, M. J.; Pickard, C. J.; Needs, R. J. Prediction of 10-Fold Coordinated TiO_2 and SiO_2 Structures at Multimegabar Pressures. *Proc. Natl. Acad. Sci. U. S. A.* **2015**, *112*, 6898–6901.

(27) Kummerfeld, J. K.; Hudson, T. S.; Harrowell, P. The Densest Packing of AB Binary Hard-Sphere Homogeneous Compounds Across All Size Ratios. J. Phys. Chem. B 2008, 112, 10773–10776.

(28) Hoppe, R. Effective Coordination Numbers (ECoN) and Mean Fictive Ionic Radii (MEFIR). *Zeitschrift für Kristallographie-Crystalline Materials* **1979**, *150*, 23–52.

(29) Baur, W. H.; Khan, A. A. Rutile-Type Compounds. IV. SiO₂, GeO₂ and a Comparison with Other Rutile-Type Structures. *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.* **1971**, *27*, 2133–2139.

(30) Zhang, L.; Popov, D.; Meng, Y.; Wang, J.; Ji, C.; Li, B.; Mao, H.-k. In-Situ Crystal Structure Determination of Seifertite SiO_2 at 129 GPa: Studying a Minor Phase Near Earth's Core–Mantle Boundary. *Am. Mineral.* **2016**, *101*, 231–234.

(31) Du, X.; Tse, J. S. Oxygen Packing Fraction and the Structure of Silicon and Germanium Oxide Glasses. *J. Phys. Chem. B* **2017**, *121*, 10726–10732.

(32) Tsuchiya, T.; Tsuchiya, J. Prediction of a Hexagonal SiO_2 Phase Affecting Stabilities of MgSiO₃ and CaSiO₃ at Multimegabar Pressures. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 1252–5.

(33) Prakapenka, V. B.; Dubrovinsky, L. S.; Shen, G.; Rivers, M. L.; Sutton, S. R.; Dmitriev, V.; Weber, H. P.; Le Bihan, T. α -PbO₂-Type High-Pressure Polymorph of GeO₂. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2003**, *67*, 132101.