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Elastomers embedded with micro- and nanoscale droplets of liquid metal (LM) alloys like eutectic
gallium-indium (EGaln) can exhibit unique combinations of elastic, thermal, and electrical properties
that are difficult to achieve using rigid filler. For composites with sufficient concentrations of liquid
metal, the LM droplets can form percolating networks that conduct electricity and deform with the
surrounding elastomer as the composite is stretched. Surprisingly, experimental measurements per-
formed on LM-embedded elastomers (LMEEs) show that the total electrical resistance of the composite
increases only slightly even as the elastomer is stretched to several times its natural length. In contrast,
Pouillet’s Law would predict an exponential increase in resistance (Q2) with stretch (1) due to the in-
compressibility of liquid metal and elastomer. In this manuscript, we perform a computational analysis
to examine the unique electromechanical properties of conductive LMEE composites. Our analysis sug-
gests that the gauge factor that quantifies electromechanical coupling (i.e. 4 = {AQ/Q}/A) decreases
with increasing tortuosity of the conductive pathways formed by the connected LM droplets. A dimen-
sionless parameter for path tortuosity can be used to estimate ¢ for statistically homogeneous LMEE
composites. These results rationalize experimental observations and provide insight into the influence

of liquid metal droplet assembly on the functionality of the composite.

I. Introduction

In order to be electrically conductive, soft elastomers
are typically embedded with conductive filler particles
that form a percolating network. These filler particles
include structured carbon black [1-3], silver nanoflakes
[4, 5], or nickel microparticles [6, 7]. Depending on the
material composition, volume fractions, and filler distri-
bution, such composites can achieve low electrical resis-
tivity in their unstressed state. However, stretching can
degrade the percolating network and lead to a dramatic
increase in resistance when the elastomer is stretched to
several times its natural length [6, 8-10]. This undesir-
able electromechanical coupling arises from the signifi-
cant mechanical mismatch between the rigid filler parti-
cles and surrounding elastomer matrix — as the elastomer
stretches, particles that are in direct physical contact or in
close enough proximity for electrical tunneling will sep-
arate and lose their electrical connectivity [11, 12]. Al-
though not an issue for low strain applications in which
deformation is largely restricted to compression, twist-
ing, or bending, loss of electrical connectivity due to
an applied strain can be prohibitively limiting for appli-
cations in wearable computing, smart textiles, and soft
robotics in which the conductive elastomer must main-
tain stable electrical resistance under significant stretch.

To address this limitation, researchers have devel-
oped a new class of conductive elastomers in which
the rigid filler particles are replaced with micro- and
nanoscale droplets of liquid metal (LM) alloys like eu-
tectic gallium-indium (EGaln) [13-15]. As with other
conductive polymer composites, the LM droplets encap-
sulated within the elastomer can form a dense, per-
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colating network that supports high electrical conduc-
tivity (Figure 1A). Because the droplets are in a lig-
uid phase, they can deform with the surrounding elas-
tomer and preserve the connectivity of the conductive
network (Figure 1B). LM-embedded elastomer (LMEE)
composites that are soft and electrically conductive
have been demonstrated by embedding LM droplets in
poly(dimethylsilxoane) (PDMS) [16-18], poly(ethylene-
vinyl acetate) [19], polyacrylate [20], and liquid crystal
elastomer [21]. In their natural (unstressed) state, these
composites can have an electrical conductivity as large
as o = 103 S/cm (for reference, o = 3x10* and 6x10°
S/cm for EGaln and copper, respectively).[18] Moreover,
referring to Figure 1C, the end-to-end electrical resis-
tance () does not increase significantly with stretch (1).
This lack of dependence of resistance on strain is surpris-
ing since Pouillet’s Law would predict a relative increase
in electrical resistance of AQ/Qg = A2 — 1 since both the
liquid metal and surrounding elastomer are virtually in-
compressible. That the gauge factor ¢4 = {AQ/Q}/A is

well below % - {A? — 1} = 2 suggests that the volu-

metric conductivity o increases with stretch. Compared
with the piezoresistive effect in other conductive ma-
terials, this unusual electromechanical response implies
“negative piezoresistivity” in which electrical resistivity
decreases with positive tensile strain. Such an effect has
not been commonly observed in other soft material sys-
tems.

For particle and droplet-filled conductive elastomers,
electrical current passes through conductive pathways
within a percolating network. For conductive compos-
ites with rigid particle fillers, electrical conductivity can
be enabled by tunneling through the thin interface be-
tween two neighboring filler particles. In contrast, con-
ductivity in LMEE:s is primarily achieved through physical
contact and coalescence of neighboring droplets within
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the elastomer. Several studies have examined electrical
conductivity through electrical tunneling [22-25] based
on calculations of the potential barriers at a tunnel junc-
tion [26, 27]. Researchers have adapted these theories to
examine the increase in resistance as the tunneling gap
increases with tensile strain [11, 12].

Compared to composites with rigid fillers, there has
been relatively little theoretical study on the mechan-
ical or electrical properties of LMEE composites. Ana-
lytical and computational studies of elastomers with lig-
uid droplet inclusions have been limited to the following:
modifications of Eshelby’s theory of inclusions to exam-
ine mechanical stiffness [28-31], Maxwell-Garnett and
Bruggeman effective medium approximations to study
thermal conductivity and electrical permittivity [32, 33],
finite element analysis to model deformation of co-linear
LM droplets [34], and use of the volume element method
to show the effect of localized stresses on rupturing and
coalescence of adjacent LM droplets [35]. In extending
current computational approaches to analysis of LMEE
electromchanical coupling, an important consideration is
the uniform hydrostatic pressure within LM droplets and
its influence on internal stress within the surrounding
elastomer.

Here, we present a computational analysis that ex-
amines the electromechanical properties of conductive
LMEE composites. As shown in Figure 1C, the model is
capable of predicting theoretical bounds for electrome-
chanical coupling that are in good agreement with ex-
perimental measurements. Our analysis suggests that ¢
approaches zero as the tortuosity of the conductive path-
ways formed by the connected LM droplets increases.
Path tortuosity can be represented with a dimensionless
parameter vy that is used to predict ¢ within a percolating
network of connected LM droplets.

Electromechanical coupling in LMEE composites had
previously been examined in Cohen and Bhattacharya
[35], which provided a numerical model using a cu-
bic representative volume element (RVE) method. Al-
though their model didn’t predict gauge factors for elec-
tromechanical coupling within the range of experimental
measurements, they were able to demonstrate that local
stresses induced around the droplets during mechanical
deformation can cause the elastomer to rupture and al-
low adjacent LM droplets to coalesce. The current analy-
sis goes further in theoretically validating the experimen-
tal measurements, with the goal of demonstrating that
there exists a network of connected droplets that results
in only a modest increase in electrical resistance Q of the
LMEE during stretch.

Using a finite element method (FEM), we model a vari-
ety of LM droplet microstructures that not only obey the
mechanical deformation of the hyper-elastic matrix but
also account for fluid flow. Based on this analysis, we are
able to calculate the change in electrical power required
to maintain a constant voltage droplet between the ends
of the percolating network as it is stretched from its ini-
tial configuration:

(V2 AQ/Q
()} o

Finally, we provided a non-dimensional parameter y that
can quantify the change in normalized electrical resis-
tance of the LMEE under deformation, which will provide
guidance and rationalization to researchers engineering
these composites and quantifying electromechanical cou-

pling.
II. Computational Model

FEM-based computational modeling of the LMEE com-
posites was performed in ANSYS V.19.2. The elastomer
was treated as an incompressible Neo-Hookean solid
with a strain energy density of

W=E£(0-3), @
where u is the initial shear modulus and I is the first
deviatoric strain invariant. We assumed that the embed-
ded LM droplets are in full contact with the surround-
ing elastomer and ignored any mechanical contributions
from the nanometer-thin oxidization layer that typically
forms at the LM-elastomer interface. Moreover, we ig-
nored the presence of any air cavities or voids within the
composite. The LM was treated as a homogeneous fluid
with a viscosity u;q and specific density py;q.

Droplet Geometry

In previous experimental studies, the shapes of
droplets within LMEE composites were determined us-
ing optical imaging, electron microscopy, and X-ray com-
puted tomography. In general, LM droplets can be spher-
ical, ellipsoidal, or have irregular shapes, although most
LMEEs are composed of LM inclusions with approxi-
mately spherical shape. For simplicity, we will limit
analysis to composites in which the droplets are ini-
tially spherical prior to elastomer stretch and droplet
elongation. Nonetheless, the FEM approach used here
can be easily adapted to other microstructures in which
the LM droplets have a non-spherical shape in the nat-
ural/unstressed state. Furthermore, we only modeled
the deformation of droplets that are connected with their
neighbors and along the path of electrical current flow.
While other droplets could have modest influence on the
mechanical resistance to stretch, we assume that they
will not contribute to the change in electrical resistance.

LMEE:s are typically synthesized using shear mixing or
ultrasonication, which typically results in LM droplets
that are randomly distributed within the elastomer
matrix. The droplets can be monodisperse or polydis-
perse and have a spatial distribution that is statistically
uniform over volumes of interest. To simplify analysis,
we examined small clusters of LM droplets that are
well below the threshold of a RVE. Rather than aim
for a statistically accurate representation of the LMEE
microstructure, our goal was to demonstrate that there
exist spatial arrangements of LM droplets within an elas-
tomer that allow for the low, experimentally-measured
values of electromechanical coupling presented in Figure
1C. We evaluated electromechanical coupling by exam-
ining seven different classes of spatial arrangements
that were simple enough to parameterize but realistic
and descriptive enough to capture the LM morphol-
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Figure 1 (A) Schematic of LMEE morphology along with electron micrograph of LMEE cross section showing LM
droplets (B) Photographs of LMEE powering LED while unstretched and stretched (C) Summary of the
electromechanical coupling of reported LMEEs compared to Pouillet’s Law and the model in this work. The blue
shaded region that corresponds to our model represents the range of possible electromechanical coupling dependent
on the geometry of the LM droplets.

ogy and unique electromechanical properties of the
composite. These arrangements can be co-planar or
three-dimensional, with representative configurations
for each class of geometries presented in Figure 2. In all
the studied cases, the size of the volumetric element is
much larger than the size of the droplets.

In this study, we ignore the role of surface oxide on the
electrical or electromechanical properties of the droplet
networks. In practice, however, the gallium-based LM
alloys used in LMEEs are highly susceptible to oxide for-
mation and this could influence the electrical resistance
between contacting droplets. Such an influence could be
especially pronounced for sub-micron LM droplets, for
which the volume ratio of the insulating oxide could be
significant. Moreover, we assume uniform droplet size
and do not account for the influence of polydispersity on
the electromechanical properties of the composite. How-
ever, polydispersity could be an important factor since
it could lead to more complex network topologies that
are outside the scope of the simple geometries examined
here. Nonetheless, the computational methods adopted
here could be generalized to model the presence of ox-
ide layers as well as polydispersity of the LM suspensions.

Electrostatics

We used electrostatic field theory to assess the extent
to which the electrical resistance Q of an LMEE strip
of natural length Ly and cross-sectional area Ay change
with stretch A = L/Ly for the classes of geometries pre-
sented in Figure 2. These include the following: co-
linear droplets with a center-to-center spacing ¢ (Fig.
2a); droplets arranged in a sawtooth pattern with spac-
ing ¢ and angle 6 (Fig. 2b); “horseshoe” arrangement
with spacings {/|, ¢»} and angles {6;, 6,} corresponding
to the red and black segments shown in Fig. 2c; droplets
in a rectangular arrangement (Fig. 2d); diamond forma-
tion with angle 6 and center-to-center droplet spacing ¢

(Fig. 2e); 3D tetrahedron and pentahdron arrangements
(Fig. 2f and (Fig. 2g, respectively).

In each case, we sought to determine the relative
change in resistance as a function of A, i.e. AQ/Qy =
f(A). Linearizing about A =1 yields an estimate of the
gauge factor ¢4 = limy_,; {AQ/Qo}/A. All of the results
are compared with the idealized model for the change in
electrical resistance for a homogenous and incompress-
ible elastic solid:

—=12-1, (3

which derives from Pouillet’s Law, i.e. Q = pL/A where
p is the volumetric resistivity of the conductor. This pre-
diction is in exact agreement with predictions obtained
when we perform FEM simulations for a prismatic cylin-
drical channel of liquid metal within a Neo-Hookean
solid. In the following section, we report electrome-
chanical coupling for elastomers embedded with the LM
droplet geometries shown in Figure 2.

III. Results & Discussion

Using the computational method described in the pre-
vious section, we obtain plots of AQ/Qq versus A for the
selected class of geometries. For each type of spatial ar-
rangement, electromechanical coupling is influenced by
a variety of geometric parameters, including the droplet
radius R and spacing ¢. For the “horseshoe-like” serpen-
tine patterns in Figure 2¢, we define an additional geo-
metric parameter y that is associated with the tortuosity
of the connected path.

Linear Configuration

As shown in Figure 2a, a linear pattern for liquid metal
inclusions is defined as a sequence of spherical droplets
of identical radius that are partially overlapped by a
length 2R — ¢. The key parameter that defines this ge-
ometry is the normalized spacing k = ¢/R, where ¢ is de-
fined as the center-to-center distance between two adja-
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Figure 2 Illustrations of different interconnectivity of the LM droplets in LMEE used in this study. The geometric
parameters that were modified to study their influence on electromechanical coupling are shown, where R is the
radius of the droplet, /¢ is the center-to-center distance between droplets, and 6 is the angle of the connecting lines
from horizontal.
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Figure 3 Normalized change in electrical resistance as a
function of strain for linear patterns of LM droplets with
different values of k. Pouillet’s law is shown for
reference.

cent spherical droplets. Figure 3 indicates the change of
the effective electrical resistance (AQ/Qg) versus uniax-
ial stretching of the sample (1) for different values of &
(ke {1.2,1.5,1.7,1.9}).

Reducing k will retrieve the solution for a cylindri-
cal channel inside the elastomer, which corresponds to
the algebraic expression derived from Pouillet’s Law. In-
creasing k will cause AQ/Q at a given A to decrease.
Specifically, spacing the droplets farther apart will lead
to a more narrow opening for liquid to flow between
droplets. The FEM simulation suggests that stretching
the elastomer will induce hydrostatic pressure that will
force fluid to flow into this narrow opening and cause
it to enlarge. For this reason, the increase in resistance

with stretch is not as great as it is for a prismatic chan-
nel. Nonetheless, the gauge factor for these geometries
is significantly higher than it is for the experimental mea-
surements plotted in Figure 1C.

Sawtooth Configuration

Next, we consider the “sawtooth” pattern shown in
Fig 2b. Here, the key parameters that define the geom-
etry are the normalized spacing k = ¢/R and sawtooth
angle 6. Fig 4a shows the change of the effective electri-
cal resistance for different configurations under loading.
Compared to the linear configuration, the LM droplets
arranged in a sawtooth configuration can exhibit signifi-
cantly less electromechanical coupling, with & ~ 1 in the
case of k = 1.7 and 0 = 40°.

As with the linear case, we see that increasing k will
lead to a more narrow connection between adjacent
droplets and a corresponding reduction in electrome-
chanical coupling. We observe that increasing the angle
6 can lead to an even more pronounced reduction in .
Figures 4b and 4c compare two cases with the same &
but different values of 6, where the total current den-
sity was monitored during stretching. As suggested by
the FEM simulations, increasing the angle 6 will cause
the overlapped regions of the droplets to align with the
direction of elongation. This alignment can reduce elec-
trical resistance since after stretching the sample, the in-
terfacial area between droplets increases rather than de-
creases, providing a larger opening for the electrical cur-
rent to pass through (see Figure 4c). In this way, the
current density along the pathway for the deformed solid
in Fig 4b is higher than that shown in Fig 4c. Hence, we
postulate that increasing the angle 6 can decrease the
normalized electrical resistance during strain.

Horseshoe Configuration

Referring to Figure 2c, LM droplets arranged in a
“horseshoe” configuration can be parameterized by a se-
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Figure 4 (a) Normalized change in electrical resistance
as a function of strain for sawtooth patterns of LM
droplets with different geometric parameters. Pouillet’s
law is shown for reference. The major parameters that
define the sawtooth configuration are /R and 0 (see
Figure 2b). (b,c) FEM comparison of the current density
in two sawtooth patterns before (top) and after
(bottom) an imposed strain. Both patterns have the
same k = ¢/R value but different angles of connectivity.
In this figure the color map represent the total current
density in the liquid metal.
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Figure 5 Normalized change in electrical resistance as a
function of strain for horseshoe patterns with different
geometrical configurations. The main parameters that
define the horseshoe patterns are ¢, /R, ¢,/R, 6, and 6,

(see Figure 2c).

ries of center-to-center spacings ¢; and angles 6;. In gen-
eral, the index i is defined as i € {1,...,N} where N cor-
responds to the number of different pairs of segment
lengths and angles defined along the path of the horse-
shoe geometry. Here, we find that two pairs of parame-
ters (i.e. i € {1,2}) are sufficient for achieving a spectrum
of electromechanical properties that cover the behaviors
that are measured experimentally during the strain. As
before, each droplet was assumed to be a sphere of ra-
dius R and k; = ¢;/R was defined as the ratio of the spac-
ing of the spheres to their radius. For N = 2, we define ¢,
and /, as the center-to-center spacing between droplets
as shown by the red and black lines, respectively, in Fig-
ure 2c. Likewise, there are two different angles of 6, and
0, that define the tortuosity of the pattern.

Figs. 5 and 6 summarize the results for this class of
geometries. Similar to the sawtooth configuration, we
observe that increasing the values of 6; and 6, leads to
a reduction in electromechanical coupling (i.e. decrease
in ¢). This reduction implies that orienting portions of
the LM connection chain in the direction perpendicular
to elongation will result in decreased normalized elec-
trical resistance when the LMEE composite is stretched.
Moreover, increasing the value of & /k, for 6,0, < 90°
can increase the resistance drop and vice versa. This ob-
servation may support the hypothesis that increasing the
tortuosity of the pattern in the oblique direction from its
stretching orientation can lower the change of the elec-
trical resistance of the sample.

In order to further explore the influence of k; and 6;
on ¥, we defined the following dimensionless tortuosity
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Figure 6 a) Normalized change in electrical resistance
as a function of strain for horseshoe patterns with
different values of the tortuosity parameter. Schematics
of droplet configuration for different tortuosity
parameters: (7). b) ¢;/R=1/{,/R=1.7,6; =90°,0, = 80°
and y=0.68. ¢c) {{/R=1.7,{,/R=1.9,0, =60°,0, = 40°
and y=147.d) ¢, /R=1.7,(,/R=1.9,6, =50°,6, = 25°
and y=2.02. e) Definition of tortuosity parameter y
based on longitudinal pitch and transverse deviation.

parameter

_ —lycos(6y) +20rcos(62) + L2
B 15in(0y) + L25in(6)

where the numerator of v is the longitudinal pitch of the
pattern while the denominator is the transverse devia-
tion. Increasing the tortuosity parameter caused an in-
crease in electromechanical coupling (Fig 6). The vari-
able y is a scale-invariant parameter that describes the
horseshoe-like configuration. Based on the definition of
7, letting 6; = 180° and 6, = 0° will cause y to approach
infinity. In this limiting case, the electromechanical re-
sponse approaches that of the linear pattern shown in
Figure 2a, which is similar to the case of a prismatic
cylindrical channel (AQ/Q = A2 —1). As shown in the

figure, configurations with y < 2 exhibit only modest
electromechanical coupling relative to Pouillet’s Law and
have gauge factors that are similar to what has been mea-
sured experimentally. Interestingly, when y < 1, the re-
sistance initially decreases with strain (i.e. ¥ < 0). This
behavior has been anecdotally observed in experimen-
tal measurements of LMEE composites[16, 18] and could
guide future work in controlled assembly of LM particles
where control of electromechanical coupling is desired.

Other Patterns

Beside the three classes of configurations described
above, we also studied the following LM arrangements:
the 2D diamond pattern shown in Fig 2e, the rectangular
pattern in Fig 2d, the 3D tetrahedral pattern in Fig 2f,
and the pentahedral pattern in Fig 2g. Results for these
alternative geometries are presented in Fig 7 alongside
the 2D patterns discussed previously. As expected from
our previous analyses, ¢ is largest for the more linear
patterns and is smallest for configurations with more me-
andering pathways.

Interestingly, the 2D diamond, which is comprised of
two sawtooth patterns that are mirrored along the axis
of stretch exhibits greater electromechanical coupling
than the sawtooth arrangement of Figure 2b. This in-
crease in electromechanical coupling is because the hy-
drostatic pressure in the diamond configuration is dis-
tributed more in 3D compared to a 2D configuration and
so less fluid flows into the narrow connections between
the adjacent droplets when the composite is stretched.
Therefore, the interfacial area that form connections be-
tween LM droplets does not increase as much as it does in
the sawtooth configuration, where the hydrostatic pres-
sure is greater during strain. Similarly, the tetrahedral
and pentahedral arrangements exhibit increased elec-
tromechanical coupling relative to the 2D diamond case.
In these 3D configurations, the liquid metal is less con-
fined and can flow in more directions during mechanical
deformation.

Together, these results suggest that the low electrome-
chanical coupling that has been observed in experimen-
tal measurements is most likely driven by the tortuosity
of the meandering conductive pathways within the lig-
uid metal’s percolating network. While the hydrostatic
pressure and its effect on the interfacial area between
adjacent LM droplets subjected to strain also appear to
have a role, it is not sufficient to account for the virtual
absence of electromechanical coupling (¢ = 0) that has
been experimentally observed.

Comparison with Experiment

The model that we proposed here is capable of explain-
ing the range of experimentally observed electromechan-
ical coupling values for LMEE composites in the litera-
ture.

By restricting ourselves to the various geometric
classes and parameterizations introduced in Figure 2, we
were able to generate theoretical predictions for elec-
tromechanical coupling that conform to experimental
measurements. As shown in Fig 8, the sawtooth geome-
try matches well with the higher electromechanical cou-
pling observed for an open-foam LM-PDMS sponge [36].
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Figure 7 The change of normalized electrical resistance
for different micro-structural patterns for LM fillers.

In contrast, theoretical results for the horseshoe geome-
try appear to be in reasonable agreement with measure-
ments obtained for LMEE composites with fully enclosed
LM inclusions.

In all cases, comparison is done by fitting the geomet-
ric parameters. In this sense, the theory is intended to
show that the low electromechanical coupling that has
been observed experimentally is consistent with predic-
tions for LM microstructures that are within the space of
admissible geometries.

IV. Conclusions

In contrast to other conductive elastomers, LMEE com-
posites exhibit only modest electromechanical coupling
— i.e. the end-to-end electrical resistance does not in-
crease significantly with stretch. While demonstrated
experimentally by several research groups, this surpris-
ing property and the influence of various LM morpholo-
gies had not been fully examined using analytic or com-
putational techniques. In this study, we perform sim-
ulations in FEM that show that electromechanical cou-
pling is influenced by LM droplet spacing and shape of
the connected pathway. In the simplified case of ser-
pentine paths with horseshoe-shaped turns, we observe
electromechanical properties that are similar to what is
observed experimentally. For other classes of 2D and 3D
droplet arrangements, the gauge factor is below the value
predicted for a homogeneous, incompressible conductive
material but larger than what has been experimentally
measured in LMEE composites produced using shear mix-
ing techniques. These results may provide guidance if
control of assembly of LM droplets could be achieved,
where the control of the arrangement into prescribed
shapes could be used to control the electromechanical
coupling.

By comparing strain response for seven classes of ge-
ometries, we find two principle contributions to the re-
duction in electromechanical coupling. One contribution
is the pressure-controlled opening of the narrow, neck-

like connection that forms between connected droplets.
These narrow connections are a significant source of elec-
trical resistance when the composite is in its unstressed
state. When the LMEE is stretched, fluid will flow into the
neck and cause an expansion that will reduce the elec-
trical resistance between the contacting droplets. How-
ever, this reduction in resistance doesn’t fully compensate
for the increase in resistance that arises from elongation
and narrowing of the droplets themselves. Instead, our
FEM results suggest that the primary source of reduced
electromechanical coupling arises from the serpentine ar-
rangement of the droplets. Stretching will cause these
meandering paths to stretch out but will not significantly
alter their length or average cross-sectional area, thereby
preserving their end-to-end electrical resistance. Such
coupling is captured using a dimensionless tortuosity pa-
rameter y that corresponds to how straight the conduc-
tive pathways are within the percolating LM network.

In this study we have not examined the influence of
LM volume fraction of the entire LMEE composite on
its electromechancial properties. Instead, we examine
the electromechancial coupling of a single chain of con-
nected LM droplets. Nonetheless, it is possible that LM
volume fraction could have an influence on the types of
network topologies that are more statistically likely to
occur within the composite. Such an analysis could be
an interesting topic for future study. Moreover, further
computation will be required to extend the simplified
analysis presented here to more complex 3D geometries
that more accurately represent the statistically uniform
but random distribution of LM droplets within a LMEE
composite. Such an analysis should account for stochas-
ticity in both spatial distribution of droplets as well as
in size, shape, and orientation of LM droplet. Nonethe-
less, the current analysis succeeds in demonstrating LM
microstructures with theoretical electromechanical prop-
erties that are consistent with what are observed exper-
imentally. The analysis confirms that experimental mea-
surements showing the constant electrical resistance of
LMEE composites are consistent with foundational prin-
ciples of electrostatics, hyperelasticity, and fluid-structure
interaction.
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Figure 8 Comparison of electro-mechanical coupling
response of the LMEE observed experimentally in the
literature with models generated in this work.
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