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ABSTRACT

As two of the highest trending green technologies, photovoltaic panels and green roofs are proven to be effective
practices for energy generation and energy saving. The achievable impact from the widespread installation of
such technologies is, however, not clearly established. This is mainly because the degree of this impact highly
depends on the inherently uncertain environmental and climate factors, as well as the unknown adoption rates of
these technologies, which in turn depend on different characteristics of decision makers and interactions among
them. To that end, this study aims to investigate the diffusion rate of these green technologies under un-
certainties caused by climate change, characteristics of adopters, and their interactions. An integrated frame-
work is developed to capture the interplay between financial and attitudinal aspects, as well as the uncertainties
due to both the stochastic nature of system parameters and the interactions among agents involving human
beings. Specifically, this framework consists of a integer programming model to optimize the green roof and/or
photovoltaic panel installation settings for a given building under climate change uncertainty, and an agent-
based model to factor in the role of human behavior and interactions. A case study for the city of Knoxville, TN,
is presented to evaluate the effects of different policies on the diffusion rate of the green technologies of interest.
The results show that the affordability of green technologies and public awareness are the key drivers of the
adoption of these technologies, which highlight the important role of the decision makers in impacting the
diffusion rate.

1. Introduction

available technologies [2]. Such issues have led governments over the
world to take different measures in order to increase the adoption rate

The utilization of renewable energy (RE) sources and the im-
plementation of energy efficient (EE) practices have been a key factor in
developing more sustainable economies and societies, reducing pollu-
tion and mitigating the effects of climate change. The adoption of new,
cleaner technologies still remains a major challenge to policymakers [1]
and is proven to be a time-consuming task, even with the commercially-
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of RE and EE practices, either through regulations or incentives. In the
past few years, policymakers have passed several laws and regulations
to foster the global rate of implementation of RE and EE practices. For
example, the French parliament has made the installation of green roofs
(GR) and photovoltaic (PV) panels mandatory for all the new buildings
in commercial zones across the country [3]. The city of San Francisco
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legislation requires between 15% and 30% of the rooftops of new
buildings in most new construction projects to be covered by PV panels,
GRs, or a combination of both [4]. A similar law has been passed by the
city of Denver, which requires all the buildings over 25,000 square feet
to include GRs, PV panels, or a combination of both [5]. As of 2019, the
most recent (and most comprehensive) regulation regarding green
technologies has been passed in California, which makes the installa-
tion of PV panels mandatory on every new building, effective 2020 [6].

While such regulations help to increase the diffusion and adoption
rate of RE and EE practices, they are mostly considered insufficient as
many of them only affect new commercial buildings and none of them
affect currently existing commercial and residential buildings.
Moreover, some claim that such regulations can negatively impact the
competitiveness in society [7]. Hence, studying the diffusion rate of
green technologies and the effect of promotional policies on their diffu-
sion rate becomes increasingly important. In this section, some basic
information on two of the most popular green technologies, i.e., PV
panels as a RE source and GRs for EE practices, is presented. Next, the
role of climate change on the outcome of the mentioned green tech-
nologies is investigated. Lastly, a literature review on currently avail-
able diffusion models and policy evaluation studies, as well as the
contributions of this study are provided.

1.1. Photovoltaic panels and green roofs

PV panels, considered as the fastest growing renewable energy [8],
and GRs, i.e., rooftops covered with a vegetative layer, have gained
increasing attention over the past few years as two of the most im-
portant green technologies in the development of more sustainable
societies [9]. PV panels harness solar irradiation and turn it into elec-
tricity, through which affordable electricity can be generated in both
utility and residential levels. Over the past few years, the installation
rate of PV panels has been steadily increasing due to the decrease in
their cost, increase in their output, as well as state and federal in-
centives [8]. There is an abundant body of literature with a focus on PV
panels from different perspectives (e.g., technological aspects such as
underlying materials or cell technology [10,11]), best placement op-
tions of PV arrays [12], and optimal placement of PV systems [13]).
GRs can provide numerous benefits to the environment where they are
installed (namely, heat island mitigation [14], energy savings [15], and
storm-water runoff reduction [16]). Different studies have assessed
achievable benefits through the installation of GRs, indicating that
savings of 7 to 10 billion USD can be obtained by the widespread in-
stallation of GRs throughout the U.S. [17]. GRs have also been thor-
oughly studied for their energy saving properties, proving their cap-
ability to provide savings of up to 16% of the energy consumed for
space conditioning during cooling degree days. However, the reported
values for such savings during heating degree days range between
—10% to 10% [18-21].

PV panels rely on solar irradiation to generate electricity, which
adversely affects their output due to increasing the surface temperature
of the panels. The output efficiency of PV systems approximately de-
creases by 0.5% for every 1 °C increase in the surface temperature of PV
panels [22]. This issue can be mitigated through the integration of PV
panels and GRs. That is, GRs reduce the temperature of their sur-
rounding environment, thus reducing the surface temperature of PV
panels, leading to an increase in the output efficiency of PV systems.
Several empirical studies have focused on the integration of PV panels
and GRs to evaluate PV panels’ output efficiency and GRs’ benefits as a
direct result of their cooling effect on the surrounding environment
[23].

1.2. Climate change

The current increasing trend of the Earth’s temperature and climate
change is widely believed to be a direct result of human activity [24].
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Studies claim that at the current pace, by the end of the century the
average global temperature will rise by up to 5.8 °C [25,26]. This fact
becomes important to our study as the output of PV panels and GRs are
directly affected by the changes in temperature and precipitation. That
is, while various studies agree that GRs reduce the level of energy
consumption for the buildings underneath them in cooling degree days,
some studies claim that GRs lead to a higher level of energy con-
sumption during heating degree days. The electricity output of PV pa-
nels directly relies on the level of solar irradiation to which they are
exposed. Hence, higher levels of precipitation, which can roughly be
considered as more frequent rain and consequently less peak sunlight
hours, results in lower levels of electricity output from the panels. In
this study, we include the changes in the outputs of PV systems and GRs
as a result of climate change by considering ten different climate
forecasting models provided by the Oak Ridge National Laboratory’s
(ORNL) Urban Dynamics Institute (UDI) [27] and Oak Ridge National
Laboratory’s Climate Change Science Institute (CCSI) [28].

1.3. Agent based modeling and diffusion models

Studies about technology diffusion and the effect of policies, social
interactions, and economic factors started from the pioneer papers of
Hagerstrand [29] and Rogers [30], and have been carried out for var-
ious products and technologies [31-33] to the present [34,35]. In the
literature, diffusion models are often studied via agent-based modeling
(ABM), defined as a system of agents (autonomous elements) which can
be described as identifiable discrete goal oriented autonomous entities
holding a certain set of characteristics [36]. Agents are capable of in-
teracting with other agents inside their environment, and making in-
dividual decisions based on their current state and interactions con-
sidering a set of rules set by the environment in which they exist and
interact with one another [9]. ABMs have been studied over a wide
range of different problems such as social sciences [37], marketing [38]
energy [39], and economics [40]. ABMs are well-designed to study
systems made up of individual decision makers to evaluate and forecast
the outcomes of problems that rely on the interactions among agents as
well as their individual traits [41], namely the diffusion rate of green
technologies.

Many studies have investigated the diffusion rate of green tech-
nologies through the implementation of ABMs while taking different
approaches. For example, Bollinger and Gillingham [42] and Graziano
and Gillingham [43] emphasize the role of communication, visibility of
technologies, and social media in the adoption rate. Another group of
studies, such as Palm [44] and Gillingham and Bollinger [45] have
focused on the importance of peer effect on the adoption rate of new
technologies. Other green technology diffusion studies have explored
different aspects of the problem. For instance, Robinson and Rai [46]
have studied this subject through the geographic information system
(GIS). Zhao et al. [47] have taken the perspective of a utility company
to study the diffusion rate of plug-in hybrid electric vehicles and PV
systems, and Mittal et al. [48] evaluated a utility company’s expansion
plan through the installation of distributed PV systems.

Evaluation of the effects of promoting policies on the adoption rate
of green technologies has been the subject of numerous ABM studies.
For instance, Zhao et al. [49] have investigated the potential of in-
vestment tax credit and feed in tariffs in their study. In another study,
Dong et al. [50] have investigated the effect of different policies, such
as federal investment tax credit and California net energy metering
policy on the residual PV panel installation in California. In the study
conducted by Adepetu and Keshav [51], the authors have explored the
effects of different policies on the adoption rate of integrated PV panels
and battery systems in the city of Ontario, concluding that the best
policy to encourage households to develop PV systems is to reduce the
implementation cost.

The diffusion models are generally centered around two main as-
pects, i.e., attitudinal and/or financial. For the attitudinal aspect,
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studies often rely on available historical data of adoption rates for the
green technologies in the region where they have conducted the study.
The financial aspect, however, has been taken into account differently
in different studies. That is, while studies consider the diffusion rate of
these green technologies based on the behavior of the agents in the
system, as well as accounting for the financial returns from developing
such technologies in a direct form, they approach the integration of
financial and behavioral aspects differently. Studies mainly include
both behavioral and financial aspects simultaneously [42], mainly in
forms of a constraint which is added to the behavioral model. However,
a number of studies include two parallel models where one focuses on
the behavioral aspect and the other focuses on the financial output of
the green technologies [52]. While both approaches account for the
financial aspect of the studies, the parallel incorporation of two dif-
ferent models provides more opportunities to study each aspect in a
more detailed and comprehensive fashion. For instance, Rai and Ro-
binson [52] presented an empirically driven agent-based model for
technology adoption with an application in residential PV systems
through the development of two different sub-models, i.e., financial,
and attitudinal sub-models. In another study, Dong et al. [48] provided
an ABM that evaluates the incorporation of consumer-adoption of dis-
tributed PV systems in a utility company’s expansion plan by con-
sidering three sub-models, i.e., attitude assessment, financial assess-
ment, and decision. Zhao et al. [49] developed a decision support tool
to evaluate the effectiveness of different policies (i.e., incentives and
regulations) on the growth rate of PV systems using a two-level fra-
mework, where the lower-level model calculates the PV systems’ pay-
back for each individual household, and the higher-level model con-
siders a broader time-step and studies the household adoption
behaviors.

In this study, an agent-based framework that integrates two parallel
sub-models, i.e., behavioral and financial sub-models, is developed.
Then, the outputs of the model are evaluated using a case study over the
city of Knoxville, TN. Note that the behavioral models mainly rely on
historical data from the adopters over the region of the study.
According to the Google Project Sunroof [53], there are approximately
78 installed PV systems over the city of Knoxville, including the systems
installed by the University of Tennessee, Knoxville, for research pur-
poses. Google Project Sunroof [53] also shows that 83% of buildings in
the city of Knoxville (from approximately 209,000 buildings [54]) are
solar viable (they receive a minimum of 75% of maximum solar irra-
diation for the county). These numbers indicate that there exists a great
potential for PV system utilization throughout the city of Knoxville.
However, due to the limited number of installed PV systems and lack of
historical data, it is not possible to develop a behavioral model based on
historical behavior and diffusion rate of PV systems in the city of
Knoxville (a similar study over the city of Knoxville for personal hybrid
electrical vehicles resorted to synthetic data generation due to the lack
of data availability [55]). Hence, the behavioral sub-model used in this
study as an integrated part of the developed framework is adopted from
the existing literature.

While the existing studies have incorporated the profit gained by
green technologies or their costs in some fashion, none of them ac-
counts for the uncertainty due to the nature of input parameters as a
result of climate change and its effects on the performance and output
of these technologies, nor do they include multiple green technologies
while considering the potential outcomes due to their integration. In
order to account for the stochastic output of PV panels and GRs, as well
as the role of climate change in the achievable potential profit from
such practices, this study evaluates the output of PV panels and GRs
over the next 20 years from the day of installation while considering 10
different climate projection models provided by UDI [27] and CCSI
[28]. The developed optimization model focuses on the changes in the
adoption rate of PV panels and/or GRs as a result of promotional po-
licies while incorporating different climate scenarios (in which climate
change has been accounted for) to calculate the potentially achievable
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income from the installation of green infrastructures throughout their
lifespan. A mathematical optimization model is developed to find the
best setup through which candidate sites can maximize their income
from the installation of the green technologies, i.e., PV, GR, and GR
integrated PV. Note that the model aims to maximize the profit from
these technologies; therefore, if they are not financially profitable, no
green technologies will be installed.

The main contributions of this study are as follows: (i) This study
accounts for multiple green technologies with inherently different
structures and the interactions among them; (ii) It provides an ABM
framework to capture the interplay between financial and behavioral
sub-models, as well as the uncertainties that arise due to climate change
and human behaviors; and (iii) it evaluates the effects of several sto-
chastic components on the diffusion rate of green technologies in a case
study.

The remainder of the paper is organized as follows. Section 2
thoroughly describes the developed model to cover the financial aspect
of the diffusion model. Moreover, a description of different behavioral
models, as well as the model adopted from the existing literature is
provided. Finally, an agent-based framework, entailing the mathema-
tical and diffusion sub-models to study the effect of promotional po-
licies on the adoption rate of the green technologies, is developed.
Section 3 provides the model calibration and description over the
parameters used in the model. Next, Section 4 presents the results from
a case study over the city of Knoxville, TN, as well as sensitivity analysis
and policy evaluation. Section 6 provides high level insights, in-
vestigates the future opportunities for research, and discusses the study
limitations. Lastly, Section 7 provides the conclusions from the study.

2. Methods

In this section, the structure of our ABM framework, as well as its
underlying components are presented. Two separate models, i.e., fi-
nancial and attitudinal, are developed in which both financial and be-
havioral aspects of the model are accounted for. In the following,
Section 2.1 first introduces the mathematical model developed to cal-
culate the potential outcome from the installation of PV panels and GRs.
Then, Section 2.2 introduces the attitudinal model that is adopted from
the existing literature. Finally, Section 2.3 discusses the structure of the
ABM framework.

2.1. Financial model

Section 1 introduces a number of studies in which some models are
developed to calculate the payback and financial profitability of dif-
ferent green technologies. However, these studies do not assume any
uncertainty in the outcome of the green technologies as a result of the
stochastic nature of them. That is, studies often assume that the level of
generated electricity by PV panels is given for each agent, thereby not
accounting for any sort of uncertainty (e.g., climate change), the
availability of different packages for each agent, and multiple green
technologies and their interactions (PV panels, GR, and GR integrated
PV panels). Moreover, they do not account for the changes in the cost
efficiency of the PV systems. In order to tackle these shortcomings, this
section presents a mathematical model that accounts for the climate
change uncertainty as well as other factors.

The mathematical model developed in this study calculates the di-
rect potential income from the installation of PV panels and/or GRs for
a single building, while accounting for climate change and interaction
between PV panels and GRs. An integer programming model is devel-
oped with the intent to find the optimal settings that maximize the
profit gained from the installation of PV panels and/or GRs for an in-
dividual building, while considering the solar irradiation and shading of
that building. Each building is offered a set of available green tech-
nologies consisting of a combination of PV panels and GRs that can be
installed over them. The available packages used in this study are
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Table 1

Model notations for financial sub-model.
Index Description Level
Sets
t Day index, where t € [0, T] and T representing the length of the planning horizon Environment
p Green technology package index, where p € P Environment
@ Climate scenario index, where w € Q Environment
Variables
Xp Binary variable, which equals to 1 if package p is installed, O otherwise Household
Parameters
G Installation and maintenance cost of package p (USD) Environment
" Cost of 1 kWh of electricity from the grid(USD) Environment
p Potential income achieved through installation of package p (USD) Household
oy Potential level of total electricity output through installation of package p under the climate scenario w (kWh) Household
Sy Potential level of total energy saving through installation of package p under climate scenario w (kWh) Household
n® Realization probability of climate scenario w, where 3 7, = 1 Environment
Jet Daily solar irradiation available during day ¢ under climate scenario w (kWh/m?) Grid
Ap Total area of PV arrays for package p (m?) Environment
E;; PV output efficiency for package p during day ¢ (%) Household
op Energy saving percentage from GR installation in cooling degree days for package p (%) Environment
By Energy saving percentage from GR installation in heating degree days for package p (%) Environment
7t Indicator of cooling degree days in climate scenario @, which equals 1 if ¢ is a cooling degree day, 0 otherwise (days) Grid
ot Indicator of heating degree days in climate scenario w, which equals 1 if ¢ is a heating degree day, 0 otherwise (days) Grid
Ut Daily energy consumption for space conditioning for the building in day ¢ (kWh) Household
H Total area of the household (m?) Household
A The performance ratio of the PV system, where 1 € [0, 1] Environment

further described in Section 3. Table 1 presents the notations used in
the financial sub-model.

The objective function of this model is to maximize the level of
potential profit achievable through the installation of packages over a
building,

maxZ = Z (my, — Cp)xp,

pEP (1)
subject to
> %<,
peP 2)
M= n°[0¢+S¢u,  VpeEP,
WEQ (3)
x, € {0, 1}. (&)

Eq. (2) guarantees that at most, only one package is assigned for
installation over a building. Eq. (3) calculates the achievable income
through energy generation and/or saving via installation of each
package over all the probable climate scenarios. Eq. (4) imposes the
binary restriction for variable x,. In order to assess the achievable level
of electricity generation for each package, Eq. (5) calculates the po-
tential electricity generation for each package based on the level of
solar irradiation available, the size of the package, and its output effi-
ciency under each climate scenario,

Op =Y I“ApEjA  VpePweq.
teT ()

The level of energy saving achieved by installation of each package
due to GR energy reduction properties is calculated by Eq. (6),

S¢ = Z (ep" + B,z U, VpeEP, weQ.
teT (6)

Different levels of energy saving are considered during heating and
cooling degree days, which are described thoroughly in Section 3.

2.2. Attitudinal model

Studies have shown that while the economical aspect of a model
plays a vital role in maintaining the diffusion rate of green technologies,
the behavioral aspect of adopters also has a significant impact on the
results. This section introduces the behavioral model for this study
which is developed based on the models in the existing literature. In
order to incorporate the behavioral aspect of the agents in this study,
due to the limitations mentioned in Section 1, the authors opt to adopt
the behavioral model from the literature with a focus on the studies that
have a similar framework structure, i.e., attitudinal models which seek
to define the underlying structure of agents’ behaviors toward the
adoption of new technologies based on their characteristics such as
demographics, profitability of the technology, social status, and inter-
actions with other agents.

The changes in agents’ behavior and their magnitude as a result of
interactions among the agents in a system is mainly studied through the
implementation of a set of rules and regulations, either developed based
on the subject of the study or through the adoption of theories devel-
oped from different fields of science [36]. Such theories mainly have
their roots in psychology and social sciences, such as the Theory of
Planned Behavior [56], Diffusion of Innovation [57], Tit for Tat [58],
and Relative Agreement [59]. Nevertheless, there exists a number of
models that have emerged based on the theories in other fields of sci-
ence, namely the Ising model which has its roots in the field of physics
[60]. In the present study, the main structure of the attitudinal model is
based on the Theory of Diffusion of Innovation (TDI) by Rogers [57].
This theory emphasizes the fact that while the diffusion of a technology
relies considerably on the technology itself, one must take into account
the effect of the communication channels, time, and social system.
While studying the adoption of new technologies, TDI divides agents
into three major groups, i.e., non-adopters, potential-adopters, and
adopters [61]. The main difference between non-adopters and poten-
tial-adopters is in the fact that potential-adopters are agents who con-
sider adopting green technologies, and are mainly restrained by the
financial outcome of them. Non-adopters, on the other hand, do not
consider the adoption of green technologies even if they are financially
profitable. In order to assess the overall behavior of each agent toward
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Table 2
Common social networks utilized in the literature for ABM [98].
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Social network Description

Fully Connected
Random
Regular Lattice
Ring Lattice
Small World
with other isolated networks based on a given probability.
Scale Free

Homogeneous network in which each agent is connected to all other agents in the network.

Agents are randomly connected to other agents in the network based on a given probability, independent of other agents in the network.

Agents are connected to other agents in the network only based on a distance threshold.

Distance based connection of the agents within a given distance threshold, forming a ring.

A Ring Lattice network which also includes a number of long-distance connections. This includes strongly clustered isolated networks that are also connected

The majority of the agents have a small number of connections while some agents have a large number of connections (hubs).

the adoption of green technologies, three different models, developed
by Rasoulkhani et al. [62], Lee and Hong [63], and Zhao et al. [49], are
evaluated in this study. The model, developed by Rasoulkhani et al.
[62], is mainly designed to study the adoption of new water-saving
technologies and considers variables, such as garden and pool size,
which are not considered as key factors when studying technologies
such as PV systems. Lee and Hong [63] developed a behavioral model
mainly to evaluate the outputs of PV systems and focus on the level of
solar irradiation received by the household which makes the model
unfit for studying technologies such as GRs, which do not necessarily
benefit from such factors. The current study focuses on the model de-
veloped by Zhao et al. [49] in which they use a linear regression model
to calculate the probability of a household adopting solar panels, de-
noted by p. The independent variables in the linear regression are the
potential income of the technologies which are accounted for in the
calculation of the payback period, the characteristics of the household
which is considered in the number of residents of each household, as
well as the average income of the household. Moreover, the visibility of
the green technologies is also considered in the developed regression
model through the inclusion of the total number of advertisements re-
ceived by the residents of the household. This linear regression returns
a value between 0 and 1, indicating how likely an agent is to adopt
green technologies. This is ideal for the purpose of this study as not only
the regression model accounts for different aspects of green technolo-
gies, but it generates the resulting value in a scale which is easy to
interpret while calculating the values for the parameters related to the
ABM framework, namely, opinion and uncertainty. Note that by con-
sidering the profitability of the green technologies through calculating
the payback period, this model can evaluate green technologies, such as
GRs and PV systems, hence making it a suitable fit for the scope of this
study. A more thorough description of the regression model and its
components is provided in Section 3.

2.3. ABM framework

In this section, the ABM framework developed here to study the
adoption rate of the green technologies is presented. Three different
agent types are considered, i.e., candidate sites, green technology
packages, and zip codes. Each candidate site is assigned to a zip code,
based on their coordinates, and a number of characteristics of the
candidate site (parameters) are assigned based on their relative zip
code. This is mainly to provide an estimate for the parameter values
that are not available in the household level. For instance, parameters
such as building size or level of solar irradiation received by each
building are provided by UDI [27] and CCSI [28] in the household
level, whereas, for characteristics such as property value, the average
age of the residents, and income level, the median values reported for
their relative zip codes are used. The parameters of the model are set by
the environment and are updated as the time passes or new regulations
are introduced into the model. At the beginning of each time-step, the
package with the maximum potential profit over the next 20 years is
chosen using the model presented in Section 2.1. Based on the beha-
vioral model in Section 2.2, for each agent to adopt a green technology,
two main criteria must be met: 1) the green technology should be

profitable (including the incentives and tax-cuts), and 2) the opinion of
the agent should surpass a certain global threshold (¢,,,,)- The attitu-
dinal sub-model also takes the characteristics of the agent into con-
sideration by calculating p. The attitude of the agents changes over
time, as well as their demographics. While the demographics change
over time, the attitude is changed due to agents’ interactions inside
their network with other agents. While some of the changes in demo-
graphics over time are easy to calculate, some cannot be tracked
without certain assumptions. For example, the average age of residents
in a household cannot be predicted without making the assumption that
residents in these households do not change over time. Hence, con-
sistent with the existing literature [62,52,49], we make the assumption
that the demographics of the agents remain unchanged over the time of
the study, as well as the assumption that when an agent installs a green
technology, they do not consider installing green technologies any-
more.

Social network structures are mainly used to define the patterns
through which agents interact with one another, mainly to calculate the
changes in the attitudes of agents over time. In Table 2, we provide a
number of common network algorithms currently being utilized in the
literature. In order to simulate the interaction among agents, we use the
Small World network proposed by Watts and Strogatz [64]. The Small
World network configuration contains locally clustered networks where
the average path lengths between nodes in the network are reduced
using randomly rewired links. Algorithm 1 shows the pseudo-code for
the Small World network algorithm. In this study, B, and Kj,, denote
the probability and number of connections in the Small World network,
respectively.

Algorithm 1. Pseudo-code Small World network algorithm used to
connect the agents in the ABM framework.

Set the set of agents N
Set the rewiring probability Py,
Set the node degree Ky, where N > K, > logN > 1
for alli € N do
Connect to the nearest Ky, nodes
end for
foralli € N do
for all j € (1, Ky,) do
J; < agents connected nodes to j
r < Unif (0, 1)
ifr<p
Select m € N\ {j, ji}
rewire j to node m
end if
end for
end for

Using the social network structure, the ABM framework simulates
the interactions among agents and calculates attitude and income
model for each agent while accounting for over time evolution of the
variables in the environment of the simulation. Based on the Small
World network, each agent interacts with a number of other agents in
the network through their local and global networks. The local network
is based on the physical distance of the agents from one another, where
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the threshold for distance or the number of connections are given as
inputs for the environment of the model. Through the interactions with
other agents, the opinion of each agent changes. To calculate the level
of changes in agents’ behavior, this study uses the Relative Agreement
(RA) algorithm developed by Deffuant et al. [59]. In RA, an agent
randomly interacts with another agent in its network. Then, each agent,
based on their opinion and their uncertainty, updates its opinion as a
result of the new information they obtain through these interactions.
Hence, each agent holds two characteristics: opinion, ¢, and un-
certainty ¢;, where opinion ranges between —1 and 1, and uncertainty
ranges between 0 to 2 [65]. The RA between two agents i and j is
calculated as

G ™)
where h;; denotes the overlap between the two agents’ bounds and is
calculated as

hy = min(g; + &, ¢; + §) — max (¢, — &, ¢, — {). (8)

Then, for positive values of RA between two agents i and j, an agent’s
opinion and uncertainty is updated, i.e.,

$ =@ + ERA (¢ — &), ©
and
gj = gj + é'RAy({, - {])’ (10)

where £ is a parameter defined by the environment of the ABM that is
responsible for controlling the speed of population convergence. Note
that in this way, agents with vastly different opinions are unlikely to
affect one another. It is important to consider that agents’ opinions
evolve over time based on the changes in their behaviors due to in-
teractions with other agents, and hence, two agents with vastly dif-
ferent opinions have the possibility to affect one another as time pro-
gresses and their opinions evolve. If an agent’s opinion surpasses the
global threshold, i.e., ¢, the agent turns into a potential adopter,
and the installation of green technologies takes place only if they are
profitable.

In order to calculate the agent’s opinion, ¢, and uncertainty, ¢, this
study utilizes the results from the attitudinal model, i.e., p,. In this
study, it is assumed that those with a value of p = 1 hold an extremely
positive opinion towards green technologies, i.e., ¢ = 1, while those
with a p value of 0 hold an extremely negative opinion, i.e., ¢ = —1,
and those with a value of p = 0.5 are neutral toward the green tech-
nologies, i.e., ¢ = 0. Eq. (11) shows the formulation used to calculate
the opinion for each agent, i.e.,

¢ =2(p0 — 0.5). an

Studies have demonstrated that those who hold a more extreme
opinion toward a subject have lower levels of uncertainty [52]. In this
study, the uncertainty for each agent is calculated based on their opi-
nion. That is, the agents who have absolute opinion values of 1 are
assigned an uncertainty of 0, while those with an opinion of 0 have
uncertainties equal to 2, i.e.,

¢=2(1 - Igl). (12)

Fig. 1 represents the structure of the ABM framework used in this
study.

3. Model calibration

In this section, the values reported in the literature, along with
experts’ opinions and publicly available datasets as well as data sets
provided by UDI [27] and CCSI [28] are used to calibrate the model
formulated in Section 2.1.

Planning horizon, T. This study considers a planning horizon of
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20 years since the currently commercially available PV systems gen-
erally have a lifespan of 20 to 30 years [66] while GRs last about
30-40 years [67,68].

Green technology packages, P, installation and maintenance cost of
package p, Cp, and total area of PV arrays for package p, A,. The focus of
this study is residential and small commercial PV systems with a size
ranging between 2 kW and 10 kW [66]. Hence, five different PV system
sizes with two different output efficiency levels of 15% and 20% are
considered, where each PV system is offered with and without GRs.
Note that installing stand-alone GRs is also another available option.
This results in 21 different packages, which are offered to each agent,
with their relative costs presented in Table 3. The GR installation cost is
directly related to its size. That is, GRs cost approximately $12.5 per
m?, while it costs $7.5 per m? for GRs larger than 929 m? [69]. Hence,
the cost of GR installation for each agent is calculated based on its
rooftop size. SPR [70] report that for PV systems with output efficiency
values of 15% and 20%, each 15 Watts and 20 Watts have an area of
0.093 m?, respectively, based on which the total area of PV arrays for
package p, A,, presented in Table 3, are calculated. Ramshani et al.
[71] state that the annual maintenance costs for PV panels range be-
tween 15 to 90 cents per m?, while extensive GR maintenance cost is
negligible. Hence, an annual cost of 90 cents per m? is assigned to the
packages that include PV systems.

Table 4 shows the per Watt price of installed PV systems from 2014
to 2018. In order to account for the changes in this study, a linear re-
gression model is fitted to the cost per Watt of PV systems. Note that no
new green technology packages are offered in this study, but the cost of
currently existing packages changes in time to capture the existing
trend in the overall cost of PV systems. Fig. 2 shows the linear regres-
sion model fitted to the data presented in Table 4.

Climate scenarios, Q, indicator of cooling degree days in climate scenario
w, ", indicator of heating degree days in climate scenario w, 7', and
realization probability of climate scenario w. The values of these para-
meters are calculated using the climate forecasts provided by UDI [27]
and CCSI [28]. The climate forecasts are generated using 10 different
coupled general circulation models (GCMS) [72], and include daily
values for maximum and minimum daily temperatures, as well as pre-
cipitation levels for each day starting from January 2011 up to De-
cember 2050 for grids of 1 km? and 4 km? for the city of Knoxville, TN.
In this study, the climate projections from the ten different CGCMs
listed in Table 5 are used as the climate scenarios and are assigned an
equal realization probability, i.e., 10%. Note that this study considers a
planning horizon, T, of 20 years, starting from January 2011.

In order to provide a higher level of details on the projection models
used in this study, Table 6 presents the maximum, average, and range of
standard deviation for daily pairwise comparisons across the ten cli-
mate projections. That is, the absolute values of the differences between
the projections for each two pairs of climate models over the given
planning horizon are calculated. Then, the average of the differences
over all of the pairwise comparisons is calculated and shown in the
average column of the table. The maximum column shows the max-
imum value observed over all the pairwise comparisons. Also, the
standard deviation range column shows the range of standard devia-
tions calculated for each pairwise comparison for the values reported in
the average column. The results shown in the table highlight the ex-
isting variations in the projected values. In this study, to classify each
day as a cooling/heating degree day, cut-off values are used. First, the
average daily temperature is calculated by taking the average of the
maximum and minimum daily temperature. Then, the recommended
temperatures for human comfort in the literature i.e., 17.5 and 14.2
degrees Celsius for cooling and heating degree days, respectively
[73-75], are used as cut-off thresholds to classify each day as a cooling/
heating day. Note that the days with an average temperature that falls
between the two thresholds are neither a cooling nor a heating degree
day.

Cost of 1 kWh electricity from the grid, u. In this study, it is assumed
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Fig. 1. The structure of the proposed framework, including the Attitudinal and Financial model as well as the ABM. The dashed lines indicate the feedback from
interactions and time evolution of model variables which originate from the ABM and is fed to the models.

Table 3
The cost for different PV system sizes in USD for southern U.S. for two different
panel output efficiencis of 15% and 20% [66].

PV system size (kW) 15% efficiency 20% efficiency

Cost (USD) Area (m?) Cost (USD) Area (m?)
2 5,900 12.39 6,800 9.29
3 9,000 18.58 10,200 13.94
4 12,000 24.77 13,500 18.58
5 15,000 30.97 17,000 23.23
10 30,000 61.94 34,000 46.45
Table 4

Price for per Watts installed PV systems from 2014 to 2018 reported by Energy
Sage [99].

Year 2014 2015 2016 2017 2018

H1 H2 H1 H2 H1 H2 HI1 H2 H1 H2

Cost (USD/ -
Watts)

3.86 3.79 3.69 357 336 3.17 3.13 3.12 3.05

that net metering is available for the agents. Net metering allows agents
to send the extra electricity generated to the grid at normal retail value
and receive credit for it, which is commonly supported by most utility
providers in the U.S. [76]. The agents can later consume the electricity
provided by the grid equal to the credit they received without any
payments. The cost of electricity is set equal to 10.3 cents per kWh
consistent with the price of electricity in the city of Knoxville, TN [77].

PV output efficiency for package p during day t, E,. NREL [78] reports
that in the past 40 years, PV cell output efficiency experienced a con-
stant increase and recently developed PV cells have an efficiency ran-
ging between 11.5% and 46%. However, the current commercially
available PV cells have an output efficiency ranging between 13.5% and
20% [79]. Hence, in this study, a variety of PV packages are considered
with efficiencies ranging between 13.5% and 20%. During each day ¢,
the output efficiency of each package is calculated based on the average
temperature during that day using Eq. (13),

B {Ep(1.091 + 0.0013T,) if package p contains GR
Ep 0. W., (13)

where T, denotes the average daily temperature for the grid in which
the building is located, and E, denotes the output efficiency of the
package. In Eq. (13), the output efficiency of the installed PV package
increases only if it is integrated with GRs. The level of increase in
output efficiency of PV panels, due to integration with GRs, have been
subject to empirical investigation, and the reported values range from
3.33% to 8% [80,81]. Note that the reason for this output efficiency
increase is the reduction in GRs’ temperature of their surrounding re-
gion. Hence, the higher the temperature, the greater the cooling effect
and the higher the efficiency increase. In order to capture this re-
lationship, a linear regression is fitted to the reported values from the
literature and the maximum and minimum temperatures from the cli-
mate forecasts, which results in the regression line shown in Eq. (13).

Energy saving percentage from GR installation in cooling and heating
degree days for package p, a and f3, respectively. The percentage of energy
saving in cooling degree days achieved due to the installation of GRs
differs across various studies, ranging from 10% to 16.7%
[74,17,82-86]. Most of the studies agree that GR installation results in
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Fig. 2. The regression model fitted to the data presented in Table 4.

savings in cooling degree days, whereas a few empirical studies show
that GR installation results in energy loss in heating degree days. Also,
other studies report that GRs result in energy savings in cooling degree
days. Coma et al. [74] report that GRs result in a 6.2% increase in
energy consumption for space conditioning during heating degree days.
However, Feng and Hewage [84] report that GRs result in 4% to 6%
energy consumption reduction for space conditioning during heating
degree days. In this study, the values for « and 8 are set equal to 10%
and 0%, respectively, as all the studies agree on the fact that GRs result
in energy savings during cooling degree days, but the reported values
for energy savings during heating degree days are contradictory. Note
that in this study cooling and heating degree days are considered as
days during which the average temperature is greater than 22 °C and
less than 17 °C, respectively.

Daily solar irradiation available during day t in climate scenario w, I*'.
In order to calculate the daily solar irradiation, this study utilizes the
daily average value of solar irradiation for each building for the city of
Knoxville, TN. Fig. 3 shows the average level of solar irradiation for a

Table 5

number of buildings in Knoxville, TN, provided by UDI [27] and CCSI
[28]. These levels reflect the level of solar irradiation during a day in
which the average number of peak sunlight hours are available in the
city of Knoxville, i.e., 4.5 h [87]. Note that the level of solar irradiation
available during each day in this study is calculated based on the
number of daily peak sunlight hours available during that day. In order
to estimate the available daily peak sunlight hours, this study makes the
assumption that there is a direct relationship between the value for this
parameter and the level of daily precipitation during a given day. The
historical precipitation data and recorded average peak sunlight hours
for each month from 1960 to 1990 for the city of Knoxville [87,88] is
used to calculate a linear regression for each month. Then, these re-
gression lines are used to forecast the peak sunlight hours value for each
day of each month using the level of precipitation from the climate
projections. Fig. 4a and b show the monthly average peak sunlight
hours and precipitation from 1960 to 1990 for the city of Knoxville, TN.
Table 7 shows the slope and intercept for the calculated linear regres-
sions for peak sunlight hours versus precipitation level for each month.

The ten coupled general circulation models (CGCMs) provided by CCSI [28] and UDI [27]. The projections are generated through utilization of high-performance

computing resources, including Titan, America’s fastest supercomputer [28].

Model

Institute of development

Japanese Meteorological Research Institute Coupled Global
Climate Model (MRI-CGCM3)

Max-Planck-Institute Earth System Model Mixed Resolution (MPI-
ESM-MR)

Geophysical Fluid Dynamics Laboratory Earth System Model
(GFDL-ESM2M)

The Australian Community Climate and Earth System Simulator
(ACCESS)

The NCAR’s Community Climate System Model (CCSM4)

The Institute Pierre Simon Laplace Climate Model (IPSL-CM5A)

The Beijing Climate Center Climate System Model (BCC-CSM)

Norwegian Earth System Model (NorESM1-M)

The Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate
Model (CMCC-CM)

Flexible Global Ocean Atmosphere Land System (FGOALS)

Meteorological Research Institute of the Japan Meteorological Agency [100]

Max Planck Institute for Meteorology [101]

Geophysical Fluid Dynamics Laboratory [102]

Commonwealth Scientific and Industrial Research Organization [103]

Climate and Global Dynamics Laboratory at the National Center for Atmospheric Research [104]
Institute Pierre Simon Laplace [105]

Beijing Climate Center, China Meteorological Administration [106]

Multi-institutional, Coordinated Climate Research in Norway [107]

Euro-Mediterranean Center on Climate Change [108]

Institute of Atmospheric Physics, Chinese Academy of Sciences, State Key Laboratory of Numerical
Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics [109]
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The results from the daily pairwise comparison for the ten CGCMs shown in Table 5 starting from January 2011, showing the maximum, average, and
standard deviation range for pairwise comparison of the climate models. The minimum value for each parameter it is equal to 0, hence omitted from the

table.
Parameter Maximum Average Standard deviation range
Daily minimum temperature (°C) 31.41 4.72 [0.79,7.95]
Daily maximum temperature (°C) 41.58 4.79 [0.47,11.22]
Daily precipitation (mm) 105.26 5.45 [0.02,38.88]

Hence, the value of I** for each household under each scenario is cal-
culated based on the precipitation forecasts provided by the ten climate
projections.

Daily energy consumption for space conditioning for the building in day
t, U'. Electricity consumption usually increases in building size [89].
The data from a 2009 survey by the EIA [89] is used to estimate the
relationship between the average daily energy consumption levels for
conditioning and the size of the building. The data show an obvious
linear relationship between the size of the building and its energy
consumption for space conditioning. Eq. (14) shows the resulting linear
regression used to calculate the average daily energy consumption for
each household in this study, i.e.,

U' = 0.0941H + 11.472. 14

The performance ratio of the PV system, A. According to Photovoltaic
Software [90], the quality of PV installation can drastically reduce the
output of the PV system due to reasons such as inverter, temperature,
and DC and AC cable losses, which can result in a decrease in the ef-
ficiency of a PV system up to 100% of its actual efficiency. We set the
value for this parameter equal to 75% consistent with the experts’
opinion [90].

The probability of a household adopting solar panels, p. In order to
estimate the value for this variable, we use the model developed by
Zhao et al. [49]. Table 8 shows the parameters used in this linear re-
gression model, their units, corresponding coefficients, and the data
source.

In order to calculate the value for each of the factors in the

regression model, this study follows the formulation proposed by Zhao
et al. [49]. That is, the payback period is calculated as
_ Max(PP) — PP,

Max (PP) — Min(PP) (15)

1

where PP denotes payback period, PP, denotes the payback period for
agent i, and maximum and minimum PP are set to the lifespan of
common PV systems (i.e., 25) plus one, and one, respectively [91]. The
household income factor is calculated as

(X 24y/p

2T - (X RhHmy’ (16)

where X denotes the income of the household in 5000 USD, and n is the
number of family members, e.g., the size of the household. The Ad-
vertisement factor that accounts for the total number of advertisements
about green technologies received by a family is calculated by using a
piecewise linear function, i.e.,

0.02Adv if 0 < Adv < 5,
0.04Adv — 0.1 if 5 < Adv < 10,
F; = {0.06Adv — 0.3 if 10 < Adv < 15,
0.084dv — 0.6 if 15 < Adv < 20,
1 if Adv > 20, a7

where Adv denotes the total number of advertisements received by a
family during each time step. In order to calculate the neighborhood
factor, F, is calculated:

Fig. 3. Visual-SOLAR radiation map for the city of Knoxville, TN [54].
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Fig. 4. Historical peak sunlight hours and precipitation data for the city of Knoxville over 30 years from 1960 to 1990.
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where N denotes the number of neighbors in the neighborhood who
adopted green technologies. U.S Census Bureau [92] defines a neigh-
borhood as the area in a radius of 650 m to 1,060 m around a house-
hold. Hence, we set the neighborhood for each agent as the number of
agents in a radius of 1,060 m from the agent’s geographical location.

4. Computational studies

In this section, the results from a case study on a sample of house-
holds in the city of Knoxville, TN, is presented first. Next, the effects of
the changes in the social network of the model on the results are in-
vestigated through a series of sensitivity analysis. Lastly, the impact
from different promotional policies on the results of the model are
evaluated.

4.1. Case study

This section provides a case study on a sample of households in the
city of Knoxville, TN. This sample is a random subset of the actual
households in Knoxville, TN, with a size of 1,045 households, i.e., 0.5%
of the actual data. That is, this section provides the results from the
diffusion of green technologies throughout a sample society under a
case in which the agents are only exposed to the information from the
financial model. The hyper-parameters of the Small World network are
set to 2, 10%, and 60% for Ng,, Py, and ¢, respectively, with an
average of 4 interactions per time step. Fig. 5 shows the results from the
model after 20 years of simulation.

The results from the model show that after 20 years of simulation,
the majority of installed packages are in the central Knoxville area, i.e.,
downtown Knoxville, as well as Northshore and Farragut. Note that the
number of GR integrated PV systems, as well as stand-alone GRs in
these regions, is higher than the number of stand-alone PV systems,
with the highest number of installations for the GR integrated PV sys-
tems. The buildings in the regions with the most number of installations
generally receive a high level of solar irradiation due to the lack of
shading and the topological properties of the region, thus making PV

Table 7

systems more economically efficient in these neighborhoods.

Fig. 6 shows the daily maximum and minimum temperature values
for the city of Knoxville, TN, for the year 2030 for the ACCESS CGCM.
The highlighted areas represent the regions with the most number of
installations. One can observe that the values for maximum and
minimum daily temperatures for these two regions are higher compared
to their surrounding areas, mainly due to the high density of the
buildings and/or lack of vegetation (these observations are consistent
over other climate projection models). This study assumes that GRs
provide a higher level of energy saving during cooling degree days,
which means areas with higher average temperaturew benefit more
from GRs energy savings properties. Therefore, a higher number of GRs
(stand-alone or integrated with PV systems) installed in the marked
regions align with the observations from Fig. 6 and assumptions of the
model, i.e., warmer regions benefit more from GRs energy saving
properties. The neighborhoods with the highest number of adoptions
have a median income of approximately 100,000textsuperscript+ USD,
which makes them relatively wealthy neighborhoods as the average
median income for the city of Knoxville is equal to $52,458 as of 2019
[93]. These observations reflect the structure of the attitudinal model,
i.e., a higher level of income increases the willingness of the agent to
install green technologies. Hence, the results indicate that, in general,
more affluent neighborhoods are a better starting zone to target for
promotional policies.

4.2. Sensitivity analysis

This section provides the results from the sensitivity analysis over a
number of parameters of the model, studying the effects of changes in
the value of the hyper-parameters of the Small World network, the
decision threshold, and the number of interactions on the outputs from
the model. A Small World network with a high probability value, B,
resembles a Random network as the high values for B, translates to a
higher probability of randomly connecting to agents which are not
neighbors, whereas a Small World network with low probability values
resembles a Lattice network [64]. Hence, three different rewiring
probabilities, i.e., B,,, of 10%, 50%, and 90% are considered in order to
study the outcomes of the model under three different network

Intercept and slope for monthly regression models for peaks sunlight hours versus precipitation level in millimeters based on historical data for the city of Knoxville,

TN, based on the data provided by NREL [87] and NOAA [88].

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Intercept 4.1973 4.6561 5.0258 5.3702 5.1199 5.2159 5.1398 5.1985 5.2722 5.4577 4.1238 3.6984
Slope —0.1843 —0.1441 —0.1040 —0.1235 —-0.0712 —0.0960 —0.0944 —0.0681 —0.1611 —-0.2170 —0.0986 —0.1043

10
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The independent variables and their corresponding normalized coefficients developed by Zhao et al. [49].

Value/Source

Factor Normalized weight  Independent variable

Payback period 0.319 Payback period (years)

Household income  0.247 Yearly income (divided by 5 thousand USD) Family size
(persons)

Advertisement 0.281 Number of advertisements received per family (€ [0-25])

Neighborhood 0.153 Number of green technologies installed per neighborhood (#
of installed units)

PGlobal — adoption threshold (%)

Income model
Triangular distribution based on zip code levels provided by [93]

Triangular (1, 5, 3.2) per person based on the values used by [49]
withing a 1,060 m? radius as the distance defined by [92] to describe a
neighborhood

[53.3%-54.5%] based on a study conducted by [91]

structures. The number of interactions indicates the average annual
number of times that each agent interacts with other agents in its
networks. These interactions can result in changes in opinion, ¢, and
uncertainty, U, values. In order to reduce the randomness of the model
to get a better understanding of the effects of the changes in the net-
work settings on the results, the number of advertisements received per
family is set to a constant value, i.e., 20, during each year.

Table 9 shows the results of 54 different settings for parameters of
the Small World network, as well as the decision threshold over
20 years.

The results from the table show that the total number of installa-
tions decreases in decision threshold, ¢, which is representative of
the fact that in a society, there is a small number of people that hold an
extreme opinion toward a subject, whereas the majority of the society
holds a relatively moderate opinion.

It can be observed that the total number of installations increases in
the number of connections Ny, and the number of interactions, where

the highest number of installations is for Ny, = 4 and 8 interactions
under a B, of 90%. The results show that a higher number of interac-
tions often results in a higher number of installations, while it generally
does not result in an increase in the number of agents with an extreme
opinion. This means that agents in a more active network tend to hold
less extreme opinions, as for Ny, = 4, B, = 90%, and 8 interactions
(which roughly translates to a society in which agents have a high
number of connections, many of which are spread throughout the so-
ciety and they actively interact) the total number of agents with an
opinion higher than 70% is smaller than the other settings.

The changes in the total number of installed systems show that a
more diverse network generally results in an increase in the number of
adopters. That is, as the probability of agents connecting to other agents
that are not in their geographical neighborhood increases, i.e., higher
values of B, the interactions result in a more positive opinion toward
the adoption of green technologies. Note that this does not positively
affect the number of adopters under high levels of decision threshold as
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Fig. 5. The total number of installed packages for a sample of 1,045 buildings in the city of Knoxville, TN, over 20 years. The highlighted areas are the neighborhoods
with the highest number of installed green technologies. This figure only shows the households with an installed package in order to improve the presentation of the

results.
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Fig. 6. The average maximum (Tmax) and minimum (Tmin) temperature over the year of 2030 from the ACCESS CGCM model for the city of Knoxville, TN. The
marked regions represent the regions with the highest number of installed packages.

Table 9

The total number of installed PV system, GRs, and GR integrated PV systems for different values of network hyper-parameters, decision threshold, and social

interactions over twenty years, starting from January 2011.

Number of interactions = 4 Number of interactions = 8
Number of connections Probability (Pw) Decision threshold PVonly GRonly PV and Total # of PVonly GRonly PVand Total # of
(Now) Poitobar) GR systems GR systems
1 10% 50% 35 110 358 503 39 127 434 600
60% 11 40 128 179 21 51 182 254
70% 0 5 6 11 0 5 6 11
50% 50% 43 112 353 508 48 128 440 616
60% 13 47 130 190 32 83 267 382
70% 0 5 6 11 0 5 6 11
90% 50% 34 115 324 473 48 130 441 619
60% 13 48 148 209 26 86 303 415
70% 0 5 6 11 0 5 6 11
2 10% 50% 50 121 430 601 55 142 513 710
60% 12 46 135 193 42 103 419 564
70% 0 5 6 11 0 5 6 11
50% 50% 45 124 445 614 51 143 526 720
60% 12 43 127 182 38 93 396 527
70% 0 5 6 11 0 5 6 11
90% 50% 44 118 432 594 52 161 530 743
60% 13 59 194 266 42 112 406 560
70% 0 5 6 11 0 5 6 11
4 10% 50% 50 137 495 682 60 167 557 784
60% 27 75 247 349 53 129 513 695
70% 0 5 6 11 0 5 6 11
50% 50% 51 135 496 682 62 169 582 813
60% 33 83 291 407 50 137 510 697
70% 0 5 5 10 0 4 0 4
90% 50% 49 138 505 692 60 171 603 834
60% 17 39 132 188 52 148 544 744
70% 0 5 6 11 0 4 0 4

more diverse interactions result in less extreme opinions.

4.3. Policy evaluation

In order to aid in the expansion of residential solar energy adoption,
the Federal Government, state governments, utility companies, and
individual organizations provide a variety of programs through which
they aim to encourage the installation of green technologies. These
programs can be divided into two main categories, i.e., the programs
that aim to make green technologies more economically profitable
through tax cuts, rebates, and incentives [94], and those that aim to

12

increase the diffusion rate of such technologies by increasing their ex-
posure in a society mainly by means of advertisement, installations, and
providing information about the benefits and advantages of such
technologies [43]. This section evaluates the impact of incentives and
promotional campaigns on the diffusion rate of green technologies in
the city of Knoxville, TN. Note that the results from these evaluations
are based on the assumptions made in this study, and providing the
model with more accurate data or behavioral models that are tailored
using the actual data from the city of Knoxville, can result in more
accurate results. In order to study the effects of programs that increase
the financial viability of green technologies, this study takes the Solar
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Investment Tax Credit (ITC) into account. The ITC is provided by the
federal government since the Energy Policy Act of 2005 through which
a deduction of 30% of the installation cost of a PV system is allocated to
the adopters [94]. Moreover, there exists a similar incentive for GRs
that provides a tax cut of about 30% of the installation cost for the
adopters [95]. Hence, ITC policy accounts for a 30% reduction in the
cost of PV systems and GR installation.

The role of the visibility and advertisement which encourages the
adoption of green technologies has been proven to be significant in the
literature [43,49,52]. Therefore, this study investigates the impact of
increasing the exposure and visibility of green technologies by evalu-
ating the effect of an increase in the number of advertisements toward
promoting green technologies through promotional campaigns (PC).
That is, each household receives the maximum number of advertise-
ments assumed in the model, i.e., 20 per family per year, and the re-
sulting effects on the outcomes of the model are studied. Lastly, the
level of effectiveness for a combination of both policies is studied.

In order to evaluate the effect of policies on the adoption rate of the
green technologies, the effects of the ITC incentive is studied under two
different scenarios, i.e., when ITC exists only for the first five years of
the time horizon, and when ITC exists throughout the entire time
horizon. That is, a five-year ITC indicates that only the households that
install green technologies during the first five years of the time horizon
qualify for the ITC, and the households that install green technologies
from the sixth year onward do not benefit from this incentive. Next, the
effect of the promotions policies through the implementation of PC over
the entire time horizon is evaluated, with and without the ITC. Next,
the results are compared with the case where no incentives exist and
agents are only provided with the information from the model outputs.
Lastly, the ideal world is defined as the case under which the only
criterion is whether or not the green technologies are profitable and all
the agents are potential adopters. The values for Kj,, Py, and ¢y, are
set equal to 2, 10%, and 50%, respectively, with an average of four
annual interactions between the agents and their connections.

Fig. 7 shows the total number of installed green technologies under
the implementation of different policies. The results show that a 5-year
ITC slightly increases the adoption rate during its implementation, but
for the remaining time horizon, the total number of installations is not
drastically different from the case with no policies. It can be observed
that while PC performs better than ITC over the first 10 years, a 20-year
ITC eventually outperforms it. This shows the fact that while informing
the public about the benefits of green technology helps increase the
total number of installations, a financially beneficial policy has the
potential of increasing the diffusion rate of the green technologies. This
emphasizes the fact that the financial viability of such technologies is
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the main factor in their penetration rate. The results also show that the
combination of both PC and ITC leads to the most number of installed
green technologies. That is, while providing information about the
advantages of green technologies can help the adoption rate, many
adopters do not find the payback period short enough to invest in such
technologies. Hence, by reducing the payback period through tax cuts
and incentives, governing bodies can achieve a higher diffusion rate.
The Lost Opportunity represents the actual potential of the sample so-
ciety versus the results from the best policies. As the price of PV systems
reduces over time and more financially profitable systems are in-
troduced, a combination of ITC and PC can reduce the gap and achieve
results near to those of the ideal world. Note that the total number of
installed green technologies in the neighborhood of an agent also plays
an important role in the adoption rate of green technologies. Hence, by
making investments in improving the visibility of such technologies,
decision makers can further reduce the level of Lost Opportunity.

5. Results

This section provides an overview on the overall results from the
case study, sensitivity analysis, and policy evaluation, and further dis-
cusses the insights from those findings.

The results from the case study show that there exists a direct re-
lationship between the total number of installations and the cost of
these technologies. That is, the total number of installed packages in-
creases as their cost decreases over time. The results also show that the
installed GRs (stand-alone or PV integrated) are mainly centered
around the warmer geographical grids (Downtown Knoxville, and
Farragut) throughout the city. As shown in Fig. 6, the neighborhoods
with the most number of installed GRs are placed in warmer regions of
the city, hence benefiting more from GR saving properties. The effect of
green technology cost on their adoption rate is also traceable in the
neighborhoods with the highest number of installations, i.e., Farragut
and Downtown Knoxville. These neighborhoods have a median income
of 100,000textsuperscript+ USD, which makes them relatively more
affluent neighborhoods, compared to 52,458 USD as the median income
over the entire city of Knoxville. This indicates that with the current
cost of green technologies, it is best to target more affluent neighbor-
hoods as a starting point for promotional policies, as they have the
highest potential to adopt green technologies.

The results from the sensitivity analysis show the important effect of
the social structure of the society on the adoption rate of green tech-
nologies. A more isolated society is less likely to adopt green technol-
ogies, whereas a society in which the individuals are more actively
interacting tends to adopt a higher number of green technologies. This

Fig. 7. The total number of installed
packages under 6 different cases, i.e., ideal
world, no policies, five-year and 20-year
ITC, PC, and PC and 20-year ITC, where

rtunﬁ)’ the dashed lines show the cases with ITC
Lost Opp°

-------------- policy. The Lost Opportunity shows the
difference between the ideal installation of
green technologies and the results form the

policy with the most installations.
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is captured in the results of the sensitivity analysis, as by reducing the
total number of connections, the average annual number of interactions
between the agent and its connections, and the rewiring probability, the
total number of installed technologies drops. The results from the
analysis also show that in a society with a more positive mindset toward
green practices, the adoption rate is higher, regardless of how isolated
or connected the members of the society are. This observation is based
on changes in the global threshold for the adoption of the green tech-
nologies. Lower global thresholds represent societies with a more po-
sitive mindset about green technologies. That is, if all the other aspects
of the society remains unchanged, a lower global threshold eventually
leads to a higher total number of installed green practices. This further
highlights the important role of public awareness in the adoption rate,
showing the key role of policy makers in growing the adoption rate of
green technologies through increasing the pubic awareness.

Policy evaluation investigates two common types of promoting
policies, i.e., policies that focus on the financial viability of green
technologies, and those that emphasize increasing the adoption rate
through raising public awareness. The results from policy evaluation
show that the policies designed to increase the public awareness have a
higher impact over a short period of time, whereas those which focus on
increasing the affordability of green technologies yield better results
over longer periods of time. Ideally, a combination of both types of
policies out performs individual implementation of this policy specifi-
cally over the long run.

Overall, the results from the case study, sensitivity analysis, and
policy evaluation are aligned with one another, highlighting the sig-
nificance of the financial viability of green technologies, as well as the
important role of public awareness in the adoption rate of green tech-
nologies. The results show that while affordability contributes more to
the adoption rate of green technologies, a combination of both cost
reduction and awareness increasing policies yields the best results.

6. Discussion

The importance of moving away from fossil fuels and adopting re-
newable sources of energy has become increasingly evident over the
past few decades. It is indeed extremely timely to develop more sus-
tainable societies and mitigate the adverse effects of climate change.
Although numerous scientific advancements in recent years have con-
tributed to the efficiency and affordability of green technologies, such
practices are yet to be utilized to their full potential. Decades of em-
pirical and theoretical research has well established that to achieve the
true potential of green technologies, various complementary measures
need to be undertaken. Governments not only have to aggressively in-
vest in research and development mainly to make these technologies
more economically affordable (through efficiency increase and cost
reduction), but also they need to put more emphasis on studying the
behavior of their target societies. Initiative has been undertaken by the
NREL [96] to make green technologies more affordable, mainly by fo-
cusing on soft-cost reductions. Nevertheless, there is a noticeable lack of
investment in behavioral modeling and mathematical analysis in the
target societies to investigate the adoption rate of the green technolo-
gies, specifically in the U.S. Such investments can significantly con-
tribute to raising the awareness of individuals about the potentials and
benefits of green technologies, hence resulting in an increase in the
adoption rate of these technologies. This study highlights the important
role of the governing bodies, mainly through investigation of the results
from the policy evaluations, showing that even with common promo-
tional policies and incentives, there exists a noticeable gap between the
current results and the achievable potential. Such insights are particu-
larly valuable as they help identify methods through which the adop-
tion rate of green technologies can be improved,.

The framework proposed in this study is designed to capture various
important aspects of green technology adoption in order to provide
decision makers with helpful insights when setting their renewable
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energy goals. Many assumptions had to be made throughout this study
mainly due to data limitations or inaccessibility. In order to improve the
precision of the results from this study and other similar studies that
target the adoption rate of green technologies, policy makers need to
collect and provide more accurate data, specifically household-level
and individual-level data. This would allow models to more accurately
capture the decisions made by homeowners, the extent of peer effect on
the adoption rate, and the role of climate change and climate un-
certainty on the decisions made by the individuals.

The positive effect of the incentives and promotional policies have
been well established in the literature, and are believed to have resulted
in a 10,000% growth in the solar industry alone since 2006 [42]. While
many major cities such as in California have largely benefited from
these incentives and promotions, there is a large number of mid-sized
and small cities that were not targeted by such campaigns. As a result,
the current number of adopters in these cities is considerably lower
than their achievable potential. For instance, as of September 2019, the
city of Knoxville has fewer than a total of 80 installed PV systems. To
improve the utilization of green practices in cities with adoption rates
similar to those of city of Knoxville, pilot campaigns should be designed
and developed to promote the implementation of green technologies,
increase the public awareness, and help with data collection. Such
campaigns, which are often held in collaboration with academia, have
been tested in other states (such as the project undertaken by Bollinger
and Gillingham [42]), and have proven to be exceptionally successful in
both increasing the awareness of the public about green technologies
and their various benefits, as well as helping the researchers studying
the attitude of households toward these technologies. It is worth men-
tioning Solar ITC program, which is one of the most successful incentive
programs and is claimed to be the main contributing factor to the
growth of the solar industry in the U.S. (with an annual average of 50%
over the past decade), is set to be phased out by 2022 [97]. Such ef-
fective incentives should be promoted and tailored to target regions
with highly underutilized green technology potentials.

Further validation of the results, beyond what has been presented, is
one of the major limitations of this study and remains a future work.
One approach to validating the results is through a comparison with a
similar study in the same geographical region, i.e., the city of Knoxville.
There exist studies in the literature that evaluate the financial viability
of green technologies via an ABM framework [9], examine their op-
timal placement using stochastic programming [71], or focus on the
effects of their penetration rate (particularly for plug-in hybrid vehicles
effect on the electric distribution network) [55], in the city of Knoxville.
However, none of these studies can be used to validate the results of the
current study as they do not capture all dynamics considered in the
current study. Another approach to such validation is through the im-
plementation of this study over another geographical region where si-
milar studies exist to further validate the results. Although such an
approach is viable, it requires additional data collection efforts to gain
access to all data used in this study, specifically the climate models used
as the future scenarios that currently are not available over other re-
gions.

This study and other similar studies can provide valuable insights
for policy makers to establish green technology adoption goals and
evaluate different policies and incentives in order to expand the reach
of such practices, especially to lower-income households and apartment
dwellers. Cities such as the city of Knoxville have a vastly underutilized
potential in green technology adoption. Achieving the true potential of
green technologies in such cities can significantly contribute to climate
change mitigation and development of sustainable cities, and cannot be
achieved without the investment and help of the governing bodies.

7. Conclusion

This paper investigates the diffusion rate of green technologies
under uncertainties due to climate change, as well as agents’ decision
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making and their interactions in society. An optimization model is de-
veloped to account for the uncertain nature of the model parameters
and building-specific properties, in order to find the most economically
profitable package for each individual building. Furthermore, an agent-
based modeling framework is developed to simulate the interactions
between the agents over time and the effects they have on the final
decision made by the agents. This integrated framework captures the
interplay between the integer programming optimization model and
behavioral model to account for financial and attitudinal aspects, as
well as the uncertainties due to both the stochastic nature of system
parameters and the interactions among agents involving human beha-
viors.

To calculate the parameters for the behavioral sub-model, a re-
gression model from the existing literature is adopted. This model
provides the ability to capture the interactions among individuals in
society and their effects on the potential outcomes from the mathe-
matical model.

A case study over a sample of 1,046 households in the city of
Knoxville, TN, shows that by merely accounting for the over time cost
reduction of PV panels, these green technologies will become finan-
cially profitable for a significant proportion of the households. In order
to study the effects of the changes in the values of the parameters of the
attitudinal model, a sensitivity analysis is conducted over 54 different
input parameter combinations. The results show that a more interactive
society results in fewer agents with an extreme opinion. This results in a
higher adoption rate of green technologies in general, except for the
case with high decision thresholds, which results in a smaller number of
adopters as the overall number of agents with extreme opinions lowers
in a highly interactive society.

Lastly, the effect of some of the currently common policies on the
outcome of the model and the diffusion rate of the green technologies
are examined. The results show that while financial incentives can
perform well, they perform significantly better when combined with
promotional campaigns. These results also show that the cost efficiency
of the green technologies is the most important factor in their adoption
rate.

An interesting observation from the results is that the sole act of
providing the potential of the green technologies for each household
can result in a noticeable increase in the adoption rate of green tech-
nologies. This emphasizes the important role of awareness in society,
leading to an increase in their adoption rate.

While this study only evaluates the currently commercially avail-
able technologies, new emerging green technologies and innovations
can be incorporated in the same framework to evaluate their afford-
ability and profitability and compare them with older green technolo-
gies. This framework can also provide valuable insights for policy ma-
kers to investigate the potential of new emerging technologies to set
regulations and incentives to further improve their adoption rate.
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