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1. Introduction

1.1. Howe pairs and link homology
Beginning with the algebro-geometric constructions of link homology theories by
Cautis and Kamnitzer [CK08] and further developed in [CKL10], categorical skew
Howe duality has proven to be a powerful tool in higher representation theory and
link homology theory. The key idea originates in the decategorified context where
Toledano Laredo [Lar02] used Howe duality to show that the braid group action on
an m-fold tensor product of sl n -representations can be realized via the deformed
Weyl group action associated with an auxiliary quantum group for slm . This
perspective was fundamental in the resolution of several important conjectures in
link homology theory that have resisted proof by other techniques. These include:

• the first complete definition of sl n -foams with a combinatorial evaluation for
closed foams not requiring the use of the Kapustin–Li formula; see [LQR15],
[QR16],

• a completely integral formulation of sl n -link homology; see [QR16],
• the study of sl n deformations analogous to Lee homology in the sl2-case; see

[RW16],
• the discovery of direct connections between quantum groups and Chern–

Simon’s gauge theory; see [CGR17],
• the definition of sln -web algebras generalizing Khovanov’s arc algebra; see

[MPT14], [MY19],
• a proof of the exponential growth of coloured HOMFLYPT homology; see

[Wed16], and
• a unification of sl n link homologies constructed using wildly different techni-

ques (e.g., category O, matrix factorizations, Webster’s categorification of
tensor products, and coherent sheaves on orbits in the affine Grassmannian);
see [Cau15], [MW18].

Starting with the work of Cautis, Kamnitzer, and Morrison [CKM14], these
methods have proven to be incredibly powerful even in the decategorified setting.
They give a complete diagrammatic description of the category generated by tensor
products of fundamental quantum sln -representations using sln -webs. The Karoubi
envelope of this category is the full category of quantum sl n -representations,
since every irreducible arises as a summand of a tensor product of fundamental
representations. In this framework, relations on sl n webs arise from relations in
quantum gl m under a natural action on so-called ladder webs. The proof that
these relations suffice uses Howe duality and the commuting actions of quantum
glm and sln on the space∧N (Cn

q ⊗ Cm
q ). This idea has been generalized in several

directions [CW12], [ES18], [Gra16], [Que15], [TVW17]. This approach was also
instrumental in the second author’s work with Garoufalidis and Lˆe resolving the
q-holonomicity conjecture for the HOMFLYPT polynomial [GLL18].

In the classical theory of Howe duality, one considers the commuting actions
of glm and sln on the space SymN (Cn

⊗ Cm ). This duality was extended to the
quantum setting in [RT16], extending the work of [BZ08]. Quantum symmetric
Howe duality for (glm , sl2) was used in [RT16] to provide a generators and relations
description for the ‘symmetric web category’; that is, a generators and relations
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description of the full space of intertwiners between tensor powers of symmetric
powers of fundamental sl2-representations, not requiring a passage to the Karoubi
envelope. This was later extended to symmetric powers of quantum sln -represen-
tations in [TVW17].

In this paper, we utilize the commuting actions of quantum gl m and sl 2 on
the symmetric representation Sym N (C2

q ⊗ C m
q ) in the categorical setting. Our

framework introduces deformations of Webster’s tensor product algebras asso-
ciated to symmetric powers of sl 2. Closely related deformations were studied for
fundamental representations by Mackaay and Webster [MW18]. Our framework
allows us to define a categorical coloured braid invariant where strands are coloured
by arbitrary irreducibles of sl 2 (viewed as symmetric powers of the defining repre-
sentation). Our approach also suggests a natural generalization to deformations of
Webster’s algebras for tensor products of fundamental sln representations.

1.2. Motivation for symmetric Howe duality from link homology theory
The first author’s original categorification of the Jones polynomial [Kho00, Kho02]
can be defined entirely within the homotopy category of complexes over an additive
category. In this approach, the homologies associated with knots and links are
finite dimensional. An approach to coloured sl 2 link invariants using cabling was
proposed in [Kho05]. An alternative approach was proposed by Cooper and Krush-
kal [CK12b] using categorified Jones–Wenzlprojectors where the homologies are
infinitely dimensional for coloured unknots. Hogancamp gave a refinement of this
invariant where the homology of the unknot is finite dimensional over a larger
ground ring [Hog19]. An alternative approach to categorification of Jones–Wenzl
projectors was given by Rozansky [Roz14]. A Lie theoretic approach was outlined
in [FSS12].

Utilizing the higher representation theory framework arising from the theory
of categorified quantum groups [KL09], [KL11], [KL10], [Rou08], Webster gave a
general combinatorial categorification of Reshetikhin–Turaev invariants [Web17]
for links coloured by arbitrary irreducible representations of the quantum group
associated to a semisimple Lie algebra g. The invariants are constructed using
algebras that are defined in an elementary way. However, the associated tangle
invariants are difficult to compute. For example, in order to associate a functor to
a braid, one must work in the derived category rather than the homotopy category
as in [Kho02]. Furthermore, invariants for the unknot coloured by non-miniscule
representations are infinite dimensional in this approach.

Our interest in the symmetric Howe 2-representation Sym N (C2
q ⊗ Cm

q ) stems
from the goal of modifying Webster’s approach to obtain coloured sl 2-link inva-
riants using finite complexes in the homotopy category, rather than the derived
category. This work can be viewed as providing a potential algebraic categorifica-
tion of the symmetric web category from [RT16]. We expect that this work should
be closely related to the geometric categorification of symmetric Howe duality
given by Cautis and Kamnitzer using the derived category of coherent sheaves on
the Beilinson-Drinfeld Grassmannian [CK18]. A foam setting for symmetric Howe
duality was recently studied in [RW18], [HQS18].

Cautis defines a link homology theory (which could be rephrased in the language
of Soergel bimodules) where each component of the link is coloured by an arbitrary
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partition [Cau17]. The resulting homology categorifies the coloured HOMFLYPT
polynomial. Cautis also defines differentials dN leading to a categorified sl N co-
loured link homology theory. When the components are coloured by symmetric
powers of the defining representation, the homology of the link is finite dimensional.
Both of our constructions have ingredients coming from the theory of Soergel
bimodules and it is enticing to understand how our braid group actions (and
optimistically coloured link homologies built from them) are related.

1.3. The redotted Webster algebra and categorical braid group action
Webster defined a family of algebras categorifying an arbitrary tensor product
Vλ 1

⊗Vλ 2
⊗· · · V⊗ λ k of irreducible representations of the quantum group associated

with a semisimple Lie algebra g. These algebras admit a diagrammatic interpre-

λ 3λ 2λ 1

tation extending the diagrammatic categorifications of quan-
tum groups and their irreducibles from [Lau08], [KL09],
[KL11], [KL10]. In this presentation, generators of the
algebra correspond to planar diagrams consisting of gray
strands labelled by the dominant weights λ i of irreducibles
and black strands labelled by the simple roots of the Lie
algebra g that are governed by the KLR-algebra of type g.
Here we will be primarily interested in the case when g = sl 2, so that the black
strands are governed by the nilHecke algebra.

Webster’s tensor product algebras admit deformations, not only for sl 2, but in
vast generality (e.g., [Web13] and [MW18]). The first and third authors indepen-
dently studied these deformations in the context of sl 2 where all the gray strands
are labelled by the fundamental sl2 representation. In this context, the deformation
led to additional generators where gray strands are also allowed to carry dots and
additional diagrammatic relations are required. The resulting algebras were called
the redotted Webster algebra W (1m , n) in [KS18], where there are n black strands
and 1m indicates m gray strands labelled by the fundamental sl2-representation.
These algebras were studied with the aim of simplifying Webster’s braid invariants.

The algebras W (1m , 0), corresponding to non-black strands, are directly related
to Soergel bimodules. In this language, early work by Rouquier [Rou04] defines
a braid group action on the homotopy category of modules for W (1m , 0). This
categorical braid group action was shown to be a strong action by Elias and Krasner
[EK10b], meaning that it extends to braid cobordisms. This categorical braid group
action was extended to a link invariant in [Kho07] based on earlier work with
Rozansky [KR08].

More recently, the case of a single black strand was studied, where a strong
braid group action was constructed [KS18] on the homotopy category of modules
for W (1m , 1), and it was conjectured that a categorical braid group action can be
defined on the homotopy category of W (1m , n)-modules for all n. In this article, we
prove this conjecture in much greater generality. We extend the algebra W (1m , n)
to W (s, n) where s = (s1, . . . , sm ) is a tuple of natural numbers corresponding to
gray strands coloured by symmetric powers of the fundamental representation of
sl2. We then extend the braid group action to W (s, n). In [MW18] the authors
use formal arguments and connections with category O to place deformations of
Webster algebras into the skew Howe framework. The authors work in the derived
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category. Here we work in the context of symmetric Howe duality and our explicit
constructions allow us to use elementary techniques and to stay in the homotopy
category.

The technical work involved is to show that a version of the glm 2-category U =
U (glm ) [KL10], [MSV13] acts on direct sums of categories of bimodules for W (s, n),
so that the categorical quantum Weyl group action of glm can be used to induce the
braiding. The arXiv version of this article contains additional details for lengthy
computational proofs (where all gray strands appear red). The computationally
most difficult relations to verify are the EF and F E decompositions. A key obser-
vation provided to us by Cautis allowed us to avoid these calculations. The braid
group action for W (1 m , 1) constructed in [KS18] avoided the use of categorified
glm but fits into the framework of this paper.

The categories of modules over Webster’s sl2 algebras were shown to admit the
structure of a 2-representation of the categorified quantum group for sl2 [Web17].
It would be interesting to extend that action to our redotted context, as our
framework is well suited to understanding the full categorified Reshetikhin–Turaev
invariant set up, including the commuting quantum group action. A related action
of categorified sl2 (and its generalizations) on cyclotomic nilHecke algebras (and
its generalizations) was studied in [KK12].
1.4. Connections with Soergel bimodules
A diagrammatic category SC 1(m) describing Soergel bimodules in type A was
introduced in [EK10a]. In [MSV13], the authors construct a functor from the
diagrammatic Soergel category SC1(m) into endomorphisms of the (1 m ) weight
space of a Schur quotient of U (glm )

Σm,m : SC1(m) → U(1 m , 1m )/hλ /∈ Λ(m, m)i,
where

Λ(m, m) = {λ = (λ 1, . . . , λm )|λ i ∈ Z ≥0 , λ1 + · · · + λm = m}.

Under the 2-functor Σ m,m , Rouquier’s braiding on Soergel bimodules is sent to
the braid group action on the homotopy category of the Schur quotient coming from
two term Rickard complexes (see (9.1) for more details). Elias and Krasner’s proof
that Rouquier complexes give a strong braid group action [EK10b] can then be used
to show that two term Rickard complexes also give rise to a strong braid group
action (functorial under braid cobordisms) in the context of the Schur quotient
U(1m , 1m )/hλ /∈ Λ(m, m)i. Thus the homotopy category of a category that is the
image of U (1m , 1m )/hλ /∈ Λ(m, m)i under a categorical action also has the structure
of a strong braid group action.

The categorical U (glm ) action we define on the redotted Webster algebras factors
through the Schur quotient U (1 m , 1m )/hλ / ∈ Λ(m, m)i when the sequence s =
(1, 1, . . . , 1). This allows us to deduce that the braid group action we construct is
a strong action in this case. Note that the Rickard complexes for more general of
weights s = (s1, . . . , sm ) in U (glm ) (with s i not all equal to 1) will not usually be
two term complexes, so the results of Elias and Krasner do not apply.
1.5. Connections with singular Soergel bimodules
In [KS18], it was shown that a cyclotomic quotient of the algebra W (1m , 1) is
isomorphic to the endomorphism algebra of a direct sum of all the unique indecom-
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posable objects of the category of singular Soergel bimodules(1
m ) R (1,m−1) for the

polynomial ring k[Y 1, . . . , Ym ]. We conjecture that the cyclotomic quotient of the
algebra W (s, n) is Morita equivalent to the endomorphism algebra of a direct sum
of all the indecomposable objects for the category of singular Soergel bimodules
(s) R (n,|s|−n) where |s| = s1 + · · · + sm .

1.6. Roots of unity
Part of the motivation in reformulating Webster’s link invariants in the context of
the redotted Webster algebra is that we anticipate this framework will be useful
in the program of categorification at a root of unity. If one hopes to obtain
a categorification of the Witten–Reshetikhin–Turaev 3-manifold invariant, it is
expected that we must be able to define categorifications of coloured sl2 link
invariants specialized at a root of unity.

Categorification at an N th root of unity requires categorifying the base ring
of Laurent polynomials in q modulo the ideal generated by the N th cyclotomic
polynomial ΦN (q). A framework for such a theory, known as hopfological algebra,
was proposed in [Kho16] when N is a power of a prime p, via the stable category
of p-complexes:generalized complexes over a field of characteristic p with the
pth power of the differential rather than the second power being 0. Recently,
p-complexes were successfully used as the ground category to categorify small
and big quantum sl 2 at a pth root of unity [KQ15], [Qi14], [EQ16a], [EQ16b]. A
categorification of the Burau representation was given in [QS16]. There, a braid
group action was constructed on the compact derived category of a special case of
a p-DG Webster algebra. It would be interesting to reformulate that work in the
context of the redotted Webster algebra. The paper [KQ15] contains an explicit
proposal about extending this categorification from sl 2 to other simply-laced Lie
algebras, as well as extending it to Webster’s categorification [Web17] of tensor
products of integrable representations of quantum groups. We anticipate that
redotted Webster algebras will provide a framework for defining p-DG analogs
of coloured Khovanov homology.

1.7. Towards link homology
How to extend the braid invariant we construct here to a link invariant is a
natural question. When m = 0, it is shown by Khovanov that taking Hochschild
cohomology yields a link invariant categorifying the HOMFLYPT polynomial.
It is not clear that this procedure will work for m > 0. Even when m = 0,
taking Hochschild cohomology seems conceptually wrong here since we expect to
categorify the Jones polynomial. The Reshetikhin–Turaev procedure for recovering
the Jones polynomial requires one to work in the middle weight space of V⊗m

1 (m
should be even). So again, it is not clear that the braid invariant existing for
arbitrary m and n should give rise to a non-trivial link invariant.
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the NSF grants DMS-1255334 and DMS-1664240 J.S. is partially supported by the
NSF grant DMS-1407394, PSC-CUNY Award 67144-0045, and Simons Foundation
Collaboration Grant 516673.
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2. The nilHecke algebra

In subsequent sections, the nilHecke algebra will play two roles. It is an ingre-
dient in the definition of the categorified quantum group for gl n . It is also part of
the definition of the algebra W (s, n).

2.1. Definition
Let NH n be the nilHecke algebra of rank n over k. It is generated by commuting
degree 2 elements x1, . . . , xn and elements ∂1, . . . , ∂n−1 of degree −2. The gene-
rators satisfy the following relations:

(1) ∂ 2
i = 0,

(2) ∂ i ∂j ∂i = ∂ j ∂i ∂j if |i − j| = 1,
(3) ∂ i ∂j = ∂ j ∂i if |i − j| > 1,
(4) x i ∂i − ∂ i x i+1 = 1 = ∂ i x i − x i+1 ∂i .
In general, for a Z -graded algebra A and a graded module M over A, let M i be

the subset of M contained in degree i. Let M hri be the shift of M up by r. That
is, (M hri) i = M i−r . We will use the following notation for a direct sum of shifts
of M :

[r]M = Mhr − 1i  Mhr −⊕  3i  · · ·  Mh⊕ ⊕ 3 − ri  Mh⊕ 1 − ri.

We now present this algebra in a diagrammatic fashion. Consider collections of
smooth arcs in the plane connecting n points on one horizontal line with n points
on another horizontal line. Arcs are assumed to have no critical points (in other
words no cups or caps). Arcs are allowed to intersect, but no triple intersections
are allowed. Arcs can carry dots. Two diagrams that are related by an isotopy that
does not change the combinatorial types of the diagrams or the relative position of
crossings are taken to be equal. The elements of the vector space NHn are formal
linear combinations of these diagrams modulo the local relations given below. We
give NHn the structure of an algebra by concatenating diagrams vertically.

Dots on strands correspond to generators xi given earlier. Strands which cross
correspond to generators ψi . The generating elements of NHn and their degrees
are given below:

deg

 !

= 2, deg = −2.

The diagrams satisfy the relations given below:

= , = 0,

− = = − .

It is not hard to show that these relations imply the following:
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Lemma 2.1.The following equalities hold in the nilHecke algebra:

d =
X

A+B=d−1
A B

, d = −
X

A+B=d−1
A B

.

2.2. Thick calculus
It is convenient to introduce an enhanced diagrammatic calculus for the nilHecke
algebra – the so-called ‘thick calculus’. This notation is helpful for providing a
graphical calculus for the category of finitely generated projective NH n -modules.
We are primarily interested in the category of graded projective modules over
the nilHecke algebra. We can access this category diagrammatically by viewing
NHn as a one object k-linear category where the morphisms are the elements of
NHn . We then pass to the Karoubi envelope allowing us to split idempotents in
the diagrammatic language. We review some of the relevant details here, but the
reader is referred to [KLMS12] for more details.

Box diagrams. For any composition µ = (µ 1, . . . , µn ) write x µ := x
µ 1
1 xµ2

2 . . . xµ n
n .

We depict these diagrammatically as

xµ = •µ 1 •µ 2 •µ n−1 • µ n

· · ·
= xµ

· · ·
(2.1)

Since the center of the nilHecke algebra Z(NH n ) is isomorphic to the ring of
symmetric polynomials Z [x1, . . . , xn ]Sn , it is convenient to set notation for certain
bases of symmetric polynomials. The box labelled h d and ed represents the dth
complete and elementary symmetric function in n variables, respectively:

hd

· · ·
| {z }

n

=
X

d1 +···+d n =d

d1 d2 dn··· ,

ed

· · ·
| {z }

n

=
X

d 1 +···+d n =d

0≤d i ≤1

d1 d2 dn··· .

More generally, we denote the Schur polynomial associated to a partition µ =
(µ1, . . . , µn ) by a box labelled s µ .
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We will make use of the following crossing diagrams:

C1 = C

1 = ,

· · ·

· · ·

Ck =
· · ·

· · ·
,

· · ·

· · ·

C

k =
· · ·

· · ·
for k > 1,

(2.2)

D1 = ,

· · ·

· · ·

D k =

· · ·

· · ·
D k−1

C

k

for k > 1, (2.3)

which are used to define a minimal idempotent ek in NH k via

· · ·

· · ·

ek =
· · ·

· · ·

D k

k − 1
. (2.4)

Note that for any reduced expression w = s i 1
si 2

. . . si `
 ∈ Sk we write

∂w := ∂ i 1
∂i 2

. . . ∂i `
.

The relations in the nilHecke algebra imply that ∂ w is independent of the reduced
expression for w. In the language, the element D k corresponds to ∂w0 where w0
denotes the longest word in S k . Hence, D k ek = ∂ w0 (x k−1

1 xk−2
2 . . . x0k )D k = D k ,

which implies the idempotence of ek .
Thick calculus definitions. We introduce a thick line carrying a label corresponding
to the idempotent e k . Then, for a map between thick labelled strands to be well-
defined it must be invariant under pre- and post-composing with the relevant
idempotents. In particular, the endomorphisms of a thick strand are given by
multiplication by symmetric functions x ∈ Sym k , since these commute with the
idempotent ek :

k

k

:=
. . .

. . .

ek , x

k

k

for x ∈ Sym k ,
x

y

k

k

= xy

k

k

where the product xy is well-defined since xek yek = xye k . We have splitter maps:
a b

a+b

:=

. . . . . .

. . . . . .

ea eb
,

b a

a+b

:=
. . .

. . .

ea+b .
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These maps satisfy (co)associativity relations making it possible to define

. . .

k

:=
. . .

. . .

D k ,

. . .

k

:=
. . .

. . .

ek

unambiguously.For any Schur polynomial sµ corresponding to the partition µ =
(µ1, . . . , µk ), one can show that

sµ

k

k

= xµ+δ

. . .

k

where µ + δ is the partition (µ1 +k −1, µ 2 + k − 2, . . . , µk + 0). Symmetric functions
can be slid through splitters via the relations

b a

a+b

ej
=

X

x+y=j

b a

a+b

ex ey
,

b a

a+b

ej
=

X

x+y=j

b a

a+b

ex ey
(2.5)

and more generally for any x ∈ Symk ,

. . .
x

k

=

. . .

ex

k

,
x

. . .

k

= ex

. . .

k

. (2.6)

Primitive idempotents. The set of sequences

Sq(n) := {` = (` 1, . . . , ǹ−1 ) | 0 ≤ ` ν ≤ ν, ν = 1, 2, . . . n − 1} (2.7)

has size |Sq(n)| = n!. Let |`| =
P

ν `ν , and set b̀j = j − ` j . Define a composition
with n-parts by

b̀ = (0, b̀1, . . . ,b̀n−1 ) = (0, 1 − ` 1, 2 − `2, · · · , n − 1 − ǹ−1 ) . (2.8)

Let e (a)
r denote the rth elementary symmetric polynomial in a variables. The

standard elementary monomials are given by

è := e (1)
` 1

e(2)
` 2

. . . e(a−1)
` a−1

. (2.9)
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We depict these diagrammatically as:

è =

•` 1

è 2

è n−1

...

· · ·

=: è

· · ·

. (2.10)

These polynomials can be used to provide a complete set of primitive orthogonal
idempotents decomposing the identity of NHn .

Lemma 2.2 ([KLMS12, Prop. 2.5.3]).

· · ·
=

X

`∈Sq(n)

(−1) |b̀|

è

xb̀

e` 0

xb̀

. . .

n

= δ `,` 0

n

. (2.11)

Remark 2.3. The polynomial ring Z [x1, . . . , xn ] is a free module of rank n! over the
ring Λ n = Z [x1, . . . , xn ]Sn of symmetric functions [Man01, Prop. 2.5.5]. There is a
Λn bilinear form on Z [x1, . . . , xn ] defined by (x, y) = ∂ w 0 (xy), for w 0 the longest
element in the symmetric group. The significance of the sets {e` | ` ∈ Sq(n)} and
{x b̀ | ` ∈ Sq(n)} are that they are dual bases for the polynomial ring Z [x1, . . . , xn ]
as a Λn -module with respect to this form. Another dual set of bases are given by
Schubert polynomials and dual Schubert polynomials [Man01, Prop. 2.5.7].
Helpful thick calculus lemmas. We collect here several lemmas that will be useful
in establishing our main results in later sections.

Lemma 2.4 ([KLMS12, Lem. 2.2.3]).

1k−1

d
=

d

D k

=






(−1) k−1
hd−k+1

D k

if d ≥ k − 1,

0 otherwise.

Lemma 2.5.We have the following equalities involving the diagrams defined in
(2.2), (2.3), and (2.4):

Ck − Ck =
k−1X

`=1

C` Ck−` (2.12)
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· · ·· · ·

D k
= 0,

· · ·C`

D k

= 0 for 2 ≤ ` ≤ k. (2.13)

Proof. The equations in (2.12) and (2.13) follow easily from the defining relations
of the nilHecke algebra.

Lemma 2.6.

· · ·

D k−1 =
k−1X

d=0

(−1) d

ed

D k

k−1−d · · ·

.

Proof. By a variant of [KLMS12, Lem. 2.4.5], we have that

k−11

=
k−1X

d=0

(−1) d

1 k−1

ed

k−1−d

=
k−1X

d=0

(−1) d

ed

ek

Ck

ek−1k−1−d

.

Applying the diagram D k−1 to the top of the diagrams on both sides the result
follows.

The following lemma holds in a context more general than the nilHecke algebra
NHk . We use it to establish results for the redotted Webster algebras defined in
Section 4. We denote a region with appropriate inputs and outputs that we make
absolutely no assumption about whatsoever by a box labelled X. The identity
holds completely externally to any assumption about the content of X.

Lemma 2.7.For an arbitrary diagram X, the following identity holds:

X

`∈Sq(k)

(−1) |b̀|

è

xb̀

X =
X

`∈Sq(k−1)

(−1) |b̀|
k−1X

d=0

(−1) d

è

ed

xb̀

X

k−1−d

.
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Proof. For ` = (` 1, . . . , k̀−1 ) ∈ Sq(k), we have

è (x 1, x2, . . . , xk ) =
k−1Y

i=1

è i (x 1, x2, . . . , xi )

=
X

j=(j 1 ,...,j k−2 )
∈{0,1} k−2

x
` 1 +|j|
1

X

` 0
∈Sq(k−1),

` 0+j=(` 2 ,...,` k−1 )

è 0(x 2, . . . , xk ),

where we used the standard relation of elementary symmetric functions

è i (x 1, x2, . . . , xi ) = e ` i (x 2, . . . , xi ) + x 1è i −1 (x 2, . . . , xi ).

Letting j = (j 1, . . . , jk−2 )  {∈ 0, 1} k−2 and `
0

∈ Sq(k − 1) such that ` 0 + j =
(` 2, . . . , k̀−1 ), we have

xb̀ =
k−1Y

i=1

x i−` i

i+1 = x 1−` 1
2

k−1Y

i=2

x
i−` 0

i−1 −j i−1
i+1

= x 1−` 1
2 x1−j 1

3 x1−j 2
4 · · · x1−j k−2

k

k−1Y

i=2

x i−1−` 0
i−1

i+1 .

Therefore, we have

X

`∈Sq(k)

(−1) |b̀|

è

xb̀

X

=
X

` 0∈Sq(k−1)

X

j=(j 1 ,...,j k−2 )
∈{0,1} k−2

X

`∈Sq(k),
` 0+j=(` 2 ,...,` k−1 )

(−1) |b̀|

è 0

x b̀0

X

` 1 +|j|

1−` 1 1−j 1 1−j k−2
.

Collecting the (`1, |j|) = (0, 0) term, the (` 1, |j|) = (0, d), (1, d−1) for 1 ≤ d ≤ k−2,
and the (` 1, |j|) = (1, k − 2) piece gives the desired result.

3. Quantum glm 2-category

We recall here the glm version of the categorified quantum group from [MSV13].
The 2-category U = U(gl m ) is obtained from the corresponding sl m category
defined in [KL10], [CL14] by switching from sl m weights to glm weights [MSV13].
However, the coefficients in the defining relations for the 2-category take on subtle
changes. This is further studied in [BKLW16], [Lau18]. A minimal presentation of
this category can be determined from [Bru16].
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Here we identify the weight lattice X of gl m with Zm and write

εi = (0, . . . , 0, 1, 0 . . . , 0)  X,∈

with a single 1 on the ith coordinate. Let I = {1, 2, . . . , m − 1} and define α i =
εi − ε i+1  ∈ X for i  I∈ . There is a bilinear form on Z [I] defined by

i · j =






2, if i = j;
−1, if j = i ± 1;
0, otherwise.

For λ ∈ Zm , let λ i denote the ith component of λ. Define the associated slm weight
λ̄ ∈ Zm−1 by setting the ith component λ̄ i = λ i − λ i+1 .

Definition 3.1.The 2-category U is the graded additive k-linear 2-category con-
sisting of:

• Objects λ for λ  X∈ .
• 1-morphisms are formal direct sums of (shifts of) compositions of

1λ , 1λ+α i
Ei = 1λ+α i

Ei 1λ , and 1λ−α i
F i = 1λ−α i

F i 1λ

for i  I∈  and λ  X∈ . We denote the grading shift by h1i, so that for each
1-morphism x in U and t ∈ Z we have a 1-morphism xhti.

• 2-morphisms are k-vector spaces spanned by compositions of decorated tang-
le-like diagrams coloured by i  I∈  illustrated below:

λ + α i λ

i

: Ei 1λ → Ei 1λ hi · ii, λ
i j

: Ei Ej 1λ → Ej Ei 1λ h−i · ji,

λ

i
: 1λ → F i Ei 1λ h1 + λ̄ i i,

λ

i
: 1λ → Ei F i 1λ h1 − λ̄ i i,

λ

i
: F i Ei 1λ → 1λ h1 + λ̄ i i,

λ

i
: Ei F i 1λ → 1λ h1 − λ̄ i i.

In this 2-category (and those throughout the paper), we read diagrams from
right to left and bottom to top. The identity 2-morphism of the 1-morphism E i 1λ

is represented by an upward-oriented line labelled by i and the identity 2-morphism
of F i 1λ is represented by a downward-oriented line.

The 2-morphisms satisfy the following relations:
(1) The 1-morphisms E i 1λ and F i 1λ are biadjoint (up to a specified degree

shift).
(2) The 2-morphisms are cyclic with respect to this biadjoint structure.

λ i

=

λ + α ii

=:
λ + α iλ

i

. (3.1)
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The cyclic relations for crossings are given by:

λ
i j

= λ

i j

ij

= λ

ji

j i

. (3.2)

Sideways crossings are equivalently defined by the following identities:

λ
i j

:= λ
ji

j i

= λ

i j

ij

, (3.3)

λ
i j

= λ

i j

ij

= λ
ji

j i

. (3.4)

(3) The E’s (respectively F ’s) carry an action of the KLR algebra for a fixed
choice of parameters Q. We find it convenient to take a particular choice of
parameters in this paper. Set

t ij =






0, if i = j;
−1, if j = i + 1;
1, otherwise.

The KLR algebra R associated to a fixed set of parameters Q is defined by
finite k-linear combinations of braid-like diagrams in the plane, where each strand
is labelled by a vertex i  ∈ I. Strands can intersect and carry dots, but triple
intersections are not allowed. Diagrams are considered up to planar isotopy that
do not change the combinatorial type of the diagram. We recall the local relations:

i) The quadratic KLR relations are

λ

i j

=






t ij

λ

i j

+ t ji

λ

i j

if i · j < 0,

t ij

λ

i j

otherwise.

(3.5)

ii) The dot sliding relations are

i j
−

i j
=

i j
−

i j
= δ i,j

i i
. (3.6)
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iii) The cubic KLR relations are

i j k

−

i j k

= −(α i , αj ) δi,k t ij

i j i

. (3.7)

(4) When i 6= j, one has the mixed relations relating E i F j and F j Ei :

j i

=
j i

,

i j

=
i j

. (3.8)

(5) Negative degree bubbles are zero. That is, for all m ∈ Z>0 , one has

i

m

λ

= 0 if m < λ̄ i − 1, i

m

λ

= 0 if m < − λ̄ i − 1. (3.9)

Furthermore, dotted bubbles of degree zero are a scalar multiple of the identity
2-morphism

i

λ̄ i − 1

λ

= (−1) λ i+1 for λ̄ i ≥ 1,

i

− λ̄ i − 1

λ

= (−1) λ i+1 −1 if λ̄ i ≤ −1.

(3.10)

For the final relations, it is convenient to add additional generating diagrams
called fake bubbles. These fake bubbles are represented by dotted bubbles of positive
total degree, but with a negative label for the dots. These symbols make it possible
to express the relations independent of the weight λ.

Degree zero fake bubbles are equal to

i

λ̄ i − 1

λ

= (−1) λ i+1 for λ̄ i < 1,

i

− λ̄ i − 1

λ

= (−1) λ i+1 −1 if λ̄ i > −1.

(3.11)

(compare to (3.10)).
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Higher degree fake bubbles forλ̄ i < 0 are defined inductively as

i

λ̄ i − 1 + j

λ

=






−(−1) λ i+1
X

x+y=j,
y≥1

i

λ̄ i −1
+x

λ
i

− λ̄ i −1
+y

if 0 < j < − λ̄ i + 1;

0 if j < 0.

Higher degree fake bubbles forλ̄ i > 0 are defined inductively as

i

− λ̄ i − 1 + j

λ

=






−(−1) λ i+1
X

x+y=j,
x≥1

i

λ̄ i −1
+x

λ

− λ̄ i −1
+y

if 0 < j < λ̄ i + 1;

0 if j < 0.

The above relations are sometimes referred to as the infinite Grassmannian rela-
tions.

(6) The sl2 relations (which we also refer to as the EF and F E decompositions)
are:

i i

−

i i

=
X

f 1 +f 2 +f 3
= λ̄ i −1

i

i

i

f 3

− λ̄ i −1
+f 2

f 1

λ
, (3.12)

i i

−

i i

=
X

f 1 +f 2 +f 3
=− λ̄ i −1

i

i

i

f 3

λ̄ i −1
+f 2

f 1

λ
. (3.13)

4. Redotted Webster algebra for sl2

In this section, we generalize a deformation of Webster’s algebra considered in
[KS18] to allow for the possibility of certain objects to be labelled by all natural
numbers rather than just 1. Related deformations were also introduced by Webster
(see, e.g., [Web13]). An algebraic and graphical description of this algebra are
provided. We construct a faithful representation of this algebra allowing us to
write a basis. The section is concluded with certain symmetries of the algebra.
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4.1. The definition of W (s, n)
Let m ≥ 0 be an integer. For a sequence of non-negative integers s = (s1, . . . , sm ),
let Seq(s, n) be the set of all sequences i = (i1, . . . , im+n ) in which n of the entries
are b and si appears exactly once and in the order in which it appears in s. Denote
by ij the jth entry of i and denote by I s the set {s i |1 ≤ i ≤ m}.

Let Sn+m be the symmetric group on n + m letters generated by simple trans-
positions σ1, . . . , σn+m−1 . Each transposition σ j naturally acts on a sequence i.
Note that if i ∈ Seq(s, n) it is not always the case that σ j .i ∈ Seq(s, n).

Let W (s, n) be the algebra over k generated by e(i), where i ∈ Seq(s, n), x j ,
E(d) j , where 1 ≤ j ≤ m + n, d ≥ 1, and ψ j , where 1 ≤ j ≤ m + n − 1, satisfying
the relations below. For convenience, we use the notation E(0)j = 1.

e(i)e(j) = δ i,j e(i), (4.1)
E(d) j e(i) = e(i)E(d) j , (4.2)
E(d) j e(i) = 0 if i j = b, (4.3)
E(d) j e(i) = 0 if d > i j  ∈ I s, (4.4)

x j e(i) = e(i)x j , (4.5)
x j e(i) = 0 if i j  ∈ I s, (4.6)
ψj e(i) = e(σ j (i))ψ j , (4.7)
ψj e(i) = 0 if i j , ij+1  ∈ I s, (4.8)

x j x ` = x ` x j , (4.9)
E(d) j x ` = x ` E(d) j , (4.10)

E(d) j E(d 0)` = E(d 0)` E(d) j , (4.11)
ψj x ` = x ` ψj if ` 6= j and ` 6= j + 1, (4.12)

ψj E(d) ` = E(d) ` ψj if ` 6= j and ` 6= j + 1, (4.13)
ψj E(d) j = E(d) j+1 ψj , (4.14)
E(d) j ψj = ψ j E(d) j+1 , (4.15)

ψj ψ` = ψ ` ψj if |j − `| > 1, (4.16)
x j ψj e(i) − ψj x j+1 e(i) = δ ij ,i j+1 e(i) unless ij  ∈ I s and ij+1  ∈ I s, (4.17)
ψj x j e(i) − x j+1 ψj e(i) = δ ij ,i j+1 e(i) unless ij  ∈ I s and ij+1  ∈ I s, (4.18)

ψ2
j e(i) =






0 if i j = i j+1 = b,
ijX

d=0

(−1) dE(d) j x ij −d
j+1 e(i) if i j  ∈ I s, ij+1 = b,

ij+1X

d=0

(−1) dx ij+1 −d
j E(d) j+1 e(i) if i j = b, ij+1  ∈ I s,

(4.19)

(ψj ψj+1 ψj − ψ j+1 ψj ψj+1 )e(i)

=






X

d1 +d 2 +d 3
=i j+1 −1

(−1) d3 xd1
j E(d 3) j+1 xd2

j+2 e(i) if i j+1  ∈ I s ,

ij = i j+2 = b,
0 otherwise.

(4.20)
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Remark 4.1. Denote by W (s, n) the quotient of W (s, n) by the extra cyclotomic
relation e(i) = 0 if i 1 = b. This cyclotomic quotient (when s = (1 m ) and n = 1)
was the main object of study in [KS18]. As mentioned there, the braid group action
works whether or not we work in the cyclotomic quotient. It is more difficult to
find a basis for the cyclotomic quotient (except in the special case in [KS18]),
which is why we prefer to work with the larger algebra here. We expect that
this cyclotomic quotient categorifies a weight space of a tensor product of finite
dimensional irreducible representations of quantum sl2.

W (s, n) is a graded algebra with the degrees of generators:

deg(e(i)) = 0, deg(xj ) = 2, deg(E(d) j ) = 2d,

deg(ψj e(i)) =






−2 if ij = i j+1 = b,
ij if ij  ∈ I s, ij+1 = b,
ij+1 if ij = b, ij+1  ∈ I s.

(4.21)

Remark 4.2. Relation 4.4, together with the grading convention above, allow us
to identify E(d) j e(i) (where ij  ∈ I s) with the elementary symmetric function e d

in the ring of symmetric functions. This identification is further justified by the
basis result below in Proposition 4.9 and the relations on bimodules studied in
Section 5.1.

We describe a diagrammatic presentation of W (s, n) in next subsection.
Remark 4.3. W ((0m ), n) is just the nilHecke algebra NH n .

4.2. Diagrammatic presentation of W (s, n)
There is a graphical presentation of W (s, n) similar to the algebra introduced in
[KS18]. We consider collections of smooth arcs composed of n black arcs corres-
ponding to b and m gray arcs with I s-labelling. Arcs are assumed to have no
critical points (in other words no cups or caps). Arcs are allowed to intersect (as
long as they are both not red), but no triple intersections are allowed. Arcs can
carry dots. Two diagrams that are related by an isotopy that does not change the
combinatorial types of the diagrams or the relative position of crossings and or dots
are taken to be equal. The elements of the vector space W (s, n) are formal linear
combinations of these diagrams modulo the local relations given below. We give
W (s, n) the structure of an algebra by concatenating diagrams vertically as long
as the colors of the endpoints match. If they do not, the product of two diagrams
is taken to be zero.

The generators e(i) for i ∈ Seq(s, n) represent the diagram consisting entirely
of vertical strands whose jth strand (counting from left for each j) is black if i j

is b or thick gray with i j -labelling if i j is in I s. The gray strand with 1-labelling
will often be represented by a thin gray strand without 1-labelling. Dots on black
strands correspond to generators xj given earlier. Dots on gray strands correspond
to generators E(d) j defined in the previous subsection. A crossing of two strands
corresponds to a generator ψj .

Example 4.4.In the case of s = (2, 1) and n = 2, the set Seq((2, 1), 2) is

{(2, 1, b, b), (2, b, 1, b), (b, 2, 1, b), (2, b, b, 1), (b, 2, b, 1), (b, b, 2, 1)}.
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The diagrammatic presentation of e(i) corresponding to sequences of Seq((2, 1), 2)
are

2 1

,

2 1

,

12

,

2 1

,

12

,

2 1

.

The generators xj e(i) and E(d) j e(i) represent the dot on the jth strand count-
ing from left of the (m + n) strand diagram:

x j e(i) = if i j = b,

E(d) j e(i) = ed

ij

if i j  ∈ I s and 1 ≤ d ≤ i j

where we make use of the identification from Remark 4.2 to identify gray dots with
elementary symmetric functions. In particular, we have that E d = e d on the gray
arc with i-labelling is zero if d is bigger than i. Note that on thin gray strands, we
only have dots labelled by e 1. For simplicity in this case, we will abuse notation
and label a dot d when we really mean ed

1.
The generator ψj e(i) represents the crossing diagram as follows.

ψj e(i) =






, if i j = b, i j+1 = b;

ij+1

, if i j = b, i j+1  ∈ I s;

ij

, if i j  ∈ I s , ij+1 = b.

The degrees of the generating diagrams are

deg

 !

= 2, deg



 ed

i



 = 2d,

deg = −2, deg





i



 = deg





i



 = i.

The elements of the vector space W (s, n) are formal linear combinations of
these diagrams modulo isotopy, nilHecke relations on the black strands, and the
following local relations. We give the algebra structure of W (s, n) by concatenating
diagrams vertically when the colors on the endpoints of two diagrams match:

i

=
X

d1 +d 2 =i

(−1) d2

i

d1 ed 2 ,

i

=
X

d1 +d 2 =i

(−1) d1

i

d2ed 1 , (4.22)
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i

=
i

,

i

=
i

, (4.23)

i

ed =
i

ed

,

i

ed

=
i

ed , (4.24)

i

=

i

,

i

=

i

, (4.25)

i

−

i

=
X

a+b+c=i−1

(−1) c a b

i

ec

. (4.26)

Lemma 4.5.

k

=
X

d1 +d 2 =k

(−1) d2

k

ed 1 d2 ,

k

=
X

d1 +d 2 =k

(−1) d1

k

ed 2d1 . (4.27)

Proof. This follows easily from the defining relations along with the definition of
the thick black strand.

Lemma 4.6.Recall the diagrams defined in (2.2). We have the following equality:

Ck

1

= Ck

1

+
k−1X

`=1

Ck−`

C`

1

· · ·

· · ·

. (4.28)

Proof. The lemma follows from repeated use of (4.26).

4.3. A faithful representation and basis
We will construct a faithful (left) action of W (s, n) on a direct sum of polynomial
algebras.

For 1 ≤ j ≤ m + n, let

# B,i (j) = |{r|1 ≤ r ≤ j − 1, i r = b}| # R,i (j) = j − 1 − # B,i (j).

In other words, # B,i (j) is the number of the first j − 1 entries of i that are b
and # R,i (j) is the number of the first j − 1 entries that belong to I s. When the
sequence i is fixed, we simply write #B (j) and # R (j).
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Let Ys j be an alphabet in s j variables and define

R = Sym(Y s1 )  · · · ⊗ ⊗ Sym(Ysm )

where Sym(Ys j ) is the algebra over k of symmetric functions in the alphabet Y s j .
Note that R is determined by the sequence s.

For each i = (i 1, . . . , im+n ) ∈ Seq(s, n) in which n of the letters are b, we
associate a vector space

Vi = R[X 1,i , . . . , Xn,i ], V =
M

i∈Seq(s,n)

Vi.

Sometimes we write f  V∈ i as f (X i) to emphasize the alphabet for which the
variables of f are taken.

For 1 ≤ r ≤ n − 1, let

∂r : Vi → Vi, f(X 1,i , . . . , Xn,i ) 7→
f(X 1,i , . . . , Xn,i ) − f(X σr (1),i , . . . , Xσr (n),i )

X r,i − X r+1,i

be the rth divided difference operator where each σr  ∈ Sn is the simple transposi-
tion fixing all elements except r and r + 1.

Each generator of W (s, n) is declared to act trivially (by zero) on V except in
the following cases:

• e(i) : f  V∈ i 7→ f  V∈ i ,
• x j e(i) : f  V∈ i 7→ X # B (j)+1,i f  V∈ i, if i j = b,
• E(d) j e(i) : f  V∈ i 7→ ed(Ys# R (j)+1 )f  V∈ i, if i j 6= b,
• ψ j e(i) : f  V∈ i 7→ ∂# B (j)+1 f  V∈ i, if i j = i j+1 = b,
• ψ j e(i) : f (X i)  V∈ i 7→ f(Xσ j (i) )  V∈ σ j (i) , if i j 6= b and ij+1 = b,
• ψ j e(i) : f (X i)  V∈ i

7→
P

α+β=i j+1
(−1) β X α

# B (j)+1,σ j (i) eβ (Ys# R (j+1)+1 )f (X σ j (i) )  V∈ σ j (i) ,
if i j = b and i j+1 6= b.

Proposition 4.7.The action of the generators of W (s, n) above extends to a
representation of W (s, n) on V .

Proof. The fact that the generators of W (s, n) prescribed above extend to a
representation of the algebra on V is a routine exercise.

Let i, i0 ∈ Seq(s, n). There is a partial order on Seq(s, n) declaring i < i0 if

# B,i (j) > # B,i 0(j) for j = 1, . . . , m + n. (4.29)

Informally, the more to the left the black strands of i are, the smaller i is.

Example 4.8.Let s = (1, 1) and n = 1. Then order the elements of Seq(s, n) as
follows:

(b, 1, 1) < (1, b, 1) < (1, 1, b).

Consider a diagram D whose bottom boundary is determined by the sequence i
and whose top boundary is determined by i0. Using the relations of the algebra we
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may assume that any pair of strands of D intersect at most once and that all of
the dots are at the bottom of the diagram. Such a D is determined by a minimal
presentation ew = σ i 1

· · · σi r for an element w  S∈ n+m (along with the dots at the
bottom).

Let i0Si be the subset of Sn+m consisting of permutations each of which takes
i to i0 by the standard action of S n+m on sequences. For each w ∈i0Si we convert
a minimal presentation ew into an element bw of e(i0)W (s, n)e(i). Let

i0 bSi = { bw | w ∈ i0Si}.

Let

i0B i = bw
Y

j /∈I s

x r j
j

Y

j I∈ s

ijY

γ=1

E(γ)
r γ j
j e(i) w ∈ i0Si, rj , rγ j

∈ Z≥0 .

The diagram for each element in this set consists of crossings matching i0 and i
on the top and dots on the bottom. The gray dots are labelled by elementary
symmetric functions.

The proof of the following proposition is similar to the proof of [KL09, Thm. 2.5].

Proposition 4.9.e(i0)W (s, n)e(i) is a free graded abelian group with a homoge-
neous basisi0B i.

Proof. It is straightforward to check that i0B i is a spanning set.
Let i0M i be the dotless diagram with the fewest number of crossings such

that the bottom boundary points correspond to i and the top boundary points
correspond to i0. Note that strands with the same color do not intersect in i0M i
and that iM i = e(i). We have

(iM i0)( i0M i) =
Y X

α+β=i b

(−1) β xα
a E(β) b +

Y X

α+β=i a

(−1) α E(α) axβ
b (4.30)

where the first product in (4.30) is over pairs (a, b) such that 1 ≤ a < b ≤ m + n
and the arcs in i0M i ending at the ath and bth bottom points counting from the
left intersect and i a = b. The second product in (4.30) is over pairs (a, b) such
that 1 ≤ a < b ≤ m + n and the arcs in i0M i ending at the ath and bth bottom
points counting from the left intersect and i a 6= b. Thus elements of the form i0M i
are non-zero.

We prove that the elements of i0B i are linearly independent by induction on i 0

using the partial order defined in (4.29). The minimal possible i 0 is of the form

(b, . . . , b, s1, . . . , sm ).

Each w ∈ i0Si could be written as w = w 1w0 where w0 is an element in i0Si
with no black strands crossing and w 1  ∈ Sn . Each minimal length representative
ew1 of w1 determines the same element bw1 of i0 bSi . Similarly, each minimal length
representative ew0 of w0 determines the same elementbw0 of i0 bSi0.

The elements of i0B i are of the form bw1 bw0xu e(i) where x u is a product of
dots. Let f be a monomial in V i . By the action defined in Proposition 4.7, the
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element bw0xu takes f to x u f  V∈ i0 (suitably re-labelled). The element bw1 acts
on monomials as products of divided difference operators. Since the action of the
nilHecke algebra on the ring of polynomials is faithful, the elements bw1 bw0xu e(i)
are linearly independent.

Assume inductively that the elements of i0B i are linearly independent. Assume
i0k = b, i 0

k+1 6= b and that i 00 = σ k (i0). In order to show that i00B i is a linearly
independent set, we consider its image under the map:

ψk : e(i00)W (s, n)e(i) → e(i0)W (s, n)e(i).

Define a partial order on i0B i by w1f 1 < w 2f 2 if l(w 1) < l(w 2) or if w 1 = w 2
and the dots on the first j − 1 gray strands counting from left to right are the same
but the degree of E(s j ) in f 1 is less than the degree of E(sj ) in f 2 where the jth
gray strand is labelled sj . Extend this partial order to a total order.

Let δ : i00B i → i0B i be defined by δ(y) = ψ k y if the strands with top boundary
points at positions k and k + 1 are disjoint.

If the strands do intersect, set δ(y) = y 0E(d) ` where y0 is obtained from y by
removing the crossing between the two strands and the gray strand ending at
position k + 1 on the top is labelled by d and the bottom boundary of that strand
is at position ` from the left.

The map δ is clearly injective. Note that ψ k y = δ(y) plus lower terms. Now the
linear independence ofi00B i follows from the inductive hypothesis.

Corollary 4.10.The action of W (s, n) on V is faithful.

Example 4.11.Let s = (1, 1) and n = 1. There are three elements in Seq(s, n):

i = (1, b, 1), j = (b, 1, 1), k = (1, 1, b).

Elements of jB i, iB i , and kB i respectively are of the form:

1 1

e
r 1
1 e

r 3
1

r 2
,

1 1

e
r 1
1

r 2 e
r 3
1

,

1 1

e
r 1
1 e

r 3
1

r 2
,

where r1, r2, r3 ∈ Z≥0 .

4.4. Connection to Webster’s algebra
Let eT be the algebra introduced by Webster in [Web17, Sect. 4] for sl 2 for λ =
(s1, . . . , sm ) and (i 1, . . . , in ) = (1, . . . , 1).

Let I(s, n) be the two-sided ideal that is generated by E(d) j , where 1 ≤ j ≤
m + n and 1 ≤ d. Then eT ∼= W (s, n)/I(s, n).

4.5. Symmetries of the algebra
There is an algebra automorphism τ of the nilHecke algebra defined diagrammati-
cally by the symmetry of rescaling each crossing 7→ − and reflecting
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diagrams across the vertical axis. Algebraically, this corresponds to the algebra
homomorphism defined on generators by

τ : x i 7→ xn+1−i , ∂i 7→ −∂n−i . (4.31)

This symmetry immediately extends to the algebras W (s, n) since the relations
involving gray strands remain invariant under this symmetry.

In [Lau08], this symmetry (denoted by eσ there) is extended to define a 2-functor
τ : U (sl2) → U(sl 2) define diagrammatically by rescaling each crossing, reflecting
across the vertical axis, and sending weights λ to −λ. In [KLMS12], the symmetry
τ is used to deduce new thick calculus relations from others by applying τ . Working
with the symmetry τ in the Karoubi envelopeU̇ = Kar(U) is somewhat subtle,
as the idempotents ea used to define divided powers E(a) are not stable under the
symmetry τ . One can see that

τ




 ea

· · ·

λ




 := (−1)

a(a−1)
2

Da

· · ·
• •a−2 •a−1

−λ
(4.32)

and that the idempotent 1−λ ea is equivalent to the idempotent τ (ea1λ ) since

τ (ea1λ )(1−λ ea ) = τ (e a1λ ), and (1−λ ea)τ (ea1λ ) = ( 1−λ ea ).

Since these idempotents are equivalent, they give rise to isomorphic 1-morphisms
in U̇ .

In what follows, we would like to apply the symmetry τ to thick calculus
identities in W (s, n) in order to obtain new thick calculus identities. However, doing
so is complicated by the above observation that τ (E (a) 1λ ) := ( 1−λ Ea , τ (ea1λ )),
so to obtain new thick calculus identities we must use the isomorphisms relating
τ (ea1λ ) to 1−λ ea .

Signed sequences.Let ε = ε a1
1 . . . εam

m denote a divided power signed sequence with
each εi  ∈ {+, −} and each a i ∈ Z≥0 . To each such sequence we define a 1-morphism

Eε1λ = E (a 1 )
ε1

. . . E(a m )
εm 1λ

in U̇, where E+ := E and E− := F. Write e ε1λ for the idempotent ea1
 ⊗ ea2

 ⊗ · · · ⊗

eam 1λ built from the horizontal composition of idempotents defining each E (a i )
ε i ,

so that in U̇ we have
Eε1λ := (E a1

ε1
. . . Eam

εm 1λ , eε1λ ).

Given a divided power signed sequence ε let

τ (ε) := ε am
m εam−1

m−1 . . . εa1
1 .

This should not be confused with the result of applying the 2-isomorphism τ to
the idempotent eε . These two possibilities are related by the following lemma.
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Lemma 4.12.There is an isomorphism

zε : τ Eε1λ , eε = 1−λ Eam
εm

Eam−1
εm−1

. . . Ea1
ε1

, τ (eε ) → 1−λ Eτ (ε)

between 1-morphisms inU̇ .

Proof. Let z ε = e τ (ε) and z−1
ε = τ (eε ).

Proposition 4.13.Given an equality of 2-morphisms

X 1λ = Y 1λ : Eε1λ → Eε01λ

in U̇ we have an equality

zε0τ (X 1λ )z−1
ε = z ε0τ (Y1λ )z−1

ε : 1−λ Eτ (ε) → 1−λ Eτ (ε 0) .

The above proposition gives rise to a simple effective rule for obtaining new
thick calculus identities by reflecting thick diagrams across the vertical axis and
rescaling all splitters:

τ









a b

a+b









= (−1) ab

b a

a+b

. (4.33)

Note that this definition is consistent with the factorization of a thin crossing
through a thickness two strand:

= .

4.6. Inclusion map
Let s = (s 1, s2, . . . , sm ) be a sequence of m non-negative integers. For j = 1, . . .
. . . , m−1, denote by sj , the sequence of m−1 integers obtained from s by replacing
the pair (s j , sj+1 ) with the singleton s j + s j+1 . Denote by φ j,a (s), where j =
1, . . . , m and 0 ≤ a ≤ s j , the sequence of m + 1 integers obtained from s by
replacing the integer sj with the pair (s j − a, a):

sj = (s 1, . . . , sj−1 , sj + s j+1 , sj+2 , . . . , sm ),
φj,a (s) = (s 1, . . . , sj−1 , sj − a, a, sj+1 , . . . , sm ).

Note that we have φj,s j+1 (sj ) = s.
The map φ j,a extends to a map from Seq(s, n) to Seq(φj,a (s), n) by replacing

the integer sj in i with the pair (s j − a, a). When i` = s j ,

φj,a (i) = (. . . , ì−1 , sj − a, a, ì+1 , . . .) ∈ Seq(φj,a (s), n).
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Define an inclusion map of algebras which is non-unital

Φj,a : W (s, n) → W (φj,a (s), n) (4.34)

determined by sending idempotents e(i) for Seq(s, n) by

Φj,a (e(i)) = e(φ j,a (i)).

Assume the jth gray entry occur in position ` 0 of i. The “dot” generators E(d) `

are mapped via

Φj,a (E(d) ` e(i)) =






E(d) ` e(φj,a (i)) if ` < ` 0,

E(d) `+1 e(φj,a (i)) if ` 0 < `,
P

d1 +d 2 =d E(d 1)` E(d 2)`+1 e(φj,a (i)) if ` 0 = `, 1 ≤ d ≤ s j .

On “dot” generators x ` define it by

Φj,a (x ` e(i)) =
(

x ` e(φj,a (i)) if ` < ` 0,

x `+1 e(φj,a (i)) if ` 0 < `.

On “crossing” generators ψ̀ define it by

Φj,a (ψ` e(i)) =






ψ` e(φj,a (i)) if ` < ` 0 − 1,
ψ`+1 ψ` e(φj,a (i)) if i ` 0−1 = b, ` = ` 0− 1,
ψ` ψ`+1 e(φj,a (i)) if i ` 0+1 = b, ` = ` 0,

ψ`+1 e(φj,a (i)) if ` > ` 0.

In particular, Φ j,a is diagrammatically represented by

Φj,a




s j

ed



 7→
X

d1 +d 2 =d s j −a a

ed 1 ed 2 , (4.35)

Φj,a







s j







7→

sj −a a

, Φj,a







sj







7→

as j −a

. (4.36)

Proposition 4.14.The following map is injective:

Φj,s j+1 : W (sj , n) → W (s, n). (4.37)

Proof. Injectivity of Φ j,s j+1 is an immediate consequence of its definition on basis
elements.
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5. Reddotted bimodules

In this section, we will introduce certain bimodules E (a)
i and F(a)

i over W (s, n)
for various sequences s.The Lie theoretic notation of these bimodules is chosen
so that these bimodules will be the targets of the 1-morphisms of a categorical
quantum group action.

In order to describe these bimodules, we will first introduce ”halves” of these
bimodules which we call splitter bimodules. Then we will introduce ladder bimo-
dules.

5.1. Splitter bimodules
The bimodules that we will first define algebraically are called splitter bimodules
because of their graphical descriptions.

First note that the inclusion Φ j,s j+1 determines the left action of W (s j , n) on
W (s, n). Define the (W (sj , n), W (s, n))-bimodule 4 j (s) as the bimodule

4 j (s) := W (sj , n) ⊗W (sj ,n) W (s, n){−s j · sj+1 } (5.1)

and the (W (s, n), W (sj , n))-bimodule 5 j (s) as the bimodule
5 j (s) := W (s, n) ⊗W (sj ,n) W (sj , n). (5.2)

We diagrammatically represent elements of these bimodules as follows

4 j (s) 3 · · · · · ·

s1 s j−1 s j+2 sms j s j+1

s j +s j+1

, 5 j (s) 3 · · · · · ·

s1 s j−1 sj+2 sm

sj s j+1

sj +s j+1

with n black strands intersecting the pictures in a manner similar to that described
in Section 4.2 along with gray and black dots.

Proposition 5.1.There are relations

s j s j+1

s j +s j+1

ed

=
X

d1 +d 2 =d

sj s j+1

sj +s j+1

ed 1 ed 2

,

s j+1sj

sj +s j+1

ed

=
X

d1 +d 2 =d

s j+1sj

sj +s j+1

ed 2ed 1

,

s j sj+1

s j +s j+1

=

s j sj+1

s j +s j+1

,

s j sj+1

s j +s j+1

=

sj s j+1

sj +s j+1

,

sj+1s j

s j +s j+1

=

sj+1s j

s j +s j+1

,

sj+1s j

s j +s j+1

=

sj+1s j

s j +s j+1

.
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Proof. Use the definition of the inclusion (4.37) along with relations in the algebra.

The first two equalities of Proposition 5.1 imply the following.

Corollary 5.2.

s j s j+1

s j +s j+1

ed

=
X

d1 +d 2 =d

(−1) d2

s j s j+1

s j +s j+1

ed 1

hd 2

,

s j s j+1

s j +s j+1

ed

=
X

d1 +d 2 =d

(−1) d2

s j s j+1

s j +s j+1

ed 1

hd 2

,

sj+1s j

s j +s j+1

ed

=
X

d1 +d 2 =d

(−1) d2

sj+1sj

sj +s j+1

ed 1

hd 2
,

s j+1s j

s j +s j+1

ed

=
X

d1 +d 2 =d

(−1) d2

s j+1s j

s j +s j+1

ed 1

hd 2
.

5.2. Ladder bimodules
The main bimodules introduced in this section are called ladder bimodules because
of their graphical depiction.

For a sequence s = (s1, s2, . . . , sm ), we have maps

φj,a (s)j+1 = (. . . , sj−1 , sj − a, sj+1 + a, sj+2 , . . .),
φj+1,s j+1 −a (s)j = (. . . , sj−1 , sj + a, sj+1 − a, sj+2 , . . .).

We denote by α +j,a (s) the sequence φj+1,s j+1 −a (s)j and denote by α −j,a (s) the
sequence φj,a (s)j+1 . These maps α±j,a extend into the set Seq(s, n) by

α+j,a (i) = (. . . , sj + a, b, . . . ., b, sj+1 − a, . . .),
α−j,a (i) = (. . . , sj − a, b, . . . ., b, sj+1 + a, . . .);

α+j,a maps the elements sj and sj+1 in i into s j + a and s j+1 − a and α −j,a maps
sj and sj+1 into s j − a and s j+1 + a.



M. KHOVANOV, A. D. LAUDA, J. SUSSAN, Y. YONEZAWA

We define the (W (α+i,a (s), n), W (s, n))-bimodule E(a)
i 1s as the bimodule

E(a)
i 1s = 4 i (φi+1,s i+1 −a (s)) ⊗W (φ i+1,s i+1 −a (s),n) 5 i+1 (φi+1,s i+1 −a (s))

∼= W (φi+1,s i+1 −a (s)i , n) ⊗W (φ i+1,s i+1 −a (s),n) W (φi+1,s i+1 −a (s), n)
⊗W (s,n) W (s, n){−s i · a}

and the (W (α −i,a (s), n), W (s, n))-bimodule F(a)
i 1s as the bimodule

F(a)
i 1s = 4 i+1 (φi,a (s)) ⊗W (φ i,a (s),n) 5 i (φi,a (s))

∼= W (φi,a (s)i+1 , n) ⊗W (φ i,a (s) i+1 ,n) W (φi,a (s), n)
⊗W (s,n) W (s, n){−s i+1 · a}.

By definition, these bimodules have elements diagrammatically depicted by

E(a)
i 1s 3 . . . . . .

si−1 si si+1 si+2

si + a si+1 − a

a

. . .

,

F(a)
i 1s 3 . . . . . .

si−1 si si+1 si+2

si − a si+1 + a

a

. . .

with n black strands intersecting the pictures in a manner similar to that described
in Section 4.2 along with gray and black dots. We will refer to the gray strand
connecting vertical strands as a step. When a step is not labelled, following earlier
conventions we will assume that it has a label of 1.

Proposition 5.3.The bimodules Ei Ei+1 1s and E i+1 Ei 1s are generated by dia-
grams of the form

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2

,

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k3k2

respectively with k1, k2, k3 ≥ 0.
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Proof. Using the first two equalities of Proposition 5.1 and Corollary 5.2, any gray
dot on the above diagram could be replaced by a sum of terms with gray dots at
the top and bottom of strands of the diagram. For instance, a term with a gray
dot in the middle of the vertical strand labelled s i+1 of the left diagram could
be replaced by a sum of terms with gray dots at the top of that middle vertical
strand and dots on the upper step of the diagram. A term with a dot on the upper
step could be expressed as a sum of terms with dots on the top and bottom of
the left-most vertical gray strand using a complete-elementary symmetric function
relation.

Proposition 5.4.The bimodules Ei Ei+1 Ei 1s and Ei+1 Ei Ei+1 1s are generated by
elements of the form

si si+1 si+2

si + 2 si+1 − 1 si+2 − 1

f
k1 k3k2

,

si si+1 si+2

si + 1 si+1 + 1 si+2 − 2

f

k1 k3k2

(5.3)

respectively with f, k1, k2, k3 ≥ 0.

Proof. The proof of this is similar to the proof of Proposition 5.3. Note that in this
case we can always write a term with a gray dot on a step as a linear combination
of terms with gray dots at the top and bottom of the diagram and at the step of
the ladder as indicated.

6. Bimodule homomorphisms

6.1. Morphisms ∂
j
(s j −1,1) and ∂

j
(1,s j −1)

We define the derivation maps ∂
j
(s j −1,1) and ∂

j
(1,s j −1) .

These are (W (s, n), W (s, n))-bimodule maps
∂ j

(s j −1,1) : 4 j (φj,1 (s)) ⊗W (φ j,1 (s),n) 5 j (φj,1 (s)) → W (s, n),

∂ j
(1,s j −1) : 4 j (φj,s j −1 (s)) ⊗W (φ j,s j −1 (s),n) 5 j (φj,s j −1 (s)) → W (s, n)

determined by

∂ j
(s j −1,1) : s j −1 1

m

s j

s j

7→ hm−s j +1

sj

,

∂ j
(1,s j −1) : s j −11

m

s j

s j

7→ (−1) sj −1 hm−s j +1

sj

,

(6.1)
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where h` is the `th complete symmetric function in terms of the elementary
symmetric functions e1,. . . ,es j .

The degrees of the morphisms ∂
j
(s j −1,1) and ∂

j
(1,s j −1) are both 1 − s j .

6.2. Morphisms ι
j
(s j −1,1) and ι

j
(1,s j −1)

We define the creation maps ι
j
(s j −1,1) and ι

j
(1,s j −1) .

There are (W (s, n), W (s, n))-bimodule maps
ι j
(s j −1,1) : W (s, n) → 4 j (φj,1 (s))⊗ W (φ j,1 (s),n) 5 j (φj,1 (s)) and ι

j
(1,s j −1) : W (s, n) →

4 j (φj,s j −1 (s)) ⊗W (φ j,s j −1 (s),n) 5 j (φj,s j −1 (s)) determined by

ι j
(s j −1,1) :

s j

7→ s j −1 1

s j

s j

, ι j
(1,s j −1) :

s j

7→ sj −11

s j

s j

. (6.2)

The degrees of the morphisms ι
j
(s j −1,1) and ι

j
(1,s j −1) are 1 − sj .

6.3. Morphisms υ
j
(s j ,1) and υ

j
(1,s j+1 )

Let s(j) be a sequence (s1, s2, . . . , sm ) of m non-negative integers such that the jth
integer sj is one.

For a sequence i1 ∈ Seq(s(j+1) , n) such that sj and sj+1 are neighbors, and a se-
quence i2 ∈ Seq(s(j) , n) such that sj and sj+1 are neighbors (i.e., i1 = (. . . , sj , 1, . . .)
and i2 = (. . . , 1, sj+1 , . . .)), there is a map

e(i1)(5 j (s(j+1) ) ⊗W (sj
(j+1) ,n)

4 j (s(j+1) ))e(i1) → e(i1)W (s(j+1) , n)e(i1)

and a map

e(i2)(5 j (s(j) ) ⊗W (sj
(j) ,n)

4 j (s(j) ))e(i2) → e(i2)W (s(j) , n)e(i2)

determined by

sj 1

s j +1

sj 1

7→

sj 1

,

1 s j+1

s j+1 +1

1 s j+1

7→

1 s j+1

. (6.3)

The degree of the first morphism is s j and the degree of the second morphism
is sj+1 .

This implies the morphisms

e(i1)(5 j (s(j+1) ) ⊗W (sj
(j+1) ,n)

4 j (s(j+1) ))e(i1) → e(i1)W (s(j+1) , n)e(i1),
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e(i2)(5 j (s(j) ) ⊗W (sj
(j) ,n)

4 j (s(j) ))e(i2) → e(i2)W (s(j) , n)e(i2)

where i1 = (. . . , 1, b, . . . , b| {z }
k

, sj+1 , . . .) and i2 = (. . . , sj , b, . . . , b| {z }
k

, 1, . . .) for 0 ≤ k ≤ n

are of degrees sj and sj+1 , respectively.
As a diagrammatic presentation, the first map is determined by the following

mapping:

s j 1

s j 1

· · ·| {z }
k1

· · ·| {z }
k2

7→

s j 1

s j 1

· · ·| {z }
k1

· · ·| {z }
k2

(6.4)

where k1 + k 2 = k. The second map is determined by

1 sj+1

1 sj+1

· · ·| {z }
k1

· · ·| {z }
k2

7→

1 s j+1

1 s j+1

· · ·| {z }
k1

· · ·| {z }
k2

(6.5)

where k1 +k 2 = k. Note that the diagram in the image of this map can be simplified
using Relation (4.27).

We define the bimodule morphisms υ
j
(s j ,1) and υ

j
(1,s j+1 ) , called lollipop (unzip)

maps,
υj

(s j ,1) : 5 j (s(j+1) ) ⊗W (sj
(j+1) ,n)

4 j (s(j+1) ) → W (s(j+1) , n)

and
υj

(1,s j+1 ) : 5 j (s(j) ) ⊗W (sj
(j) ,n)

4 j (s(j) ) → W (s(j) , n)

determined by the morphisms in (6.3).
Moreover, composing the morphism υ

j
(s j ,1) and ∂ j+1

(1,s j+1 −1) (resp. υj
(1,s j ) and

∂ j
(s j −1,1) ) using (4.27) we define the following morphism υ

j
s,l (resp. υj

s,r )

υj
s,l : Fj Ej 1s → W (s, n),

υj
s,r : Ej Fj 1s → W (s, n).

By definition, the degree of the morphism υ
j
s,l is sj − s j+1 + 1 and the degree of

the morphism υ j
s,r is −s j + s j+1 + 1.

As a diagrammatic presentation, the morphism υ
j
s,l is determined by the follow-

ing mappings:
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δ

s j sj+1

s j sj+1

s j+1 −1

1

1

k

υ j
(s j ,1)
7→

δ

sj s j+1

sj s j+1

s j+1 −1

k

(4.27)=
kX

d=0

(−1) k−d

s j s j+1

s j s j+1

sj+1 −1

k

ed

k−d+δ

∂ j+1
(1,s j+1 −1)

7→
kX

d=0

(−1) s j+1 −1+k−d

s j sj+1

s j sj+1

k

ed

hk−d−s j+1
+δ+1 .

The morphism υ j
s,r is determined by the following mappings:

δs j sj+1

s j sj+1

s j+1 +1s j −1

1

1

k

υ j
(1,s j )
7→ δ

s j s j+1

s j s j+1

s j −1

k

(4.27)=
kX

d=0

(−1) k−d

sj s j+1

sj s j+1

s j −1

k

ed

k−d+δ

∂ j
(s j −1,1)

7→
kX

d=0

(−1) k−d

s j s j+1

s j s j+1

k

ed

hk−d−s j +1+δ

.

6.4. Morphisms ζjs,r and ζ
j
s,l

First we define the zip maps ζ
j
(s j ,1) and ζ

j
(1,s j+1 ) . Recall the sequence s(j) defined

in Section 6.3.
For i1 = (. . . , sj , b, . . . , b| {z }

k

, 1, . . .) ∈ Seq(s(j+1) , n) and i2 = (. . . , 1, b, . . . , b| {z }
k

, sj+1 , . . .)

∈ Seq(s(j) , n), there is a map

ζ j
(s j ,1) : W (s(j+1) , n) → 5 j (s(j+1) ) ⊗W (sj

(j+1) ,n)
4 j (s(j+1) )
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of degree sj determined by

ζ j
(s j ,1) :

s j 1k

7→(−1)k−1

sj 1k

sj 1

s j +1 k−11

+
X

d1 +d 2 +d 3
=s j −k

(−1) s j +d 1 +d 2

d2

ed 3

sj 1

s j +1

sj 1

hd 1 ,

(6.6)

and a map
ζ j

(1,s j+1 ) : W (s(j) , n) → 5 j (s(j) ) ⊗W (sj
(j) ,n)

4 j (s(j) )

of degree sj+1 determined by

ζ j
(1,s j+1 ) :

1 s j+1k

7→(−1)s j+1

1 sj+1

1 sj+1

s j+1 +1
1

k−1

+
X

d1 +d 2 +d 3
=s j+1 −k

(−1) s j+1 +d 3 +k

d2

ed 3

1 s j+1

sj+1 +1

1
s j+1

hd 1 .

(6.7)

Note that these maps are determined by the image of a thick black strand because
by Lemma 2.2 the identity on k strands factors through the thickness k thick
strand. For example,

···

1 1 1 1 1

=
X

`∈Sq(k)

(−1) |b̀|

è

xb̀

1 1 1 1 11

7→ −
X

`∈Sq(k)

(−1) |b̀|

è

xb̀

1 1 1 1 1 1

1k−1

which can be generalized to thicker gray strands in the obvious way. Furthermore,
this determines the image of any element x ∈ NH k by placing x at the top or
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bottom of the diagram on the right. This is well-defined by the following Lemmas
6.1 and 6.2. Note that the proofs of each of the following two lemmas do not
use maneuvers using the gray strands. However, the presence of the gray strands
complicates the proof (since both diagrams would be zero without them).

Lemma 6.1.For arbitrary thickness of gray strands a and b, the following identity
holds:

X

`∈Sq(k)

(−1) |b̀|

è

xb̀

a 1 1 1 b

1k−1

······

······

=
X

`∈Sq(k)

(−1) |b̀|

è

xb̀

a 1 1 1 b

1k−1

······

······

. (6.8)

Proof. Recall from Remark 2.3 that the sets {e ` | ` ∈ Sq(k)} and {x b̀ | ` ∈ Sq(k)}
both form bases for the polynomial ring as a free module over the ring of symmetric
functions Λk . In particular, if we multiply any element in either of these bases by
x i , it is possible to rewrite the resulting polynomial as some Λk -combination of
basis elements. The first part of Lemma 2.2 shows that multiplying by a black dot
on the ith strand on top of the sum

X

`∈Sq(k)

(−1) |b̀|

è

xb̀

gives the same result as multiplying by a black dot on the bottom of the sum. Using
(2.5), all of the symmetric functions produced in rewriting either basis can be put
on the thick k labelled strand. Hence, if we rewrite each diagram on the left-hand
side of (6.8) in the basis {e ` | ` ∈ Sq(k)} and push the symmetric functions onto
the thick k-labelled strand, these symmetric functions can be pushed to the bottom
of the diagram using (2.5). By Lemma 2.2, this gives the same result as rewriting
each diagram on the right hand side of (6.8) using the basis {x b̀ | ` ∈ Sq(k)}
establishing the lemma.
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Lemma 6.2.For arbitrary thickness of gray strands a and b, the following identity
holds:

X

`∈Sq(k)

(−1) |b̀|

è

xb̀

a 1 11 1 b

1k−1

······

······

=
X

`∈Sq(k)

(−1) |b̀|

è

xb̀

a 1 11 1 b

1k−1

······

······

. (6.9)

Proof. Suppose we act by a black crossing on the ith and (i + 1)-st black strands.
It is helpful to note that the elementary symmetric function e (i)

` i
on the first i black

strands in the standard elementary monomial e` can be written as

e(i)
` i

= e (i−1)
` i

+ x i e(i−1)
` i −1 . (6.10)

Since the (i, i + 1) black crossing commutes with e(a)
` a

for a 6= i, the left-hand side of
(6.9) can be simplified using (6.10), where the first term involving e (i−1)

` i
vanishes

as a result of the definition of the splitter and (1) in the definition of the nilHecke
algebra (∂2

i = 0). The remaining term can be further simplified using (4) in the
definition of the nilHecke algebra (∂ i x i = x i+1 ∂i + 1) and again noting that the
term where the black crossing does not resolve, again vanishes by the definition of
the splitter and (1) in the definition of the nilHecke algebra. Hence, the left-hand
side reduces to

X

`∈Sq(k)

(−1) |b̀|

è 0

xb̀

1 1 1 1 1 1

1k−1
(6.11)

where
è 0 = e (1)

` 1
. . . e(i−1)

` i−1
e(i−1)

` i −1 e(i+1)
` i+1

. . . e(k)
` k

,

so that there are no elementary symmetric functions in the first i variables.
For the right-hand side of (6.9), it is helpful to break the summation into two

pieces depending on if `i+1 < ` i + 1 (so that b̀i < b̀
i+1 ) or ` i + 1 < ` i+1 (so that
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b̀i > b̀
i+1 .) The case when b̀i = b̀

i+1 vanishes.Then using Lemma 2.1 we can
simplify

b̀i b̀
i+1 =






X

A+B=
b̀

i+1 − b̀i −1

b̀i +A b̀i +B
if b̀i < b̀

i+1 ;

X

A+B=
b̀i − b̀

i+1 −1

b̀
i+1 +A b̀

i+1 +B
if b̀i > b̀

i+1 .

where b̀i := i − ` i and b̀
i+1 = i + 1 − ` i+1 . Combining this fact with (6.10), one can

show that the right-hand side of (6.9) is equal to the sum (6.11), completing the
proof.

Proposition 6.3.The assignments ζ j
(a,1)

and ζ j
(1,a)

define bimodule homomor-
phisms.

Proof. Here we show that ζ j
(1,a) is a bimodule morphism. The proof for ζ j

(a,1) is
similar.

• Red dot action: First, we check the equation

1 a

1 a

1

k

+
X

d 1 +d 2 +d 3
=a−k

(−1) d3 +k

d2 +1

ed 3

1 k a

a+1

1 a

hd 1

=

1 a

1

k

a

1k−1 +
X

d 1 +d 2 +d 3
=a−k

(−1) d3 +k

d2

ed 3

1 k a

a+1

1 a

hd 1 .

(6.12)

This follows using Relations (4.22), (4.23), and (4.24) and then by [KLMS12, Prop.
2.4.1].

Next, we check the gray dot action on the thick gray strand. For 1 ≤ i ≤ a, we
check the equation

1 a

1 a

ei

1 +
X

d 1 +d 2 +d 3
=a−k

(−1) d3 +k

d2

ed 3

ei

1 a

1 a

hd 1

=

1 a

1 a

ei

1 +
X

d 1 +d 2 +d 3
=a−k

(−1) d3 +k

d2

ed 3
ei

1 a

1 a

hd 1 .

(6.13)
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This relation follows by sliding the elementary symmetric function e i on the left-
hand side of this equation and using (6.12).

• Thin red-black crossing: We check the equation

X

`∈Sq(k)

(−1) |b̀|

è

xb̀

1 a

1k−1 +
X

d1 +d 2 +d 3
=a−k

(−1) d3 +k

d2

ed 3

1 a

a+1

1 a

hd 1

· · ·

=
X

`∈Sq(k−1)

(−1) |b̀|

è

xb̀

1 a

1k−2 +
X

d1 +d 2 +d 3
=a−k+1

(−1) d3 +k−1

d2

ed 3

1 a

a+1

1 a

hd 1

· · ·

.

(6.14)

Using (4.28), (2.13), and (4.22), and Lemmas 2.4 and 2.2, the first summation on
the left-hand side of (6.14) simplifies

X

`∈Sq(k)

(−1) |b̀|

è

xb̀

1 a

1k−1
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=
a−k+1X

d=0

(−1) d+k−1

1 a

a1

edha−k+1−d

+
X

`∈Sq(k)

(−1) |b̀|

1 a

a1

D k

xb̀

è

Ck−1

.

By Lemmas 2.6 and 2.7 and standard properties of complete symmetric func-
tions, this is equal to

X

d1 +d 3
=a−k+1

d1X

d=0

(−1) d3 +k−1

1 a

a1

ed 3

d

hd1 −d

+
X

`∈Sq(k−1)

(−1) |b̀|

1 a

a1

D k−1

xb̀

è

Ck−1

. (6.15)

On the other hand, we have

X

d1 +d 2 +d 3
=a−k

(−1) d3 +k

d2

ed 3

1 a

a+1

1 a

hd 1

· · ·

=
a−kX

d3 =0

(−1) d3 +k
a−k−d 3 +1X

d1 =1

d1X

d=1 ed 3

1 a

a+1

1 a

hd 1 −d

· · ·

d

−
X

d1 +d 2 +d 3
=a−k

(−1) d3 +k

d2 +1

ed 3

1 a

a+1

1 a

hd 1

· · ·

.

Therefore, we find that the left-hand side of (6.14) (the above summation and the
summation (6.15)) is equal to the right-hand side.
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• Thick red-black crossing: the invariance under the thick gray line with a thin
black strand can be established by a similar direct computation for which it is
helpful to note the thick calculus identity

k−11

=
k−1X

d=0

(−1) d

1 k−1

ed

k−1−d

together with (4.26).

Composing the morphisms ι j+1
(1,s j+1 −1) and ζ

j
(s j ,1) (resp. ι j

(s j −1,1) and ζ
j
(1,s j+1 ) ),

we define the following bimodule homomorphisms

ζ j
s,r : W (s, n) → Fj Ej 1s,

ζ j
s,l : W (s, n) → Ej Fj 1s.

By definition, the degree of the morphism ζ j
s,r is sj − s j+1 + 1 and the degree of

the morphism ζ
j
s,l is −s j + s j+1 + 1.

As a diagrammatic presentation, the morphism ζjs,r is determined by the follow-
ing mapping:

ζ j
s,r :

s j s j+1k

ι j+1
(1,s j+1 −1)

7→

sj sj+1k

sj+1 −11

ζ j
(s j ,1)
7→ (−1) k−1

sj s j+1

sj s j+1

sj+1 −1s j +1

1

1

1 k−1

k

+
X

d 1 +d 2 +d 3
=s j −k

(−1) s j +d 1 +d 2

s j s j+1

s j s j+1

s j+1 −1s j +1
1

1

k

hd 1

ed 3

d2

.

(6.16)
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The morphism ζ
j
s,l is determined by the following mappings:

ζ j
s,l :

s j sj+1k

ι j
(s j −1,1)

7→

sj s j+1k

s j −1 1

ζ j+1
(1,s j+1 )

7→ (−1) s j+1

s j s j+1

s j s j+1

s j+1 +1sj −1

1

1

1k−1

k

+
X

d 1 +d 2 +d 3
=s j+1 −k

(−1) s j+1 +d 3 +k

s j s j+1

s j s j+1

s j+1 +1sj −1
1

1

k

hd 1

ed 3

d2

.

(6.17)

6.5. Morphisms ℵi,j

In this subsection, we will prove that for |i − j| = 1 there are bimodule homomor-
phisms

ℵi,j : Ei Ej 1s → Ej Ei 1s.

When i and j satisfy other conditions, we will also have maps Ei Ej 1s → Ej Ei 1s.
When |i − j| 6= 1, it is easier to prove these are bimodule homomorphisms, so we
consider only the difficult cases in this subsection.

It is easier to define ℵi,j when j = i + 1:

ℵi,i+1 :










si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2

7→

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2










. (6.18)

The other case is more involved since there is an extra set of generators given
by a thick black strand going through the middle vertical gray line. The definition
of ℵi+1,i breaks down into three cases depending upon the thickness of this black
strand:
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








si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2

7→

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2

−

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2










, (6.19)










si si+1 si+2

si + 1 si+1 si+2 − 1

1

1

k1 k21

7→

si si+1 si+2

si + 1 si+1 si+2 − 1

1
1

k1 k21

−

si si+1 si+2

si + 1 si+1 si+2 − 1

1
1

k1 k21










, (6.20)










si si+1 si+2

si + 1 si+1 si+2 − 1

1

1

k1 k3k2

7→ −

si si+1 si+2

si + 1 si+1 si+2 − 1

1 1

1

k1 k3k2










. (6.21)

When k = 0, (6.19) is a bimodule homomorphism by Soergel calculus. In order
to check that all of the ℵi,j are in fact bimodule homomorphisms, we must compare
how W (s, n) acts on the top and bottom of the diagrams for these generators.

• Black dot action: The compatibility of the actions of black dots with respect
to these maps follows from the black dot sliding relation (4.23).

• Red dot action: The compatibility of the actions of gray dots with respect to
these maps follows from standard manipulations of elementary symmetric func-
tions.

• The action of red-black crossings:This proof follows by induction on k. A
detailed proof appears in the arXiv version of this paper.
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7. Categorical symmetric Howe duality

In this section, we define a 2-representation of the 2-category U using ladder
bimodules of W (s, n). The proof that the assignments defined here give rise to a
2-representation is checked in the next section where it is shown that all relations
of the 2-morphisms hold.

7.1. The 2-category Bim(n)
Here we define the target 2-category for our 2-representation of the 2-category U .

Definition 7.1.Define a graded additive 2-category Bim(n) as the idempotent
completion inside the 2-category of graded bimodules with:

• Objects consisting of sequences s = (s1, . . . , sm ) such that each si ∈ Z≥0 and
a symbol ∗.

• The 1-morphisms are generated under tensor product of bimodules by iden-
tity bimodules 1 s = W (s, n) and

E(a)
i 1s = . . . . . .

si−1 si si+1 si+2

si + a si+1 − a

a

. . .

,

F(a)
i 1s = . . . . . .

si−1 si si+1 si+2

si − a si+1 + a

a

. . .

together with their grading shifts. For the symbol ∗, the set of 1-morphisms
is the empty set:

Hom( .∗ ∗) = Hom( .∗ s) = Hom(s, ∗) = ∅.

Hence, an arbitrary 1-morphism is a summand of a direct sum of tensor
products of these bimodules and their shifts.

• The 2-morphisms of Bim(n) are the degree-preserving bimodule homomor-
phisms between these bimodules.

7.2. The 2-representation
There is a 2-representation

Ψ: U → Bim(n), (7.1)

s 7→ s if s ∈ Zm
≥0 ,

∗ if s 6∈ Zm
≥0 . (7.2)
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By definition we have Hom( , ∗ ∗) = Hom( ,∗  s) = Hom(s, ∗) = 0. Therefore, when
s 6∈Zm

≥0 , the 1-morphisms and 2-morphisms get mapped to zero. When s ∈ Zm
≥0 ,

we define

Ei 1s 7→ Ei 1s,

F i 1s 7→ Fi 1s.

with 2-morphisms defined by the following assignments

Ψ






i

s




 : Ei 1s → Ei 1s










si si+1

si + 1 si+1 − 1

k

7→

si si+1

si + 1 si+1 − 1

k










,

Ψ






i

s




 : Fi 1s → Fi 1s










si si+1

si − 1 si+1 + 1

k

7→

si si+1

si − 1 si+1 + 1

k










,

Ψ






i

s




 : Ei Fi 1s

υ i
s,r
→ 1 s










δ

si si+1

si si+1

k

7→

si si+1

si si+1

k

δ

7→
kX

d=0

(−1) k−d

si si+1

si si+1

k

edhk−d−s i +1+δ










,
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Ψ






i

s




 : Fi Ei 1s

υ i
s,l

→ 1s










si si+1

si si+1

k

δ
7→

si si+1

si si+1

k

δ

7→
kX

d=0

(−1) si+1 −1+k−d

s i s i+1

s i s i+1

k

ed
hk−d−s i+1 +1+δ










,

Ψ






i

s




 : 1s

ζ i
s,r
→ F i Ei 1s











s i si+1k

7→ (−1)k−1

s i s i+1

s i s i+1

k−1

k

+
X

d1 +d 2 +d 3
=s i −k

(−1) si +d 1 +d 2

s i

s i

s i+1k

hd 1

ed 3

d2

s i+1










,

Ψ






i

s




 : 1s

ζ i
s,l→ Ei Fi 1s











s i si+1k

7→ (−1)si+1

s i s i+1

s i s i+1

k−1

k
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+
X

d1 +d 2 +d 3
=s i+1 −k

(−1) s i+1 +d 3 +k

s i s i+1

s i s i+1

k

hd 1

ed 3

d2











,

Ψ






i i+1

s




 : Ei Ei+1 1s

ℵ i,i+1
→ E i+1 Ei 1s










si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2

7→

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2










,

Ψ






i+1 i

s




 : Ei+1 Ei 1s

ℵ i+1,i
→ E i Ei+1 1s










si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2

7→

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2

−

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k2










,










si si+1 si+2

si + 1 si+1 si+2 − 1

1

1

k1 k21

7→

si si+1 si+2

si + 1 si+1 si+2 − 1

1
1

k1 k21

−

si si+1 si+2

si + 1 si+1 si+2 − 1

1
1

k1 k21










,
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








si si+1 si+2

si + 1 si+1 si+2 − 1

1

1

k1 k3k2

7→ −

si si+1 si+2

si + 1 si+1 si+2 − 1

1 1

1

k1 k3k2










,

Ψ






i ji

s




 : Ei Ej 1s → Ej Ei 1s










. . .

si si+1 sj sj+1

si+1 − 1si + 1 sj + 1 sj+1 − 1

k1 k2

7→ . . .

si si+1 sj sj+1

si+1 − 1si + 1 sj + 1 sj+1 − 1

k1 k2










,

Ψ






i ji

s




 : Ei Ej 1s → Ej Ei 1s










. . .

sj sj+1 si si+1

sj+1 − 1sj + 1 si + 1 si+1 − 1

k1 k2

7→ . . .

sj sj+1 si si+1

sj+1 − 1sj + 1 si + 1 si+1 − 1

k1 k2










,
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Ψ






i i

s




 : Ei Ei 1s → Ei Ei 1s











 x

y

si si+1

si + 2 si+1 − 2

k

7→

∂
1
(x

x 1
x

y 2
)

si si+1

si + 2 si+1 − 2

k













.

The formula for ∂(x x
1 xy

2) above is given by ∂(x x
1xy

2) = (x x
1 xy

2 − x x
2xy

1)/(x 2 − x 1).
The following fact could sometimes be used to simplify a calculation.

Remark 7.2. While the map associated to the crossing with the bottom boundary
points labelled i + 1 and i seems arbitrary, note that for s i ≥ 1 and k > 1 there is
an equality

si 1k

1 s i

si +1 1k−1 = (−1) k−2

s i 1k

1 s i

s i +1 k−11 .

7.3. Formulas implied by definition of Ψ

In this section, we compute the bimodule homomorphisms associated to non-
generating 2-morphisms in U . These formulas will be useful for verifying the
defining relations of U in Section 8.

Sideways crossings (same labelling).The crossing formulas above, along with cup
and cap maps, imply the following formulas.

Lemma 7.3.The ii-sideways crossings are given by the following formulas:

Ψ






ii

s




 :

δ
si si+1

si k

k

si+1
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7→
k−1X

f=0

(−1) f

hk+δ−f
−s i

si si+1

si k

k

si+1

ef

k − 1

(7.3)

+
X

d 1 +d 2 +d 3
=s i −k,
d3 ≥1

d3X

j=1

j−1X

f=0

kX

g=k−δ

(−1) j+d 1 +d 2 +s i +g
j−1
−f

hf+g+δ
−s i +1

ed3 −j

hd1
ek−g

d2

si si+1

si k

k

si+1

,

Ψ






i i

s




 :

δ

si si+1

si k

k

si+1

7→
k−1X

g=0

(−1) g

hg+δ−s i+1 +1

si si+1

si k

k

si+1

ek−1−g

k − 1

(7.4)

+
X

d 1 +d 2 +d 3
=s i+1 −k,

d2 ≥1

d2 −1X

f=0

kX

g=k+f−δ

(−1) d3 +g+k

h g+δ+d 2
−f−s i+1

ed3

hd1
ek−g

f

si si+1

si k

k

si+1

.
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Proof. These follow by direct computations using the definitions from the previous
subsection.

Sideways crossings (different labelling ).

Lemma 7.4.For |i − j| > 1 we have the following assignments by Ψ for sideways
crossings:

Ψ







i ji

s







7→









. . .

si si+1 sj sj+1k i k j

si+1 − 1si + 1 sj − 1 sj+1 + 1

7→ . . .

si si+1 sj sj+1k i k j

si+1 − 1si + 1 sj − 1 sj+1 + 1








,

Ψ







i ji

s







7→









. . .

si si+1 sj sj+1k i k j

si+1 + 1si − 1 sj + 1 sj+1 − 1

7→ . . .

si si+1 sj sj+1k i k j

si+1 + 1si − 1 sj + 1 sj+1 − 1








,

Ψ







i ji

s







7→









. . .

sj sj+1 si si+1k j k i

sj+1 + 1sj − 1 si + 1 si+1 − 1

7→ . . .

sj sj+1 si si+1k i k j

sj+1 + 1sj − 1 si + 1 si+1 − 1








,

Ψ







i ji

s







7→









. . .

sj sj+1 si si+1k j k i

sj+1 − 1sj + 1 si − 1 si+1 + 1

7→ . . .

sj sj+1 si si+1k j k i

sj+1 − 1sj + 1 si − 1 si+1 + 1








.
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Proof. These follow from the definitions. The proof of Proposition 8.1 is used in
this calculation.

Lemma 7.5.For |i − j| = 1 we have the following assignments for sideways
crossings:

i+1 i

s 7→












si si+1 si+2

si − 1 si+1 + 2 si+2 − 1

k1 k2

7→

si si+1 si+2

si − 1 si+1 + 2 si+2 − 1

k1 k2












,

i+1 i

s 7→












si si+1 si+2

si + 1 si+1 − 2 si+2 + 1

k1 k2

7→

si si+1 si+2

si + 1 si+1 − 2 si+2 + 1

k1 k2












,

i i+1

s 7→












si si+1 si+2

si − 1 si+1 + 2 si+2 − 1

k1 k2

7→

si si+1 si+2

si − 1 si+1 + 2 si+2 − 1

k1 k2












,

i i+1

s 7→












si si+1 si+2

si + 1 si+1 − 2 si+2 + 1

k1 k2

7→

si si+1 si+2

si + 1 si+1 − 2 si+2 + 1

k1 k2












.

Proof. These are lengthy yet straightforward calculations using the definitions of
cup, cap, and crossing bimodule homomorphisms.

Counter-clockwise bubble.It is convenient to compute the bimodule homomor-
phism for dotted bubbles. For notational convenience in this section, we assume
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that s i = a and s i+1 = b, so that s̄i = a − b.

Ψ








i

m

s







:

a b

a k

k

b

7→
k−1X

α=0

aX

β=0

k−1−αX

γ=0

(−1) a+b+β+γ+1

hm+α−b
+1

ea−β

a b

a k

k

b

hβ−α
−γ

eγ

+
X

d 1 +d 2 +d 3
=a−k

kX

α=0
(−1) d3 +α+b+1

hm+d 2 +k
−α−b+1

ed3

a b

a k

k

b

hd 1

eα

.

(7.5)

This simplifies to

Ψ




 i

m

s 


 :

si si+1

si k

k

si+1

7→
siX

β=0

(−1) s i +s i+1 +β+1

h m+β−
s i+1 +1

es i −β

si si+1

si k

k

si+1

. (7.6)

Clockwise bubble.Just as in Section 7.3 we calculate that

Ψ




 i

m

s


 :

si si+1

si k

k

si+1

7→
s i+1X

β=0

(−1) β

hm+β−s i +1 es i+1 −β

si si+1

si k

k

si+1

. (7.7)

8. Proof of categorical action

We now verify the defining relations of the 2-morphisms in U .

8.1. Isotopic relations and cyclicity
Proposition 8.1.We have the following equalities of bimodule homomorphisms:

Ψ







si





 = Ψ







s

i





 = Ψ







s

i







, (8.1)
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Ψ







s

i




 = Ψ





 s

i




 = Ψ







s i






. (8.2)

Proof. This is a direct calculation.

Proposition 8.2.The assignment Ψ preserves the dot cyclicity relation:

Ψ







s i




 = Ψ





 s

i




 = Ψ







s i






.

Proof. This follows from the gray dot action invariance in the proof of Proposi-
tion 6.3.

Proposition 8.3.There is the following equality of bimodule homomorphisms:

Ψ

 
s

i j

!

:= Ψ










s

i j

ij









= Ψ










s

ji

j i









.

Proof. This is a lengthy calculation that depends on different cases for i and j.

8.2. KLR relations
Proposition 8.4.When the strands are labelled by adjacent nodes |i − j| = 1, we
have

Ψ






s

i i + 1




 = Ψ






s

i i + 1

−
s

i i + 1




 ,

Ψ






s

i + 1 i




 = Ψ






s

ii + 1

−
s

ii + 1




 .

Proof. The two parts of the proposition are similar so we only sketch the second
identity. The generators for the bimodule E i+1 Ei 1s are given in (8.3):

si si+1 si+2

si + 1 si+1 si+2 − 1

k1 k3k2

. (8.3)
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There are three cases to consider: k2 = 0, k 2 = 1, and k 2 > 1.
For k2 = 0, the image of one of the crossing maps produces a sum of dots on

the gray step strands labelled by 1, along with a change in the relative heights of
those gray strands. The other crossing map simply changes the relative heights of
the gray strands labelled by 1.

The cases k2 > 0 are verified in a straightforward manner from the definitions
using Lemma 4.5. For k2 > 1, one must use [KLMS12, Prop. 2.5.3] to simplify the
diagrams.

Proposition 8.5.If |i − j| > 1, then

Ψ






s

i j




 = Ψ






s

i j




 .

Proof. This follows immediately from the definitions of the bimodule homomor-
phisms since each one just corresponds to an isotopy of diagrams of elements in
the bimodule.

Proposition 8.6.There is an action of the nilHecke algebra NHa on the bimodule
Ea

i 1s. That is, we have equalities of the following bimodule homomorphisms:

Ψ






s

i i




 = 0,

Ψ
i i

s −
i i

s
= Ψ

i i

s −
i i

s
= Ψ

i i

s ,

Ψ







i i i

s





 = Ψ







i i i

s







along with identities arising from Ψ for faraway strands.

Proof. Recall that the bimodule E a
i 1s is spanned by diagrams as in (8.4) with

black strands in the background, and all strands may carry dots:

si si+1

si + a

. .
 .

si+1 − a

. (8.4)

A nilHecke dot on the ith strand starting from the right corresponds to a dot
on the ith gray strand labelled by 1 starting from the bottom. A nilHecke crossing
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on the ith and (i + 1)-st strands starting from the right corresponds to the divided
difference operator applied to dots on the ith and (i + 1)-st gray strands starting
from the bottom. It is then immediate that the nilHecke relations are satisfied.

Proposition 8.7.For i 6= j the following dot sliding relations hold:

Ψ
i j

s
= Ψ

i j

s
, Ψ

i j

s
= Ψ

i j

s
.

Proof. This follows easily from the definition of Ψ.

Proposition 8.8.Unless i = i 0 and |i − j| = 1, the relation

Ψ







i j i 0

s





 = Ψ







i j i 0

s







holds. Otherwise, |i − j| = 1 and

Ψ







i i ± 1 i

s −

i i ± 1 i

s





 = ∓Ψ







i i ± 1 i

s







.

Proof. This is a lengthy calculation depending on various case considerations.

8.3. Infinite Grassmannian relations
For notational convenience in this section, we assume that si = a and s i+1 = b, so
that s̄i = a − b. We show that the 2-functor Ψ preserves the infinite Grassmannian
relations

Ψ








X

x+y=α

i

s̄ i −1
+x

s
i

− s̄ i −1
+y








:

a b

a k

k

b

7→ −
X

x+y=α

yX

f=0

xX

g=0
(−1) f+g

eghx−g

a b

a k

k

b

ef hy−f
.

(8.5)

For a term in this triple sum to be nonzero, we must have x − g ≥ 0 and y − f =
α − x − f ≥ 0 (or g ≤ x and x ≤ α − f ). By further simplifying summations using
that indices for h s must be positive, the result follows using symmetric function
identities for elementary and complete symmetric functions.
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8.4. Mixed relations
Proposition 8.9.For i 6= j we have the following equalities:

Ψ







i j

s





 = Ψ







i j

s







, Ψ







j i

s





 = Ψ







j i

s







.

Proof. This follows from Lemmas 7.4 and 7.5.

8.5. EF and FE decompositions
In this subsection, we will prove the EF and FE decompositions using a key
argument provided to us by Sabin Cautis. It requires proving the decompositions
in some easy cases along with other relations already proved.

For notational convenience in this section we assume that the sequence s has
si = a and s i+1 = b, so that s̄i = a − b.

Proposition 8.10.

Ψ






X

f 1 +f 2 +f 3
=a−b−1

i

i

i

f 3

− s̄ i −1
+f 2

f 1

s



 :

δ
a b

a k

k

b

7→
X

f 1 +f 2 +f 3
=a−b−1

kX

j=0

aX

`=0

(−1) j+`+1

hδ+f 1 +j
−a+1

è
ek−j

f 3

hf 2 −`

a b

a k

k

b

+
X

f 1 +f 2 +f 3
=a−b−1

kX

j=0

aX

`=0

(−1) j+`+1
X

d 1 +d 2 +d 3
=b−k

(−1) d3 +k

hδ+f 1 +j
−a+1

ed3

e`

ek−j

hd1

f 3 + d 2

hf 2 −`

a b

a k

k

b

Proof. This follows from the definitions of the generating 2-morphisms.
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Proposition 8.11.

Ψ






X

f 1 +f 2 +f 3
=−¯s i −1

i

i

i

f 3
s̄ i −1
+f 2

f 1

s



 :

δ

a b

a k

k

b

7→
X

f 1 +f 2 +f 3
=b−a−1

kX

j=0

bX

`=0

(−1) j+`+k

hf 2 −` èek−j

f 3

hδ+f 1 +j
−b+1

a b

a k

k

b

+
X

f 1 +f 2 +f 3
=b−a−1

kX

j=0

bX

`=0

(−1) j+`+1
X

d 1 +d 2 +d 3
=a−k

(−1) a+d 1 +d 2

hf 2 −` e`

ed3

ek−j

hd1

f 3 + d 2

hδ+f 1 +j
−b+1

a b

a k

k

b

.

Proof. This also follows from the definitions of the generating 2-morphisms.

We begin with the decompositions that imply

Ei Fi 1s
∼= [a]1s, si = a, si+1 = 0, Fi Ei 1s

∼= [b]1s si = 0, si+1 = b.

Proposition 8.12.

(1) Suppose s = (s1, . . . , sm ) with s i = a, s i+1 = 0. We then have the following
equality of bimodule homomorphisms:

Ψ







i i

s





 = Ψ







i i

s





 + Ψ






X

f 1 +f 2 +f 3
=a−1

i

i

i

f 3

−a−1
+f 2

f 1

s



 .

(2) Suppose s = (s 1, . . . , sm ) with s i = 0, s i+1 = b. We then we have the
following equality of bimodule homomorphisms:

Ψ







i i

s





 = Ψ







i i

s





 + Ψ






X

f 1 +f 2 +f 3
=b−1

i

i

i

f 3

−b−1
+f 2

f 1

s



 .
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Proof. Both items are proved in the same way. In fact, the second part follows
from the first part by symmetry so we only sketch the proof of the first equation.

By definition, the term on the left side of the equation vanishes. It is a routine
calculation to check that the second term on the right side is negative of the identity
morphism. Note that in the course of the computation one sees that f 1 = f 2 = 0
and f 3 = a − 1.

The next crucial result is due to Cautis. Let s be a sequence of non-negative
integers (s1, . . . , sm ) and then set s0 = (s 1, . . . , si , 0, si+1 , . . . , sm ) to be a sequence
of m + 1 integers.

Proposition 8.13.For any sequence s, there are isomorphisms:

(1) If s i ≥ s i+1 , then E i Fi 1s
∼= Fi Ei 1s ⊕ [si − s i+1 ]1s,

(2) If s i ≤ s i+1 , then F i Ei 1s
∼= Ei Fi 1s ⊕ [si+1 − s i ]1s.

Proof. We will only establish the first isomorphism as the second one is proved in
a similar way. We proceed by induction on s i + s i+1 . The isomorphism exists for
the special case that si+1 = 0 by Proposition 8.12.

Decomposing Ei Fi 1s is the same as decomposing E i Ei+1 Fi+1 Fi 1s0 under the
canonical identification of W (s, n) with W (s0, n):

si si+1

si si+1

 

si 0 si+1

si 0 si+1

.

We begin by considering Ei Fi+1 Ei+1 Fi 1s0. Note that

Ei Fi+1 Ei+1 Fi 1s0
∼= Fi+1 Ei Fi Ei+1 1s0

∼= Fi+1 Fi Ei Ei+1 1s0 ⊕ [si − 1]F i+1 Ei+1 1s0

∼= Fi+1 Fi Ei Ei+1 1s0 ⊕ [si+1 ][si − 1]1s0

where the first isomorphism is a consequence of Proposition 8.9, the second isomor-
phism follows from induction, and the third isomorphism follows from 8.12. On
the other hand,

Ei Fi+1 Ei+1 Fi 1s0
∼= Ei Ei+1 Fi+1 Fi 1s0 ⊕ [si+1 − 1]Ei Fi 1s0

∼= Ei Ei+1 Fi+1 Fi 1s0 ⊕ [si ][si+1 − 1]1s0

where the first isomorphism follows from induction and the second isomorphism is
a consequence of Proposition 8.12. Thus,

Ei Ei+1 Fi+1 Fi 1s0 ⊕ [si ][si+1 − 1]1s0
∼= Fi+1 Fi Ei Ei+1 1s0 ⊕ [si+1 ][si − 1]1s0. (8.6)

Since the graded homomorphism spaces between these bimodules are finite-dimen-
sional, we may apply the Krull–Schmidt theorem to (8.6) and obtain

Ei Ei+1 Fi+1 Fi 1s0
∼= Fi+1 Fi Ei Ei+1 1s0 ⊕ [si − s i+1 ]1s0

which proves the proposition.
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Proposition 8.14.Let s = (s1, . . . , sm ). We then have the following equalities of
bimodule homomorphisms:

(1) Ψ







i i

s





 = Ψ







i i

s





 + Ψ






P
f 1 +f 2 +f 3
=a−b−1

i

i

i

f 3

−a+b
−1+f 2

f 1

s



 .

(2) Ψ







i i

s





 = Ψ







i i

s





 + Ψ






P
f 1 +f 2 +f 3
=b−a−1

i

i

i

f 3

−b+a
−1+f 2

f 1

s



 .

Proof. In [CL14, Thm. 1.1] (see also [Bru16]), it is proved that if one has all 2-
categorical relations along with abstract isomorphisms (from Proposition 8.13)

Ei Fi 1s
∼= Fi Ei 1s ⊕ [si − s i+1 ]1s,

Fi Ei 1s
∼= Ei Fi 1s ⊕ [si+1 − s i ]1s

for si ≥ s i+1 and si+1 ≥ s i respectively, that these isomorphisms could be written
in terms of generators for the 2-category and they satisfy the relations of the
proposition.

9. Main Theorems

In this section, we state the main results of this paper.

Theorem 9.1.The assignment Ψ extends to a 2-functor Ψ : U → Bim(n).

Proof. This follows from the check of the relations in Section 8.

Definition 9.2.Let Br m be the braid group of type A m . That is, it is generated
by elements Ti , T0

i for i = 1, . . . , m − 1 subject to relations

• T i T 0
i = 1 = T 0

i Ti ,
• T i Tj = T j Ti if |i − j| > 1,
• T i Tj Ti = T j Ti Tj if |i − j| = 1.

It was shown in [CK12a] that a categorical U action gives rise to a categorical
Brm action. Cautis and Kamnitzer’s work extended the foundational work of
Chuang and Rouquier [CR08] where sl2 categorification was developed.

We will now recall the main result of [CK12a] in the context of a particular
weight space of a representation of glm .

Let s = (s 1, . . . , sm ). There are complexes

T i 1s = E (s i+1 −s i )
i 1s → E(s i+1 −s i +1)

i F(1)
i 1sh1i → · · · → E(s i+1 −s i +j)

i F(j)
i 1shji → · · ·

= F (s i −s i+1 )
i 1s → F(s i −s i+1 +1)

i E(1)
i 1sh1i → · · · → F(s i −s i+1 +j)

i E(j)
i 1shji → · · ·

for s i+1 ≥ s i and si ≥ s i+1 respectively, and
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1sT0
i = · · · → 1sE

(j)
i F(s i+1 −s i +j)

i h−ji → · · · → 1sF(s i+1 −s i )
i

= · · · → 1sF
(j)
i E(s i −s i+1 +j)

i h−ji → · · · → 1sE(s i −s i+1 )
i

for si+1 ≥ s i and si ≥ s i+1 respectively, where the differentials are given by explicit
bimodule homomorphisms. For example, see [LQR15, Sect. 2.2].

Note that when s = (1, . . . , 1), these complexes simplify to

T0
i = E i Fi 1sh−1i

d //Id , T i = Id d0
//Ei Fi 1sh1i (9.1)

with the differentials given by

d =
i

s

, d0 =
i

s

. (9.2)

Theorem 9.3.As functors on the homotopy category of W (s, n)-modules,the
complexes Ti , T0

i satisfy braid group relations. That is, there are isomorphisms

• T 0
i T i

∼= Id,
• T i T0

i
∼= Id,

• T i T j
∼= T j T i if |i − j| > 1,

• T i T j T i
∼= T j T i T j if |i − j| = 1.

Furthermore, as endofunctors on K b(W (1m , n)−mod), the complexes Ti and T 0
i

satisfy strong braid group relations.

Proof. These complexes satisfy braid group relations by Theorem 9.1 and [CK12a,
Thm. 6.3].

Restricting to the weight space (1m ) of Bim(n), the complexes simplify to (9.1)
with the maps given in (9.2). The work of Elias and Krasner [EK10b] combined
with the connection between Soergel calculus and the 2-category U from [MSV13,
Lem. 6.5] shows that this is a strong braid group action.
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