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Abstract: In this paper, nonlinearity associated with intense ultrasound is studied by using the
one-dimensional motion of nonlinear shock wave in an ideal fluid. In nonlinear acoustics, the wave
speed of different segments of a waveform is different, which causes distortion in the waveform and
can result in the formation of a shock (discontinuity). Acoustic pressure of high-intensity waves
causes particles in the ideal fluid to vibrate forward and backward, and this disturbance is of relatively
large magnitude due to high-intensities, which leads to nonlinearity in the waveform. In this research,
this vibration of fluid due to the intense ultrasonic wave is modeled as a fluid pushed by one complete
cycle of piston. In a piston cycle, as it moves forward, it causes fluid particles to compress, which
may lead to the formation of a shock (discontinuity). Then as the piston retracts, a forward-moving
rarefaction, a smooth fan zone of continuously changing pressure, density, and velocity is generated.
When the piston stops at the end of the cycle, another shock is sent forward into the medium.
The variation in wave speed over the entire waveform is calculated by solving a Riemann problem.
This study examined the interaction of shocks with a rarefaction. The flow field resulting from these
interactions shows that the shock waves are attenuated to a Mach wave, and the pressure distribution
within the flow field shows the initial wave is dissipated. The developed theory is applied to waves
generated by 20 KHz, 500 KHz, and 2 MHz transducers with 50, 150, 500, and 1500 W power levels to
explore the effect of frequency and power on the generation and decay of shock waves. This work
enhances the understanding of the interactions of high-intensity ultrasonic waves with fluids.
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1. Introduction

Ultrasound is a type of sound wave with frequencies ranging from 20 KHz up to several gigahertz.
For practical applications, ultrasound is mostly generated by ultrasonic transducers and propagates
into the subject material. Ultrasonics is a branch of acoustics dealing with the generation and use
of inaudible sound waves [1]. Applications of ultrasonics are rigidly classified as being of either
low intensity (popularly known as non-destructive applications) or high-intensity (also known as
power ultrasonics) [1]. A low-intensity acoustic wave in a homogeneous medium propagates at a
certain speed (relative to the medium), and deformations produced by the wave in the medium are
purely elastic. Ultrasonic non-destructive testing and imaging used as means of exploration, detection,
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and information (e.g., the location of a crack or determination of material properties), are some of the
promising low-intensity applications.

High-intensity acoustic wave behaves differently than low-intensity: they can permanently change
the physical, chemical, or biological properties or, if intense enough, even destroy the medium to which
it is applied [1]. At high intensity, the amplitudes of vibration used are sufficiently high that nonlinear
propagation occurs. The uses of high-power ultrasonics include cleaning, enhancing chemical reactions,
emulsification, dispersion, welding of metals and polymers, machining and metal forming in solids
and fluids, food processing, ultrasonic agglomeration, etc. The nonlinear nature of intense acoustic
waves underlies many applications of high-intensity acoustic waves [2,3]. The branch of acoustics
dealing with high-intensity acoustic is called nonlinear acoustics.

In ordinary elastic media, finite-amplitude sound propagation has been intensively studied to
understand many nonlinear acoustic effects such as cumulative wave distortion with propagation
distance as well as the concept of the parametric array [4]. Nonlinear acoustics is based on a nonlinear
theory of elasticity [5]. Once the original sinusoidal finite-amplitude wave propagates from an
ultrasonic source into a fluid medium, the wave will be exposed to two effects influencing its time
course: (1) the dissipation arising from viscosity, heat conductivity, and relaxation processes and (2)
the nonlinearity leading to the formation of higher harmonics to the fundamental frequency of the
wave [6]. Understanding the basic mechanisms of the nonlinear effects of intense acoustic waves is
critical to studying the distribution of high-intensity acoustic waves in a system [7]. The purpose
of this paper is to understand and model the nonlinear behavior of high-intensity acoustic waves.
The nonlinearity associated with intense ultrasound is studied by using the one-dimensional motion of
nonlinear shock wave in an ideal fluid.

2. Nonlinear Wave Propagation and Shock Formation

In linear wave motion, disturbances in a medium can be defined as the result of three independent
modes: the acoustic, entropy, and vorticity modes [2,8]. If wave intensity increases, the disturbances in
a medium becomes large enough such that nonlinear wave propagation starts [3,7]. The nonlinear
elastic behavior of the materials becomes progressively more important at high-amplitude wave
excitation [3,9]. As the speed of the disturbance (or particle velocity) (u) increases, linear wave motion
ceases, and therefore the superposition principle is no longer valid. Thus, the disturbance cannot be
described in the form of the three independent modes [8]. These modes start interacting with one
another. As shown in Figure 1, the following three interactions between these modes are activated due
to high-intensities: the sound-sound, sound-vorticity and sound-entropy interactions [2,8]. Due to the
sound-sound interactions, harmonic generations and self-demodulations occur within the acoustic
mode [2,8]. Then, the acoustic mode starts to interact with the other two modes, and this interaction
induces acoustic heating and generation of hydrodynamic flow [8].
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As a consequence of nonlinearity, the local sound speed c depends on the particle velocity u (c is
function of u), cu, and also the local wave propagation velocity depends on the particle velocity u [2].
Thus, there are two independent sources of the acoustic nonlinearity:
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• Change of the wave propagation speed due to drift with velocity u.
• Change in local sound speed from c0 to cu.

This transition from the linear regime to a nonlinear corresponds to a change in the local wave
propagation from c0 to cu + u, as shown in Figure 2. The sections of the waveform with higher u
propagate faster than those with lower u. This accumulation of the nonlinear effects in the waveform
leads to variation (or deviation) in the propagation speed of different segments of the waveform
(Figure 2c) resulting in distortion of the sinusoidal wave and increasing steepness of the wavefront
(Figure 2d). Eventually, these distortions result in a shock formation represented by an N-wave
(Figure 2e) [3,7,10]. At the shock, the jump condition forms, and the medium undergoes an abrupt and
nearly discontinuous change in the pressure, density, and temperature [2,4,10]. The shock formation
corresponds to the first appearance of infinitely steep waveform regions associated with the N-wave.
The critical distance

.
X is the distance propagated by an acoustic wave in an ideal medium when the

infinite slope first appears in the waveform [7].
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3. Nonlinear Interactions Within the Acoustic Mode

In order to analytically study the nonlinear behavior of intense ultrasound waves, an ideal model
is to consider simulating a sinusoidal wave propagating in one-dimension. The motion of the wave can
be modeled as the flow of an ideal fluid in an infinitely long tube extending along the x-axis, with one end
having a moving piston and the other end being either open or having a fixed wall, where there is no
viscosity or thermal conductivity [10]. In such a case, v = (u, 0, 0) and all variables depend only on x and t.

In a gas-filled tube, if a piston is moved into it or if a receding piston is stopped a shock
(discontinuities) is generated that moves away from the piston [10]. Similarly, a forward-moving
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rarefaction wave is sent into the medium when the piston recedes away from the fluid [10]. Rarefactions
and shocks have finite speed such that the regions they influence grow over time. A pulse high-intensity
ultrasonic wave can be conceived as one complete cycle of piston motion in a tube. That is, the piston
moves from a stationary or a rest position at a constant speed until it reaches the maximum point of
displacement, stops, and reverses direction, moving in the opposite direction at the same speed as
earlier until it reaches its original position and stops again. Figure 3 shows the generation of shock and
rarefaction waves, where (a) a shock is produced by a piston moving with constant velocity into the
fluid at rest, (b) the piston reaches its maximum displacement, changes its direction of propagation,
and the forward-moving rarefaction wave is sent into the compressed fluid behind the shock, and (c)
when the piston comes to rest, another forward moving shock is produced.
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The one-dimensional flow eliminates the vorticity mode, and the absence of dissipations makes
the process adiabatic. That is, one may exclude the entropy modes as well. Therefore, a 1-D model
describes only the nonlinear behavior of the acoustic mode [4]. The propagation of intense acoustic
waves in one-dimensional motion can be mathematically described by using the conservation equations
of mass, momentum, and energy [11]:

ρ
m
e


t

+∇.


m

m2

ρ + P(
m
ρ

)
(e + P)

 = 0 (1)

where ρ is the density of the fluid, m is the momentum, P is the pressure, ∇. is the gradient, and e is the
energy per unit volume which is expressed as:

e = ρε+
ρu2

2
(2)

where u is the particle velocity, and specific internal energy ε is given by:

ε =
P

ρ(γ− 1)
(3)
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where γ is a specific heat ratio and with shock speed U, the conservation of mass can be written as:

ρ1(u1 −U) = ρ0(u0 −U) (4)

The subscripts 0 and 1 represent the constant states on each side of the shock. The conservation of
momentum for the shock can be expressed as:

ρ1(u1 −U)2 + P1 = ρ0(u0 −U)2 + P0 (5)

The conservation of energy for the shock can be written as:

(u1 −U)(e1 + P1) = (u0 −U)(e0 + P0) (6)

By using the specific volume, τ = 1/ρ, Equations (4)–(6) can be reduced to the Hugoniot
relation [12]:

γ0τ0P0

γ0 − 1
−
γ1τ1P1

γ1 − 1
=

(P0 − P1)(τ0 + τ1)

2
(7)

Equations (4)–(6) describe the nonlinear behavior of the acoustic mode alone. Riemann showed
these equations can have an exact general solution in the form of shock, rarefaction, and contact wave
across which density and pressure changes [10]. The solution would consist of a right propagating
wave, a left propagating wave, and a contact wave [12]. The right (or left) wave can be a shock or a
rarefaction. The intermediate region can be connected to left or right regions by following Riemann
invariants and using the isentropic law [12]:

uL
2 + cL

γL−1 = u∗
2 + c∗

γ∗−1
uR
2 + cR

γR−1 = u∗
2 + c∗

γ∗−1
(8)

PLρL
−γL = P∗ρ∗−γ∗

PRρR
−γR = P∗ρ∗−γ∗

(9)

where * denotes the region inside the wave or mid-region. The equations for shock or rarefaction
waves can be found by eliminating U and ρ1 from Equations (4)–(6). Since the left and right regions
connect to regions with the same velocity and pressure, the equations can be expressed in terms of
velocity as a function of pressure [12]. Newton’s iteration scheme is used to solve the equation for the
velocity and pressure of the mid-region. Bukiet, 1988, presented the following equations, relating the
intermediate state of the wave to the side state [12]:

Right shock:

u∗ = uR +
AR(αR − 1)

(DRαR + ER)
1/2

,
du
dP

=
αRDR + 3γR − 1√

2ρRPR(DRαR + ER)
3/2

(10)

Right rarefaction:

u∗ = uR +
2CR

(
αR

BR − 1
)

ER
,

du
dP

=
1

HRαRJR
(11)

With:
αR = P

PR
;AR =

√
2PR
ρR

;BR =
γR−1
2γR

;CR =
√
γRPR
ρR

;DR = γR + 1;ER = γR − 1;

HR =
√
γRPRρR JR = (γR + 1)/2γR

where R denotes the region of fluid to the right or left side of mid-region.
Equations (4) and (7) can be used to compute mid-region density and wave speed for the shock,

while Equations (8) and (9) can be used for rarefactions.
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3.1. Head Shock

With the one-dimensional model, as the intense ultrasound wave is sent into a medium, using the
piston model analogy, a shock will be generated. As mentioned earlier, a nonlinear wave propagates in
one direction only, assuming the direction of propagation is to the right, the right shock Equation (15) can
be used to calculate the pressure jump across the shock. To demonstrate the calculation, the following
parameters for an ultrasound transducer were assumed: a transducer of 1500 W with 80% efficiency,
source diameter of 12.7 mm, frequency of 2 MHz, and an ideal fluid where ρ = 1.225kg/m3 and
c0 = 343 m/s. For the given parameters, the amplitude of displacement, A, will be 1.69× 10−5 m and
the displacement speed u will be 212.39 m/s. (*Calculations for ρr1 and u are shown in Appendix A).

As shown in Figure 3 the fluid particles in the front of the head shock are in a calm state; the
particle speed is 0 m/s, and behind the shock, the particle speed (or piston) is 212.39 m/s. Equation (10)
is used to calculate the pressure behind the jump. In the equation below the subscripts “1” and “r1”
represent the fluid ahead of and behind the shock, respectively. Therefore, u1 and c1 are equal to 0
and 343 m/s, respectively, as the fluid in front of the head shock is undisturbed, P1, the atmospheric
fluid pressure, is equal to 101,325 Pa, ρ1 is equal to the 1.225 kg/m3, and the specific heat ratio γ for the
fluid is 1.4. The particle speed behind the head shock is ur1 is 212.39 m/s. The unknown Pr1 can be
calculated using Equation (10):

ur1 = u1 +

√
2P1
ρ1

(Pr1
P1
− 1

)
[{
(γ+ 1)Pr1

P1

}
+ (γ− 1)

]1/2

212.39 = 0 +

√
2∗101325

1.225

( Pr1
101325 − 1

)
[
(1.4 + 1) Pr1

101325 + (1.4− 1)
]1/2

Pr1 = 229, 029 Pa or 40, 530 P

For the propagation direction of the piston as right, the particle speed ur1 and sound speed cr1 are
in the same direction and ur1 + cr1 is greater than u1 + c1(= 343 m/s). Therefore, Pr1 > P1, so Pr1 is
equal to 229,029 Pa. By applying the Hugoniot relationship, the density behind the head shock ρr1 is
equal to 2.16 kg/m3. Using the piston speed of particles as 212.39 m/s and the law of conservation,
the head shock speed U1 is 490.65 m/s**. Shocks always move at supersonic speed as observed from
ahead of the shock, and subsonic speed as observed from behind the shock [10]. (** Calculations for
ρr1 and U1 are shown in Appendix B).

3.2. Rarefaction

As an acoustic wave propagates, fluid particles adjacent to the transducer (or piston) are vibrating
back and forth in the direction of propagation around its original position. The reiteration of fluid
particles can be modeled as the piston moving backward. In the second half of the cycle, the piston
speed is the same as that it had in the forward (first half) cycle, but it becomes negative as the direction
reverses and a forward propagating rarefaction wave is generated. A rarefaction is a smooth fan zone
with continuously changing pressure, density, and velocity. In the equation below, the subscripts
r1 and r2 represent the face and tail of rarefaction. The particle velocity at the rarefaction face is
ur1 = 212.39 m/s. As the direction of piston reverses the velocity of the piston becomes negative,
ur2 = −212.39 m/s. Using Equation (11) for the right rarefaction, ur1 = 212.39 m/s, representing
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the speed attained by a particle at the face of piston with Pr1 = 229, 029 Pa and ρr1 = 2.16 kg/m3.
Pr2, the pressure at the tail of rarefaction can be calculated as:

ur2 = ur1 +

2

√
γ∗Pr1
ρr1

( Pr2
Pr1

) γ−1
2γ
−1


γ−1

−212.39 = 212.39 +
2
√

1.4∗229029
2.16

( Pr2
229029

) 1.4−1
2∗1.4
−1


1.4−1

Pr2 = 40, 055 Pa

Equation (9) is used to determine density at the tail of the rarefaction wave,

Pr2ρr2
−γR = Pr1ρr1

−γ∗

40055 ∗ ρr2
−1.4 = 229029× 2.16−1.4

ρr2 = 0.62 kg/m3

For the rarefaction wave, the particle speed ur2 and sound speed cr2 are in opposite directions, and
thus, Pr2 < P1. As mentioned before, the transition from the linear to the nonlinear regime corresponds
to a change in propagation velocity from c0 to u + cu. Using this and the data from the shock speed

calculations, the wave velocity at the rarefaction face is equal to ur1 + cr1 = 212.39 +
√

1.4∗229029
2.16 =

212.39 + 385.69 = 597.68 m/s, which is faster than the speed of the head shock. Similarly, the wave

speed at the tail of the rarefaction wave will be −ur2 + cr2 = −212.39+
√

1.4∗40055
0.62 = −212.39+ 300.74 =

88.34 m/s. With the knowledge of the state at the front and tail of the rarefaction, the intermediate
states through the rarefaction can be computed [13].

To compute the pressure throughout the rarefaction, following constants k1, k2, and k3 can
be assumed:

k1 =
dx
dt

= u∗ + c∗ (12)

k2 =
ur1

2
−

cr1

γ− 1
=

u∗
2
−

c∗
γ− 1

(13)

k3 = Pr1ρr1
−γ = P∗ρ∗−γ (14)

The values of k1, k2, and k3 can be related as follows, let k1 minus two k2 gives:

k1− 2 ∗ k2 = 6

√
1.4×

P∗
ρ∗

(15)

From Equation (14),
P∗ = k3 ∗ ρ1.4

∗ (16)

Substituting P* from Equation (16) in Equation (15) to obtain:

ρ∗ =


(

k1−2k2
6

)2

1.4k3


2.5

(17)

Here k2 and k3 are constant throughout the rarefaction. Therefore, knowing the state at the front
rarefaction, and by using different values of k1, the density throughout the rarefaction can be found.
Then, using Equations (17) and (9), the pressure throughout the rarefaction can be calculated as:

P∗ =
Pr1 × ρ∗1.4

ρ1.4
r1

(18)
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Due to the smooth change in velocity through the rarefaction, k1 has its own velocity range
between the tail rarefaction velocity of 88.3m/s and the face rarefaction velocity 597.7m/s. Consequently,
k2 and k3 can be calculated as:

k2 =
ur1

2
−

Cr1

γ− 1
= −857k3 = Pr1ρr1

−γ = 77944

The rarefaction wave can be divided into two parts separated by a sound wave where u∗+ c∗ = c0 [10].
Let ρr and Pr represent the density and pressure at the separation boundary, respectively. Using k1 =

ur + cr = 343 m/s, and Equations (17) and (18) to find the physical state at separation boundary produces:

ρr =


(

343+2∗857
6

)2

1.4 ∗ 77944


2.5

= 1.21 kg/m3

Pr =
229029× 1.21.4

2.161.4
= 101, 161.4 Pa

Thus, the rarefaction can be divided into two zones, where Pr = 101, 161.4 Pa and ρr = 1.21 kg/m3

at the boundary.

3.3. Tail Shock

At the end of the pulse wave, as the piston (and similarly) fluid particles come to rest, the
displacement speed will change from −212.39 to 0 m/s, and other forward-moving shocks will be
generated. Performing calculations similar to the head shock pressure P2, the density behind tail
shock will be 99,954 Pa. Similarly, by applying the Hugoniot relation, the density ρ2 behind the tail,
shock equals 1.38 kg/m3 and the tail shock speed U2 is 173.27 m/s ***. (*** Calculations for P2, ρ2, and
U2 are shown in Appendix C).

4. Decaying of N-Wave

As shown in Figure 4 a pulse of an ultrasonic wave consists of two shocks and rarefaction between
them. The rarefaction can be divided into two parts separated by the sound wave, where u∗ + c∗ = c0.
The velocity of the head shock is subsonic relative to the local wave speed behind it, i.e., at the face of
the rarefaction, the wave speed ur1 + cr1 is faster than the head shock speed, U1. When the rarefaction
meets the shock, the shock is weakened, causing the shock speed to decrease. Similarly, the tail shock
velocity is supersonic relative to the local sound speed ahead of it, and the tail shock will thus overtake
the rarefaction wave. The forward part of the rarefaction weakens the head shock, and the tail shock
reduces by the backward part of the rarefaction [10].

The speed of the waveform at the face of the rarefaction is ur1 + cr1 = 597.7 m/s, whereas the
speed of head shock is U1 = 490.8 m/s. Thus, after some time, the rarefaction will overtake the head
shock causing the head shock to weaken. The rarefaction fan impinges on the head shock decaying
it further. Similarly, the speed of the waveform at the tail of the rarefaction is ur2 + cr2 = 88.3 m/s,
while the speed of the tail shock is U2 = 172.4 m/s. Thus, the tail shock will overtake the backward
face of the rarefaction wave, as shown in Figure 4.

In the 1950s, extensive experimental investigations were performed at the Institute of Aero physics,
the University of Toronto (which was earlier known as Institute of Aerospace Studies) on the flow field
resulting from one-dimensional wave interactions. Two studies namely ‘On the One-Dimensional
Overtaking of a Shock wave by Rarefaction waves’ by Glass, et al., 1959 and another study ‘On the
One-Dimensional Overtaking of Rarefaction waves by a Shock wave’ by Bermner et al., 1960 are used
here to study the interaction between the head shock and the forward part of rarefaction wave and the
tail shock and the backward region of rarefaction, respectively [14–16].
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4.1. Shock Wave Overtaken by a Rarefaction Wave

The problem of the overtaking of a shock by a rarefaction wave has been considered by Courant and
Friedrichs (1948) [10]. The possible wave systems that can result from such an interaction are as follows:

I. A transmitted shock and a reflected rarefaction wave
II. A transmitted shock and a reflected compression wave that steepens into a shock wave
III. A transmitted rarefaction wave and a reflected rarefaction wave
IV. A transmitted rarefaction wave and reflected compression wave that steepens into a shock wave

It is also possible to have the limiting cases where either or both the reflected or transmitted wave
are Mach Waves.

In all these situations, the transmitted wave decays with interactions, its strength decreases, and
the entropy change across the transmitted wave diminishes. Thus, there will be a region of entropy
change, i.e., a contact region between the reflected and transmitted waves [14,15]. A Mach wave is the
envelope of the wavefront, traveling at the sound speed propagated from an infinitesimal disturbance
in supersonic speed. Glass et al., 1959 presented the algebraic expressions that give the final wave
strength and states in terms of the initial wave strengths and specific heat ratio [15].

The strength of a shock (or rarefaction) wave is defined as the ratio of fluid pressure ahead of and
behind the wave. The final waves and its states resulting from the interaction in a one-dimensional
flow of a perfect gas are dependent on the relative strengths of the initial interacting shock (P1/P5)

and rarefaction waves (P5/P4) [14,15]. For interaction, the overtaking wave (P5/P4) can be defined as
weak or strong, based on the ratio of the pressure jump (or relative strength of) across the overtaken
wave (P1/P5) and overtaking waves (P5/P4), i.e., (P1/P5)/(P5/P4) = P1/P4. This ratio can also be
denoted as P14 [15]. The overtaking wave in this system of interactions is considered to be a weak
shock if the ratio is less than or equal to 1, (P14 ≤ 1), and is considered as strong if the ratio is more
than 1, (P14 > 1).

Figure 5 shows (A), the overtaking of a shock by a weak rarefaction wave and the flow field
resulting from this interaction can result in (B) a transmitted shock wave with a reflected rarefaction
or (C) a transmitted shock with a reflected wave that can be a shock, with a contact region between
the reflected and transmitted waves. As this transmitted wave decays with interactions, its strength
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decreases, and the entropy diminishes. Glass et al., 1959 presented algebraic equations relating the
pressure ratio across the transmitted and reflected wave (at the end of interactions) to the known values
of pressure ratios across the incident shock and overtaking rarefaction wave (before interactions) [15].
When the overtaking rarefaction wave is weak, the interaction results in a reflected rarefaction wave,
the quasi-steady flow in regions (P2) and (P3) can be evaluated using expressions Equations (19) and
(20) [14]. Here, the reflected compression wave (case II, Figure 5C) was tactically assumed. Hence,
it would not influence the terminal states and can be neglected [15]. Case III and case IV mentioned
above correspond to the strong overtaking rarefaction wave and they do not pertain to our discussion.
Thus, in the case of a weak rarefaction wave overtaking a shock wave, the resulting flow field or
terminal state will consist of a transmitted shock and a reflected rarefaction wave (case I, Figure 5B).
The pressure jump across it can be evaluated using Equations (19) and (20).√

βP15(α+ P15)

(1 + αP15)

[
1− P15

√
P15(α+ P15)

+
1− P21
√
αP21 + 1

]
+ 2(P45)

β
− (P15P21)

β
− 1 = 0 (19)

(P34) = P21P15P54 (20)

where, β = γ−1
2γ and α =

γ+1
γ−1 .
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et al (1959)].

4.2. Shock Wave Overtaking a Rarefaction Wave

Bermner et al., 1960 presented an analytical solution for a 1-D shock wave overtaking a rarefaction
wave. Analytical solutions are presented such that if the initial strength of the rarefaction wave and
overtaking shock wave strength are known, it is possible to predict the strengths of the reflected and
transmitted wave after the interaction as well as the properties of the newly-formed quasi-steady regions.

As in the previously described case, here, the resulting wave pattern depends on the relative
strength of the initial interacting shock wave and the rarefaction wave. Figure 6 shows a schematic
representation for a relatively weak shock overtaking a rarefaction wave, i.e., (P14 ≤ 1), where (A) a
shock of known strength overtaking a rarefaction wave, (B) the flow field resulting from the interaction
can result in a reflected shock wave with a reflected rarefaction or (C) the reflected and transmitted
waves both being rarefaction waves. Bermner et al., 1960 presented algebraic equations relating the
pressure ratio across the transmitted and reflected wave (at the end of interactions) to the known values
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of pressure ratios across the incident rarefaction and overtaking shock wave (before interactions) [16].
For a weak incident shock wave, (a case when it completely attenuates to a Mach wave), the reflected
wave is a shock wave and the quasi-steady flow in the regions (P2) and (P3) in Figure 6 can be evaluated
using Equations (21) and (22) [16]. Here the reflected rarefaction wave (Figure 6C) was tactically
assumed. Hence, it would not influence the terminal states and can be neglected [14]. Thus, in case
of a weak shock wave overtaking a rarefaction wave, the resulting flow field or terminal state will
consist of a transmitted rarefaction and a reflected shock wave. The pressure jump across them can be
evaluated using Equations (21) and (22).

1− (P34)
β(P45)

β√
β

+
(P45 − 1)

[1 + α(P45)]
1/2

+

[
P45(α+ P45)

1 + αP45

]1/2 (1− P34)

[1 + αP34]
1/2

= 0 (21)

and
(P34) =

P21

P45P51
(22)

where, β = γ−1
2γ and α =

γ+1
γ−1 .
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Based on the above discussion, for a head shock overtaken by the forward part of rarefaction(P1
Pr
≤ 1

)
, the resulting flow field can be evaluated using Equations (19) and (20):√√√√

β P1
Pr1

(
α+ P1

Pr1

)
(
1 + α P1

Pr1

)


1− P1
Pr1√

P1
Pr1

(
α+ P1

Pr1

) + 1− Pr12
P1√

αPr12
P1

+ 1

+ 2
(

Pr

Pr1

)β
−

(
Pr12

P1

P1

Pr1

)β
− 1 = 0

and (Pr13

Pr

)
=

Pr12

P1

P1

Pr1

Pr1

Pr

Using the above expression, Pr12 = 101, 269 Pa and Pr13 = 101, 269 Pa.
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Similarly, using Equations (21) and (22), evaluating the flow field resulting from the interaction of
the tail shock wave overtaking the backward part of the rarefaction wave can be shown by:

1−
(Pr23

P2

)β( P2
Pr2

)β√
β

+

( P2
Pr2
− 1

)
[
1 + α

( P2
Pr2

)]1/2
+


P2
Pr2

(
α+ P2

Pr2

)
1 + α P2

Pr2


1/2 (

1− Pr23
P2

)
[
1 + αPr23

P2

]1/2

and (Pr23

P2

)
=

Pr22

Pr

Pr

Pr2

Pr2

P2

Using the above expression, Pr12 = 100, 527 Pa and Pr13 = 100, 527 Pa.
Figure 7 shows the resulting pressure across states (Pr12–Pr23) and transmitted shocks (P1 and

P2). After the interaction, the state behind the head shock and ahead of forwarding rarefaction have
the same pressure. Thus, the forward rarefaction has attenuated the head shock to a Mach wave,
just as its tail reaches the head shock. Similarly, in the case of the tail shock overtaking the backward
rarefaction, states (Pr22–Pr23) and (P2) are similar pressure. Thus, the incident tail shock has been
attenuated to a Mach wave, just as it reaches the head of the backward rarefaction [16]. Thus, after the
interaction pressure jump across head shock becomes nearly 1 (101, 269/101, 325 = 0.99 ∼ 1) which
before the interaction was 2.26 (229, 029/101.325), similarly pressure jump across tail shock becomes
unity (99, 954/100, 527 = 0.9943 ∼ 1) which before the interaction was 2.46 (99, 954/40, 055).
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Both the shocks continue to decay during these interactions with the rarefaction waves, and their
strength (the pressure jumps across it) diminishes. Thus, at some distance from the source, both the
shock at head and tail of the N-wave get attenuated to Mach waves. As entropy across the shock
continues to decay due to interactions with the rarefaction, there is a reduction in the waveform speed
and amplitude. This reduction is due to the dissipation of ultrasound energy. The conservation of energy
implies this dissipated energy is transferred from one form to another. In this case, it becomes heat.

A similar set of calculations is performed for transducers of power levels of 50, 150, 500, and
1500 W and for frequencies of 20, 500 kHz and 2 MHz, as shown in Tables 1 and 2 and results are
presented in Figure 8.
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Table 1. Vibration speed of fluid particle in acoustic field of varying power level and frequency.

Power Level, W
(watt)

Frequency, f
(kHz)

Intensity, I
(W/m2)

Amplitude, A
(10−6 m)

Particle Speed, V
(m/s)

1500 20 9,477,702.96 1691 212.39
1500 500 9,477,702.96 67.6 212.39
1500 2000 9,477,702.96 16.9 212.39
500 20 3,152,941.98 976.3 122.61
500 500 3,152,941.98 39.1 122.61
500 2000 3,152,941.98 9.76 122.61
150 20 94,772.6 534.7 67.22
150 500 94,772.6 21.4 67.2
150 2000 94,772.6 5.34 67.22
50 20 315,924.2 308.7 38.78
50 500 315,924.2 12.3 38.78
50 2000 315,924.2 3.08 38.78

Table 2. Variation in resulting flow field.

Particle Speed,
V(m/s)

P1
(Pa)

Pr1
(Pa)

Pr
(Pa)

Pr2
(Pa)

P2
(Pa)

Pr12 = Pr13
(Pa)

Pr22 = Pr23
(Pa)

Head
Shock, U1

(m/s)

212.39 101,325 229,029 101,161 40,055 99,954 101,269 100,527 490.8
122.61 101,325 164,678 102,005 60,027 101,058 102,004 101,152 421.7
67.22 101,325 132,853 102,220 76,414 101,281 102,228 101,294 383
38.78 101,325 118,629 102,258 86,225 101,317 102,260 101,319 364

Acoustics 2019, 2 FOR PEER REVIEW  4 

 

continues to decay due to interactions with the rarefaction, there is a reduction in the waveform speed 
and amplitude. This reduction is due to the dissipation of ultrasound energy. The conservation of 
energy implies this dissipated energy is transferred from one form to another. In this case, it becomes 
heat. 

A similar set of calculations is performed for transducers of power levels of 50, 150, 500, and 1500 W and for frequencies of 20,500 kHz and 2 MHz, as shown in Tables 1 and 2 and results are 
presented in Figure 8. 

Table 1. Vibration speed of fluid particle in acoustic field of varying power level and frequency. 

Power Level, W 
(watt) 

Frequency, 𝐟 
(kHz) 

Intensity, I 
(W/m2) 

Amplitude, A 
(10−6 m) 

Particle Speed, V 
(m/s) 

1500 20 9,477,702.96 1691 212.39 
1500 500 9,477,702.96 67.6 212.39 
1500 2000 9,477,702.96 16.9 212.39 
500 20 3,152,941.98 976.3 122.61 
500 500 3,152,941.98 39.1 122.61 
500 2000 3,152,941.98 9.76 122.61 
150 20 94,772.6 534.7 67.22 
150 500 94,772.6 21.4 67.2 
150 2000 94,772.6 5.34 67.22 
50 20 315,924.2 308.7 38.78 
50 500 315,924.2 12.3 38.78 
50 2000 315,924.2 3.08 38.78 

Table 2. Variation in resulting flow field. 

Particle 
Speed, V 

(m/s) 

P1 
(Pa) 

Pr1 

(Pa) 
Pr 

(Pa) 
Pr2 

(Pa) 
P2 

(Pa) 
Pr12 = Pr13 

(Pa) 
Pr22 = Pr23 

(Pa) 

Head 
Shock, 

U1 
(m/s) 

212.39 101,325 229,029 101,161 40,055 99,954 101,269 100,527 490.8 
122.61 101,325 164,678 102,005 60,027 101,058 102,004 101,152 421.7 
67.22 101,325 132,853 102,220 76,414 101,281 102,228 101,294 383 
38.78 101,325 118,629 102,258 86,225 101,317 102,260 101,319 364 

 
Figure 8. Particle speed vs. head shock. Figure 8. Particle speed vs. head shock.

5. Discussions of Results

In an ideal fluid, the displacement amplitude of an intense ultrasonic wave decreases with
an increase in frequency, as amplitude is inversely proportional to the intensity of the disturbance
or vibration. However, the vibration speed remains constant for a given power level for different
frequencies as shown in Table 1. The speed of the head shock and thereby the strength of the shock
depends on the disturbance speed of particle as shown in Figure 8, where the higher the vibration
speed, the stronger the discontinuity. For example, for a particle speed of 212.39 m/s, the strength of
the head shock is Pr1/P1 which equals 2.26, whereas for a particle speed of 122.61 m/s, Pr1/P1 is 1.62.
Similarly, it can be seen from the pressure distribution in the resulting flow field (before the interaction)
that the strength of the wave will also increase with an increase in the power level. After the interaction
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of the rarefaction wave and the shock, the shock strength (the pressure jumps across it) diminishes.
For instance, for particle speed of 212.39 m/s the pressure jump across the head shock was 2.26
before the interaction and reduces to near atmospheric after the interaction. This intersection causes
dissipation of ultrasound energy into heat. Figure 9 summarizes this observation graphically. Figure 9
shows the initial and final conditions of the N-Wave, where (a) in a pulse of intense ultrasonic waves,
two shocks will form with a rarefaction wave in between due to the nonlinear wave motion of the wave,
(b) the rarefaction can be divided into two parts separated by the sound wave, u∗ + c∗ = c0, in which,
forward part of rarefaction wave traverses the head shock, the tail shock traverses the backward part,
and (c) the interaction results in decaying of shocks to a Mach wave.
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6. Summary and Conclusions

In linear acoustics, small disturbances always propagate at a constant speed relative to the medium
and do not influence the fluid properties or behavior. This situation changes dramatically if the wave
intensity is increased. Familiar laws like the principle of superposition do not apply for intense waves.
The local sound speed changes from c0 to cu + u. Thus, due to acoustic nonlinearity, propagation
velocities in different regions of a waveform are different, and, shocks (discontinuities) are formed
within the waveform.

In this research, the one-dimensional motion of an ideal fluid is used to study the nonlinear
propagation of intense acoustic waves. With a pulse of high-intensity waves, two shocks are formed at
the boundaries and a rarefaction zone of varying velocities is formed between them. The strength of the
shock will depend on the power level of the source, the higher the power level stronger the discontinuity.
The rarefaction can be separated into two zones separated by the sound wave, cu + u = c0. The leading
edge of the rarefaction zone is traveling faster than that of the shock at the front, while the second
shock at the back is travelling at a faster speed than that of the trailing edge of the rarefaction zone.
The leading edge of rarefaction will overtake the shock at the front, while the tail shock overtakes the
trailing edge of the rarefaction wave. The pressure jump across the shocks will continue to decay during
these interactions. This results in the dissipation of the shock’s energy. Since energy is conserved, it is
transferred from wave energy to heat. This research helps to understand the effect of the nonlinearity
of intense ultrasonic waves and can be used to model the processes involving the propagation of
ultrasonic waves.
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7. Suggestions for Future Work

In this research, an attempt is made to understand the formation of shocks within intense
waves and the decaying of acoustic waves due to sound-sound interactions. However, in this study,
the medium of propagation is an ideal fluid. It is proposed to extend the scope of this research to
include the propagation of intense acoustic waves in non-ideal media, such as water. This will help to
better understand the interactions of the wave within fluids that can be used to study the distribution
of high-intensity acoustic wave in system such as sonochemical reactors and the effects of parameters
such as frequency, acoustic intensity, etc. In a pulse cycle, the shock will not appear immediately
adjacent to the source but will form at some distance from it, and the shock will continue to decay
along the direction of propagation as the interaction with the rarefaction occurs. Determining the
distance from the source at which the shock appears and until when its decays will be essential to
improving the applications of intense ultrasound.
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Appendix A

The following equation can be used to calculate the maximum displacement.

A =

√
2I

(ρc)ω2 =

√
2× (8× 1500)/(3.14× 25× (12.7× 10−3)2

(1.225× 343) × 125600002 = 1.69× 10−5m

ω = 2×π× f = 2× 3.14× 2× 106 = 12560000 Hz

u = 2×A× f ×π = 1.69× 10−5
× 12560000 ≈ 212.39 m/s

Using Equations (4) and (7) to calculate the shock speed and density behind the shock.

Appendix B

Using Hugoniot Equation (7):

1.4×( 1
1.225 )×101325

1.4−1 −

1.4×
(

1
ρr1

)
×229029

1.4−1

=
(101325−229029)

(
( 1

1.225 )+
(

1
ρr1

))
2

ρr1 = 2.16 kg/m3

With the conservation of mass, Equation (4):

2.16(212.39−U1) = 1.225(0−U1)

U1 = 490.65 m/s

Appendix C

Equation (15) is used to calculate the pressure jump across the tail shock. As shown in Figure 4,
the subscripts “r2” and “2” represent the fluid ahead of and behind the shock, respectively. Where u2
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is the particle velocity behind the tail shock, which is 0 m/s, ur2 is −212.39 m/s, Pr1 is 40, 055 Pa, ρr2 is
0.62 kg/m3, and γ for normal air equals 1.4. Substituting these values into Equation (15), the unknown
P2 can be calculated:

u2 = ur2 +

√
2Pr2
ρr2

( P2
Pr2
− 1

)
[{
(γr + 1) P2

Pr2

}
+ (γ− 1)

]1/2

0 = −212.39 +

√
2×40055

0.62

( P2
40055 − 1

)
[
(1.4 + 1) P2

40055 + (1.4− 1)
]1/2

P2 = 99, 954 or 13, 818 Pa

For the propagation direction, right, the particle speed ur2 and sound speed cr2 are in opposite
direction and −ur2 + cr2 is smaller than c2. Therefore, Pr2 < P2, and P2 has the value 99,954 Pa.

Equations (7) and (10) can be used to calculate the shock speed and density behind the shock.
Using the Hugoniot expression as in Equation (10) to calculate the density behind the shock gives.

1.4×( 1
0.62 )×40055
1.4−1 −

1.4×
(

1
ρ2

)
×99954

1.4−1

=
(40055−99954)

(
( 1

0.62 )+
(

1
ρ2

))
2

ρ2 = 1.38 kg/m3

With the conservation of mass, Equation (7) shock speed can be find:

1.38(0−U1) = 0.62(−212.39−U2)

U2 = 173.27 m/s
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