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Abstract— In this paper, we address the visibility-based target
tracking problem in which a mobile observer moving along a
p−route, which we define as a fixed path for target tracking,
tries to keep a mobile target in its field-of-view. By drawing
a connection to the watchman’s route problem, we find a set
of conditions that must be satisfied by the p−route. Then we
propose a metric for tracking to estimate a sufficient speed for
the observer given the geometry of the environment. We show
that the problem of finding the p−route on which the observer
requires minimum speed is computationally intractable. We
present a technique to find a p−route on which the observer
needs at most twice the minimum speed to track the intruder
and a reactive motion strategy for the observer.

I. INTRODUCTION

Mobile robots have been extensively deployed in surveil-
lance applications [1], [2]. This paper addresses a special
class of problems in mobile surveillance called target track-
ing, which refers to the motion planning problem for a
mobile observer that tries to keep a mobile target within
its sensing range in an environment containing obstacles [3].
This is a well studied problem in the robotics [4], controls
and computer vision communities [5], [6]. A detailed review
regarding several formulations of the target-tracking problem
is provided in [7], [8]. In general, a trajectory for the
observer is obtained by optimizing a metric that models the
tracking performance, for example, tracking time, distance
from intruder, relative pose between the observer camera and
the target, to name a few [9], [10].

In [11] the notion of mobile coverage to address the
problem of placing mobile agents inside a polygon that
can travel back and forth along a segment to cover that
polygon is introduced. [12] leverages upon the concept of
mobile coverage to propose tracking strategies for a team
of observers that are restricted to move on a line-segment
inside the polygon. Specifically, we show that bn/4c diagonal
guards are sufficient to track a mobile intruder inside a
polygon (where n is the number of vertices of the polygon).
In contrary, our current work deals with the problem of
path planning by designing the fixed trajectory of a mobile
observer on which it can track the intruder while minimizing
an appropriate metric.

A necessary condition for a prespecified path for the
observer is that it should ensure coverage of the entire
environment, so it should be a watchman’s route, which is a
closed trajectory from which an observer can “see” every re-
gion in the interior of an environment with obstacles [13]. In
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the shortest watchman’s route problem the minimum length
watchman’s route is found. It can be solved in polynomial
time when the region to be guarded is a simple polygon
but it is NP-hard for polygons with holes [14]. In contrast
to the shortest watchman’s route problem, the parameter
that governs the capability of a guard for target tracking
is its maximum speed. Hence, we address the problem of
minimizing the guard’s speed required to track the intruder.

The main contributions of this work are as follows: (i) We
investigate a variant of the watchman-route problem in which
a mobile observer restricted to move on a prespecified path
tries to track a mobile intruder. To the best of our knowledge,
this is the first work that draws a connection between the
watchman route problem and the target-tracking problem.
(ii) We propose a metric for tracking based on the geometric
parameters of the environment that allows us to determine
an upper bound on the speed of the observer required to
persistently track a mobile intruder. (iii) We show that finding
a path that minimizes the upper bound on the speed of the
observer is computationally intractable. (iv) Consequently,
we propose an iterative strategy to build a path based on
the proposed tracking metric and the corresponding motion
strategy for the guard.

The paper is organized as follows. In Section II, we present
the problem formulation. In Section III, we define a metric
for the speed required by the observer for persistent tracking.
In Section IV, we simplify the problem of constructing
a path for which the speed required by an observer to
guarantee persistent tracking is minimized. In Section V, we
present an approximation approach to construct a path for the
observer. In Section VI, the motion strategy for the observer
is presented, and we present the conclusions and future work
in Section VII.

II. PROBLEM FORMULATION
Consider an environment that can be represented as a simply-
connected polygon P . An unpredictable intruder I moves
inside the environment with bounded speed. Let xI =
xI(t) ∈ P , and 0 ≤ vI(t) ≤ vI < ∞ denote the
instantaneous location and speed of the intruder at time t,
respectively, where vI denotes the maximum speed of I .
There is a guard g in P assumed to have an omni-directional
field-of-view with infinite range. The instantaneous location
and speed of g at time t are denoted by xg = xg(t) ∈ P
and 0 ≤ vg(t) ≤ vg < ∞ respectively, where vg is the
maximum speed of g. g has the objective of maintaining a
line-of-sight (LOS) with the intruder i.e., persistent tracking.
Additionally, we assume that g is constrained to move on a
prespecified path inside P , which we call a p-route (In light
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of [15], which refers to a similar problem as the paparazzi
problem). Given xI(0) and vI , we investigate the problem
of finding the p-route γ∗, and xg(0) on γ∗ such that g has
a motion strategy that guarantees persistent tracking while
vg is minimized. We want to find a fixed path γ ⊂ P for g
such that for any reflex corner vi ∈ V rf (P ) ⊂ V (P ), where
V (P ) and V rf (P ) are the set of all vertices of P and the
subset of reflex vertices of P respectively, there is a subset
of points in γ such that when xg is located at any of those
points, the LOS between xg and xI does not cross any of
the two edges of E(P ) (edge set of P ) incident to vi (an
edge is incident to a vertex if such a vertex is an endpoint of
the edge). When g is located at those points we say that “I
cannot use vi to break the LOS”, and consequently, it “cannot
escape”. To determine the set of points of γ that g needs to
reach to prevent I from breaking the LOS using the corner
vi ∈ V rf (P ), we consider the star region of vi, denoted by
R(vi) ⊂ P . It is the set of points in P that lie inside the
region obtained by extending the edges of P incident to vi
that are visible from vi. See Figure 1, the extension of the
edges incident to v2 are l1 and l3. However, since v3 lies
inside the region enclosed by l1, l3 and δP (δ stands for
“boundary of”), such a region is not a star region, there is
a region occluded by v3, so R(vi) is enclosed by l1, l3, δP
and l2.

The edges incident to vi along with their extensions inside
P correspond to a cut from the watchman’s route theory [16].
Based on the clockwise traversal of δP we can determine
the orientation of each edge of P and each cut inherits the
orientation of its corresponding edge. A cut separates the
polygon into two sub-polygons. A point lies to the right (left)
of a cut if the point lies locally to the right (left) in the
sub-polygon separated by the cut. The underlying path of
a watchman’s route must have a point to the right of (or
on) each cut. Otherwise, the edge that corresponds to such
cut will not be visible from any point in the path. This is
equivalent to say that every watchman route must visit every
star region. Hence, γ needs to be the underlying path of a
watchman’s route or else there would be regions that are not
visible from any point in γ.

III. A METRIC FOR TRACKING

Based on the distance between each pair of reflex corners
and the path that g needs to travel to reach the corresponding
star regions, we propose a metric to measure a sufficient
speed that guarantees persistent tracking. Constructing the
path of g such that vg is minimized implies that the distance
that g needs to travel for reaching the locations where it
can prevent I from escaping must be minimized. Thus, γ
consists of a set of connected line segments. Consequently,
γ is represented using a graph G, where each line segment
of γ corresponds to an edge in E(G) (edge set of G), and
the endpoints of those segments along with the points where
γ intersects with itself correspond to the vertices in V (G)
(vertex set of G).

Consider the following scenario: P has two reflex vertices
vi and vj . Assume that γ ⊂ P is defined as an open path
between R(vi) and R(vj) that does not visit the interior of

the star regions. Let pi ∈ γ∩δR(vi) and pj ∈ γ∩δR(vj) be
the endpoints of γ. Hence, vpi , vpj ∈ V (G), where a vertex
vp is defined to be the vertex on G corresponding to p ∈ γ.
pi is the only location in γ where g can prevent I from using
vi to escape. The same situation occurs between pj and vj .
Let xg be any point along γ, and let svig = svig (t) be the
longest line segment lying entirely in P , such that vi ∈ svig
and xg is an endpoint of svig . We define pi(xg) ∈ δP\{vi} as
the opposite endpoint. Now, we define svi = svi(t) ⊂ svig as
the directed segment from vi to pi(xg). As long as I lies to
the left of (or at) svi , the LOS between I and g is not broken
by vi, and visibility is lost as soon as I lies to the right of
svi . Preventing I from breaking the LOS is equivalent to
prevent I from reaching the right side of any svi . In Figure
1, a simple polygon is shown, g is located at xg ∈ γ and γ is
represented as a chain of red segments. sv1 , sv2 and sv3 are
shown as directed green segments, each one corresponding
to v1, v2 and v3 respectively. The dashed segments represent
the boundary of the star regions.

Fig. 1: Segments sv1 ,sv2 and sv3 .
Let xI be a location to the left (or at) of svi . In general,

given any watchman route with an underlying path γ repre-
sented as a graph G, given vI , xg ∈ γ and vi ∈ V rf (P ), we
can determine a sufficient speed vig(G) that prevents losing
track of I when it approaches svi as follows.

vig(G) = vI
d(xg, pi)

d(xI , svi)
= vI min

k

dk(xg, pi)

dk(xI , svi)
, (1)

where dk(xg, pi) is the length of the sub-path γk ⊂ γ
between xg and pi (k stands for the kth sub-path between
xg and pi). Each γk is composed of a set of connected line
segments Skxg,pi between xg and pi. Thus, dk(xI , svi) =

max
sl∈Skxg,pi

min{dl(xI , y) : y ∈ svi}, where dl(xI , y) is the

length of the shortest path inside P between xI and svi
when xg ∈ sl. By definition, d(xI , svi) takes the length
of the shortest path between xI and svi from placing the
guard at the endpoints of each sl. Thus, vig(G) ≥ vig(G)∗ is
always a sufficient speed for the g (and sometimes necessary)
to guarantee that I cannot break the LOS by reaching svi ,
where vig(G)

∗ is the corresponding minimum (necessary)
speed.

Consider the case where xg(0) and xI(0) are known, and
d(xg,pi)
d(xI ,svi )

=
dk(xg,pi)
dk(xI ,svi )

, with dk(xI , svi) = dl(xI , y), and
y ∈ svi(xg(0)). Thus, g follows the path γk to reach pi
and xg(0) is an endpoint of sl = min

dl(xI ,y)
Skxg,pi . It seems

like vig(G)
∗ = vI

dk(xg,pi)
dk(xI ,svi )

but that is not necessarily true.
Assume that g starts moving towards pi (starting from xg(0))

1160

Authorized licensed use limited to: Iowa State University. Downloaded on July 28,2020 at 18:07:02 UTC from IEEE Xplore.  Restrictions apply. 



at a speed vig(G). Depending on the trajectory of g, svi can
rotate in a manner such that the distance between I and svi
increases even if I moves towards svi at each moment.In
such a scenario, although vig(G) is sufficient to prevent
the intruder from using vi to escape, the necessary speed
(vig(G)

∗) to guarantee persistent tracking may be smaller
than vig(G).

When there is more than one reflex vertex in the envi-
ronment, γ may contain more than one point that must be
visited by g to prevent the LOS to be broken. Thus, g needs
to move along γ as long as I tries to reach the segment
svi of each vi ∈ V rf (P ). Assume that V rf (P ) = {vi, vj}.
vg(G) ≥ vI

d(xg,pi)
d(xI ,svi )

and vg(G) ≥ vI
d(xg,pj)
d(xI ,svj )

are sufficient
conditions to guarantee persistent tracking. Hence, tracking
may be lost if xg ∈ γki,j ⊂ γ, and it needs to move towards pi
and pj at the same time, which happens when the following
condition is satisfied.

vg(G) < vI
dk(pi, pj)

dk(svi , svj )
(2)

Consequently, vg(G) ≥ vI dk(pi,pj)
dk(svi ,svj )

, with dk(svi , svj ) =
min{d(ai, aj) : ai ∈ svi and aj ∈ svj}, guarantees that g is
able to persistently track I . Thus, vg(G) = vI

dk(pi,pj)
dk(svi ,svj )

is the lowest upper bound on vg(t). Since vI is a con-
stant, we want to minimize dk(pi,pj)

dk(svi ,svj )
. Notice that when

dk(svi , svj ) = d(vi, vj), vkg(G) = vkg(G)
∗.

Let vg(G) = vI
dk(pi,pj)

dk(svi ,xI)+d
k(xI ,svj )

, and assume that

xg(0) is the location where dk(svi , svj ) is defined. Then

dk(pi, xg) =
vg(G)dk(svi ,xI)

vI
with dk(svi , xI) > 0. The

speed that guarantees persistent tracking vg(G) is formu-
lated in such a manner that as soon as I reaches svi(0),
g reaches pi. However, we know that g does not neces-
sarily need to reach pi when I approaches svi(t) since
d(xI , svi(xg(0))) = 0 at time t > 0 implies that the current
segment svi(t) may be different from svi(xg(0)). Hence,
even if svi(xg(0)) is reached, visibility may not be lost.
Let I be located at svi(xg(0)), so dk(svj (xg(0)), xI) =
d(svi(xg(0)), svj (xg(0))) (recall that dk(svi(xg(0))), xI) +
dk(xI , svj (xg(0))) ≥ d(svi , svj )) while g is located at xg(0).
Thus, the LOS has not been broken yet, but xg moving
towards pi while I tries to break the LOS does not to
guarantee persistent tracking. Moreover, if we allow I to
be located at the right of svi(xg(0)), visibility would be
lost, so xI ∈ svi(xg(0)) corresponds to the instant before
persistent tracking is lost. Assume that visibility is not lost
when xI ∈ svi(0), and that vg(G) is sufficient to prevent
g from losing track of I . Hence, the distance between xI
and the region from which visibility may be lost from xg

should be dlost = vI
dk(pi,xg)
vg(G) ≤ d(svi(xg(0)), svj(xg(0)))

at least since vg(G) = vI
dk(pi,pj)

dk(s(vi)(xg(0)),s(vj)(xg(0)))
≥

vI
dk(pi,xg)
dk(pi,xI)

. Since dk(svj , xI) = d(svi(0), svj (0)), it follows

that v
′

g(G) ≥ vI
dk(pi,pj)

2d(svi ,svj )
is a sufficient speed that guaran-

tees persistent tracking. However, for our original problem,

the assumption that visibility is not lost when xI ∈ svi is
not true, so v

′

g(G) < v∗g(G) ≤ vg(G). Although, we do
not know the precise value of v∗g(G), we guarantee that
vg(G)
v∗g(G) <

vg(G)

v
′
g(G)

= 2. Hence, our proposed metric gives us
a speed that is at most twice the optimal.

IV. CONSIDERATIONS FOR THE DESIGN OF γ

V (G) consists of vertices that correspond to the endpoints
of the segments of γ, and to intersection points between
segments of γ. In this section, we prove that G can always
be a tree. Moreover, we prove there is a point pi ∈ R(vi)∩γ
such that the minimum speed required by g to prevent I
from breaking the LOS by reaching any point in R(vi) ∩ γ
is achieved at pi.

By definition, γ has at least one point at the right of (or
at) each cut. Moreover, a cut ci1 dominates another cut ci2 ,
with i1 6= i2 if all points in P to the right of ci1 are also
to the right of ci2 , and it is called an essential cut if it is
not dominated by any other cut [14], so there are no points
inside P that I can use to break the LOS on the right of an
essential cut.

Let Sc be the set of essential cuts of P and SrightR =

{Rrightj ⊂ P : cj ∈ Sc} be the set of regions Rrightj

located at the right of each cj ∈ Sc. We define a set of sub-
paths Sγ = {γrightp1,p2 ⊂ γ ∩

⋃
Rrightj ∈SrightR

Rrightj : p1, p2 ∈⋃
cj∈Sc cj are the endpoints of γrightp1,p2 }. By the definition of

an essential cut, for each cj ∈ Sc there is a star region
R(vi) such that cj ⊂ δR(vi), so R(vi) ⊆ Rrightj . Moreover,
there is no other star region besides R(vi) that can only be
reached at Rrightj . Thus, g does not need to travel along
any γrightp1,p2 , it just needs to reach each p1 and p2 since
the corresponding R(vi) regions can be covered from the
endpoints of each γrightp1,p2 . Hence, each γrightp1,p2 is replaced by
the line segment γ′p1,p2 defined by p1 and p2. Clearly, the
length of γ′

p1i ,p
2
i

is smaller than the length of γright
p1i ,p

2
i

. Thus,
the minimum sufficient speed to guarantee persistent tracking
for the modified path is smaller or equal to vg(G), and we
can always obtain an equivalent path γ′ that never traverses
the essential cuts.
A. Representatives of Star Regions

By definition, γ intersects every R(vi). In general, each
R(vi) ∩ γ is a disconnected region and contains more than
one point. Consequently, there is more than one point in
γ that g can reach to prevent I from breaking the LOS
after reaching svi . Lemma 1 shows that regardless of the
size of each intersection R(vi) ∩ γ, and regardless of its
number of connected components, we just need to consider
a single point in each R(vi) ∩ γ that must be visited by g
when I approaches svi such that this restriction does not
increase vg(G). Given the underlying path of a watchman
route γ, V (P ) and vg(G), we define the collection of sets
of intersection points SV (P ),γ = {si,γ : R(vi) ∩ γ}, and a
set of representative points Sp,γ of SV (P ),γ as follows. For
each pi ∈ Sp,γ , there is a si,γ ∈ SV (P ),γ , such that pi ∈ si,γ
and |Sp,γ ∩ si,γ |= 1. In the interest of space, the proof of
Lemma 1 is presented in the addendum [17].
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Lemma 1: There is a set of representative points Sp,γ of
SV (P ),γ , such that the minimum sufficient speed to guarantee
persistent tracking when g is forced to visit each pi ∈ Sp,γ
to prevent I from breaking the LOS when approaching svi ,
is equal to vg(G).
B. Equivalent Tree

Based on Lemma 1, we redefine the graph G that rep-
resents γ. Let V (G) include vertices that correspond to
the representatives of star regions (grouped in Vtrack(G) =
{vpi : ∃pi ∈ Sp,γ}). Then we show that for any γ
represented as a graph G, there is a tree G′ such that if g is
constrained to move along γ′ (that corresponds to G′), the
minimum sufficient speed that guarantees persistent tracking
is not greater than vg(G). This result allows us to reduce
the problem of designing any p−route to the problem of
designing a path that can be represented as a tree, so there
is only one path between any pair of representative points
of star regions. Algorithm 1 shows a procedure to find a
graph Ĝ from G such that G′ can be trivially obtained from
Ĝ. Lemma 2 proves that the minimum sufficient speed to
guarantee persistent tracking when g is constrained to move
along a path that corresponds to Ĝ is equal to vg(G), and
Theorem 1 proves the same for G′. In the interest of space,
the proofs for Lemma 2 and Theorem 1 are provided in the
addendum [17].

In Algorithm 1 S′γ = {γki,j : pi, pj ∈
Sp,γ and ∃k such that γki,j ⊆ γ}. Moreover, given γ

and a path γji,j ∈ S′γ , we define SG(γki,j) as the set of all
possible subgraphs Gsub of G such that the only difference
between each Gsub and G is that the path in Gsub that
corresponds to γki,j (called Gki,j) does not exist. Hence,
for each Gsub, a subset of edges in E(Gki,j) is absent.
Algorithm 1 is exhaustive. It considers all possible graphs
Gsub, and relies on obtaining the minimum vg(Gsub). There
is a recursive procedure of eliminating such paths in G
until it becomes a disconnected graph. The subgraph that
corresponds to the minimum sufficient speed to guarantee
persistent tracking along with the minimum speed is
returned. Algorithm 1 is used only to prove the existence of
a p-route equivalent to γ so its computational complexity is
irrelevant.

Lemma 2: For any γ represented as a graph G, Algorithm
1 returns a subgraph Ĝ (and the corresponding route γ̂) such
that vg(Ĝ) = vg(G) when g is constrained to move along
γ̂.

Theorem 1: For any γ, represented as a graph G, there
is an acyclic subgraph G′ (and the corresponding path γ′)
such that vg(G′) = vg(G) when g is constrained to move
along γ′.

Theorem 1 uses Ĝ from Algorithm 1, which is a subgraph
in which the value z(γki,j) for any (vi, vj) ∈ Vtrack(Ĝ) is at
most equal to vg(Ĝ), to get a tree equivalent to G. This
property of Ĝ allows a “safe” removal of some edges of
Ĝ to obtain an equivalent G′ as proved in Theorem 1. The
results from lemmas 1, 2 and Theorem 1 imply the existence
of an equivalent p−route γ̂ such that its corresponding graph
Ĝ is a tree. The results do not depend on the metric defined

in Section III. Thus, the results apply when trying to find
γ∗ and its corresponding graph G∗. From Lemma 1 and
Theorem 1, for any watchman route with an underlying
path γ∗ represented as G∗, there is always an equivalent
path γ′ represented as a tree G′. Moreover, γ∗ has a set of
representative points Sp,γ∗ such that the minimum sufficient
speed to guarantee persistent tracking when g is forced to
visit each pi ∈ Sp,γ to prevent I from breaking the LOS
is v∗g(G

∗). Hence, the problem of designing γ∗ reduces to
the problem of designing γ′ represented as a tree, such that
there is a representative point of γ′ inside each star region.
Assume that the representative points are already known and
all the vertices in V (G′) correspond to the representative
points. Thus, the problem is to find the edges of G′ such
that vg(G′) is minimum. Let Gcom be a complete graph
such that V (Gcom) = G′. Designing γ′ is then equivalent
to find the spanning tree G′ of Gcom such that vg(G′) is
minimum, an exponential problem in nature [18].

Algorithm 1 Equivalent Graph

1: Input: G
2: Output: Ĝ, vg
3: if G is disconnected then
4: return Ĝ← G and vg(Ĝ)←∞
5: end if
6: γ̂ ← arg max

γki,j∈S′γ
z(γki,j)

7: vg(Ĝ)← vIz(γ̂)
8: for each Gsub ∈ SG(γ̂) do
9: Gtem, vtem ← call Equivalent Graph(Gsub)

10: if vtem < vg(Ĝ) then
11: vg(Ĝ)← vtem and Ĝ← Gtem
12: end if
13: end for
14: return vg(Ĝ) and Ĝ

V. CONSTRUCTION OF γ

Based on the results from the previous section, we propose
a technique to construct an approximate path γ on which
the sufficient speed to guarantee persistent tracking can be
decreased. Algorithm 2 returns a path γ with its correspond-
ing graph G. The path is constructed incrementally. At each
iteration, Algorithm 2 considers a different star region, so it
finds a point inside it and connects it to the current p-route
such that the overall upper bound on the speed to guarantee
persistent tracking (for the current p-route) is minimized
(local minimization). Next, Algorithm 3 tries to improve the
required speed of the guard by moving some representative
points of the sub-path that yields the minimum sufficient
speed. The structure of the path remains unchanged, only the
location of those vertices, which are allowed to move along
any of the edges incident to them may change. This process
continues until no improvement in the speed is achieved.

Given R(vi) and R(vj), with vi, vj ∈ V rf (P ), we
define dR(i, j) = min{d(pi, pj) : pi ∈ R(vi) and pj ∈
R(vj)}. Let Sd = {dR(i, j)/d(vi, vj) : vi ∈ V rf (P ), vj ∈
V rf (P ) and i 6= j}. Let Ssortd be a copy of Sd but with
its elements sorted in a non-decreasing order. Also, given a
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p-route and its corresponding graph, we define γ(el) as the
sub-path in γ that corresponds to the edge el of the associated
graph.

Algorithm 2 returns a path γ with the corresponding graph
G that represents it. However, it only finds the minimum
value when the representative points can only be selected
along the line segments that correspond to the edges in G,
but there may be cases in which vg(G) can be improved
even further by not restricting the representative points to
be defined only along the line segments already defined in
γ. Thus, Algorithm 2 is refined by loosening the aforemen-
tioned constraint. Algorithm 3 “perturbs” some of the points
p along a given direction until vg(G) does not decrease, so it
is based on a discretized adjustment of the location of such
points while maintaining the connections between them.

Figure 2 shows an example implementation of Algorithm
2. Ssortd = {z3,4, z1,3, z1,4, z2,3, z2,4, z1,2}. In the first it-
eration, p4 is arbitrarily chosen as a point inside R(v4).
In Figure 2 (a), the original location of p4 is shown in
addition to the location of p3, Algorithm 2 finds the minimum
distance between p3 and p4, and the corresponding path. In
the same figure, the new location of p4 is shown after its
location is adjusted according to Algorithm 3 since it allows
p3 and p4 to move along the path between them in order
to minimize z(γ3,4). The next vertex to be selected by the
For loop (line 7) is vp1 (Figure 2 (b)). p1 is found as the
point in R(v1) that lies closer to the edge between p3 and p4.
Thus, vg(G) = vIz(γ1,4). After the execution of Algorithm
3, p4 moves to the left until z(γ1,4) = z(γ4,3). Next, the
only remaining point is p2 which is added to the current γ
(Figure 2 (c)). Algorithm 3 finds the location of p2 and the
location where the edge incident to p2 intersects the edge
between p1 and p4 such that max{z(γ2,1), z(γ2,3), z(γ2,4)}
is minimized. However, connecting p2 to the current γ does
not affect vg(G) = vIz(γ1,4) = vIz(γ4,3).

VI. MOTION STRATEGY

In this section, we describe the motion strategy followed
by g to guarantee persistent tracking of I . For the persistent
tracking task, we need to know xI(0) to avoid an initial
location xg(0) for which xI is not inside the visibility
polygon of g. Moreover, for each vi ∈ Vtrack(G), xg(0)
must guarantee that g can reach each point pi ∈ γ before (or
at the same time) that I reaches svi(xg(0)) from xI(0).

Since vg(G) ≥ vI
d(xg(0),pi)
d(xI(0),svi )

, for each vi ∈ Vtrack(G),

d(xg(0), pi) ≤ vg(G)
vI

d(xI(0), svi) for each vi ∈ Vtrack(G).
Hence, to determine xg(0) we require to compute the sub-
paths γi(vg(G)) ⊆ γ defined as the set of points along
γ such that the distance between each p ∈ γi(vg(G))

and pi is no greater than vg(G)
vI

d(xI(0), svi). The set
γinit =

⋂
vi∈Vtrack(G) γi(vg(G)) trivially contains all the

points such that xg(0) ∈ γinit guarantees that g can
persistently track I . γinit 6= ∅ since otherwise a point
pIinit ∈ P and a point pginit ∈ γ such that for
xI(t) = pIinit and xg(t) = pginit there is a pj with
vj ∈ Vtrack(G), and

⋂
vi∈Vtrack(G)\{vj} γi(vg(G)) 6= ∅

but
⋂
vi∈Vtrack(G) γi(vg(G)) = ∅ would exist. Thus, there

Algorithm 2 Approximate Route

1: Input: Ssortd , P, vI
2: Output: G, γ
3: V (G)← ∅, E(G)← ∅, γ ← ∅, Gtemp ← G, γtemp ← γ
4: while Ssortd is non-empty do
5: pi, pj ← points that correspond to the first ele-

ment zi,j = dR(i, j)/d(vi, vj) ∈ Ssortd , Ssortd ←
Ssortd \{dR(i, j)/d(vi, vj)}

6: Sv ← vertices in {vpi , vpj} that are not in V (Gtemp)
7: for each vpk ∈ Sv do
8: vg(Gtemp)←∞,γ′ ← γtemp, G′ ← Gtemp
9: for each el ∈ E(G′) do

10: pm, pk ← argmin
pm∈γ(el),pk∈R(vk)

max{ d(pa,pk)
d(sva ,svk )

:

γm,k ∩ γ′ = {pm} and vpa ∈ Vtrack(G′)}
11: γaux ← γ′ ∪ γm,k, Gaux ← graph represent-

ing γaux, (Gaux, γaux)← call Algorithm 3
12: if vg(Gaux) ≤ vg(Gtemp) then
13: Gtemp ← Gaux, γtemp ← γaux
14: end if
15: end for
16: end for
17: end while
18: G← Gtemp, γ ← γtemp

Algorithm 3 Approximate Location of pi
1: Input: Gaux, γaux, P, vI
2: Output: updated Gaux, γaux
3: continue← true
4: while continue = true do
5: Ĝ ← Gaux, γ̂ ← γaux, γb,c ⊆ γ̂ ← path such that
vIz(γb,c) = vg(Ĝ) and vpb , vpc ∈ Vtrack(Ĝ), Sp ←
{pb, pc} ∪ {pα ∈ γb,c : vpα ∈ V (Ĝ)\Vtrack(Ĝ)}

6: for each pi ∈ Sp do
7: Gbest ← Ĝ, γbest ← γ̂
8: for each el ∈ E(γaux) incident to vpi do
9: Gz ← Gbest, γz ← γbest

10: if vpi ∈ Vtrack(Gz) then
11: vg(Gz) ← min

î
max{vI

d(pî,pa)

d(sv
pî
,svpa )

:

pî ∈ γ(el) ∩R(vi) and vpa ∈ Vtrack(Gz)}
12: else
13: vg(Gz) ← min

î
max{vI

d(pî,pa)

d(sv
pî
,svpa )

:

pî ∈ γ(el) and vpa ∈ Vtrack(Gz)}
14: end if
15: if vg(Gz) < vg(Ĝ) then
16: Ĝ← Gz , γ̂ ← γz
17: end if
18: end for
19: end for
20: if vg(Ĝ) < vg(Gaux) then
21: Gaux ← Ĝ, γaux ← γ̂, continue← true
22: else
23: continue← false
24: end if
25: end while

1163

Authorized licensed use limited to: Iowa State University. Downloaded on July 28,2020 at 18:07:02 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

(c)

Fig. 2: (a) p3 is found. (b) p1 is found and connected to p4.
(c) p2 is found and the resulting path is shown.

is a pk ∈ γ for which vk ∈ Vtrack(G) and j 6= k

such that vI
d(pj ,pk)

d(svj ,xI(t))+d(svk ,xI(t))
> vg(G), which is not

possible since, by definition, vI
d(pj ,pk)
d(svj ,svk )

≤ vg(G) and
d(pj ,pk)

d(svj ,xI(t))+d(svk ,xI(t))
≤ d(pj ,pk)

d(svj ,svk )
from triangular inequal-

ity.
We define the intruders velocity as ẋI = vI û, where û

is a unit vector. The orientation of the vector (representing
the heading direction of û is denoted by θ ∈ [0, 2π). We
arbitrarily define a Cartesian global reference frame in P
with X and Y as the horizontal and vertical axes respectively.
θ is defined with respect to the X axis. xg changes when
d(xI , svi) <

vI
vg
d(xg, pi) for any vi ∈ Vtrack(G). Otherwise,

vg = 0. Let V ′track ⊆ Vtrack(G) be the set of vertices such
that for each vi ∈ V ′track, d(xI , svi) <

vI
vg
d(xg, pi) and û ·

−−→sI,vi > 0, where sI,vi is the first segment of the shortest path
between xI and svi , and −−→sI,vi is the vector representing sI,vi
with xI as its origin. After V ′track is obtained we arbitrarily
select any vi ∈ V ′track. Based on the direction of the velocity
vector of I and its current location, we know that at the next
instant, d(xI , svi) is smaller than vI

vg
d(xg, pi). Let γxg,pi ⊆ γ

be the path between xg and pi. Thus, after vi ∈ V ′track is
selected, ẋig = vg , where ẋig is the speed of g along γxg,pi .

VII. CONCLUSIONS

In this work we addressed the problem in which a single
observer must maintain an unpredictable intruder within its
sensing range all the time. The observer is constrained to
move along a fixed trajectory. By leveraging results from the
watchman’s route problem to guarantee mobile coverage of
the environment, we proposed a strategy to design a p−route,
which is the fixed path of the observer. The strategy builds a
path that minimizes the speed required to maintain persistent
tracking. We showed that finding the optimal p−route is
computationally intractable, so we proposed a procedure to
find an approximate one. To this end, a target-tracking metric
to estimate the speed required by the observer given the
geometry of the environment was proposed. Finally, a reac-
tive motion strategy for the observer given its corresponding

p−route was shown. As a future work, we plan to improve
the design procedure to find a p−route closer to the optimal.
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