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SUMMARY

To take the best actions, we often need tomaintain and update beliefs about variables that cannot be directly
observed. To understand the principles underlying such belief updates, we need tools to uncover subjects’
belief dynamics from natural behavior. We tested whether eye movements could be used to infer subjects’
beliefs about latent variables using a naturalistic navigation task. Humans and monkeys navigated to a
remembered goal location in a virtual environment that provided optic flow but lacked explicit position
cues. We observed eye movements that appeared to continuously track the goal location even when no
visible target was present there. Accurate goal tracking was associated with improved task performance,
and inhibiting eye movements in humans impaired navigation precision. These results suggest that gaze dy-
namics play a key role in action selection during challenging visuomotor behaviors andmay possibly serve as
a window into the subject’s dynamically evolving internal beliefs.

INTRODUCTION

Rational behavior often requires predicting latent states from

sensory observations. Since latent variables cannot be directly

observed, and since the utility of actions depends on the status

of latent variables in the future, we must use statistical regular-

ities in space and in time to predict them. There is a large body

of studies that not only demonstrate that humans exploit regular-

ities in feature space (Knill and Pouget, 2004) but also show how

to infer the associated subjective priors from data (Houlsby et al.,

2013; Paninski, 2006; Smith et al., 2012; Stocker and Simoncelli,

2006; Turnham et al., 2011). In contrast, we know relatively little

about how physical laws that govern the temporal dynamics of

inputs are internalized and used to guide time-evolving beliefs

in the absence of reliable observations (Lee et al., 2014).We refer

to these subjective beliefs about time-varying latent states as

belief dynamics.

The reasons for limited progress in understanding belief

dynamics are twofold. First, psychophysics continues to be domi-

nated by experimental paradigms in which actions are discrete

(e.g., binary choice) and sporadic (e.g., at the end of the trial). In

contrast, continuous tasks (Bonnen et al., 2015; Huk et al.,

2018; Knöll et al., 2018; Pitkow and Angelaki, 2017) provide sub-

jects the opportunity to reveal more information about their beliefs

and predictions as they unfold in time. Second, although theoret-

ical techniques to infer latent beliefs from actions are slowly

becoming available (Kumar et al., 2019; Reddy et al., 2018; Wu

et al., 2019), they have yet to be successfully applied to settings

in which state and action spaces are both continuous. Conse-

quently, principled ways to reliably uncover subjects’ belief dy-

namics from natural behavior are still lacking. Meanwhile, a prac-

tical way to overcome this hurdle would be by covertly

‘‘measuring’’ those beliefs. One candidate tool to accomplish

this is eye tracking (Spivey, 2007). Saccadic eye movements

have previously been used to understand mental processes un-

derlying a wide variety of abstract tasks such as language

comprehension (Tanenhaus et al., 1995), reading (Rayner, 1998),

mental imagery (Spivey and Geng, 2001), evidence accumulation

(Gold and Shadlen, 2000), visual search (Zhang et al., 2018), and

even random number generation (Loetscher et al., 2010). Further-

more, it has recently been argued that smooth-pursuit eye move-

ments may be influenced by short-term memory (Deravet et al.,

2018; Orban de Xivry et al., 2013). By formulating oculomotor pur-

suit to transiently occluded moving targets as an active inference

process, these eye movements have been used to infer subjects’

internal beliefs (Adams et al., 2015). We wanted to know whether
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eye movements also reflect belief dynamics for extended periods

of time under more naturalistic conditions.

To test this, we created a virtual environment with an unstruc-

tured ground plane on which subjects steered to a transiently

cued target location. To successfully perform the task, subjects

had to first infer their own movements based on the sparse optic

flow cues generated while steering and then integrate them over

time to estimate the relative target location. Although the target

appears briefly at the beginning of the trial, the location of the

target relative to the subject becomes latent as soon as they start

steering, because thereafter, the relative location is not directly

observed, only inferred by discounting one’s own displace-

ments. This task differs from traditional paradigms used to study

latent state inference in two important ways that make it both

challenging and better suited to understanding belief dynamics

in the real world. First, in contrast to tasks in which latent states

remain unchanged throughout the trial, such as right or left in a

random-dot motion (Britten et al., 1992) or heading-discrimina-

tion task (Britten, 2008), here, the latent state dynamically varies

over the course of each trial, under the subject’s control. Sec-

ond, unlike tasks that use pulsatile evidence and discrete

numbers of latent states, such as an auditory-clicks (Brunton

et al., 2013) or accumulating-towers task (Pinto et al., 2018),

both the sensory input (self-motion) and latent states (relative

target position) are continuous valued. To test whether eye

movements were informative regarding subjective beliefs about

those time-varying, continuous-valued latent states, we

recorded the gaze behavior of humans and rhesus macaques

while they performed this task. Parallel experiments in the two

species allowed us to test whether the eye movements were

evolutionarily conserved. We found that both humans and mon-

keys tend to follow the location of the unseen target with their

gaze until they reach it, and their success in tracking the target

over time predicted their final behavioral accuracy. These find-

ings suggest that gaze dynamics reflect internal beliefs and

could help shed light on the computations that transform visual

perception to action in naturalistic settings.

RESULTS

Monkeys and humans performed a visual navigation task in

which they used a joystick to steer to a transiently cued target

location in a three-dimensional virtual reality (VR) environment

without allocentric reference cues (i.e., stable landmarks) (Fig-

ure 1A; STAR Methods). Individual visual elements comprising

the ground plane were transient and could not be used as land-

marks. At the beginning of each trial, a circular target blinked

briefly at a random location within the field of view on the ground

plane and then disappeared. The joystick controlled forward and

angular velocities, allowing subjects to steer freely in two dimen-

sions (Figure 1B). The subjects’ goal was to steer toward the

target and stop when they believed their position fell within a cir-

cular reward zone centered on the target. They received feed-

back about their performance at the end of each trial.

Monkeys were first trained extensively using a staircase pro-

cedure (see STAR Methods) until their performance stopped

improving. Here, wewill focus only on their post-training behavior.

At this point, the radius of the reward zone was fixed across trials

(see STARMethods) and they received juice reward at the end of

the trial for correctly stopping within this zone (Figure 1C). In

contrast, human subjects received no prior training on this task.

Instead, we used an adaptive feedback scheme in which the

radius of the reward zone was dynamically scaled using a stair-

case procedure tomatch individual subjects’ abilities (Figure S1A;

see STAR Methods). In practice, it took less than 50 trials for the

performance of humans to stabilize (Figure S1B). Therefore, we

ignored the first 50 trials collected from human subjects and

focused our analyses on the remaining data.

Target locations were uniformly distributed at random over the

ground plane area within the subject’s field of view (Figure 1D,

left). The stimulus was nearly identical for both species except

for minor details such as the range of target distances and the

duration for which the target was visible (see STAR Methods).

All subjects were head-fixed, and we recorded each subject’s

movement trajectory (Figure 1D, middle) as well as eye position

(Figure 1D, right) throughout each trial.

Behavioral Performance
Figure 1E shows the performance of the monkeys in this task.

Both radial distance (Figure 1E, left) and angular eccentricity

(Figure 1E, right) of the monkeys’ responses (stopping location)

were highly correlated with the target location across trials

(n= 3 monkeys, Pearson’s r ± standard deviation, radial dis-

tance: 0:72±0:1, angle: 0:84±0:1), suggesting that their

behavior was appropriate for the task. To test whether their per-

formance was accurate, we regressed their responses against

target locations. The slope of the regression was close to unity

both for radial distance (mean ± standard deviation

= 0:92±0:06) and angle ð0:98 ±0:1Þ, suggesting that the mon-

keys were nearly unbiased (Figure 1F, green). We did notice

modest undershooting for distant targets, an effect that is likely

due to growing position uncertainty described in previous work

(Lakshminarasimhan et al., 2018a).

We showed previously that humans are systematically biased

when performing this task without feedback (Lakshminarasim-

hanet al., 2018a).Consistentwith those findings, humansubjects

overshot the target in an initial block of trials inwhich no feedback

was provided (Figure S1C; n= 5, mean slope ± standard devia-

tion, radial distance: 1:21±0:2, angle: 1:78±0:3) to a degree

that was proportional to target distance. With feedback, howev-

er, the samesubjects quickly adapted their responses toproduce

nearly unbiased performance (Figure 1F, purple; see Figure S1D

for individual trials; mean slope ± standard deviation, radial dis-

tance: 0:95± 0:1, angle: 1:15±0:2). Notably, this improvement in

performance was maintained in a final block of trials in which

feedback was withheld (Figures S1E and S1F; radial distance:

1:03±0:15, angle: 1:2±0:2), suggesting that learning of this

task was stable. To be consistent with monkey data, we only

consider human subjects’ data collected during the block of trials

with feedback in the remainder of this work.

We wanted to know whether humans and monkeys had com-

parable accuracies. Because we used a slightly larger range of

target distances for humans (see STAR Methods), travel dura-

tions were longer (median travel time ± interquartile range

[IQR]: monkeys: 1:9± 0:8s, humans: 2:7±0:6s). Consequently,

we could not directly compare the mean error magnitude of
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the subjects as it ignores differences in task difficulty. Instead,

we used an approach that is conceptually similar to receiver

operating characteristic (ROC) analysis to objectively compare

the performance of monkeys and human subjects on a common

scale. For each subject, we constructed a ‘‘psychometric func-

tion’’ by computing reward probability as a function of hypothet-

ical rewardwindow size (Figure 1G; see STARMethods). By plot-

ting the true psychometric function against one obtained by

shuffling target locations across trials, we obtain the subject’s

ROC curve. Chance-level performance would correspond to

an area under the ROC curve (AUC) of 0.5, while perfectly accu-

rate responses (zero error) will yield an AUC of one. The AUCs for
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Figure 1. Primates Can Navigate by Integrating Optic Flow

(A) Monkeys and human subjects use a joystick to navigate to a cued target (yellow disc) using optic flow cues generated by ground plane elements

(brown triangles).

(B) The time course of linear (top) and angular (bottom) velocities during one example trial. Yellow shaded region corresponds to the time period when the target

was visible on the screen. Time is also coded by color.

(C) Example trials showing incorrect (left) and correct (right) responses of a monkey.

(D) Left: overhead view of the spatial distribution of target positions across trials. Middle: movement trajectories of one monkey during a representative subset of

trials. Blue dot denotes starting location. Right: first-person view of the trajectories of eye movements during the same trials. Abscissa and ordinate show

horizontal version and elevation of the eyes. Blue dots represent the initial eye position (when the target was turned OFF) on each trial.

(E) Left: comparison of the radial distance of the monkey’s response (stopping location) against radial distance of the target across trials. Right: angular

eccentricity of the response versus target angle. Black dashed lines have unity slope. The subject’s starting location was taken as the origin.

(F) Subjects’ accuracy in radial distance (top) and angular eccentricity (bottom) were quantified as the slopes of the corresponding linear regressions and plotted

for individual monkeys and human subjects. Horizontal dashed lines denote the value of the slope that corresponds to unbiased behavior. Error bars denote ±1

SEM across trials.

(G) Left: the proportion of correct trials of one monkey for various values of hypothetical reward window size (black). Shuffled estimates are shown in gray. Right:

ROC curves for all subjects, obtained by plotting their true proportion of correct trials (from unshuffled data) against the corresponding chance-level proportions

(from shuffled data) for a range of reward windows. Shaded area denotes standard deviation across subjects. Inset shows the average area under the ROC curve

(AUC) for monkeys and human subjects.

See also Figure S1.
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both monkey and human subjects were quite large and statisti-

cally indistinguishable (mean ± standard deviation, monkeys:

0:85± 0:03, humans: 0:84±0:05; t test: p= 0:41), suggesting

that they performed comparably. Although it is possible, in prin-

ciple, to avoid integrating optic flow by learning the precise

sensorimotor transformation implemented by the joystick

controller, we previously showed that the variability of human

subjects is greatly affected by removing optic flow cues (Laksh-

minarasimhan et al., 2018a) (Figure S1G). Likewise, monkeys

rapidly adapt their actions in response to gain changes of the

joystick controller (Figure S1H). This suggests that bothmonkeys

and humans use optic flow to perform this task.

Pattern of Eye Movements
To understand the role of eye movements, we recorded the po-

sition of the subjects’ eyes while they performed the task. Fig-

ure 2A shows the vertical and horizontal eye positions of one

monkey during an example trial. On this trial, we noticed

saccades (eye movements exceeding 200�/s) before the target

was turned off (henceforth called start of the trial) and around

the time when the monkey stopped moving (end of steering),

but not in between. This pattern was evident across trials, as

seen in the trial-averaged density of saccades (Figure 2B).

Across all datasets frommonkeys, the average frequency of sac-

cades during the trial was significantly smaller than that during

the inter-trial interval (mean saccade rate ± standard deviation,

during trials: 0:5±0:3 Hz, between trials: 0:9±0:5 Hz; paired t

test: p= 0:02). We noticed a similar tendency among human sub-

jects, although the comparison was not statistically significant

(Figure S2A; during trials: 0:8±0:5 Hz, between trials: 1:4± 1

Hz; p= 0:11). Moreover, the velocity of eye movements during

steering was generally low, with magnitudes well below 20�/s
both in monkeys (Figure 2C; mean ± standard deviation: 16.2 ±

2.1�/s) and in humans (Figure S2B; 11.4 ± 3.2�/s).
Because saccades were mostly confined to periods when the

animal was not actively steering and subjects appeared to make

slowly varying eye movements while steering, we asked whether

theymaybecontinuously ‘‘tracking’’ the (invisible) targetwith their

eyes while they navigated to it. Note that as one steers toward the

target location, the target becomes progressively less eccentric

and moves downward in the visual field. Therefore, if subjects’

eyes were to track the target, the magnitude of lateral version

would tend toward zero and the eye elevation would become

more negative with time (Figure S2C). To quantitatively test

whether subjects tracked the target, we first generated ground

truth theoretical predictions for the binocular position of their

eyes during each trial, assuming that they maintained fixation at

the center of the target throughout the trial (Figure S2D; STAR

Methods, Equation 1). Note that at each moment in time, the pre-

dictedeyepositiondependsonly the relative targetpositionat that

moment regardless of whether the subject accurately stopped on

target, but we will examine the relationship to the latter in the next

section. We then compared this prediction against the observed

eye position of the subject by expressing both quantities in terms

of three standard components: lateral version, elevation, and ver-

gence (Figure S2E; see STAR Methods).

We expect subjects’ eyes to be drawn to the target when it

appears on the screen. Indeed, themodel predictions were high-

ly correlated with the measured values of lateral version (Fig-

ure 2D, left; and Figure S3A, left; Pearson’s r ± standard devia-

tion, monkeys: 0:91±0:1, humans: 0:85±0:1) as well as

elevation (Figure 2D, right; and Figure S3A, right; monkeys:

0:60±0:2, humans:0:42±0:2) at the beginning of the trial. The

somewhat lower correlations for the latter are understandable,

because it is difficult to precisely fixate at the elevations for

distant targets since they subtend a smaller visual angle. Next,

we examined the time course of eye movements during the trial

and found a striking qualitative correspondence to the predicted

dynamics (Figure 2E and S3B); as the trial progressed, lateral

version became increasingly more concentrated around zero

(Figure S3C, left) while eye elevation was significantly lower (Fig-

ure S3C, right). The correlation between predicted and observed

values remained significantly greater than zero throughout the

trial for both components (Figure S3D). This is quite remarkable,

because the target appeared only transiently at the beginning of

the trial.

On the other hand, the correspondence between predicted

and observed vergence was less clear. Performing this compar-

ison for our task was challenging, because �90% of the full

range of vergence angles is known to occur within gaze

distances <1m (Howard, 2012), and the predicted change in ver-

gence is negligible for gaze distances >2 m (Figure S2E, bottom

right). Only two of the monkeys exhibited vergence values that

weakly correlated with the predictions at trial onset (Figure S3A)

and a tendency to make convergent eye movements as they ap-

proached the target (Figure S3B), an effect that was also absent

in human subjects (Figures S3B–S3D). It is possible that this

inconsistency is due to the previously documented difficulty in

executing voluntary vergence movements to imagined moving

targets (Erkelens et al., 1989). This difficulty is likely exacerbated

in VR, where vergence eye movements must be executed

without changing accommodation to maintain a clear retinal im-

age of onscreen objects (Hoffman et al., 2008; Shibata et al.,

2011). Therefore, we did not consider the vergence component

for further analyses.

To quantify how well subject’s eyes tracked the target, we ex-

pressed the eye position as a two-dimensional vector comprised

of lateral version and elevation and computed a target-tracking

index. Specifically, this quantity was given by the square root

of the fraction of variance in the observed eye position that

was explained by the prediction (STAR Methods, Equation 2).

An index of one implies that the subject consistently looked at

the center of the (invisible) target while steering toward it, while

zero denotes lack of correspondence between target and gaze

locations. The target-tracking index was quite high at trial onset

(during the first 500 ms) when the target had just disappeared

(Figure 2F; mean ± standard deviation, monkeys: 0:73± 0:05,

humans: 0.71±0:05). Although this slowly dropped during the

trial, the index at the end of the trial (during the last 500 ms) re-

mained well above zero (Figure 2G; mean ± standard deviation,

monkeys: 0:35±0:1, humans: 0.18±0:05), implying that sub-

jects tend to maintain gaze at the target location while they steer

toward it. To estimate this timescale of the correlation between

gaze and target location, we analyzed the cross-correlogram be-

tween them and found that subjects’ eye positions did not sys-

tematically lead or lag the predictions based on the relative
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target location (Figure S4A). This suggests that eye movements

reflect the current relative target position rather than predict its

future value (although the computations used to estimate it could

still be predictive).

The tracking index quantifies how subjects’ dynamical state

(relative target position) is encoded in their continuous-valued

eye position while they navigate toward the target. However,

recent work has highlighted the importance of discrete saccadic
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Figure 2. Eye Movement Dynamics during the Task

(A) Time course of vertical and horizontal (bottom) positions of the left and right eyes of amonkey during one example trial. Yellow region shows the period when a

target was visible on the screen. Red dashed line corresponds to the end of steering in this trial.

(B) The time course of the rate of saccades during the trial, averaged across all trials separately for each monkey. Trial averaging was done by aligning trials

relative to target onset (yellow region, before the break on the x axis) and end of steering (red dashed line, following the break). Gray line denotes mean saccade

rate across monkeys during the period between trials.

(C) Joint probability distribution over horizontal and vertical eye velocities, averaged across monkeys, while they steered toward the target. Marginals are shown

in black.

(D) Comparison of the predicted and true eye positions in a subset of trials for all monkeys at the moment when the target was just turned OFF.

(E) Time-course of the eye position during a random subset of trials taken from one monkey. Blue and red dots denote the times at which the target was turned

OFF and the end of steering, respectively.

(F) Target-tracking index when the target turned OFF for individual monkeys and humans. Error bars denote ±1 SEM obtained either by averaging across

recording sessions (for monkeys) or bootstrapping (for humans).

(G) Time course of the target-tracking index, averaged across monkeys and humans. Gray arrow denotes the chance-level tracking index verified by shuffling

procedure. Shaded region denotes ±1 SEM across datasets.

See also Figures S2–S4A.
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eye movements in mediating flow-tracking behavior of humans

and primates (Knöll et al., 2018). Therefore, we wanted to

know whether saccades aided the target-tracking behavior

of our subjects. To test this, we first compared the distribution

of saccade amplitudes during three non-overlapping epochs of

the experiment: inter-trial periods when saccades tend to be

exploratory, target-presentation phase when saccades are

guided by the external stimulus, and the ensuing task phase

when subjects steered using optic flow (Figure 3A). We found

that across monkeys, the amplitude of saccades was much

lower during the task phase than during other epochs (Figure 3B;

mean ± SE: inter-trial, 10.2 ± 1.6�; target-presentation, 14.4 ±

2.2�; task phase, 7.1 ± 1.2�), suggesting that saccades made

while steering were qualitatively different from saccades made

at other times. To directly test whether those saccades served

to correct errors in target tracking, we computed a saccade-trig-

gered average of the target-tracking error and found that this er-

ror dropped significantly (peak decrease of 2.4 ± 0.4�; p < 10�10,

t test) shortly after saccade onset (Figure 3C). Following Knöll

et al. (2018), we used lagged regression analysis to determine

the precise relationship between saccade amplitude and the dy-

namics of target-tracking error (STAR Methods). The amplitude

of both vertical and horizontal components of the saccade

were influenced by tracking error during the previous 200 ms,

suggesting that these saccades were indeed made toward the

target (Figure 3D). Moreover, the regression kernels were

biphasic, implying that the saccades overcompensated for the

tracking errors. Finally, if these saccades were corrective, they

should depend on the subjects’ internal estimate of the target

location, making them increasingly unreliable over time due to

the buildup of uncertainty. Indeed, the strength of the regression

kernel was weaker for later saccades (Figure 3E; peak-to-peak

difference in weights for vertical component: first saccade,

0:44± 0:1; third, 0:20±0:15; horizontal component: first

saccade, 1:5± 0:4; third, 0:15±0:2), thereby signaling a drop in

saccadic precision over time. This suggests that these saccades

were not stereotyped reflexive responses but were dynamically

modulated by ongoing cognitive computations analogous to

‘‘catch-up’’ saccades observed during smooth pursuit of visible

targets (Daye et al., 2014; Orban de Xivry et al., 2008). Although

the amplitudes of saccades made by human subjects were not

significantly smaller while steering (Figure S4B), regression anal-

ysis revealed a strong association between tracking error and

saccade amplitude but with slightly shorter integration windows.

As observed for monkeys, the strength of this association was

lower for saccades that happened later (Figure S4C), reflecting

a potential influence of noisy integration.

Eyes Convey Internal Beliefs about Target
Subjects could not have possibly been tracking the observed

target location, because the target disappeared at the beginning

of the trial. A plausible explanation for their pattern of eye move-

ments is that they tracked the location at which they believed the

target was present. As they integrate their movements, subjects

need to continuously update their internal estimate of the relative

goal location, and perhaps their eyemovements reveal those esti-

mates. If this is the case, then we should be able to better predict

their eye position when their beliefs are more accurate. We tested

this both across subjects and across trials within each subject.

To test this across subjects, we used the variability in subjects’

stopping positions to first quantify the level of uncertainty in their

position estimates (STAR Methods). Due to the low trial count of

individual human subjects, we pooled trials from all humans into

a single dataset. Because uncertainty in knowing one’s location

should limit one’s ability to visually track the target, we used the

estimated uncertainties to calculate an approximate upper

bound on the target-tracking index for each dataset (Figure 4A;

STARMethods, Equation 3). This upper bound serves to capture

the heterogeneity in the spatial profile of uncertainty both across

subjects (Figure 4B, left) and across sessions within each
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Figure 3. Saccadic Eye Movements Aid

Target Tracking

(A) Time course of observed (black) and predicted

(gray) vertical position of the eyes of a monkey.

Black arrows indicate saccades made during three

different task epochs (inter-trial, target presenta-

tion, and steering periods). Yellow region shows

the period when a target was visible on the screen.

(B) Empirical cumulative distribution function of

saccade amplitudes conditioned on the task epoch,

averaged across monkeys. Inset shows amplitudes

of individual saccades as a function of their timing.

(C) Average saccade-triggered target tracking er-

ror during a time window around saccades made

during steering. Shaded region denotes ±1 SEM

obtained by bootstrapping.

(D) The time course of coefficients obtained by

linearly regressing the amplitudes of the two

components of saccades (blue, vertical; red, hori-

zontal) against the corresponding components of

the target tracking error (STAR Methods).

(E) Similar to (D), but showing coefficients for

regression done separately for the first, second,

and third saccades made during steering.

See also Figures S4B and S4C.
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monkey (Figure S4D). Across all datasets (subjects 3 sessions),

the target-tracking index observed toward the end of the trial

(during the last 500 ms) was weakly but significantly correlated

with the theoretical upper bounds (Figure 4B, right; Pearson’s

r = 0:26, p= 0:029). This suggests that differences in the ability

to track the target with the eyes is due, at least in part, to differ-

ences in the magnitudes of positional uncertainty between

subjects.

We also tested whether eye movements reflect fluctuations in

the subject’s belief about their location across trials. Because

subjects were more precise during rewarded (Figure S4E, left)

than during unrewarded trials (Figure S4E, middle), we expect

them to track the target more accurately during rewarded trials

(Figure S4E, right). We computed the target-tracking index sepa-

rately for the two groups of trials and found that it was indeed

higher during rewarded trials (Figure 4C, top). The difference be-

tween the target-tracking indices during the two sets of trials

grew as the trial progressed and was significantly greater than

zero at the end of the trial (Figure 4C, bottom; mean difference

± standard deviation during the period shaded in gray:

monkeys: 0:19±0:05, p= 4:8310�3; humans: 0:13±0:05, p=

3:1310�2; bootstrap test, 10,000 bootstrap samples). In fact,

when trials were stratified based on behavioral accuracy, we

found that the tracking index increased with behavioral accuracy

(Figure 4D). To more directly test for a fine-grained relationship

between eye movements and task performance, we estimated

the correlation between the behavioral error (distance between

the stopping location and the target) and the target-tracking er-

ror (mean absolute difference between the actual eye position

and the theoretical prediction, see STAR Methods) across trials

(Figure 4E, top). To control for possible spurious effects of trial

difficulty, we computed a shuffled estimate by subdividing the

trials into groups based on initial target distance and then shuf-

fling the trials within each group (see STAR Methods). We found

that the behavioral and target-tracking errors were significantly

correlated across trials (Figure 4E, bottom; Pearson’s r ± stan-

dard deviation across all datasets: true: 0:14±0:04; controlled

shuffle: 0:04±0:02; p= 9:1310�3, paired t test), further reinforc-

ing the view that subjects track their internally estimated goal

location with their eyes.

Purely Reflexive Eye Movements Do Not Explain Target-
Tracking Behavior
In principle, the above results could also be produced by purely

reflexive eye movements, driven solely by optic flow (ocular

following response [OFR]). For instance, if subjects’ eye velocity
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Figure 4. Accurate Target Tracking Is Asso-

ciated with Increased Task Performance

(A) Time course of the target-tracking index for one

session computed using a monkey’s actual eye

movements (black solid) and its theoretical upper

bound (black dashed) determined using variability

in stopping positions (STAR Methods, Equations 3

and 4).

(B) Left: overhead view of the spatial maps showing

the standard deviation of stopping positions as a

function of target location for individual monkeys

and the average human subject. Each wedge

corresponds to the map of one subject, calculated

by binning target locations (see Figure 1D) and

smoothed using a Gaussian filter. The maps of

monkeys S and Q, and of the humans, have been

rotated for compactness. Right: Comparison of the

observed target-tracking index against the theo-

retical upper bound (averaged over the last 500 ms

of the trials) across all individual datasets. Dashed

line has unity slope and error bars denote ±1 SEM

obtained by bootstrapping.

(C) Top: time course of the target-tracking index for

one example monkey shown separately for trials in

which he stopped within the reward zone (blue) or

stopped outside it (red). Shaded regions denote ±1

standard error estimated by bootstrapping. Bottom:

the difference between tracking coefficients the two

sets of trials for all subjects. For humansubjects, trials

inwhich thesubject’sfinalpositionwaswithin0.6mof

the center of the target were considered ‘‘rewarded.’’

(D) Top:wedivided trials intofivegroupsbasedon the

magnitude of behavioral error. Time courses of the

target-tracking index for the five trial groups fromonemonkey (dark blue,most accurate; dark red, least accurate). Bottom: average valueof the target-tracking index just

before the end of steering (brown region in the top panel) as a function of percentile accuracy for individual subjects. Solid lines show average across subjects. Across

subjects (humans andmonkeys), there was a significant correlation between accuracy and tracking coefficient (Pearson’s r = 0:68;p= 3:1310�5).

(E) Top: joint distribution of thebehavioral error and the target-trackingerror across trials of one session fromonemonkey. Bottom:mean correlation betweenbehavioral

and target-tracking errors of individual subjects. Error bar denotes ±1 SEM obtained by bootstrapping.

See also Figures S4D and S4E.
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is perfectly correlated with their perceived movement velocity,

then oculomotor errors would be proportional to perceptual

errors, explaining the relatively poor target-tracking in erroneous

trials. However, past studies have shown that errors in reflexive

eye movements are uncorrelated with perceptual errors (Blum

and Price, 2014; Boström and Warzecha, 2010; Glasser and

Tadin, 2014; Price and Blum, 2014), suggesting that the

observed eye movements are not reflexive. Two further pieces

of evidence in our own monkey data support this.

First, in a subset of sessions, we recorded the stimulus movie

of the complete block of trials and replayed them back to the an-

imal at the end of the session, but with the joystick withheld (see

STAR Methods). All aspects of the task structure during this

replay block were identical to the initial block of trials (e.g., the

monkey still received juice reward at the end of the correspond-

ing trials), except the animal only viewed a movie of the stimulus

rather than actively performing the task. Importantly, monkeys

were still free to move their eyes. Eye movements were weaker

during passive viewing than during active task (Figures S5A

and S5B), and the magnitude of eye velocity was much smaller

during passive block even though both blocks had identical

visual stimuli (Figure S5C). We analyzed the target tracking

behavior by computing the target-tracking index separately for

the two blocks of trials. Figure 5A (top panel) shows the time

course of the target-tracking index of one monkey during the

both blocks of trials. In this monkey, the tracking index was

much lower during passive viewing (red versus blue). Because

OFR is, by definition, involuntary and difficult to suppress, this

suggests that eye movements contributing to the high target-

tracking index during active steering must be voluntary. Note,
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Figure 5. Steering-Induced Eye Movements

Are Not Reflexive

(A) Top: time course of target-tracking index for

onemonkey during trials in which he performed the

task (blue) or passively viewed the stimulus iden-

tical to the one generated when performing the

task (red). Black trace shows the tracking index of

the OFR model. Tracking indices at time points

with negative variance explained were clipped to

zero. Shaded region denotes ±1 SEM obtained by

bootstrapping. Bottom: time course of the cumu-

lative difference between the target-tracking index

on active trials and the OFR model for individual

monkeys.

(B) Top: time course of the tracking index of one

monkey during trials in which the ground plane

density was either high (blue) or low (red). Bottom:

difference between target-tracking index under

high- and low-density conditions for individual

monkeys. Brown shaded regions in the bottom

panels correspond to the time window considered

for statistical testing.

See also Figure S5.

however, that the tracking index during

passive viewing is poor right from trial

onset, perhaps because the monkey did

not consistently look at the target initially

when it appeared on the screen. We

wanted to know whether OFR dynamics,

coupled with the appropriate boundary condition (looking at

the target when it initially appears), might be sufficient to give

the impression that the animal is tracking the target. We simu-

lated this model by shifting the initial eye position on each trial

of the passive block tomatch the corresponding trial in the active

block, a procedure that left the eye movement dynamics unal-

tered (Figure 5A, black). The tracking index of this simulated

model was substantially lower than that observed during the

active block of trials, suggesting that the target-tracking

behavior is voluntary. In all monkeys, the target tracking during

the active task was significantly stronger than during either the

passive viewing condition or the OFR model (Figure 5A, bottom;

mean difference ± standard deviation during the period shaded

in brown, active: 0:27±0:1, passive: 0:08±0:1, OFR model:

0:07±0:1; p<0:01, bootstrap test). The difference between con-

ditions was small in one monkey (labeled ‘‘Q’’ in Figure 5A, bot-

tom; Figure S5, rightmost), possibly because this animal was

mentally performing the task even during passive viewing.

Second, OFR is known to be sensitive to signal strength (Bar-

thelemy et al., 2009; Quaia et al., 2012). To test whether target

tracking depends on signal strength, we manipulated stimulus

reliability by randomly interleaving trials with two different

densities of ground plane elements by more than an order of

magnitude (see STAR Methods). We analyzed the two sets of

trials separately but found no significant difference between

the target-tracking index (Figure 5B; mean ± standard deviation

across subjects, low density: 0:28±0:1, high density: 0:31±0:1).

Therefore, the pattern of eye movements observed during this

task likely represents volitional movements rather than reflexive

ones.

ll
Article

Neuron 106, 662–674, May 20, 2020 669



Inhibiting Eye Movements Worsens Task Performance
Since eye movements were predictive of subjects’ navigational

performance, we wanted to know if they were essential for per-

forming the task. To test this, we asked five human subjects to

perform a variation of the task in which we overlaid a cross on

top of the target location and instructed them to fixate on this

cross for as long as it appeared on the screen. In half the trials

(‘‘eyes-moving’’ condition), the fixation cross disappeared along

with the target so that subjects were free to produce eye move-

ments as before. In the remaining trials (‘‘eyes-fixed’ condition),

the cross remained at the same location on the screen throughout

the trial, and subjects had to perform the taskwithoutmoving their

eyes (see STARMethods). Although we did not penalize subjects

for breaking fixation, we verified offline that they maintained

fixation as instructed (Figure 6A and S6). We assessed their

behavioral performance by comparing the AUC and found that

performance was significantly impaired in the eyes-fixed condi-

tion (Figure 6B; n= 5 humans, mean AUC ± standard deviation;

eyes moving: 0:85± 0:07, eyes fixed: 0:77±0:07, p= 2:5310�3,

paired t test). Figure 6C shows the responses of individual sub-

jects. Although subjects were nearly unbiased under both condi-

tions, the correlation between target and response locations was

significantly lower in the absence of eye movements (Figure 6D;

mean ± standard deviation; Corrðr; r�Þ, eyes moving: 0:71±

0:1, eyes fixed: 0:49±0:2, p= 0:011, paired t test; Corrðjqj; jq�jÞ,

eyes moving: 0.92±0:03, eyes fixed: 0.82± 0:1, p= 0:035). These

results suggest that subjects benefit when their eyes can track the

internally estimated goal location in this task.

DISCUSSION

Although the tracking index remained significantly above chance

throughout the trial in these experiments, it nonetheless

decreased over time. This is expected, because the target disap-

pears, so subjects cannot directly measure its true position but

must instead rely on an internal estimate computed by inte-

grating optic flow with knowledge of the controller dynamics.

We have previously shown that human subjects perform near-

perfect integration in this task (Lakshminarasimhan et al.,

2018a). Nevertheless, due to noise in the integration process,

the error in the internal estimate of target location on any given

trial should grow over time. Consequently, even if those

estimates are unbiased, their precision worsens, leading to a

decrease in the target-tracking index (Figure 4A, dashed line).

Consistent with this, the precision of error-correcting saccades

gradually deteriorated as the trial progressed (Figure 3E). There-

fore, the observed decrease in target tracking is an inevitable

consequence of noisy observations and noisy integration and

in fact serves to expose the growing uncertainty in subjective

beliefs.

A C D

B

Figure 6. Fixation Affects Task Performance

(A) Trial-averaged temporal variability of subjects’ eye position, quantified by standard deviation (see STAR Methods) during ‘‘eyes-moving’’ (blue) and ‘‘eyes-

fixed’’ (red) trials. Error bars denote standard deviation across subjects (� � p= 1:2310�3, paired t test).

(B) ROC curves averaged across subjects, for trials in the eyes-moving (blue) and the eyes-fixed condition (red). Inset shows the area under the two curves. Error

bars denote standard deviation across subjects (�p= 2:5310�3, paired t test).

(C) Top: comparison of the radial distances of the response and the target on trials under the two conditions. Different symbols denote different human subjects.

Bottom: comparison of the (absolute) angular eccentricity of the response and target.

(D) Top: Pearson’s correlation coefficient between the radial distance of subjects’ response and the target for all individual subjects. Bottom: similar comparison

for the absolute angular eccentricity of target and response under the two conditions.

See also Figure S6.
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Inferring Belief Dynamics
The task design used in this study was motivated by the need to

ultimately understand neural computations governing belief dy-

namics that transform sensory inputs to motor output. In the

real world, these belief dynamics correspond to subjective esti-

mates of latent-variable dynamics, thus making them difficult to

measure and relate to neural activity. Classic experimental par-

adigms used with primates attempt to measure this by training

animals to provide discrete responses to simple stimuli, which

reduces the dimensionality of state and action spaces, limiting

their potential to shed light on natural computations. On the other

hand, paradigms that let rodents loose in open arenas mimic

natural behavior at the expense of sacrificing control over the na-

ture of computations they perform. One exception is a recent pa-

per (Knöll et al., 2018) in which the authors used stimuli with rich

spatiotemporal dynamics to elicit continuous oculomotor

behavior from primates with minimal reinforcement. While the

Knöll et al. (2018) task is similar to ours in that it leverages uncon-

strained eye movements to remedy several shortcomings of

historical approaches, the computation performed by the ani-

mals in their task was somewhat straightforward: inferring the

current focus of expansion from noisy optic flow. In contrast,

we asked animals to use optic flow to navigate to a goal location

without providing explicit position cues. This requires the animal

to first infer their self-motion from optic flow and then temporally

integrate the resulting time-varying estimates to track the dy-

namics of a latent variable (position of the target relative to

them)—a more challenging set of computations. Moreover, we

trained our animals only by rewarding them for reaching the

goal location. Eye movements were not explicitly reinforced,

yet our post hoc analysis revealed that the continuous-valued,

time-varying eye position encoded subjective beliefs about the

time-varying latent variable. We hope that this approach of

covertly measuring belief dynamics will serve as a useful

template for future studies.

The Nature of Eye Movements
To understand the nature of slow eye movements made while

steering toward the target, we analyzed individual components

of eye position and found that both lateral version and elevation

were largely smooth and consistent with the predicted dynamics

for pursuing the invisible target. By analyzing eye movements

during stimulus playback, we ruled out the possibility that the

smooth dynamics correspond to pure ocular following response

(OFR) induced by optic flow. Because these eye movements

were always preceded by fixating a visible target and occurred

in parallel with computations for mentally tracking that same

target, they are functionally more similar to smooth-pursuit eye

movements. Despite ample evidence for smooth-pursuit eye

movements in the absence of foveal stimulation in humans

(Becker and Fuchs, 1985; Missal and Heinen, 2017; Wyatt

et al., 1994) and rhesusmacaques (Ilg and Thier, 1999), smoothly

tracking a purely imaginary object is thought to be difficult (Sper-

ing and Montagnini, 2011). This is because in the absence of dy-

namic information about target motion, the pursuit velocity grad-

ually decays to zero (Barnes, 2008; Missal and Heinen, 2017).

However, when the underlying model for target motion is known,

subjects can use their dynamic internal representation of the

target to make predictive smooth pursuit during target blanking

(Adams et al., 2012; Orban de Xivry et al., 2008, 2013). In our

task, the dynamics of optic flow completely determine the

(relative) motion of the target and can subsequently drive eye

movements. Furthermore, the flow fields were self-generated

rather than simulated, a condition that has previously been

shown to improve pursuit of occluded targets (Danion et al.,

2017; Gauthier et al., 1988; Vercher and Gauthier, 1992). Never-

theless, a moderate contribution of OFR induced by optic flow

cannot be completely excluded, so it is possible that the eye

movements reported here are composed of amixture of reflexive

signals that encode velocity of self-motion and predictive signals

that encode the latent state.

Finally, saccadic eye movements, although infrequent,

contributed to tracking the target. The amplitude of these sac-

cades was largely influenced by target-tracking error during

the previous �200 ms. These results suggest that the mecha-

nism responsible for generating saccades in this paradigm are

similar to the ones at play in flow tracking (Knöll et al., 2018)

and smooth pursuit of visible objects (Daye et al., 2014; Orban

de Xivry et al., 2008). One reason for the relatively low frequency

of saccades in this study could be that motion in our task was

self-generated and predominantly smooth, whereas saccades

in smooth-pursuit experiments are primarily due to unexpected

jumps in target velocity (de Brouwer et al., 2002).

Computational Role of Tracking Eye Movements
The experimental task was specifically designed to ensure that

subjects would attempt to mentally track the goal location by

integrating momentary sensory evidence about movement pro-

vided by optic flow. In principle, this can be accomplished

without physically tracking the believed goal location with

one’s eyes. Yet, we noticed a significant decline in task perfor-

mance when eye movements were suppressed. This is consis-

tent with previous results that demonstrated that real-world

driving performance is impaired when eye movements are con-

strained (Wilson et al., 2008). Although this does not demon-

strate a need to make tracking eye movements, it suggests

that eye movements play an important role in neural computa-

tions for navigation. Indirect evidence of a role for slow eye

movements in visually guided navigation comes from a recent

study of path integration in which subjects used a joystick to

reproduce previously experienced self-motion (Churan et al.,

2018). Eye movements during the reproduction phase were

similar to those during initial exposure even when optic flow

was removed. This suggests that eye movements constitute a

form of mental imagery that, if suppressed, hamper memory

retrieval (Johansson and Johansson, 2014; Johansson et al.,

2012). Our findings extend this to naturalistic settings and argue

that eye movements have a more dynamic role in path integra-

tion. The precise computational advantage of the specific eye

movement dynamics observed in our task is unclear. Below,

we propose two potential theories.

One possibility is that eye movements directed toward the in-

tended goal location stabilize the mental image of the goal and

could reduce the computational complexity of estimating self-

motion from optic flow similar to the effect of foveal image stabi-

lization (Lappe et al., 1999; Longuet-Higgins and Prazdny, 1980;
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Perrone and Stone, 1994; Sandini and Tistarelli, 1990). Norma-

tive mathematical theories posit that maintaining gaze at a point

on the intended path can greatly simplify the problem of exploit-

ing optic flow (Glennerster et al., 2001; Kim and Turvey, 1999;

Wann and Swapp, 2000). Therefore, the eye movements

reported here may constitute a closed-loop visuomotor process

in which subjects integrate sense data (optic flow) to dynamically

update their beliefs about the relative goal location and in turn

use them to guide future eye movements in order to acquire

new sense data in a computationally useful format. In this

view, eye movements primarily aid optic flow processing.

Alternatively, the observed eyemovementsmight simply be an

embodiment of subjects’ dynamically evolving internal beliefs

about the goal. Humans have a well-documented tendency for

externalizing their internal representations (Barsalou, 2008; Spi-

vey, 2007), with eye movements sometimes employed as a

pointing device to visible as well as invisible objects, much like

one’s index finger (Ballard et al., 1995, 1997; Spivey and Geng,

2001). By allowing dynamic beliefs about the relative target loca-

tion to continuously modulate eye movements in this task, the

brain could piggyback on the oculomotor circuit and reduce

the computational burden on working memory. Consistent with

this interpretation, there is overwhelming evidence for deci-

sion-related responses in primate oculomotor brain areas (de

Lafuente et al., 2015; Shadlen and Newsome, 1996), and such

responses are thought to drive eye movements (Joo et al.,

2016). Therefore, in this view, primates use gaze as an afford-

ance to efficiently update and store the output of integrating

optic flow.

Although the above accounts are not mutually exclusive,

simultaneously recording the neural activity from the primate

sensory, oculomotor, and decision areas during this task might

shed light on the dominant role of eye movements and how

they link perception and action. A candidate brain area is the

primate posterior parietal cortex, where there is ample evidence

for convergence of self-motion (Avila et al., 2019; Britten, 2008;

Gu et al., 2012), gaze (Andersen, 1989; Andersen et al., 1987),

and decision-related (Gold and Shadlen, 2007; Ibos and

Freedman, 2017; Lakshminarasimhan et al., 2018b) signals. In

any case, regardless of the mechanistic and computational ex-

planations for these eyemovements, the paradigm used here of-

fers a useful approach to directly readout dynamical internal

beliefs in real time, simply by tracking subjects’ eyes.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Kaushik

Lakshminarasimhan (jkl9@nyu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three rhesus macaques (all male, 7-8 years. old) and ten human subjects (six males, all adults in the age group 18-32 years.) partic-

ipated in the experiments. All but one subject were unaware of the purpose of the study. All surgeries and experimental procedures

were approved by the Institutional Review Board at Baylor College of Medicine, and were in accordance with National Institutes of

Health guidelines. All human subjects signed an approved consent form. In the following sections, the term subject is used to denote

both monkey and human subjects, unless specified otherwise or implied by the context.

METHOD DETAILS

Experimental setup
Monkeys were chronically implanted with a lightweight polyacetal ring for head restraint, and scleral coils for monitoring eye move-

ments (CNCEngineering, SeattleWA, USA). At the beginning of each experimental session, monkeyswere head-fixed and secured in

a primate chair placed on top of a platform (Kollmorgen, Radford, VA, USA). A 3-chip DLP projector (Christie Digital Mirage 2000,

Cypress, CA, USA) was mounted on top of the platform and rear-projected images onto a 60 3 60 cm tangent screen that was

attached to the front of the field coil frame, �30cm in front of the monkey. The projector was capable of rendering stereoscopic

images generated by an OpenGL accelerator board (Nvidia Quadro FX 3000G).

Human subjects wore a custom-fit thermoplastic mask (CIVCO Medical Solutions) that was screwed to the back of the chair to

restrain their head. The mask was mounted with a binocular eye tracker (ISCAN Inc.) to record the position of the subjects’ pupils

at 60Hz. All other aspects of the setup were similar to the one used for monkeys, but with subjects seated 67.5cm in front of a

149 3 127 cm2 (width 3 height) rectangular screen. Although humans and monkeys were head-fixed, they were both free to

move their eyes when performing the task, except under one experimental manipulation in humans (noted toward the end of the

section below).

Behavioral Task
Subjects used an analog joystick (M20U9T-N82, CTI electronics) with two degrees of freedom and a circular displacement boundary

to control their linear and angular speeds in a virtual environment. This virtual world comprised a ground plane whose textural

elements had limited lifetime ð� 250msÞ to avoid serving as landmarks. The ground plane was circular with a radius of 70 m (near

and far clipping planes at 5cm and 4000cm respectively), with the subject positioned at its center at the beginning of each trial.

Each texture element was an isosceles triangle (base3 height: 8.53 18.5 cm2) that was randomly repositioned and reoriented any-

where in the arena at the end of its lifetime, making it impossible to use as a landmark. The maximum linear and angular speeds were

fixed to ymax = 2ms�1 and umax = 90�=s respectively, and the density of the ground plane was either held fixed at r= 2:5 elements=m2

or varied randomly between two values (r= 2:5 elements=m2 and r= 0:1 elements=m2) in a subset of recording sessions (see below).

The stimulus was rendered as a red-green anaglyph and projected onto the screen in front of the subject’s eyes. Subjects wore gog-

gles fitted with KodakWratten filters (red #29 and green #61) to view the stimulus. The binocular crosstalk for the green and red chan-

nels was 1.7% and 2.3% respectively.

Human subjects pressed a button on the joystick to initiate each trial, and the task was to steer to a random target location that was

cued briefly at the beginning of the trial (Figure 1A). Monkeys performed the same task, but each trial was programmed to start after a

REAGENT or RESOURCE SOURCE IDENTIFIER

Equipment, Software and Algorithms

M20U9T-N82 USB joystick CTI Electronics http://www.ctielectronics.com/

Power 1401 MkII data acquisition system

and Spike2 software

Cambridge Electronic Design Ltd. http://ced.co.uk/

Open Graphics Library (OpenGL) Khronos Group https://www.opengl.org/

Custom-built analysis code MATLAB https://github.com/kaushik-l/monkey-dj
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variable random delay (0.5 – 1.1 s) following the end of the previous trial. The target was a circular disc of radius 20cm whose lumi-

nance was matched to the texture elements. It appeared at a random location between q= ±40� of visual angle at a distance of r =

0:7� 4m (up to 6 m for human subjects) relative the subject at the beginning of the trial. For human subjects, the target disappeared

after one second, which was a cue for the subject to start steering, and the joystick controller was activated. In the case of monkeys,

the target only appeared on the screen for 300ms, and the joystick was always active.

Monkeys typically performed two blocks of �750 trials in each experimental session, and received feedback at the end of each

trial. Monkeys performed a total of �6,000 trials (4 sessions) each. Eye tracking was performed either using scleral coils (monkey

Q & B) or a head-mounted eye tracker (monkey S). In one of the above recording sessions in each monkey, we saved the stimulus

movie and replayed them to the animal at the end of the block. Both the visual stimulus and the schedule of rewards during this replay

block were identical to the active navigation block, with the only difference being that the joystick was withheld and monkeys

passively viewed the stimulus. Furthermore, a subset of the recording sessions (two sessions in each monkey) contained two

randomly interleaved sets of trials that differed in terms of the density of optic flow (r= 0:1 elements=m2 and r= 2:5 elements=m2).

Of the ten human subjects, five subjects performed a total of 600 trials spread equally across three blocks. The blocks were iden-

tical in all respects, except no feedback was provided at the end of the trials in the first and third blocks. The purpose of using this

block structure was to study how feedback affected learning in humans. Although data collected in the absence of feedback (first and

last blocks) are briefly described in Figure S1, the key results of the paper are based only on data collected during the intermittent

block with feedback. Furthermore, during the block with feedback, the performance of human subjects typically stabilized within fifty

trials (Figure S1B). Because we wanted to ensure that the performance was stable during the course of testing, we ignored the first

fifty trials of this block for all our analysis (Figures 1, 2, and4). The remaining five human subjects participated in a version of the exper-

iment that was designed to study the effect of inhibiting eye movements on task performance (Figure 6). These subjects first per-

formed a block of fifty trials with feedback to allow their performance to stabilize. Following this pre-training block, they performed

a test block comprising 400 trials of a version of this task in which a fixation cross was overlaid on top of the target in each trial, again

with feedback. In a random subset of trials (50%), this fixation cross remained on the screen even after the target disappeared and

subjects were instructed to maintain fixation on the cross while steering to the target. The location of the cross remained fixed in

screen coordinates and thus carried no dynamic information about stimulus location.

Feedback
Monkeys received binary feedback following a variable waiting period after stopping (range: 0.1–0.6 s, mean waiting period: 0.25 s).

They received a drop of juice if their stopping position was within 0.6 m away from the center of the target. No juice was provided

otherwise. The fixed reward boundary of 0.6 m was determined using a staircase procedure prior to the experiment to ensure

that monkeys received reward in approximately two-thirds of the trials.

Human subjects received a somewhat richer, adaptive feedback in the form of a bullseye pattern that appeared on the ground at

the end of steering upon pushing a button. The bullseye was centered on the target, with the innermost region having the highest

luminance. The pattern comprised of five zones (Figure S1A), and the radii of the rings were continuously scaled (up or down by

5%) during the experiment using a 1-up 2-down staircase procedure. Additionally, an arrowhead pointing to the target also appeared

on the ground in front of the subjects, colored green or red depending on whether the subject’s stopping position was inside or

outside the reward boundary. The adaptive feedback procedure ensured that human subjects, like monkeys, stopped within the

reward boundary in roughly two-thirds of the trials. Unlikemonkeys, human subjects did not receive juice at the end of each success-

ful trial, but instead received monetary compensation that was commensurate with their performance.

Stimulus and Data acquisition
All stimuli were generated and rendered using C++OpenGraphics Library (OpenGL) by continuously repositioning the camera based

on joystick inputs to update the visual scene at 60 Hz. The camerawas positioned at a height of 1m above the ground plane (10cm for

monkeys). Spike2 software (Power 1401 MkII data acquisition system from Cambridge Electronic Design Ltd.) was used to record

and store the target location ðr�;q�Þ, subject’s position ðr;qÞ, horizontal positions of left and right eyes (al and ar ), vertical eye positions

(bl and br ) and all event markers for offline analysis at a sampling rate of 833ð1 =3Þ Hz.

Model predicted eye position
To test whether subjects’ eyes tracked the location of the (invisible) target, we generated predictions for subjects’ instantaneous eye

positions by assuming that they maintained fixation at the center of the target. ðxt; yt; ztÞ denotes the location of the target relative to

the mid-point of the subject’s eyes at time t. Themean predicted lateral displacement (relative to fixating at the point ð0;N;0Þ) of the
left and right eyes (ba l and bar ) are geometrically related to the target location and the inter-ocular distance ð2DÞ as (Figure S2D):

ba lðtÞ = tan�1

 
xt +Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2t + z2t

p !
; barðtÞ= tan�1

 
xt � Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2t + z2t

p !
(1.1)

Likewise, the vertical displacement of the two eyes (bb l and bbr ) should be:
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bb lðtÞ = tan�1

0B@ ztffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2t + ðxt +DÞ2

q
1CA; bb lðtÞ= tan�1

0B@ ztffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2t + ðxt � DÞ2

q
1CA (1.2)

Note that zt is determined entirely by the camera height and hence time-invariant. In contrast, xt and yt change continuously as the

subject steers to the target, and are both equal to zero in the special case when the subject’s location coincides with the center of the

target. The predicted eye positions also have variances associated with them, which we derive in a later section (Equation 4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Customised MATLAB code was written to analyze data and to fit models. Depending on the quantity estimated, we report statistical

dispersions either using 95% confidence interval, standard deviation, or standard error in themean. The specific dispersion measure

is identified in the portion of the text accompanying the estimates. For error bars in figures, we provide this information in the caption

of the corresponding figure. We report exact p-values for all statistical tests, and describe the outcome as significant if p< 0:05.

Bias estimation
We regressed (with an intercept term) each subject’s response positions ðr; qÞ against target positions ðr�; q�Þ separately for the radial
(r versus r�) and angular (q versus q�) co-ordinates, and the radial and angular multiplicative biases were quantified as the slope of the

respective regressions (Figure 1F). The intercept terms of the regressionmodels denote additive bias. For each subject, we estimated

the 95% confidence intervals for the biases by bootstrapping.

Psychometric analysis
As described in the section on feedback, reward boundaries were chosen to ensure that all subjects correctly stopped within the

reward zone in about two-thirds of the trials. However, the precise radius of these boundaries varied across human subjects, as

well as between humans and monkeys. To objectively compare the performance of different subjects on a common scale, we

performed ROC analysis as follows. For each subject, we first constructed a psychometric function by calculating the proportion

of correct trials as a function of (hypothetical) reward boundary (Figure 1G). In keeping with the range of target distances used for

the two species, we varied the reward boundary between 0–4 m for monkeys and 0–6 m for human subjects. Whereas an infinites-

imally small boundary will result in all trials being classified as incorrect, a large enough reward boundary will yield near-perfect ac-

curacy. To define a chance-level psychometric function, we repeated the above procedure but now by shuffling the target locations

across trials, thereby destroying the relationship between target and response locations. Finally, we obtained the ROC curve by plot-

ting the proportion of correct trials in the original dataset (true positives) against the shuffled dataset (false positives) for each value of

hypothetical reward boundary. We used the area under this ROC curve to obtain an accuracy measure that was independent of the

reward boundary used for various subject.

Characterizing eye position
For convenience, we express the subject’s actual eye position using the following three standard degrees of freedom: ðiÞConjunctive
horizontal movement of the two eyes or ‘lateral version’ quantified here as the mean lateral position of the two eyes, a= ðal +arÞ=2,
ðiiÞ Conjunctive vertical movement of the two eyes or ‘elevation’ quantified here as b= ðbl + brÞ=2, ðiiiÞ Disjunctive horizontal eye

movements or ‘vergence’ quantified here as g= ðal � arÞ=2. Disjunctive eye movements along the vertical direction (vertical

vergence) were an order of magnitude smaller than the precision of our measurements, and therefore we ignored them in all our

analyses. We also transformed the predicted eye positions given by Equation 1 into the above three degrees of freedom using

analogous definitions to obtain ba, bb, and bg.
Saccade detection and pre-processing
We estimated the instantaneous speed of eye movements as ð _a2 + _b

2Þ1=2 where a and b denote lateral version and elevation respec-

tively (as defined above), and a dot denotes a time derivative. Saccades were detected by identifying the time points at which the

speed of eye movements crossed a threshold of 200�/s from below (a threshold of 50�/s yielded similar results). Although saccades

were mostly confined to periods immediately following target onset and end of steering (Figure 2B), we removed a period of 100ms

immediately following the onset of saccades for visualizing the time-course of eye movements during the trial (Figure 2E) and for all

subsequent temporal analyses described below. We verified that this procedure had minimal effect on the results. In approximately

10% of the trials in monkeys and �30% in human subjects, the subject traveled beyond the target. The predicted eye positions

toward the end of these trials were outside the range that was physically possible. Therefore, we removed time points at which

any of the four predicted components of eye movements in Equation 1 exceeded 60� before further analysis. Such time points

constituted less than 3% of the dataset, and including them did not qualitatively alter the results.
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Comparing predicted and observed eye positions
Let 4t = ðat; btÞ and b4t = ðbat; bbtÞ denote the observed and mean predicted eye positions respectively at time t. For each subject, we

computed the square root of the fraction of variance in their eye movements explained by the predictions:

rt =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ck4t � b4t k

2

2D

Ck4t �4t k
2

2D

vuuut (2)

where k$ k 2 denotes the L2 norm, C $D denotes expectation across trials, and4t denotes the mean observed eye position across trials

at time t. Because the predictions are based on a model that assumes subjects’ eyes track the center of the target, we call r the

‘target-tracking index’, or simply ‘tracking-index’. A value of 1 corresponds to perfect prediction while zero implies that the predic-

tions were no better than the mean observation. In principle, the deviation from the predictions can be larger than the intrinsic vari-

ability of the data. We clipped the target-tracking index to zero whenever this happened. Since trial durations were variable, we

aligned all trials relative to the time at which the target was turned off ðt = 0Þ to estimate the time course of tracking coefficient

rstartt ct˛½0;1:8s�. rstart0 corresponds to the similarity between observed and predicted eye position at the moment when the target

was turned off (Figure 2F). We also computed the tracking coefficient by aligning trials with respect to the end of steering ðt =TÞ
to estimate r

stop
t ct˛½ � 1:2s;0�. To visualize the time-course of the tracking coefficient, we plot both rstartt and r

stop
t with a break in

the x axis (Figures 2G, 4, and 5). To assess standard errors and statistical significance of differences between tracking coefficients

from pairs of conditions (e.g., rewarded versus unrewarded trials), we used a bootstrap test with 10,000 bootstrap samples.

Correlation between saccade amplitude and target-tracking error
Because saccades were not very frequent while steering, we pooled data from all subjects (separately for monkeys and humans) for

analyzing saccades. The amplitude of saccades was taken to be the average displacement of the position of the two eyes from

saccade onset to 100ms later (D4= ðDa2 +Db2Þ1=2; Figure 3B). We quantified the effect of saccadic eye movements on target-

tracking error by computing the saccade-triggered average (STA) of the tracking error within a 400ms window centered around

time ts of saccade onset (i.e., Ck4t�ts � b4t�ts k 2
Dts ct˛½ � 0:2s;0:2s�). To quantify the precise relationship between saccade amplitude

and tracking error, we simultaneously regressed horizontal and vertical amplitudes of the saccade (Da and Db) on horizontal and

vertical tracking errors (a� ba and b� bb), respectively, at various lags between ± 0:5s with l2 regularization.

Estimation of position uncertainty
We estimated subjects’ position uncertainty by binning the 2D space into 103 10 cm2 bins. For each bin, we computed the variance

in the subject’s stopping position across trials in which targets fell in that bin. The resulting spatial map of variability was then

convolved with a two-dimensional isotropic Gaussian kernel of width 40cm (equal to the diameter of the target) to yield a smooth

estimate of variability as a function of space (Figure 4B, left). Because subjects aimed to stop on the target, variability in their stopping

position can be interpreted as the uncertainty in subjects’ posterior estimate about their own position.

Deriving an upper bound on the target-tracking index
Once the target disappears, subjects no longer get to directly observe it. To reach the target location, they update their beliefs about

the relative location of the target by integrating their self-motion, which in turnmust be estimated from the observed optic flow. Even if

those beliefs are accurate on average, the uncertainty in believed target location will grow over time on any given trial due to noise

both in the observations and in the integration process. Consequently, the degree to which subjects’ eyes can track the target

(quantified by the tracking index, r) should decrease over time. Using the variability in subjects’ stopping positions to model their

uncertainty in their believed location (see section above), we derived an approximate upper-bound on the temporal dynamics of

the tracking-index rt at time t assuming inter-ocular distance Dz0:

rt%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ckb4t � b4t k

2

2D

Ck4t �4t k
2

2D

vuuut (3)

where b4t = Cb4tD denotes the mean predicted eye position at time t. Note that this represents an upper-bound insofar as the

variability in subject’s stopping positions stems entirely from uncertainty in their believed location. To derive this approximate bound,

we first used the first-order Taylor series approximation of Equation (1) to express the variance of the predicted eye position ðbat; bbtÞ
in terms of the variance of the relative target position ðxt; yt; ztÞ as: VarðbatÞ= ðvf=vxÞ2VarðxtÞ+ ðvf=vyÞ2VarðytÞ and

VarðbbtÞ= ðvg=vxÞ2VarðxtÞ+ ðvg=vyÞ2VarðytÞ, where fðxt; yt; ztÞ= tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2t + z2t

q
=xtÞ and gðxt; yt; ztÞ= tan�1ðZt =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2t + x2t

q
Þ from Equa-

tion (1), and we have used the fact that VarðztÞ= 0 because there is no motion component perpendicular to the ground plane.

Substituting the derivatives, we get:
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VarðbatÞ =
�
y2t + z2t

�
ðx2t + y2t + z2t Þ2

VarðxtÞ+ x2t y
2
t

ðx2t + y2t + z2t Þ2ðy2t + z2t Þ
VarðytÞ (4.1)

Var
�bbt

�
=

z2t

ðx2t + y2t + z2t Þ2ðx2t + y2t Þ
�
x2t VarðxtÞ + y2t VarðytÞ

�
(4.2)

The above equations are based on first-order Taylor series approximation and hold as long as the higher-order terms are relatively

small. Although we cannot not directly measure VarðxtÞ and VarðytÞ, we could estimate them from the data (see previous section) and

use it to determine the variability in predicted eye positions given by Equation 4. Variability in the predictions then implies a lower

bound in the mean squared error achievable by any observation 4t: k4t � b4t k 2
2Rk4t � b4t k

2

2. Substituting this in (2), we obtain

an upper bound on the tracking-index given by Equation 3. Note that, in deriving this approximate upper-bound, we ignored the noise

in generating an eye movement to an intended location (process noise). So in principle, it is possible to derive a tighter bound by

incorporating it. Note that as subjects approach the target, xt and yt approach zero, whereas the uncertainty grows so both

VarðxtÞ and VarðytÞ increase. Together, this leads to an increase in the variance of the predicted eye positions (Equation 4) and

consequently, a gradual decrease in the fraction of explainable variance over time (Equation 3).

Comparing behavioral and target-tracking errors
To test whether poor target-trackingwas associatedwith poor behavioral accuracy, we estimated the correlation between behavioral

and target-tracking errors across trials of individual recording sessions. Behavioral error was given by the Euclidean distance

between the target location and the subject’s response (stopping location) on individual trials, while the target-tracking error was

given by the Euclidean distance between actual and predicted eye position, averaged over the entire time period of the trial, except

for the last 300ms (as the predictions typically broke downwhen the subject was too close to the target). Because trial difficulty could

affect both errors thereby inducing spurious correlations, we estimated the null distribution of correlations using a shuffling procedure

wherewe grouped the trials from each recording session into ten quantiles based on target distance and shuffling only trials within the

same group. The results were quite robust to the number of quantiles.

Assessing performance in the fixation task
To assess the behavioral effect of inhibiting eye movements, we compared human subjects’ performance across ‘eyes-moving’ and

‘eyes-fixed’ trials. Because we did not control for fixation breaks that happened in the ‘eyes-fixed’ condition during the experiment,

we identified and removed such trials offline. Specifically, we removed the trials in which the temporal standard deviation ðsÞ of
subject’s eye position during the trial (i.e., from the time when the target disappeared until the end of steering) exceeded 3� (roughly
half-width of the fixation cross), from our analysis (�10% of the fixation trials across all subjects). The standard deviation was quan-

tified as s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðaÞ+ s2ðbÞ

p
where sðaÞ and sðbÞ denote the temporal standard deviation of lateral version and elevation respectively.

To evaluate the role of eye movements, we compared subjects’ performance in the fixation trials (‘eyes-fixed’) with trials that did not

require fixation (‘eyes-moving’). For both sets of trials, we computed ROC curves for distinguishing ‘rewarded’ and ‘unrewarded’

trials (see section ‘psychometric analysis’ above) and used a paired t test to test whether the mean area under the curves were

different.We also computed the correlation between target and response locations and then used a paired t test to test whether there

was a significant difference between the correlation coefficients in the two sets of trials across subjects (Figure 6D).

DATA AND CODE AVAILABILITY

MATLAB code implementing all quantitative analyses in this study is available online (see Key Resources Table). Datasets generated

by this study are available from the corresponding author upon reasonable request.
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