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Active Tuning of Hybridized Modes in a Heterogeneous Photonic Molecule

Kevin C. Smith ,1 Yueyang Chen ,2 Arka Majumdar ,2,1,† and David J. Masiello 3,*

1
Department of Physics, University of Washington, Seattle, Washington 98195, USA

2
Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA

3
Department of Chemistry, University of Washington, Seattle, Washington 98195, USA

 (Received 17 December 2019; revised manuscript received 1 March 2020; accepted 20 March 2020; published 15 April 2020)

From fundamental discovery to practical application, advances in the optical and quantum sciences
rely upon precise control of light-matter interactions. Systems of coupled optical cavities are ubiquitous in
these efforts, yet the design and active modification of the hybridized mode properties remains challenging.
Here, we demonstrate the design, fabrication, and analysis of a tunable heterogeneous photonic molecule
consisting of a ring resonator strongly coupled to a nanobeam photonic crystal cavity. Leveraging the
disparity in mode volume between these two strongly coupled cavities, we combine theory and experiment
to establish the ability to actively tune the mode volume of the resulting supermodes over a full order of
magnitude. As the mode volume determines the strength of light-matter interactions, this work illustrates
the potential for strongly coupled cavities with dissimilar mode volumes in applications requiring designer
photonic properties and tunable light-matter coupling, such as photonics-based quantum simulation.
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I. INTRODUCTION

Coupled optical microcavities serve as a basic building
block for many integrated photonic systems and technolo-
gies. Similar to the way in which bound electronic states of
individual atoms couple to form those of a molecule, con-
fined photonic excitations of two or more optical cavities
can electromagnetically interact to form so-called “pho-
tonic molecules” [1–6]. Electronic excitations in molecules
are described through hybridization of the orbitals of the
constituent atoms and, by analogy, the electromagnetic
supermodes of photonic molecules can be constructed by
blending the resonances of the individual cavities. While
single cavities are instrumental to a diverse set of appli-
cations ranging from single-photon generation [7–10] and
strong light-matter coupling [11–14] to sensing [15–23]
and cavity-controlled chemistry [24–29], systems of two
or more cavities have shown promise in a number of
applications, including low-threshold lasing [30–32], cav-
ity optomechanics [33–35], nonclassical light generation
[36–42], quantum simulation [43–47], and biochemical
sensing [48,49].

Critical to the advantages of photonic molecules over
individual cavities is the ability to engineer designer
supermodes with properties that differ from those of the
constituent components. Of particular interest are coupled-
cavity structures, the optical properties of which evolve
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with tunable parameters such as cavity-cavity separa-
tion and detuning. In recent years, the active tuning of
such photonic molecules has been demonstrated in sev-
eral experiments [6,35,50] but all have focused on coupled
structures composed of near-identical individual cavities.
While these devices are useful for many applications,
homogeneity of the constituent cavities limits the dynamic
range of the resulting supermode properties, such as the
mode volume, which is important both for the scaling of
light-matter coupling and for Purcell enhancement.

In contrast, a heterogeneous photonic molecule com-
posed of two distinctly different cavities allows for a richer
set of emergent properties with a wider scope of applica-
tions, such as improved single-photon indistinguishability
of quantum emitters [41,42]. However, the lack of a the-
oretical framework analogous to molecular orbital theory
that is capable of elucidating the dependencies of the com-
posite system upon single-cavity parameters makes the
design and analysis of coupled optical cavities difficult.
Absent such a formalism, the prediction of supermode
field profiles and other downstream properties such as
hybridized resonant frequencies and mode volumes must
be left to numerical simulation. The latter can be costly
for all but the simplest coupled cavities and impossi-
ble for many heterogeneous systems, providing impetus
for theoretical advances in understanding cavity-mode
hybridization.

In this work, we demonstrate thermally tunable
hybridization of optical cavity modes in a heterogeneous
photonic molecule composed of a ring resonator and a
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nanobeam photonic crystal (PhC) cavity. This is achieved
by embedding the coupled-cavity structure in a high
thermo-optic coefficient polymer that preferentially blue
shifts the nanobeam resonance relative to the ring due to
the “air-mode” design of the PhC cavity [51]. To better
understand the resulting supermodes of this heterogeneous
optical system, we introduce a theoretical framework
that provides rigorous underpinnings to the more familiar
coupled-mode theory for hybridized cavity systems and we
derive analytical expressions for the supermode field pro-
files and mode volumes expressed in terms of the single-
cavity field profiles. Using this formalism, we demonstrate
the ability to extract crucial system parameters, such as the
bare resonant frequencies and couplings, as a function of
the temperature-dependent detuning. Lastly, we use this
theory to predict the evolution of the resonant frequencies,
field profiles, and hybridized mode volumes of the two
supermodes, revealing a temperature-dependent progres-
sion that spans a full order of magnitude and results in the
coalescence of the two mode volumes near zero detuning.

II. RESULTS

A. Experiment

Figure 1(a) displays a scanning-electron-microscope
(SEM) image of the heterogeneous coupled-cavity system

fabricated on a 220-nm-thick silicon-nitride film, grown
on thermal oxide on a silicon substrate. The pattern is
defined by e-beam lithography and reactive ion etching
[52]. The nanobeam cavity is designed such that a signif-
icant portion of the cavity field is concentrated in SU-8
polymer, which both forms a cladding for the entire device
and fills the holes of the PhC [51] [see Fig. 1(b)]. In
contrast, the ring-resonator mode is predominantly con-
fined within the silicon nitride. Due to the relatively high
thermo-optic coefficient of the polymer (approximately
−10−4/◦C), which is nearly an order of magnitude larger
than that of silicon nitride, heating the entire device leads
to a blue shift of the nanobeam-cavity mode relative to that
of the ring. The detuning between the ring and nanobeam
modes can therefore be reversibly controlled by changing
the temperature.

To investigate the effect of ring–nanobeam-mode detun-
ing, the transmission spectrum is measured through the
nanobeam PhC cavity for a range of temperatures span-
ning 33.5 − 73.5 ◦C. The spectra are measured using a
supercontinuum laser that is coupled to the system via an
on-chip grating [see Fig. 1(a)]. The transmitted light is
collected through the opposite grating and is sent to the
spectrometer. While the gratings already provide a spatial
separation to improve the signal-to-noise ratio, a pinhole
is used in the confocal microscopy setup to collect light

(a)

(c)

(b)

FIG. 1. (a) A SEM image of the SU-8 cladded coupled ring-resonator–nanobeam device with a 500-nm gap between the ring and
the nanobeam at the point of closest separation. Scale bar: 5 μm. (b) The y component of the electric field profiles for the nanobeam-
cavity mode (bottom) and the ring-resonator mode (top) studied. The system is modeled as a coupled oscillator, parametrized by an
effective coupling strength

√
G12G21 and effective frequencies �i distinct from the bare resonant frequencies ωi. (c) Transmission

spectra collected for four equally spaced temperatures (gray circles) with simultaneous least-squares fits to the model overlaid (red
lines).
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only from the output grating. The temperature of the entire
chip is controlled using a hot plate. Figure 1(c) displays
the resulting transmission spectra (gray circles) for a subset
of temperatures, with additional measurements included in
the Supplemental Material [53]. As the cavity modes of the
ring and nanobeam are coupled, it is difficult to distinguish
how much of the energy separation between transmission
peaks at each temperature is due to detuning versus mode
splitting resulting from coupling.

An understanding of the impact of these individual con-
tributions and analysis of emergent properties requires
a theoretical formalism capable of describing the super-
modes of the coupled ring-nanobeam structure. Coupled-
mode theory provides one such approach but typically
relies on several phenomenological rates that simplify
the modeling, often at the expense of oversimplifying
the underlying physics. Furthermore, coupled-mode theory
does not provide a means to predict supermode properties
of interest for heterogeneous photonic molecules, such as
hybridized mode volumes. To amend these deficiencies,
we develop a first-principles theory that provides analyt-
ical understanding of the supermode resonant frequencies,
field profiles, and volumes based only upon knowledge of
the individual uncoupled cavities.

B. Theoretical model

The resonant modes of an optical cavity are given by the
independent harmonic solutions of the wave equation

∇ × ∇ × A(x, t) + ε(x)

c2 Ä(x, t) = 0, (1)

where A is the vector potential related to the cavity fields
by the usual relations E = −Ȧ/c and B = ∇ × A, ε(x)

is the dielectric function of the structure of interest, and
c is the speed of light. As is typical for cavity quantum-
electrodynamics calculations, we work entirely in the
generalized Coulomb gauge defined by ∇ · ε(x)A(x) = 0,
which leads to a vanishing scalar potential for systems
without free charge [54,55]. While optical cavities may
alternatively be described at the level of the fields them-
selves, the vector potential accommodates a more natural
basis for both a Lagrangian formulation of the cavity
dynamics and canonical quantization [56].

Given ε(x), it is in principle straightforward to numer-
ically solve for the modes of the two-cavity structure
in Fig. 1(a). Such an approach, however, offers limited
predictivity and insight into the interaction between the
individual ring resonator and nanobeam modes. In addi-
tion, the vastly different length scales of the ring resonator
and nanobeam cavity make electromagnetic simulations of
the coupled structures computationally challenging, ren-
dering a purely numerical exploration of parameter space
infeasible. A more flexible strategy is to numerically solve
for the modes of the individual uncoupled cavities. With

the aid of analytics, these individual modes may then be
appropriately mixed to form supermodes dependent on
basic system parameters such as the spectral detuning and
the physical separation between the cavities.

Considering just a single-cavity mode of both the ring
resonator and nanobeam, the vector potential for the
double-cavity structure can be expanded as

A(x, t) =
∑

i=1,2

√
4πc
Vi

qi(t)fi(x). (2)

Here, i = 1, 2 corresponds to the ring and nanobeam,
respectively, while fi(x) is a mode function of the ith cavity
[53] and qi(t) a time-dependent amplitude. The mode func-
tions are normalized such that the mode volume [57–59] is
given by

Vi =
∫

d3x εi(x) |Ei(x)|2
max[εi(x) |Ei(x)|2]

=
∫

d3x εi(x) |fi(x)|2 . (3)

The mode expansion in Eq. (2) is approximate and, in
general, requires additional terms to ensure that Gauss’s
law is obeyed [60–62]. However, these contributions only
become physically relevant at small intercavity separa-
tions, where the evanescent field of one cavity “spills” into
the dielectric medium composing the other, and therefore
may be ignored for the ring–nanobeam-resonator studied
[53].

The resonant-supermode frequencies are most easily
computed through diagonalization of the equations of
motion for the generalized coordinates qi. The derivation
of such equations is straightforward using standard tech-
niques of Lagrangian mechanics (see Appendix A) but
an equivalent route involves directly integrating Eq. (1)
[63]. Regardless of the approach, the coupled equations of
motion are as follows:

d2

dt2

[
q1
q2

]
= −

[
�2

1 G12
G21 �2

2

] [
q1
q2

]
, (4)

where �2
i = (ω̄2

i − ḡEḡM )/(1 − ḡ2
E/ω̄1ω̄2) and Gij =√

ω̄j V̄i/ω̄iV̄j
(
ω̄iḡM − ω̄j ḡE

)
/(1 − ḡ2

E/ω̄1ω̄2) define effec-
tive resonant frequencies and couplings.

These coupled equations of motion differ from those
often assumed in the application of coupled-mode the-
ory to multiple-cavity systems [6,64,65]. In particular, the
diagonal elements of the above coefficient matrix are dis-
tinct from the bare resonance frequencies ωi. This is a
consequence of the absence of a weak-coupling approxi-
mation, resulting in coupling-induced resonance shifts [66]
that scale as higher-order products of the three distinct
coupling parameters corresponding to the electric (gE) and
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magnetic (gM ) intercavity couplings and the polarization-
induced intracavity self-interaction (�i), defined by

gE =
√

ω1ω2

V1V2

∫
d3x ε(x)f1(x) · f2(x),

gM = 1
2

√
1

ω1ω2V1V2

∫
d3x

[
ω2

1ε1(x) + ω2
2ε2(x)

]

× f1(x) · f2(x),

�i =
√

1
V1V2

∫
d3x [ε(x) − εi(x)] |fi(x)|2 .

(5)

The intracavity self-interaction �i does not explicitly
appear in Eq. (4), as all intercavity couplings, resonant
frequencies (ωi), and mode volumes (Vi) are replaced by
renormalized counterparts (indicated by a bar), defined
explicitly in Appendix A.

While coupled-mode theory often reduces cavity-mode
interactions to a single coupling parameter independent of
the detuning, we note that this is not completely accurate
and that more rigorous first-principles treatments relying
on tight-binding methods [63,67] have revealed three dis-
tinct coupling parameters, in agreement with those defined
above. However, as shown in Eq. (4), these three param-
eters may be combined, along with the resonant frequen-
cies, to form effective coupled-oscillator equations that
account for these subtleties. Notably, all parameters may
be computed given only the dielectric function compos-
ing the individual cavities along with associated field mode
profiles.

C. Fit to experimental data

Aided by the effective oscillator equations in Eq. (4), the
transmission spectrum is derived through standard input-
output methods [53,64,68], yielding

T (ω) =

∣∣∣∣∣∣∣∣

κ

ω − �1 + iκ + G12G21/4�1�2

ω − �2

∣∣∣∣∣∣∣∣

2

. (6)

Simultaneous least-squares fits are performed to transmis-
sion spectra at the eight experimentally probed tempera-
tures shown in Fig. 1(c) and the Supplemental Material
[53]. To minimize the number of free parameters, �1, �2,
V1, and V2 are calculated using the theory, supplemented
by numerically calculated single-cavity field profiles. Sim-
ilarly, gE and gM are constrained to within ±1% of their
theoretical values, while the waveguide-induced dissipa-
tion rate κ is estimated from electromagnetic simulation of
the nanobeam.

The remaining free parameters, displayed in the top row
of Table I, are extracted through a simultaneous least-
squares fit to all measured transmission spectra. Among
them are the resonant frequencies of both the ring resonator
and the nanobeam at room temperature T0 and associ-
ated intrinsic dissipation rates, the latter of which may be
introduced via input-output theory in the standard way by
generalizing �1 and �2 to be complex valued [64]. We
find that the temperature dependence of the resonant wave-
length of each cavity is well approximated as linear. All
other parameters are assumed to depend negligibly upon
temperature and are treated as constant. Even with these
simplifying approximations, agreement between experi-
ment (circles) and theory (solid lines) is excellent, as is
evident in Fig. 1(c).

Figure 2(a) displays the full set of transmission mea-
surements (circles) and fits (curves) for all eight probed
temperatures, while Fig. 2(b) shows the supermode reso-
nant frequencies (ω±) as a function of the energy detuning
�ω2 − �ω1. For each temperature measured, the resonant
frequencies are estimated from the peaks in the transmis-
sion spectra and are shown as black circles. The theory
curves (red and blue) are computed through diagonaliza-
tion of the effective oscillator model in Eq. (4), which we
parametrize according to Table I. Because both the ring
and nanobeam modes blue shift with increasing tempera-
ture, the plotted curves and points are shifted with respect
to the average resonant energy ωavg = (ω+ + ω−)/2 for
both panels.

The resonant frequencies undergo an anticrossing as
the system nears zero detuning around T = 40◦C, with
the upper- and lower-cavity-polariton energies differing
by approximately 0.8 meV. Because the coupled-oscillator
model is parametrized by the effective frequencies �1 and

TABLE I. Parameter estimates.

�ω1(T0) �ω2(T0) dλ1/dT dλ2/dT �γ1 �γ2

1.6922 eV 1.6918 eV −39 pm/◦nC −50 pm/◦nC 0.16 meV 0.23 meV

V1 V2 κ �gE �gM �1 �2

5.0 μm3 0.49 μm3 9.7 μeV −16.4 meV −15.6 meV 1.1 × 10−5 8.5 × 10−5
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(a) (b)

FIG. 2. (a) Anticrossing resulting from strong coupling between the ring-resonator and nanobeam-cavity modes. Experimental data
are shown as circles, while colored solid lines display the resulting least-squares fit to Eq. (6). The gray lines overlie the theoretical
values of ω±, extrapolated via parameter values obtained from the fits. (b) The evolution of the supermode resonant frequencies as
a function of the detuning. The black points correspond to experimentally measured peak transmission energies, while the error bars
indicate the uncertainty in the peak energy due to the finite density of the transmission energies measured. The solid curves display the
theoretical supermode energies computed from Eq. (4), parametrized through simultaneous fits to transmission measurements.

�2, and not the bare-cavity resonances ω1 and ω2, the
anticrossing occurs where the former, and not the lat-
ter, are coresonant. Thus, the anticrossing in Fig. 2 is
slightly shifted from zero detuning. In addition, the super-
mode resonances ω± tend toward the effective frequencies
(dotted lines) at large positive and negative values of
the detuning. Strong coupling is confirmed quantitatively
through comparison of the computed effective coupling
strength [53] with the dissipation rates reported in Table I

[69,70]. In particular, we find that
∣∣∣�

√
G12G21/4�1�2

∣∣∣ ≈
0.40 meV, nearly double the dominant intrinsic dissipation
rate �γ1 = 0.23 meV.

D. Analysis of supermode properties

Hybridization is further investigated through inspection
of the supermode profiles

f∓(x) = 1
A(θ)

[(G12

G21

)1/4
√

V2

V1
f1(x) cos θ −

(G21

G12

)1/4
√

V1

V2
f2(x) sin θ

]
,

f±(x) = 1
B(θ)

[(G21

G12

)1/4
√

V1

V2
f2(x) cos θ +

(G12

G21

)1/4
√

V2

V1
f1(x) sin θ

]
, (7)

and their associated mode volumes

V∓ = V1

⎡

⎣V2

V1

√
G12

G21

1 + �1

A(θ)2

⎤

⎦ cos2 θ + V2

⎡

⎣V1

V2

√
G21

G12

1 + �2

A(θ)2

⎤

⎦ sin2 θ −
√

V1V2

[
gE/

√
ω1ω2

A(θ)2

]
sin 2θ ,

V± = V2

⎡

⎣V1

V2

√
G21

G12

1 + �2

B(θ)2

⎤

⎦ cos2 θ + V1

⎡

⎣V2

V1

√
G12

G21

1 + �1

B(θ)2

⎤

⎦ sin2 θ +
√

V1V2

[
gE/

√
ω1ω2

B(θ)2

]
sin 2θ , (8)

where A(θ) and B(θ) are normalization factors defined by Ref. [53]

A(θ)2 = Max

⎧
⎨

⎩ε(x)

[(G12

G21

)1/4
√

V2

V1
f1(x) cos θ +

(G21

G12

)1/4
√

V1

V2
f2(x) sin θ

]2
⎫
⎬

⎭ ,

044041-5



SMITH, CHEN, MAJUMDAR, and MASIELLO PHYS. REV. APPLIED 13, 044041 (2020)

B(θ)2 = Max

⎧
⎨

⎩ε(x)

[(G21

G12

)1/4
√

V1

V2
f2(x) cos θ −

(G12

G21

)1/4
√

V2

V1
f1(x) sin θ

]2
⎫
⎬

⎭ , (9)

θ = (1/2) tan−1(2
√
G12G21/[�2

2 − �2
1]) is the mixing

angle, and the upper (lower) subscript corresponds to
the case θ > 0 (θ < 0). The mixing angle has two dis-
tinct regimes; when the detuning is much larger than
the effective coupling strength (θ → 0), the above mode
functions reduce to those of the bare ring resonator and
nanobeam cavity. In contrast, for small detuning relative
to the coupling (θ → ±π/4), the mode functions become
a superposition of f1(x) and f2(x).

Figure 3(a) shows the evolution of the y component of
the upper- (top) and lower- (bottom) cavity-polariton field
profiles across the experimentally measured temperature
range. Because the limits of this range constrain the mixing
angle to −π/8 � θ � π/6, neither f+(x) nor f−(x) entirely
localize to one of the constituent cavities at any probed
temperature. For all mode profiles shown, a significant por-
tion of the field is contributed by the mode function of the
nanobeam f2(x). We note, however, that there is no fun-
damental reason why the device could not be heated past
the maximum temperature studied here (73◦C) or cooled
below room temperature.

Notably, the supermode profiles are not equal superpo-
sitions of f1(x) and f2(x) near zero detuning (T = 40◦C).
This may be understood by considering the large mismatch
in mode volume between the ring-resonator and nanobeam
modes (V1/V2 ∼ 10). According to Eq. (7), the nanobeam

(a) (b)

FIG. 3. (a) The field profile for the upper- (top) and lower- (bottom) cavity polaritons at various temperatures. Both supermodes are
dominated by the nanobeam field at all observed temperatures due to the weighting of f1(x) and f2(x) in Eq. (7). (b) The hybridized
mode volumes V+ (blue curve) and V− (red curve) of the upper- and lower-cavity polaritons. The gray region indicates the range of
experimentally measured temperatures, while the dotted lines specify V1, V2, and V1 + V2. Due to the predominant localization of both
modes in the nanobeam cavity, both V+ and V− coalesce at a value less than 5 times the mode volume of the isolated ring-resonator
mode.

contribution to both f+(x) and f−(x) scales like (V1/V2)
1/4,

while that of the ring resonator scales like (V2/V1)
1/4. As a

result, both supermodes are predominantly localized to the
nanobeam.

Figure 3(b) shows theoretical predictions for the
hybridized mode volumes as a function of the temperature-
controlled detuning, calculated using Eq. (8) paired with
the experimentally informed parameter values in Table I.
As before, the blue and red curves correspond to the upper-
and lower-cavity polaritons in Fig. 2(a). The gray region
indicates the range of experimentally probed temperatures.
Both hybridized mode volumes tend toward those of the
individual cavities at large positive and negative detuning
and coalesce at a value of V± ≈ 0.95 μm3, more than a
factor of 5 less than the mode volume of the isolated ring
resonator.

While the nanobeam mode volume V2 clearly serves
as a lower bound for V±, analysis of Eq. (8) indi-
cates a maximum near V1 + V2. V+ slightly exceeds
this value due to constructive interference between the
two modes, while V− peaks at a value below V1 +
V2 due to destructive interference. Both mode vol-
umes display a “turning point” at values of the mixing
angle θ such that f1(x) and f2(x) are equally weighted
in either f+(x) or f−(x). Due to the large mismatch
between V1 and V2, between these two points is a
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full order-of-magnitude of attainable values for both
hybridized mode volumes, illustrating the potential of
this heterogeneous device for actively tunable photonic
properties.

III. CONCLUSION

In conclusion, we demonstrate actively tunable hybridi-
zation in a heterogeneous photonic molecule consisting
of a ring resonator coupled to a photonic crystal cavity.
Critically, we establish an ability to exert control over the
coupled cavity’s mode volumes, spanning over a full order
of magnitude. Aided by a theoretical formalism developed
to study hybridized cavity states, we rigorously extract
the system parameters from experiment and derive analyt-
ical expressions for the supermode resonant frequencies,
field profiles, and mode volumes, elucidating their evolu-
tion with temperature. As the mode volume is a critical
parameter dictating the degree of Purcell enhancement
and the scaling of light-matter interaction, these results
bear impact upon diverse efforts in the emerging fields
of quantum simulation and quantum information process-
ing.
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APPENDIX A: DYNAMICS FOR TWO
SINGLE-MODE CAVITIES

As mentioned in the main text, the equations of motions
for coupled-cavity modes may be computed either through
integration of the wave equation [63] or via an Euler-
Lagrange approach. Here, we follow the latter strategy and

use the standard electromagnetic Lagrangian

L =
∫

d3x
8π

[
ε(x)

Ȧ2

c2 − (∇ × A)2

]
(A1)

in the modified Coulomb gauge (and in the absence of free
charge). Substituting the expansion Eq. (2) for the vector
potential leads to

L = 1
2

∑

i

q̇2
i

Vi
[1 + �i] − 1

2

∑

i

ω2
i

Vi
q2

i + gE√
ω1ω2V1V2

q̇1q̇2

− gM

√
ω1ω2

V1V2
q1q2, (A2)

where the analytical forms of gE , gM , and �i are given in
the main text. Application of the Euler-Lagrange equations
then gives

q̈1

V̄1
+ ω̄2

1
q1

V̄1
+ ḡE√

ω̄1ω̄2V̄1V̄2

q̈2 + ḡM

√
ω̄1ω̄2

V̄1V̄2
q2 = 0,

q̈2

V̄2
+ ω̄2

2
q2

V̄2
+ ḡE√

ω̄1ω̄2V̄1V̄2

q̈1 + ḡM

√
ω̄1ω̄2

V̄1V̄2
q1 = 0,

(A3)

where the renormalized mode volumes, frequencies, and
coupling strengths are defined as follows:

V̄1 = V1/(1 + �1) V̄2 = V2/(1 + �2),

ω̄1 = ω1/
√

1 + �1 ω̄2 = ω2/
√

1 + �2,

ḡE = gE/[(1 + �1)(1 + �2)]3/4,

ḡM = gM/[(1 + �1)(1 + �2)]1/4.

(A4)

Further algebra yields the equations of motion defined in
the main text:

d2

dt2

[
q1
q2

]
= −

[
�2

1 G12
G21 �2

2

] [
q1
q2

]
, (A5)

where �2
i = (ω̄2

i − ḡEḡM )/(1 − ḡ2
E/ω̄1ω̄2) and Gij =√

ω̄j V̄i/ω̄iV̄j
(
ω̄iḡM − ω̄j ḡE

)
/(1 − ḡ2

E/ω̄1ω̄2).

APPENDIX B: PHYSICAL IMPORTANCE OF THE
MODE VOLUME

The mode volume is a critical figure of merit for dielec-
tric cavities, which determines the strength of light-matter
interactions [58,59,71]. Here, we show that this remains
true in the basis of supermodes of a photonic molecule,
lending physical meaning to V±. The interaction energy
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between a dipole emitter and the two-cavity field is given
by

Hint = −d · E(r0), (B1)

where d is the dipole moment of the emitter and r0 is its
position. Upon transformation to the supermode basis [53],
the field of the cavity may be written as

E = − Ȧ
c

= −
√

4π

V+
q̇+(t)f+(x) −

√
4π

V−
q̇−(t)f−(x). (B2)

Substituting this into the interaction Hamiltonian and writ-
ing the dipole moment in terms of a generalized coordinate
d = ex,

Hint = −e
√

4π

V+
[f+(r0) · x̂]xq̇+−e

√
4π

V−
[f−(r0) · x̂]xq̇−,

(B3)

which clearly reveals the dependence of the coupling
strength on the mode volume V±. Importantly, the
mode functions are normalized such that max[ε(x)f±(x) ·
f±(x)] = 1 and therefore the limit f±(r0) · x̂ → 1 corre-
sponds to the case of maximal coupling when ε(x) is real
and dispersionless.

APPENDIX C: EFFECTIVE HAMILTONIAN
APPROACH FOR CALCULATION OF

TRANSMISSION SPECTRA

Computation of the power transmitted through the cou-
pled ring-nanobeam system is most easily achieved in
the basis of creation and annihilation operators. Stan-
dard canonical-quantization techniques rely on computa-
tion of the Hamiltonian associated with the Lagrangian in
Eq. (A2). Due to the coupling between q̇1 and q̇2, how-
ever, this leads to conjugate momenta that themselves are
coupled in the Hamiltonian. The result of this is that the
rotating-wave approximation is no longer valid and stan-
dard techniques of input-output theory for coupled systems
become ineffective.

The most straightforward path to quantization is via the
effective Lagrangian

L = 1
2

∑

i

[
q̇2

i

Vi
− �2

i
q2

i

Vi

]
−

√
G12G21

V1V2
q1q2, (C1)

where 1/V1 = (G21/ω̄1ω̄2)/
√

V̄1V̄2 and 1/V2 = (G12/ω̄1ω̄2)/√
V̄1V̄2. While different in form from the standard

Lagrangian in Eq. (A1), application of the Euler-Lagrange
equations yields the exact same equations of motion.
Notably, there is no direct coupling between q̇1 and q̇2,
significantly simplifying quantization.

The Legendre transform of the above Lagrangian yields
the effective Hamiltonian

H =
∑

i

[Vi

2
p2

i + �2
i

2Vi
x2

i

]
+

√
G12G21

V1V2
q1q2

=
∑

i

��ia
†
i ai + �

√
G12G21

4�1�2
(a†

1a2 + a1a†
2),

(C2)

where ai = √
�i/2�Vi[xi + i(Vi/�i)pi] and counter-

rotating terms are discarded in accordance with the
rotating-wave approximation. This procedure also allows
us to identify

√
G12G21/4�1�2 as the “effective coupling

strength” to be compared with the dissipation rates in
quantitatively testing for strong coupling. The transmis-
sion spectrum may then be computed through standard
input-output methods [64,68], yielding

T (ω) =

∣∣∣∣∣∣∣∣

κ

ω − �1 + iκ + G12G21/4�1�2

ω − �2

∣∣∣∣∣∣∣∣

2

. (C3)
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