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SUMMARY

To take the best actions, we often need to maintain and update beliefs about variables that cannot be directly
observed. To understand the principles underlying such belief updates, we need tools to uncover subjects’
belief dynamics from natural behavior. We tested whether eye movements could be used to infer subjects’
beliefs about latent variables using a naturalistic navigation task. Humans and monkeys navigated to a
remembered goal location in a virtual environment that provided optic flow but lacked explicit position
cues. We observed eye movements that appeared to continuously track the goal location even when no
visible target was present there. Accurate goal tracking was associated with improved task performance,
and inhibiting eye movements in humans impaired navigation precision. These results suggest that gaze dy-
namics play a key role in action selection during challenging visuomotor behaviors and may possibly serve as
a window into the subject’s dynamically evolving internal beliefs.

INTRODUCTION

Rational behavior often requires predicting latent states from
sensory observations. Since latent variables cannot be directly
observed, and since the utility of actions depends on the status
of latent variables in the future, we must use statistical regular-
ities in space and in time to predict them. There is a large body
of studies that not only demonstrate that humans exploit regular-
ities in feature space (Knill and Pouget, 2004) but also show how
to infer the associated subjective priors from data (Houlsby et al.,
2013; Paninski, 2006; Smith et al., 2012; Stocker and Simoncelli,
2006; Turnham et al., 2011). In contrast, we know relatively little
about how physical laws that govern the temporal dynamics of
inputs are internalized and used to guide time-evolving beliefs
in the absence of reliable observations (Lee et al., 2014). We refer
to these subjective beliefs about time-varying latent states as
belief dynamics.

The reasons for limited progress in understanding belief
dynamics are twofold. First, psychophysics continues to be domi-
nated by experimental paradigms in which actions are discrete
(e.g., binary choice) and sporadic (e.g., at the end of the trial). In
contrast, continuous tasks (Bonnen et al., 2015; Huk et al.,
2018; Knall et al., 2018; Pitkow and Angelaki, 2017) provide sub-
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jects the opportunity to reveal more information about their beliefs
and predictions as they unfold in time. Second, although theoret-
ical techniques to infer latent beliefs from actions are slowly
becoming available (Kumar et al., 2019; Reddy et al., 2018; Wu
et al., 2019), they have yet to be successfully applied to settings
in which state and action spaces are both continuous. Conse-
quently, principled ways to reliably uncover subjects’ belief dy-
namics from natural behavior are still lacking. Meanwhile, a prac-
tical way to overcome this hurdle would be by covertly
“measuring” those beliefs. One candidate tool to accomplish
this is eye tracking (Spivey, 2007). Saccadic eye movements
have previously been used to understand mental processes un-
derlying a wide variety of abstract tasks such as language
comprehension (Tanenhaus et al., 1995), reading (Rayner, 1998),
mental imagery (Spivey and Geng, 2001), evidence accumulation
(Gold and Shadlen, 2000), visual search (Zhang et al., 2018), and
even random number generation (Loetscher et al., 2010). Further-
more, it has recently been argued that smooth-pursuit eye move-
ments may be influenced by short-term memory (Deravet et al.,
2018; Orban de Xivry et al., 2013). By formulating oculomotor pur-
suit to transiently occluded moving targets as an active inference
process, these eye movements have been used to infer subjects’
internal beliefs (Adams et al., 2015). We wanted to know whether
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eye movements also reflect belief dynamics for extended periods
of time under more naturalistic conditions.

To test this, we created a virtual environment with an unstruc-
tured ground plane on which subjects steered to a transiently
cued target location. To successfully perform the task, subjects
had to first infer their own movements based on the sparse optic
flow cues generated while steering and then integrate them over
time to estimate the relative target location. Although the target
appears briefly at the beginning of the trial, the location of the
target relative to the subject becomes latent as soon as they start
steering, because thereafter, the relative location is not directly
observed, only inferred by discounting one’s own displace-
ments. This task differs from traditional paradigms used to study
latent state inference in two important ways that make it both
challenging and better suited to understanding belief dynamics
in the real world. First, in contrast to tasks in which latent states
remain unchanged throughout the trial, such as right or left in a
random-dot motion (Britten et al., 1992) or heading-discrimina-
tion task (Britten, 2008), here, the latent state dynamically varies
over the course of each trial, under the subject’s control. Sec-
ond, unlike tasks that use pulsatile evidence and discrete
numbers of latent states, such as an auditory-clicks (Brunton
et al., 2013) or accumulating-towers task (Pinto et al., 2018),
both the sensory input (self-motion) and latent states (relative
target position) are continuous valued. To test whether eye
movements were informative regarding subjective beliefs about
those time-varying, continuous-valued latent states, we
recorded the gaze behavior of humans and rhesus macaques
while they performed this task. Parallel experiments in the two
species allowed us to test whether the eye movements were
evolutionarily conserved. We found that both humans and mon-
keys tend to follow the location of the unseen target with their
gaze until they reach it, and their success in tracking the target
over time predicted their final behavioral accuracy. These find-
ings suggest that gaze dynamics reflect internal beliefs and
could help shed light on the computations that transform visual
perception to action in naturalistic settings.

RESULTS

Monkeys and humans performed a visual navigation task in
which they used a joystick to steer to a transiently cued target
location in a three-dimensional virtual reality (VR) environment
without allocentric reference cues (i.e., stable landmarks) (Fig-
ure 1A; STAR Methods). Individual visual elements comprising
the ground plane were transient and could not be used as land-
marks. At the beginning of each trial, a circular target blinked
briefly at a random location within the field of view on the ground
plane and then disappeared. The joystick controlled forward and
angular velocities, allowing subjects to steer freely in two dimen-
sions (Figure 1B). The subjects’ goal was to steer toward the
target and stop when they believed their position fell within a cir-
cular reward zone centered on the target. They received feed-
back about their performance at the end of each trial.

Monkeys were first trained extensively using a staircase pro-
cedure (see STAR Methods) until their performance stopped
improving. Here, we will focus only on their post-training behavior.
At this point, the radius of the reward zone was fixed across trials
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(see STAR Methods) and they received juice reward at the end of
the trial for correctly stopping within this zone (Figure 1C). In
contrast, human subjects received no prior training on this task.
Instead, we used an adaptive feedback scheme in which the
radius of the reward zone was dynamically scaled using a stair-
case procedure to match individual subjects’ abilities (Figure S1A;
see STAR Methods). In practice, it took less than 50 trials for the
performance of humans to stabilize (Figure S1B). Therefore, we
ignored the first 50 trials collected from human subjects and
focused our analyses on the remaining data.

Target locations were uniformly distributed at random over the
ground plane area within the subject’s field of view (Figure 1D,
left). The stimulus was nearly identical for both species except
for minor details such as the range of target distances and the
duration for which the target was visible (see STAR Methods).
All subjects were head-fixed, and we recorded each subject’s
movement trajectory (Figure 1D, middle) as well as eye position
(Figure 1D, right) throughout each trial.

Behavioral Performance

Figure 1E shows the performance of the monkeys in this task.
Both radial distance (Figure 1E, left) and angular eccentricity
(Figure 1E, right) of the monkeys’ responses (stopping location)
were highly correlated with the target location across trials
(n=3 monkeys, Pearson’s r+ standard deviation, radial dis-
tance: 0.72+0.1, angle: 0.84+0.1), suggesting that their
behavior was appropriate for the task. To test whether their per-
formance was accurate, we regressed their responses against
target locations. The slope of the regression was close to unity
both for radial distance (mean =+ standard deviation
=0.92 +0.06) and angle (0.98 +0.1), suggesting that the mon-
keys were nearly unbiased (Figure 1F, green). We did notice
modest undershooting for distant targets, an effect that is likely
due to growing position uncertainty described in previous work
(Lakshminarasimhan et al., 2018a).

We showed previously that humans are systematically biased
when performing this task without feedback (Lakshminarasim-
hanetal., 2018a). Consistent with those findings, human subjects
overshot the target in an initial block of trials in which no feedback
was provided (Figure S1C; n=5, mean slope + standard devia-
tion, radial distance: 1.21+0.2, angle: 1.78+0.3) to a degree
that was proportional to target distance. With feedback, howev-
er, the same subjects quickly adapted their responses to produce
nearly unbiased performance (Figure 1F, purple; see Figure S1D
for individual trials; mean slope + standard deviation, radial dis-
tance: 0.95+0.1, angle: 1.15+0.2). Notably, this improvement in
performance was maintained in a final block of trials in which
feedback was withheld (Figures S1E and S1F; radial distance:
1.03+0.15, angle: 1.2+0.2), suggesting that learning of this
task was stable. To be consistent with monkey data, we only
consider human subjects’ data collected during the block of trials
with feedback in the remainder of this work.

We wanted to know whether humans and monkeys had com-
parable accuracies. Because we used a slightly larger range of
target distances for humans (see STAR Methods), travel dura-
tions were longer (median travel time = interquartile range
[IQR]: monkeys: 1.9+0.8s, humans: 2.7 + 0.6s). Consequently,
we could not directly compare the mean error magnitude of

Neuron 706, 662-674, May 20, 2020 663




Neuron

- ¢ CellP’ress

A B
Unrewarded
End of trial m
Q steering or,0 L
2mrs Linear \! . Rewarded m
ol velocity\ ™ o* trial
1 I Q ® Target
- 60°/s]  Anqul 1 sec R d
~ gular 7\, —— ewar
Screen %Joystick 01+_Ve|¥03ty 3 l ( . Eone
= 1 esponse
Monkey overhead view EE—
D E

Radial distance

Angular eccentricity

Distribution Eye position

of targets

Trajectories

N

m

L1m

overhead view

starting
position B[00
@version 0
first-person view

Response, r (m)
N

Target, r(m)

F .
Regression slopes Psychometric function Proportion correct
o1 1
O 1l o b 7
351 e eyt é — Monkeys
é%’ S — True — Humans
=T o unbiased 5 = Shuffled S 1
=] y
- 5 Actual reward = )
= ¢ o3 window size <
O 1 e 62 %00 )
28 0 2 4 0 (g |
S8 ol L J Hypothetical reward utrie
Monkeys Humans window size, § (m)

Figure 1. Primates Can Navigate by Integrating Optic Flow

(A) Monkeys and human subjects use a joystick to navigate to a cued target (yellow disc) using optic flow cues generated by ground plane elements
(brown triangles).

(B) The time course of linear (top) and angular (bottom) velocities during one example trial. Yellow shaded region corresponds to the time period when the target
was visible on the screen. Time is also coded by color.

(C) Example trials showing incorrect (left) and correct (right) responses of a monkey.

(D) Left: overhead view of the spatial distribution of target positions across trials. Middle: movement trajectories of one monkey during a representative subset of
trials. Blue dot denotes starting location. Right: first-person view of the trajectories of eye movements during the same trials. Abscissa and ordinate show
horizontal version and elevation of the eyes. Blue dots represent the initial eye position (when the target was turned OFF) on each trial.

(E) Left: comparison of the radial distance of the monkey’s response (stopping location) against radial distance of the target across trials. Right: angular
eccentricity of the response versus target angle. Black dashed lines have unity slope. The subject’s starting location was taken as the origin.

(F) Subjects’ accuracy in radial distance (top) and angular eccentricity (bottom) were quantified as the slopes of the corresponding linear regressions and plotted
for individual monkeys and human subjects. Horizontal dashed lines denote the value of the slope that corresponds to unbiased behavior. Error bars denote +1
SEM across trials.

(G) Left: the proportion of correct trials of one monkey for various values of hypothetical reward window size (black). Shuffled estimates are shown in gray. Right:
ROC curves for all subjects, obtained by plotting their true proportion of correct trials (from unshuffled data) against the corresponding chance-level proportions
(from shuffled data) for a range of reward windows. Shaded area denotes standard deviation across subjects. Inset shows the average area under the ROC curve
(AUC) for monkeys and human subjects.

See also Figure S1.

the subjects as it ignores differences in task difficulty. Instead,
we used an approach that is conceptually similar to receiver
operating characteristic (ROC) analysis to objectively compare
the performance of monkeys and human subjects on a common
scale. For each subject, we constructed a “psychometric func-
tion” by computing reward probability as a function of hypothet-
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ical reward window size (Figure 1G; see STAR Methods). By plot-
ting the true psychometric function against one obtained by
shuffling target locations across trials, we obtain the subject’s
ROC curve. Chance-level performance would correspond to
an area under the ROC curve (AUC) of 0.5, while perfectly accu-
rate responses (zero error) will yield an AUC of one. The AUCs for
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both monkey and human subjects were quite large and statisti-
cally indistinguishable (mean + standard deviation, monkeys:
0.85+0.03, humans: 0.84+0.05; t test: p=0.41), suggesting
that they performed comparably. Although it is possible, in prin-
ciple, to avoid integrating optic flow by learning the precise
sensorimotor transformation implemented by the joystick
controller, we previously showed that the variability of human
subjects is greatly affected by removing optic flow cues (Laksh-
minarasimhan et al., 2018a) (Figure S1G). Likewise, monkeys
rapidly adapt their actions in response to gain changes of the
joystick controller (Figure S1H). This suggests that both monkeys
and humans use optic flow to perform this task.

Pattern of Eye Movements

To understand the role of eye movements, we recorded the po-
sition of the subjects’ eyes while they performed the task. Fig-
ure 2A shows the vertical and horizontal eye positions of one
monkey during an example trial. On this trial, we noticed
saccades (eye movements exceeding 200°/s) before the target
was turned off (henceforth called start of the trial) and around
the time when the monkey stopped moving (end of steering),
but not in between. This pattern was evident across trials, as
seen in the trial-averaged density of saccades (Figure 2B).
Across all datasets from monkeys, the average frequency of sac-
cades during the trial was significantly smaller than that during
the inter-trial interval (mean saccade rate + standard deviation,
during trials: 0.5+0.3 Hz, between trials: 0.9+ 0.5 Hz; paired t
test: p =0.02). We noticed a similar tendency among human sub-
jects, although the comparison was not statistically significant
(Figure S2A; during trials: 0.8 £0.5 Hz, between trials: 1.4+ 1
Hz; p=0.11). Moreover, the velocity of eye movements during
steering was generally low, with magnitudes well below 20°/s
both in monkeys (Figure 2C; mean + standard deviation: 16.2 +
2.1°/s) and in humans (Figure S2B; 11.4 + 3.2°/s).

Because saccades were mostly confined to periods when the
animal was not actively steering and subjects appeared to make
slowly varying eye movements while steering, we asked whether
they may be continuously “tracking” the (invisible) target with their
eyes while they navigated to it. Note that as one steers toward the
target location, the target becomes progressively less eccentric
and moves downward in the visual field. Therefore, if subjects’
eyes were to track the target, the magnitude of lateral version
would tend toward zero and the eye elevation would become
more negative with time (Figure S2C). To quantitatively test
whether subjects tracked the target, we first generated ground
truth theoretical predictions for the binocular position of their
eyes during each trial, assuming that they maintained fixation at
the center of the target throughout the trial (Figure S2D; STAR
Methods, Equation 1). Note that at each moment in time, the pre-
dicted eye position depends only the relative target position at that
moment regardless of whether the subject accurately stopped on
target, but we will examine the relationship to the latter in the next
section. We then compared this prediction against the observed
eye position of the subject by expressing both quantities in terms
of three standard components: lateral version, elevation, and ver-
gence (Figure S2E; see STAR Methods).

We expect subjects’ eyes to be drawn to the target when it
appears on the screen. Indeed, the model predictions were high-
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ly correlated with the measured values of lateral version (Fig-
ure 2D, left; and Figure S3A, left; Pearson’s r + standard devia-
tion, monkeys: 0.91+0.1, humans: 0.85+0.1) as well as
elevation (Figure 2D, right; and Figure S3A, right; monkeys:
0.60+0.2, humans:0.42 +0.2) at the beginning of the trial. The
somewhat lower correlations for the latter are understandable,
because it is difficult to precisely fixate at the elevations for
distant targets since they subtend a smaller visual angle. Next,
we examined the time course of eye movements during the trial
and found a striking qualitative correspondence to the predicted
dynamics (Figure 2E and S3B); as the trial progressed, lateral
version became increasingly more concentrated around zero
(Figure S3C, left) while eye elevation was significantly lower (Fig-
ure S3C, right). The correlation between predicted and observed
values remained significantly greater than zero throughout the
trial for both components (Figure S3D). This is quite remarkable,
because the target appeared only transiently at the beginning of
the trial.

On the other hand, the correspondence between predicted
and observed vergence was less clear. Performing this compar-
ison for our task was challenging, because ~90% of the full
range of vergence angles is known to occur within gaze
distances <1 m (Howard, 2012), and the predicted change in ver-
gence is negligible for gaze distances >2 m (Figure S2E, bottom
right). Only two of the monkeys exhibited vergence values that
weakly correlated with the predictions at trial onset (Figure S3A)
and a tendency to make convergent eye movements as they ap-
proached the target (Figure S3B), an effect that was also absent
in human subjects (Figures S3B-S3D). It is possible that this
inconsistency is due to the previously documented difficulty in
executing voluntary vergence movements to imagined moving
targets (Erkelens et al., 1989). This difficulty is likely exacerbated
in VR, where vergence eye movements must be executed
without changing accommodation to maintain a clear retinal im-
age of onscreen objects (Hoffman et al., 2008; Shibata et al.,
2011). Therefore, we did not consider the vergence component
for further analyses.

To quantify how well subject’s eyes tracked the target, we ex-
pressed the eye position as a two-dimensional vector comprised
of lateral version and elevation and computed a target-tracking
index. Specifically, this quantity was given by the square root
of the fraction of variance in the observed eye position that
was explained by the prediction (STAR Methods, Equation 2).
An index of one implies that the subject consistently looked at
the center of the (invisible) target while steering toward it, while
zero denotes lack of correspondence between target and gaze
locations. The target-tracking index was quite high at trial onset
(during the first 500 ms) when the target had just disappeared
(Figure 2F; mean + standard deviation, monkeys: 0.73 +0.05,
humans: 0.71 £ 0.05). Although this slowly dropped during the
trial, the index at the end of the trial (during the last 500 ms) re-
mained well above zero (Figure 2G; mean =+ standard deviation,
monkeys: 0.35+0.1, humans: 0.18£0.05), implying that sub-
jects tend to maintain gaze at the target location while they steer
toward it. To estimate this timescale of the correlation between
gaze and target location, we analyzed the cross-correlogram be-
tween them and found that subjects’ eye positions did not sys-
tematically lead or lag the predictions based on the relative
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Figure 2. Eye Movement Dynamics during the Task

(A) Time course of vertical and horizontal (bottom) positions of the left and right eyes of a monkey during one example trial. Yellow region shows the period when a
target was visible on the screen. Red dashed line corresponds to the end of steering in this trial.

(B) The time course of the rate of saccades during the trial, averaged across all trials separately for each monkey. Trial averaging was done by aligning trials
relative to target onset (yellow region, before the break on the x axis) and end of steering (red dashed line, following the break). Gray line denotes mean saccade

rate across monkeys during the period between trials.
(C) Joint probability distribution over horizontal and vertical eye velocities, averaged across monkeys, while they steered toward the target. Marginals are shown

in black.
(D) Comparison of the predicted and true eye positions in a subset of trials for all monkeys at the moment when the target was just turned OFF.
(E) Time-course of the eye position during a random subset of trials taken from one monkey. Blue and red dots denote the times at which the target was turned

OFF and the end of steering, respectively.
(F) Target-tracking index when the target turned OFF for individual monkeys and humans. Error bars denote +1 SEM obtained either by averaging across

recording sessions (for monkeys) or bootstrapping (for humans).
(G) Time course of the target-tracking index, averaged across monkeys and humans. Gray arrow denotes the chance-level tracking index verified by shuffling

procedure. Shaded region denotes +1 SEM across datasets.
See also Figures S2-S4A.

target location (Figure S4A). This suggests that eye movements The tracking index quantifies how subjects’ dynamical state
reflect the current relative target position rather than predict its  (relative target position) is encoded in their continuous-valued
future value (although the computations used to estimate it could  eye position while they navigate toward the target. However,
still be predictive). recent work has highlighted the importance of discrete saccadic
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Figure 3. Saccadic Eye Movements Aid
Target Tracking

(A) Time course of observed (black) and predicted
(gray) vertical position of the eyes of a monkey.
Black arrows indicate saccades made during three
different task epochs (inter-trial, target presenta-
tion, and steering periods). Yellow region shows
the period when a target was visible on the screen.
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eye movements in mediating flow-tracking behavior of humans
and primates (Knoll et al., 2018). Therefore, we wanted to
know whether saccades aided the target-tracking behavior
of our subjects. To test this, we first compared the distribution
of saccade amplitudes during three non-overlapping epochs of
the experiment: inter-trial periods when saccades tend to be
exploratory, target-presentation phase when saccades are
guided by the external stimulus, and the ensuing task phase
when subjects steered using optic flow (Figure 3A). We found
that across monkeys, the amplitude of saccades was much
lower during the task phase than during other epochs (Figure 3B;
mean + SE: inter-trial, 10.2 + 1.6°; target-presentation, 14.4 +
2.2°; task phase, 7.1 + 1.2°), suggesting that saccades made
while steering were qualitatively different from saccades made
at other times. To directly test whether those saccades served
to correct errors in target tracking, we computed a saccade-trig-
gered average of the target-tracking error and found that this er-
ror dropped significantly (peak decrease of 2.4 + 0.4°;p <10~ '°,
t test) shortly after saccade onset (Figure 3C). Following Knoll
et al. (2018), we used lagged regression analysis to determine
the precise relationship between saccade amplitude and the dy-
namics of target-tracking error (STAR Methods). The amplitude
of both vertical and horizontal components of the saccade
were influenced by tracking error during the previous 200 ms,
suggesting that these saccades were indeed made toward the
target (Figure 3D). Moreover, the regression kernels were
biphasic, implying that the saccades overcompensated for the
tracking errors. Finally, if these saccades were corrective, they
should depend on the subjects’ internal estimate of the target
location, making them increasingly unreliable over time due to
the buildup of uncertainty. Indeed, the strength of the regression
kernel was weaker for later saccades (Figure 3E; peak-to-peak
difference in weights for vertical component: first saccade,
0.44+0.1; third, 0.20+0.15; horizontal component: first
saccade, 1.5+ 0.4; third, 0.15+0.2), thereby signaling a drop in

I -0.3-0.2-0.1 0 0.1 0.2 0.3
Time since saccade onset (s)

(E) Similar to (D), but showing coefficients for
regression done separately for the first, second,
and third saccades made during steering.

See also Figures S4B and S4C.

saccadic precision over time. This suggests that these saccades
were not stereotyped reflexive responses but were dynamically
modulated by ongoing cognitive computations analogous to
“catch-up” saccades observed during smooth pursuit of visible
targets (Daye et al., 2014; Orban de Xivry et al., 2008). Although
the amplitudes of saccades made by human subjects were not
significantly smaller while steering (Figure S4B), regression anal-
ysis revealed a strong association between tracking error and
saccade amplitude but with slightly shorter integration windows.
As observed for monkeys, the strength of this association was
lower for saccades that happened later (Figure S4C), reflecting
a potential influence of noisy integration.

Eyes Convey Internal Beliefs about Target
Subjects could not have possibly been tracking the observed
target location, because the target disappeared at the beginning
of the trial. A plausible explanation for their pattern of eye move-
ments is that they tracked the location at which they believed the
target was present. As they integrate their movements, subjects
need to continuously update their internal estimate of the relative
goal location, and perhaps their eye movements reveal those esti-
mates. If this is the case, then we should be able to better predict
their eye position when their beliefs are more accurate. We tested
this both across subjects and across trials within each subject.
To test this across subjects, we used the variability in subjects’
stopping positions to first quantify the level of uncertainty in their
position estimates (STAR Methods). Due to the low trial count of
individual human subjects, we pooled trials from all humans into
a single dataset. Because uncertainty in knowing one’s location
should limit one’s ability to visually track the target, we used the
estimated uncertainties to calculate an approximate upper
bound on the target-tracking index for each dataset (Figure 4A;
STAR Methods, Equation 3). This upper bound serves to capture
the heterogeneity in the spatial profile of uncertainty both across
subjects (Figure 4B, left) and across sessions within each
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(D) Top: we divided trials into five groups based on the
magnitude of behavioral error. Time courses of the

target-tracking index for the five trial groups from one monkey (dark blue, most accurate; dark red, least accurate). Bottom: average value of the target-tracking index just
before the end of steering (brown region in the top panel) as a function of percentile accuracy for individual subjects. Solid lines show average across subjects. Across
subjects (humans and monkeys), there was a significant correlation between accuracy and tracking coefficient (Pearson’s r = 0.68,p = 3.1x1075).

(E) Top: joint distribution of the behavioral error and the target-tracking error across trials of one session from one monkey. Bottom: mean correlation between behavioral
and target-tracking errors of individual subjects. Error bar denotes +1 SEM obtained by bootstrapping.

See also Figures S4D and S4E.

monkey (Figure S4D). Across all datasets (subjects x sessions),
the target-tracking index observed toward the end of the trial
(during the last 500 ms) was weakly but significantly correlated
with the theoretical upper bounds (Figure 4B, right; Pearson’s
r=0.26, p=0.029). This suggests that differences in the ability
to track the target with the eyes is due, at least in part, to differ-
ences in the magnitudes of positional uncertainty between
subjects.

We also tested whether eye movements reflect fluctuations in
the subject’s belief about their location across trials. Because
subjects were more precise during rewarded (Figure S4E, left)
than during unrewarded trials (Figure S4E, middle), we expect
them to track the target more accurately during rewarded trials
(Figure S4E, right). We computed the target-tracking index sepa-
rately for the two groups of trials and found that it was indeed
higher during rewarded trials (Figure 4C, top). The difference be-
tween the target-tracking indices during the two sets of trials
grew as the trial progressed and was significantly greater than
zero at the end of the trial (Figure 4C, bottom; mean difference
standard deviation during the period shaded in gray:
monkeys: 0.19+0.05, p=4.8x10~%; humans: 0.13+0.05, p=
3.1x1072; bootstrap test, 10,000 bootstrap samples). In fact,
when ftrials were stratified based on behavioral accuracy, we

+
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found that the tracking index increased with behavioral accuracy
(Figure 4D). To more directly test for a fine-grained relationship
between eye movements and task performance, we estimated
the correlation between the behavioral error (distance between
the stopping location and the target) and the target-tracking er-
ror (mean absolute difference between the actual eye position
and the theoretical prediction, see STAR Methods) across trials
(Figure 4E, top). To control for possible spurious effects of trial
difficulty, we computed a shuffled estimate by subdividing the
trials into groups based on initial target distance and then shuf-
fling the trials within each group (see STAR Methods). We found
that the behavioral and target-tracking errors were significantly
correlated across trials (Figure 4E, bottom; Pearson’s r + stan-
dard deviation across all datasets: true: 0.14 +0.04; controlled
shuffle: 0.04 +0.02; p=9.1x1073, paired t test), further reinforc-
ing the view that subjects track their internally estimated goal
location with their eyes.

Purely Reflexive Eye Movements Do Not Explain Target-
Tracking Behavior

In principle, the above results could also be produced by purely
reflexive eye movements, driven solely by optic flow (ocular
following response [OFR]). For instance, if subjects’ eye velocity
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is perfectly correlated with their perceived movement velocity,
then oculomotor errors would be proportional to perceptual
errors, explaining the relatively poor target-tracking in erroneous
trials. However, past studies have shown that errors in reflexive
eye movements are uncorrelated with perceptual errors (Blum
and Price, 2014; Bostrom and Warzecha, 2010; Glasser and
Tadin, 2014; Price and Blum, 2014), suggesting that the
observed eye movements are not reflexive. Two further pieces
of evidence in our own monkey data support this.

First, in a subset of sessions, we recorded the stimulus movie
of the complete block of trials and replayed them back to the an-
imal at the end of the session, but with the joystick withheld (see
STAR Methods). All aspects of the task structure during this
replay block were identical to the initial block of trials (e.g., the
monkey still received juice reward at the end of the correspond-
ing trials), except the animal only viewed a movie of the stimulus
rather than actively performing the task. Importantly, monkeys
were still free to move their eyes. Eye movements were weaker
during passive viewing than during active task (Figures S5A
and S5B), and the magnitude of eye velocity was much smaller
during passive block even though both blocks had identical
visual stimuli (Figure S5C). We analyzed the target tracking
behavior by computing the target-tracking index separately for
the two blocks of trials. Figure 5A (top panel) shows the time
course of the target-tracking index of one monkey during the
both blocks of trials. In this monkey, the tracking index was
much lower during passive viewing (red versus blue). Because
OFR is, by definition, involuntary and difficult to suppress, this
suggests that eye movements contributing to the high target-
tracking index during active steering must be voluntary. Note,

when it appeared on the screen. We
wanted to know whether OFR dynamics,
coupled with the appropriate boundary condition (looking at
the target when it initially appears), might be sufficient to give
the impression that the animal is tracking the target. We simu-
lated this model by shifting the initial eye position on each trial
of the passive block to match the corresponding trial in the active
block, a procedure that left the eye movement dynamics unal-
tered (Figure 5A, black). The tracking index of this simulated
model was substantially lower than that observed during the
active block of trials, suggesting that the target-tracking
behavior is voluntary. In all monkeys, the target tracking during
the active task was significantly stronger than during either the
passive viewing condition or the OFR model (Figure 5A, bottom;
mean difference + standard deviation during the period shaded
in brown, active: 0.27 +0.1, passive: 0.08+0.1, OFR model:
0.07+0.1; p<0.01, bootstrap test). The difference between con-
ditions was small in one monkey (labeled “Q” in Figure 5A, bot-
tom; Figure S5, rightmost), possibly because this animal was
mentally performing the task even during passive viewing.
Second, OFR is known to be sensitive to signal strength (Bar-
thelemy et al., 2009; Quaia et al., 2012). To test whether target
tracking depends on signal strength, we manipulated stimulus
reliability by randomly interleaving trials with two different
densities of ground plane elements by more than an order of
magnitude (see STAR Methods). We analyzed the two sets of
trials separately but found no significant difference between
the target-tracking index (Figure 5B; mean + standard deviation
across subjects, low density: 0.28 + 0.1, high density: 0.31+0.1).
Therefore, the pattern of eye movements observed during this
task likely represents volitional movements rather than reflexive
ones.
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Figure 6. Fixation Affects Task Performance

(A) Trial-averaged temporal variability of subjects’ eye position, quantified by standard deviation (see STAR Methods) during “eyes-moving” (blue) and “eyes-
fixed” (red) trials. Error bars denote standard deviation across subjects (x x p=1.2x1073, paired t test).
(B) ROC curves averaged across subjects, for trials in the eyes-moving (blue) and the eyes-fixed condition (red). Inset shows the area under the two curves. Error

bars denote standard deviation across subjects (xp =2.5x 1072, paired t test).

(C) Top: comparison of the radial distances of the response and the target on trials under the two conditions. Different symbols denote different human subjects.
Bottom: comparison of the (absolute) angular eccentricity of the response and target.
(D) Top: Pearson’s correlation coefficient between the radial distance of subjects’ response and the target for all individual subjects. Bottom: similar comparison
for the absolute angular eccentricity of target and response under the two conditions.

See also Figure S6.

Inhibiting Eye Movements Worsens Task Performance

Since eye movements were predictive of subjects’ navigational
performance, we wanted to know if they were essential for per-
forming the task. To test this, we asked five human subjects to
perform a variation of the task in which we overlaid a cross on
top of the target location and instructed them to fixate on this
cross for as long as it appeared on the screen. In half the trials
(“eyes-moving” condition), the fixation cross disappeared along
with the target so that subjects were free to produce eye move-
ments as before. In the remaining trials (“eyes-fixed’ condition),
the cross remained at the same location on the screen throughout
the trial, and subjects had to perform the task without moving their
eyes (see STAR Methods). Although we did not penalize subjects
for breaking fixation, we verified offline that they maintained
fixation as instructed (Figure 6A and S6). We assessed their
behavioral performance by comparing the AUC and found that
performance was significantly impaired in the eyes-fixed condi-
tion (Figure 6B; n=5 humans, mean AUC = standard deviation;
eyes moving: 0.85+0.07, eyes fixed: 0.77+0.07, p=2.5x1073,
paired t test). Figure 6C shows the responses of individual sub-
jects. Although subjects were nearly unbiased under both condi-
tions, the correlation between target and response locations was
significantly lower in the absence of eye movements (Figure 6D;
mean + standard deviation; Corr(r, r*), eyes moving: 0.71 +
0.1, eyes fixed: 0.49+0.2, p=0.011, paired t test; Corr(|4), |6*|),
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eyes moving: 0.92 + 0.03, eyes fixed: 0.82 + 0.1, p = 0.035). These
results suggest that subjects benefit when their eyes can track the
internally estimated goal location in this task.

DISCUSSION

Although the tracking index remained significantly above chance
throughout the trial in these experiments, it nonetheless
decreased over time. This is expected, because the target disap-
pears, so subjects cannot directly measure its true position but
must instead rely on an internal estimate computed by inte-
grating optic flow with knowledge of the controller dynamics.
We have previously shown that human subjects perform near-
perfect integration in this task (Lakshminarasimhan et al,
2018a). Nevertheless, due to noise in the integration process,
the error in the internal estimate of target location on any given
trial should grow over time. Consequently, even if those
estimates are unbiased, their precision worsens, leading to a
decrease in the target-tracking index (Figure 4A, dashed line).
Consistent with this, the precision of error-correcting saccades
gradually deteriorated as the trial progressed (Figure 3E). There-
fore, the observed decrease in target tracking is an inevitable
consequence of noisy observations and noisy integration and
in fact serves to expose the growing uncertainty in subjective
beliefs.
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Inferring Belief Dynamics

The task design used in this study was motivated by the need to
ultimately understand neural computations governing belief dy-
namics that transform sensory inputs to motor output. In the
real world, these belief dynamics correspond to subjective esti-
mates of latent-variable dynamics, thus making them difficult to
measure and relate to neural activity. Classic experimental par-
adigms used with primates attempt to measure this by training
animals to provide discrete responses to simple stimuli, which
reduces the dimensionality of state and action spaces, limiting
their potential to shed light on natural computations. On the other
hand, paradigms that let rodents loose in open arenas mimic
natural behavior at the expense of sacrificing control over the na-
ture of computations they perform. One exception is a recent pa-
per (Knoll et al., 2018) in which the authors used stimuli with rich
spatiotemporal dynamics to elicit continuous oculomotor
behavior from primates with minimal reinforcement. While the
Knoll et al. (2018) task is similar to ours in that it leverages uncon-
strained eye movements to remedy several shortcomings of
historical approaches, the computation performed by the ani-
mals in their task was somewhat straightforward: inferring the
current focus of expansion from noisy optic flow. In contrast,
we asked animals to use optic flow to navigate to a goal location
without providing explicit position cues. This requires the animal
to first infer their self-motion from optic flow and then temporally
integrate the resulting time-varying estimates to track the dy-
namics of a latent variable (position of the target relative to
them)—a more challenging set of computations. Moreover, we
trained our animals only by rewarding them for reaching the
goal location. Eye movements were not explicitly reinforced,
yet our post hoc analysis revealed that the continuous-valued,
time-varying eye position encoded subjective beliefs about the
time-varying latent variable. We hope that this approach of
covertly measuring belief dynamics will serve as a useful
template for future studies.

The Nature of Eye Movements

To understand the nature of slow eye movements made while
steering toward the target, we analyzed individual components
of eye position and found that both lateral version and elevation
were largely smooth and consistent with the predicted dynamics
for pursuing the invisible target. By analyzing eye movements
during stimulus playback, we ruled out the possibility that the
smooth dynamics correspond to pure ocular following response
(OFR) induced by optic flow. Because these eye movements
were always preceded by fixating a visible target and occurred
in parallel with computations for mentally tracking that same
target, they are functionally more similar to smooth-pursuit eye
movements. Despite ample evidence for smooth-pursuit eye
movements in the absence of foveal stimulation in humans
(Becker and Fuchs, 1985; Missal and Heinen, 2017; Wyatt
etal., 1994) and rhesus macaques (/lg and Thier, 1999), smoothly
tracking a purely imaginary object is thought to be difficult (Sper-
ing and Montagnini, 2011). This is because in the absence of dy-
namic information about target motion, the pursuit velocity grad-
ually decays to zero (Barnes, 2008; Missal and Heinen, 2017).
However, when the underlying model for target motion is known,
subjects can use their dynamic internal representation of the
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target to make predictive smooth pursuit during target blanking
(Adams et al., 2012; Orban de Xivry et al., 2008, 2013). In our
task, the dynamics of optic flow completely determine the
(relative) motion of the target and can subsequently drive eye
movements. Furthermore, the flow fields were self-generated
rather than simulated, a condition that has previously been
shown to improve pursuit of occluded targets (Danion et al.,
2017; Gauthier et al., 1988; Vercher and Gauthier, 1992). Never-
theless, a moderate contribution of OFR induced by optic flow
cannot be completely excluded, so it is possible that the eye
movements reported here are composed of a mixture of reflexive
signals that encode velocity of self-motion and predictive signals
that encode the latent state.

Finally, saccadic eye movements, although infrequent,
contributed to tracking the target. The amplitude of these sac-
cades was largely influenced by target-tracking error during
the previous ~200 ms. These results suggest that the mecha-
nism responsible for generating saccades in this paradigm are
similar to the ones at play in flow tracking (Knoll et al., 2018)
and smooth pursuit of visible objects (Daye et al., 2014; Orban
de Xivry et al., 2008). One reason for the relatively low frequency
of saccades in this study could be that motion in our task was
self-generated and predominantly smooth, whereas saccades
in smooth-pursuit experiments are primarily due to unexpected
jumps in target velocity (de Brouwer et al., 2002).

Computational Role of Tracking Eye Movements

The experimental task was specifically designed to ensure that
subjects would attempt to mentally track the goal location by
integrating momentary sensory evidence about movement pro-
vided by optic flow. In principle, this can be accomplished
without physically tracking the believed goal location with
one’s eyes. Yet, we noticed a significant decline in task perfor-
mance when eye movements were suppressed. This is consis-
tent with previous results that demonstrated that real-world
driving performance is impaired when eye movements are con-
strained (Wilson et al., 2008). Although this does not demon-
strate a need to make tracking eye movements, it suggests
that eye movements play an important role in neural computa-
tions for navigation. Indirect evidence of a role for slow eye
movements in visually guided navigation comes from a recent
study of path integration in which subjects used a joystick to
reproduce previously experienced self-motion (Churan et al.,
2018). Eye movements during the reproduction phase were
similar to those during initial exposure even when optic flow
was removed. This suggests that eye movements constitute a
form of mental imagery that, if suppressed, hamper memory
retrieval (Johansson and Johansson, 2014; Johansson et al.,
2012). Our findings extend this to naturalistic settings and argue
that eye movements have a more dynamic role in path integra-
tion. The precise computational advantage of the specific eye
movement dynamics observed in our task is unclear. Below,
we propose two potential theories.

One possibility is that eye movements directed toward the in-
tended goal location stabilize the mental image of the goal and
could reduce the computational complexity of estimating self-
motion from optic flow similar to the effect of foveal image stabi-
lization (Lappe et al., 1999; Longuet-Higgins and Prazdny, 1980;
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Perrone and Stone, 1994; Sandini and Tistarelli, 1990). Norma-
tive mathematical theories posit that maintaining gaze at a point
on the intended path can greatly simplify the problem of exploit-
ing optic flow (Glennerster et al., 2001; Kim and Turvey, 1999;
Wann and Swapp, 2000). Therefore, the eye movements
reported here may constitute a closed-loop visuomotor process
in which subjects integrate sense data (optic flow) to dynamically
update their beliefs about the relative goal location and in turn
use them to guide future eye movements in order to acquire
new sense data in a computationally useful format. In this
view, eye movements primarily aid optic flow processing.

Alternatively, the observed eye movements might simply be an
embodiment of subjects’ dynamically evolving internal beliefs
about the goal. Humans have a well-documented tendency for
externalizing their internal representations (Barsalou, 2008; Spi-
vey, 2007), with eye movements sometimes employed as a
pointing device to visible as well as invisible objects, much like
one’s index finger (Ballard et al., 1995, 1997; Spivey and Geng,
2001). By allowing dynamic beliefs about the relative target loca-
tion to continuously modulate eye movements in this task, the
brain could piggyback on the oculomotor circuit and reduce
the computational burden on working memory. Consistent with
this interpretation, there is overwhelming evidence for deci-
sion-related responses in primate oculomotor brain areas (de
Lafuente et al., 2015; Shadlen and Newsome, 1996), and such
responses are thought to drive eye movements (Joo et al,
2016). Therefore, in this view, primates use gaze as an afford-
ance to efficiently update and store the output of integrating
optic flow.

Although the above accounts are not mutually exclusive,
simultaneously recording the neural activity from the primate
sensory, oculomotor, and decision areas during this task might
shed light on the dominant role of eye movements and how
they link perception and action. A candidate brain area is the
primate posterior parietal cortex, where there is ample evidence
for convergence of self-motion (Avila et al., 2019; Britten, 2008;
Gu et al., 2012), gaze (Andersen, 1989; Andersen et al., 1987),
and decision-related (Gold and Shadlen, 2007; Ibos and
Freedman, 2017; Lakshminarasimhan et al., 2018b) signals. In
any case, regardless of the mechanistic and computational ex-
planations for these eye movements, the paradigm used here of-
fers a useful approach to directly readout dynamical internal
beliefs in real time, simply by tracking subjects’ eyes.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Equipment, Software and Algorithms

M20U9T-N82 USB joystick CTI Electronics http://www.ctielectronics.com/

Power 1401 Mkll data acquisition system Cambridge Electronic Design Ltd. http://ced.co.uk/

and Spike2 software

Open Graphics Library (OpenGL) Khronos Group https://www.opengl.org/

Custom-built analysis code MATLAB https://github.com/kaushik-I/monkey-dj

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Kaushik
Lakshminarasimhan (jkl9@nyu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three rhesus macaques (all male, 7-8 years. old) and ten human subjects (six males, all adults in the age group 18-32 years.) partic-
ipated in the experiments. All but one subject were unaware of the purpose of the study. All surgeries and experimental procedures
were approved by the Institutional Review Board at Baylor College of Medicine, and were in accordance with National Institutes of
Health guidelines. All human subjects signed an approved consent form. In the following sections, the term subject is used to denote
both monkey and human subjects, unless specified otherwise or implied by the context.

METHOD DETAILS

Experimental setup

Monkeys were chronically implanted with a lightweight polyacetal ring for head restraint, and scleral coils for monitoring eye move-
ments (CNC Engineering, Seattle WA, USA). At the beginning of each experimental session, monkeys were head-fixed and secured in
a primate chair placed on top of a platform (Kollmorgen, Radford, VA, USA). A 3-chip DLP projector (Christie Digital Mirage 2000,
Cypress, CA, USA) was mounted on top of the platform and rear-projected images onto a 60 x 60 cm tangent screen that was
attached to the front of the field coil frame, ~30cm in front of the monkey. The projector was capable of rendering stereoscopic
images generated by an OpenGL accelerator board (Nvidia Quadro FX 3000G).

Human subjects wore a custom-fit thermoplastic mask (CIVCO Medical Solutions) that was screwed to the back of the chair to
restrain their head. The mask was mounted with a binocular eye tracker (ISCAN Inc.) to record the position of the subjects’ pupils
at 60Hz. All other aspects of the setup were similar to the one used for monkeys, but with subjects seated 67.5cm in front of a
149 x 127 cm? (width x height) rectangular screen. Although humans and monkeys were head-fixed, they were both free to
move their eyes when performing the task, except under one experimental manipulation in humans (noted toward the end of the
section below).

Behavioral Task
Subjects used an analog joystick (M20U9T-N82, CTI electronics) with two degrees of freedom and a circular displacement boundary
to control their linear and angular speeds in a virtual environment. This virtual world comprised a ground plane whose textural
elements had limited lifetime (~ 250ms) to avoid serving as landmarks. The ground plane was circular with a radius of 70 m (near
and far clipping planes at 5cm and 4000cm respectively), with the subject positioned at its center at the beginning of each trial.
Each texture element was an isosceles triangle (base x height: 8.5 x 18.5 cm?) that was randomly repositioned and reoriented any-
where in the arena at the end of its lifetime, making it impossible to use as a landmark. The maximum linear and angular speeds were
fixed t0 Umax = 2ms~" and wmax = 90° /s respectively, and the density of the ground plane was either held fixed at p = 2.5 elements /m?
or varied randomly between two values (p=2.5 elements/m? and p = 0.1 elements/m?) in a subset of recording sessions (see below).
The stimulus was rendered as a red-green anaglyph and projected onto the screen in front of the subject’s eyes. Subjects wore gog-
gles fitted with Kodak Wratten filters (red #29 and green #61) to view the stimulus. The binocular crosstalk for the green and red chan-
nels was 1.7% and 2.3% respectively.

Human subjects pressed a button on the joystick to initiate each trial, and the task was to steer to a random target location that was
cued briefly at the beginning of the trial (Figure 1A). Monkeys performed the same task, but each trial was programmed to start after a
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variable random delay (0.5 - 1.1 s) following the end of the previous trial. The target was a circular disc of radius 20cm whose lumi-
nance was matched to the texture elements. It appeared at a random location between § = +40° of visual angle at a distance of r=
0.7 — 4m (up to 6 m for human subjects) relative the subject at the beginning of the trial. For human subjects, the target disappeared
after one second, which was a cue for the subject to start steering, and the joystick controller was activated. In the case of monkeys,
the target only appeared on the screen for 300ms, and the joystick was always active.

Monkeys typically performed two blocks of ~750 trials in each experimental session, and received feedback at the end of each
trial. Monkeys performed a total of ~6,000 trials (4 sessions) each. Eye tracking was performed either using scleral coils (monkey
Q & B) or a head-mounted eye tracker (monkey S). In one of the above recording sessions in each monkey, we saved the stimulus
movie and replayed them to the animal at the end of the block. Both the visual stimulus and the schedule of rewards during this replay
block were identical to the active navigation block, with the only difference being that the joystick was withheld and monkeys
passively viewed the stimulus. Furthermore, a subset of the recording sessions (two sessions in each monkey) contained two
randomly interleaved sets of trials that differed in terms of the density of optic flow (o = 0.1 elements/m? and p=2.5 elements/m?).

Of the ten human subjects, five subjects performed a total of 600 trials spread equally across three blocks. The blocks were iden-
tical in all respects, except no feedback was provided at the end of the trials in the first and third blocks. The purpose of using this
block structure was to study how feedback affected learning in humans. Although data collected in the absence of feedback (first and
last blocks) are briefly described in Figure S1, the key results of the paper are based only on data collected during the intermittent
block with feedback. Furthermore, during the block with feedback, the performance of human subjects typically stabilized within fifty
trials (Figure S1B). Because we wanted to ensure that the performance was stable during the course of testing, we ignored the first
fifty trials of this block for all our analysis (Figures 1, 2, and4). The remaining five human subjects participated in a version of the exper-
iment that was designed to study the effect of inhibiting eye movements on task performance (Figure 6). These subjects first per-
formed a block of fifty trials with feedback to allow their performance to stabilize. Following this pre-training block, they performed
a test block comprising 400 trials of a version of this task in which a fixation cross was overlaid on top of the target in each trial, again
with feedback. In a random subset of trials (50%), this fixation cross remained on the screen even after the target disappeared and
subjects were instructed to maintain fixation on the cross while steering to the target. The location of the cross remained fixed in
screen coordinates and thus carried no dynamic information about stimulus location.

Feedback

Monkeys received binary feedback following a variable waiting period after stopping (range: 0.1-0.6 s, mean waiting period: 0.25 s).
They received a drop of juice if their stopping position was within 0.6 m away from the center of the target. No juice was provided
otherwise. The fixed reward boundary of 0.6 m was determined using a staircase procedure prior to the experiment to ensure
that monkeys received reward in approximately two-thirds of the trials.

Human subjects received a somewhat richer, adaptive feedback in the form of a bullseye pattern that appeared on the ground at
the end of steering upon pushing a button. The bullseye was centered on the target, with the innermost region having the highest
luminance. The pattern comprised of five zones (Figure S1A), and the radii of the rings were continuously scaled (up or down by
5%) during the experiment using a 1-up 2-down staircase procedure. Additionally, an arrowhead pointing to the target also appeared
on the ground in front of the subjects, colored green or red depending on whether the subject’s stopping position was inside or
outside the reward boundary. The adaptive feedback procedure ensured that human subjects, like monkeys, stopped within the
reward boundary in roughly two-thirds of the trials. Unlike monkeys, human subjects did not receive juice at the end of each success-
ful trial, but instead received monetary compensation that was commensurate with their performance.

Stimulus and Data acquisition

All stimuli were generated and rendered using C++ Open Graphics Library (OpenGL) by continuously repositioning the camera based
on joystick inputs to update the visual scene at 60 Hz. The camera was positioned at a height of 1 m above the ground plane (10cm for
monkeys). Spike2 software (Power 1401 Mkll data acquisition system from Cambridge Electronic Design Ltd.) was used to record
and store the target location (r*,6*), subject’s position (r,f), horizontal positions of left and right eyes (o; and «;), vertical eye positions
(8, and 8,) and all event markers for offline analysis at a sampling rate of 833(1 /3) Hz.

Model predicted eye position

To test whether subjects’ eyes tracked the location of the (invisible) target, we generated predictions for subjects’ instantaneous eye
positions by assuming that they maintained fixation at the center of the target. (x:, y:,z:) denotes the location of the target relative to
the mid-point of the subject’s eyes at time t. The mean predicted lateral displacement (relative to fixating at the point (0, «,0)) of the

left and right eyes (a; and @,) are geometrically related to the target location and the inter-ocular distance (24) as (Figure S2D):

= Xt +A = X; — A
a(t) = tan' [ == | 3, (t) =tan" [ == 1.1
o (k) w0 - (2) -1

Likewise, the vertical displacement of the two eyes (8, and E,) should be:
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= Z;

Bi(t) = tan™" %

_— ;E,(t) =tan™' | —————— (1.2)
Y2+ (xe+A)° Y2+ (xe — A

Note that z; is determined entirely by the camera height and hence time-invariant. In contrast, x; and y; change continuously as the

subject steers to the target, and are both equal to zero in the special case when the subject’s location coincides with the center of the

target. The predicted eye positions also have variances associated with them, which we derive in a later section (Equation 4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Customised MATLAB code was written to analyze data and to fit models. Depending on the quantity estimated, we report statistical
dispersions either using 95% confidence interval, standard deviation, or standard error in the mean. The specific dispersion measure
is identified in the portion of the text accompanying the estimates. For error bars in figures, we provide this information in the caption
of the corresponding figure. We report exact p-values for all statistical tests, and describe the outcome as significant if p < 0.05.

Bias estimation

We regressed (with an intercept term) each subject’s response positions (r, §) against target positions (r*, ") separately for the radial
(rversus r*) and angular (f versus 6*) co-ordinates, and the radial and angular multiplicative biases were quantified as the slope of the
respective regressions (Figure 1F). The intercept terms of the regression models denote additive bias. For each subject, we estimated
the 95% confidence intervals for the biases by bootstrapping.

Psychometric analysis

As described in the section on feedback, reward boundaries were chosen to ensure that all subjects correctly stopped within the
reward zone in about two-thirds of the trials. However, the precise radius of these boundaries varied across human subjects, as
well as between humans and monkeys. To objectively compare the performance of different subjects on a common scale, we
performed ROC analysis as follows. For each subject, we first constructed a psychometric function by calculating the proportion
of correct trials as a function of (hypothetical) reward boundary (Figure 1G). In keeping with the range of target distances used for
the two species, we varied the reward boundary between 0-4 m for monkeys and 0-6 m for human subjects. Whereas an infinites-
imally small boundary will result in all trials being classified as incorrect, a large enough reward boundary will yield near-perfect ac-
curacy. To define a chance-level psychometric function, we repeated the above procedure but now by shuffling the target locations
across trials, thereby destroying the relationship between target and response locations. Finally, we obtained the ROC curve by plot-
ting the proportion of correct trials in the original dataset (true positives) against the shuffled dataset (false positives) for each value of
hypothetical reward boundary. We used the area under this ROC curve to obtain an accuracy measure that was independent of the
reward boundary used for various subject.

Characterizing eye position

For convenience, we express the subject’s actual eye position using the following three standard degrees of freedom: (i) Conjunctive
horizontal movement of the two eyes or ‘lateral version’ quantified here as the mean lateral position of the two eyes, = (o + &) /2,
(if) Conjunctive vertical movement of the two eyes or ‘elevation’ quantified here as 8= (8, +8,)/2, (iii) Disjunctive horizontal eye
movements or ‘vergence’ quantified here as y= (o — «)/2. Disjunctive eye movements along the vertical direction (vertical
vergence) were an order of magnitude smaller than the precision of our measurements, and therefore we ignored them in all our
analyses. We also transformed the predicted eye positions given by Equation 1 into the above three degrees of freedom using
analogous definitions to obtain @, 8, and 7.

Saccade detection and pre-processing

We estimated the instantaneous speed of eye movements as (&2 + 52)1/ 2 where o and 8 denote lateral version and elevation respec-
tively (as defined above), and a dot denotes a time derivative. Saccades were detected by identifying the time points at which the
speed of eye movements crossed a threshold of 200°/s from below (a threshold of 50°/s yielded similar results). Although saccades
were mostly confined to periods immediately following target onset and end of steering (Figure 2B), we removed a period of 100ms
immediately following the onset of saccades for visualizing the time-course of eye movements during the trial (Figure 2E) and for all
subsequent temporal analyses described below. We verified that this procedure had minimal effect on the results. In approximately
10% of the trials in monkeys and ~30% in human subjects, the subject traveled beyond the target. The predicted eye positions
toward the end of these trials were outside the range that was physically possible. Therefore, we removed time points at which
any of the four predicted components of eye movements in Equation 1 exceeded 60° before further analysis. Such time points
constituted less than 3% of the dataset, and including them did not qualitatively alter the results.
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Comparing predicied alld_cnbserved eye positions
Let ¢; = (a4, B;) and ¢, = (a, B;) denote the observed and mean predicted eye positions respectively at time t. For each subject, we
computed the square root of the fraction of variance in their eye movements explained by the predictions:

_ 2
(lo: — @ I 2>

1- 2
llo: =@l »)

Pt =

where ||- || , denotes the L, norm, { -) denotes expectation across trials, and ¢; denotes the mean observed eye position across trials
at time t. Because the predictions are based on a model that assumes subjects’ eyes track the center of the target, we call p the
‘target-tracking index’, or simply ‘tracking-index’. A value of 1 corresponds to perfect prediction while zero implies that the predic-
tions were no better than the mean observation. In principle, the deviation from the predictions can be larger than the intrinsic vari-
ability of the data. We clipped the target-tracking index to zero whenever this happened. Since trial durations were variable, we
aligned all trials relative to the time at which the target was turned off (t =0) to estimate the time course of tracking coefficient
PV te [0,1.8s]. p§fa corresponds to the similarity between observed and predicted eye position at the moment when the target
was turned off (Figure 2F). We also computed the tracking coefficient by aligning trials with respect to the end of steering (t =T)
to estimate p{'° Vte [ — 1.2s,0]. To visualize the time-course of the tracking coefficient, we plot both pa and ' with a break in
the x axis (Figures 2G, 4, and 5). To assess standard errors and statistical significance of differences between tracking coefficients
from pairs of conditions (e.g., rewarded versus unrewarded trials), we used a bootstrap test with 10,000 bootstrap samples.

Correlation between saccade amplitude and target-tracking error
Because saccades were not very frequent while steering, we pooled data from all subjects (separately for monkeys and humans) for
analyzing saccades. The amplitude of saccades was taken to be the average displacement of the position of the two eyes from

saccade onset to 100ms later (A = (Aa? +A62)1/ 2 Figure 3B). We quantified the effect of saccadic eye movements on target-
tracking error by computing the saccade-triggered average (STA) of the tracking error within a 400ms window centered around
time t; of saccade onset (i.e., (|| @;_¢, — $t—ts | 2),5 Vte [ - 0.2s,0.2s]). To quantify the precise relationship between saccade amplitude
and tracking error, we simultaneously regressed horizontal and vertical amplitudes of the saccade (A« and AB) on horizontal and

vertical tracking errors (« — @and g — E), respectively, at various lags between +0.5s with /? regularization.

Estimation of position uncertainty

We estimated subjects’ position uncertainty by binning the 2D space into 10 x 10 cm? bins. For each bin, we computed the variance
in the subject’s stopping position across trials in which targets fell in that bin. The resulting spatial map of variability was then
convolved with a two-dimensional isotropic Gaussian kernel of width 40cm (equal to the diameter of the target) to yield a smooth
estimate of variability as a function of space (Figure 4B, left). Because subjects aimed to stop on the target, variability in their stopping
position can be interpreted as the uncertainty in subjects’ posterior estimate about their own position.

Deriving an upper bound on the target-tracking index

Once the target disappears, subjects no longer get to directly observe it. To reach the target location, they update their beliefs about
the relative location of the target by integrating their self-motion, which in turn must be estimated from the observed optic flow. Even if
those beliefs are accurate on average, the uncertainty in believed target location will grow over time on any given trial due to noise
both in the observations and in the integration process. Consequently, the degree to which subjects’ eyes can track the target
(quantified by the tracking index, p) should decrease over time. Using the variability in subjects’ stopping positions to model their
uncertainty in their believed location (see section above), we derived an approximate upper-bound on the temporal dynamics of
the tracking-index p; at time t assuming inter-ocular distance A =0:
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— 2
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where 5,:(?;)!) denotes the mean predicted eye position at time t. Note that this represents an upper-bound insofar as the
variability in subject’s stopping positions stems entirely from uncertainty in their believed location. To derive this approximate bound,
we first used the first-order Taylor series approximation of Equation (1) to express the variance of the predicted eye position (a:, 8;)
in terms of the variance of the relative target position (x:,y:,z:) as: Var(a;)=(9f/dx)?Var(x,) + (6f/dy)*Var(y;) and
Var(8;) = (9g/dx)?Var(x;) + (3g/dy)*Var(y;), where f(x;,y:,z) =tan™'(1/y2 +22 /x;) and g(xt,yr,z:) =tan~" (Z; /\/y2 +x2) from Equa-

tion (1), and we have used the fact that Var(z;) =0 because there is no motion component perpendicular to the ground plane.
Substituting the derivatives, we get:
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The above equations are based on first-order Taylor series approximation and hold as long as the higher-order terms are relatively
small. Although we cannot not directly measure Var(x;) and Var(y;), we could estimate them from the data (see previous section) and
use it to determine the variability in predicted eye positions given by Equation 4. Variability in the predictions then implies a lower

bound in the mean squared error achievable by any observation @;: [|¢; — ®; || 5>|/®; — @ || 2 Substituting this in (2), we obtain
an upper bound on the tracking-index given by Equation 3. Note that, in deriving this approximate upper-bound, we ignored the noise
in generating an eye movement to an intended location (process noise). So in principle, it is possible to derive a tighter bound by
incorporating it. Note that as subjects approach the target, x; and y; approach zero, whereas the uncertainty grows so both
Var(x;) and Var(y;) increase. Together, this leads to an increase in the variance of the predicted eye positions (Equation 4) and
consequently, a gradual decrease in the fraction of explainable variance over time (Equation 3).

Comparing behavioral and target-tracking errors

To test whether poor target-tracking was associated with poor behavioral accuracy, we estimated the correlation between behavioral
and target-tracking errors across trials of individual recording sessions. Behavioral error was given by the Euclidean distance
between the target location and the subject’s response (stopping location) on individual trials, while the target-tracking error was
given by the Euclidean distance between actual and predicted eye position, averaged over the entire time period of the trial, except
for the last 300ms (as the predictions typically broke down when the subject was too close to the target). Because trial difficulty could
affect both errors thereby inducing spurious correlations, we estimated the null distribution of correlations using a shuffling procedure
where we grouped the trials from each recording session into ten quantiles based on target distance and shuffling only trials within the
same group. The results were quite robust to the number of quantiles.

Assessing performance in the fixation task

To assess the behavioral effect of inhibiting eye movements, we compared human subjects’ performance across ‘eyes-moving’ and
‘eyes-fixed’ trials. Because we did not control for fixation breaks that happened in the ‘eyes-fixed’ condition during the experiment,
we identified and removed such trials offline. Specifically, we removed the trials in which the temporal standard deviation (o) of
subject’s eye position during the trial (i.e., from the time when the target disappeared until the end of steering) exceeded 3° (roughly
half-width of the fixation cross), from our analysis (~10% of the fixation trials across all subjects). The standard deviation was quan-
tified as 0 = /a2 («) + 02(8) where o(«) and o(8) denote the temporal standard deviation of lateral version and elevation respectively.
To evaluate the role of eye movements, we compared subjects’ performance in the fixation trials (‘eyes-fixed’) with trials that did not
require fixation (‘eyes-moving’). For both sets of trials, we computed ROC curves for distinguishing ‘rewarded’ and ‘unrewarded’
trials (see section ‘psychometric analysis’ above) and used a paired t test to test whether the mean area under the curves were
different. We also computed the correlation between target and response locations and then used a paired t test to test whether there
was a significant difference between the correlation coefficients in the two sets of trials across subjects (Figure 6D).

DATA AND CODE AVAILABILITY

MATLAB code implementing all quantitative analyses in this study is available online (see Key Resources Table). Datasets generated
by this study are available from the corresponding author upon reasonable request.
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