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Response to comment on “Typical

admissions criteria limit access to underrepresented
groups but fail to predict doctoral completion”
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We provide statistical measures and additional analyses showing that our original analyses were sound. We use a
generalized linear mixed model to account for program-to-program differences with program as a random effect
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without stratifying with tier and found the GRE-P (Graduate Record Examination physics test) effect is not different
from our previous findings, thereby alleviating concern of collider bias. Variance inflation factors for each variable
were low, showing that multicollinearity was not a concern. We show that range restriction is not an issue for GRE-P
or GRE-V (GRE verbal), and only a minor issue for GRE-Q (GRE quantitative). Last, we use statistical measures of
model quality to show that our published models are better than or equivalent to several alternates.

INTRODUCTION

Here, we present a deeper rationale for our work (I) and additional
analyses that support the assumptions and interpretations of our
original analysis. Our response defines terms to ensure shared
language, and we intentionally connect statistical and conceptual
rationales for our decisions. This combination of perspectives pro-
vides a broader context on the rigorous use of statistical data for
informing educational and other public policy decisions. As more
scientists turn to research evidence to inform their policy and prac-
tice, e.g., in structuring their graduate education programs, statistical
evidence should be one resource among several that collectively en-
able sound and principled decisions.

Our work used historical data to measure relationships between
typical admissions criteria and the probability of Ph.D. completion
in physics. This analysis was a retrospective, observational study,
which is subject to standard limitations. It was not a designed exper-
iment, which means that it may not identify precise causal relation-
ships. However, causal inference techniques can be used to attempt
to distinguish causality from spurious correlation. We used causal
inference techniques when studying these data. We assume that the
use of grades and test scores as a part of the admissions process
means that admissions committees believe these variables are useful
in identifying students that will be successful in their programs. We
also assume that a “successful” student is one that completes the
Ph.D. program. In a directed acyclic graph representation of the
causal relationships we study, we treat the covariates within our
models as “exposures” that could (given the admissions process)
influence completion. The data we have do not support the use of
Graduate Record Examination (GRE) scores as a reliable measure
of whether a student will successfully complete the Ph.D. in physics.
In what follows, we provide additional support for this claim and
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our published findings using statistical methods to show that (i)
collider bias is minimal by reproducing our published findings with
a model that excludes tier as a categorical variable, (ii) variance
inflation and range restriction are not problematic, and (iii) our
model choices were just as good as alternates.

INCLUSION OF PROGRAM TIER

The goal of our analysis was to understand how GRE scores and
undergraduate grade point average (UGPA) associate with Ph.D. com-
pletion in physics. Data are clustered by program; we therefore in-
cluded a “tier” variable for each Ph.D. program based on its National
Research Council ranking. Doing so enables more precise estimates
of the relationships between the input variables and completion by
grouping programs that are similar. Highly ranked programs, for
example, may select, fund, mentor, and educate students in differ-
ent ways than lower-ranked programs; our analysis of departments’
published admissions criteria documents this difference explicitly
with respect to admissions. Ignoring these meaningful differences
in our analysis may lead to an overestimation of the magnitude of
relationships that other variables have with the outcome. Poststrat-
ification (e.g., the use of tier to create clusters of programs that are
similar) is a standard practice to mitigate the effects of such selec-
tion bias or omitted variable bias (2).

Poststratification by ranking tier also allows us to prospectively
address the interests of different groups of readers. When higher
education leaders turn to research to guide their policy decisions,
they are typically interested in data about institutions or programs
like their own. For example, faculty in elite physics Ph.D. programs
may question the relevance of findings generated on students en-
rolled in less selective programs and vice versa. By stratifying the
sample, different readers can understand how the results may apply
to their specific interests.

While it is true that stratification may introduce bias in coeffi-
cient estimates in some cases, whether a variable is a collider is not
necessarily obvious a priori. We investigated this possibility and
found little evidence that rank is a collider here. Two alternate anal-
yses, as detailed in the section “Model without tier,” produce similar
conclusions to those in our published results, indicating that rank is
unlikely to act as a collider. A first alternate approach including an
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Fig. 1. Ph.D. completion for U.S. men and women by program in our dataset as a function of GRE physics percentile score.

interaction term between tier and the GRE tests was run: No inter-
action term was associated with Ph.D. completion even at the 0.10
level of significance. A second alternate analysis using a generalized
linear mixed model with random effects to account for program-level
variations (but excluding tier as a parameter) was consistent with
our published results: physics GRE (GRE-P) was not a statistically
significant predictor at the 0.05 level in a model that excluded tier
and all other admissions metrics [quantitative GRE (GRE-Q), verbal
GRE (GRE-V), and undergraduate GPA (ug.GPA)] but included
gender and random effects for intercept and slope for GRE-P. This
analysis yielded a fixed-effect slope estimate for GRE-P of 0.0058 +
0.0031 (P = 0.06), which is similar to our reported findings (0.005 +
0.003). Although not detailed in this document for brevity, the GRE-P
has an even weaker relationship with Ph.D. completion, and reduced
statistical significance, when GRE-Q and ug.GPA are included. These
findings demonstrate that including tier as a categorical variable did
not confound our results.

MULTICOLLINEARITY AND VARIANCE INFLATION

When explaining complex outcomes like who does and does not
finish a Ph.D., a multivariate approach is desirable to enable more
precise estimates of individual variables’ associations with an out-
come. In our case, such an approach was also important given
recent evidence that admissions decision makers in most physics
Ph.D. programs rely on a combination of undergraduate grades

Miller et al., Sci. Adv. 2020; 6 : eaba4647 5 June 2020

(ug.GPA), and verbal, quantitative, and physics subject GRE scores
(i.e., GRE-V, GRE-Q, and GRE-P) (3). While multicollinearity and
variance inflation can be introduced by using multivariate models,
these effects were negligible in our analyses.

In addition to these conceptual rationales for multivariate re-
gression, we offer here statistical rationales for our analysis. One of
our initial steps in assessing the data collected for this work was
to perform a principal components analysis (PCA) to estimate the
potential impact of any collinearity among the four admissions
input metrics (ug.GPA, GRE-V, GRE-Q, and GRE-P). The results
of the PCA indicated that the correlations between the variables of
interest were not large enough to cause concern for including them
as independent variables in a multiparameter regression; this point
is substantiated in detail below. Given this, we used uncorrelated
errors in determining the confidence intervals (CIs) in Fig. 2 of the
original publication. Recalculating the CI using correlated errors
reduces the CI by about a factor of 3. The magnitude of the CI was
the same for male and female in the original Fig. 2 because gender
was a categorical variable in the depicted model, meaning it adds
only an offset to the model result and does not affect the CI’s size.

The indications derived from the PCA are further supported by
the variance inflation factors (VIFs) and correlation matrices, both
of which support our use of multivariate regression analysis with all
four continuous variables.

Multicollinearity can be measured by a VIF. When two variables
are independent (i.e., orthogonal and zero correlation), the VIF is 1.
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Fig. 2. Ph.D. completion for U.S. men and women in our dataset as a function of mean-centered GRE physics percentile score.

Table 1. Fit parameters from the generalized linear mixed model
excluding tier as a parameter and using random effects to account
for program-level variations.

Parameter Fit coefficient SE P value
Intercept 1.36 0.17 3.00x 107"
GREP 00058 .................... 00031 ,,,,,,,,,,,,,,,,,,,,,,, 006 ..............
Fema|e _032 ........................ 012 ......................... 0007 ‘‘‘‘‘‘‘‘‘‘‘‘‘

As the correlation among variables increases, so does the VIF value.
Statisticians agree that when VIF values are between 1 and 5, it is
reasonable to include variables together in a multivariate model; when
the VIF values exceed 10, multicollinearity is an issue that may lead
to errors in interpretation. For more information, see Silvestrini and
Burke (4) and O’Brien (5). As reported in the section “Variance infla-
tion factors,” the VIF calculated for each analytic sample was 2 or
below. Variance inflation was, thus, not an issue in our analysis.

The bivariate Spearman’s correlations among the four continuous
variables in each of the four analytic samples (“All students,” “U.S.
only,” “U.S. female,” and “U.S. male”), and the correlations among
the resultant fit parameters are detailed in the section “Correlation
matrices.” All correlations are weak to moderate. Some possible
reasons for the limited correlation between the GRE-Q and GRE-P
include the following:

1) The GRE-Q has limited relation to physics test performance be-
cause, according to the test maker, it tests “...high school mathemat-
ics and statistics at a level that is generally no higher than a second
course in algebra; it does not include trigonometry, calculus, or other
higher-level mathematics” (6). As a result, a high GRE-Q score will
not imply a high GRE-P score.

Miller et al., Sci. Adv. 2020; 6 : eaba4647 5 June 2020

2) The timing of the GRE-P may mask individuals’ ability to per-
form in graduate school because many U.S. students take the test
without completing some of the advanced physics courses whose
topics appear on the GRE-P. It is noteworthy that the timing of the
GRE-P poses a particularly difficult barrier for students at liberal
arts and other small colleges where a full physics curriculum is not
offered annually; roughly 40% of all physics bachelor’s degrees in the
United States are granted by such institutions.

3) Undergraduate physics majors’ GRE-Q scores are nearly all
within just a few standard errors (SEs) of a perfect score. This strong
range restriction necessarily limits the strength of any correlation
between GRE-Q and any other variable, including GRE-P.

For these reasons, the data do not indicate a problematic correla-
tion between GRE-Q and GRE-P.

RESTRICTION OF RANGE

Range restriction (i.e., a sample whose dependent variable’s range is
much narrower than that of the population) is a problem that could
pose a threat to interpretation in a study using observational data
like ours. This potential bias would have been applicable if our study
aimed to use a sample of physics students to validate the GRE’s utility
across disciplines. Our focus on the subset of test takers that were
physicists mitigates this possibility. As described above, physicists’
GRE-Q scores are restricted relative to the overall test taker popula-
tion: The 10th percentile U.S. physicist scores at about the median
of all test takers, and the median U.S. physicist scores at about the
80th percentile of all test takers. Therefore, the subset of physicist
test takers (i.e., those whose intended graduate major was physics,
which is a search parameter in the ETS database) is the appropriate
group to compare with regard to restriction of range, not the tests’
available range of scores.
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Table 2. Generalized variance inflation factors for each of the models
in Table 2 of our Science Advances article.

Model Parameter GVIF Df G(\;Lf)/\f(); /
ug.GPA 1.14 1 1.07
CGREQ 156 1 125
CGREV. 130 1 7
astdens o CEPL 202 4
1.07 1
1".30 H "2
Race 1".93 H "7
Startyear 11110
ué‘.GPA H 1".16 1
 GREQ 156 1
CGREV 120 1
CGREP 171 1
U.S. only .
Gender 1.09 1
 Ter 155 2
Race 138 6
 Startyear 112 10
‘ uQ‘.GA H 117 1
GR E 1".51 1
CGREV 118 1
US.male  GREP 165 1
C Ter 160 2
Race 140 6
 Startyear 113 10
‘ ugH.GPA H 1".21 1
© GREQ 181 1
CGREV 131 1
U.S. female GRE-P 1.71 1
C Ter 155 2
Race 158 6
 Startyear 137 10

As the section “Restriction of range” shows, the interquartile
ranges (IQRs) of our analytic samples are comparable to ETS-reported
ranges of physicist test takers for GRE-P and GRE-V; restriction of
range is not a concern for those results. The IQR of GRE-Q in our
sample is about two-thirds that for all physicist test takers. Adjust-
ing for this fact may yield somewhat stronger correlations, but the
difference is likely to be modest in practice because the distribution’s
skew means that well above half of physicists’ scores are in the range
studied. Even so, this pattern is not an issue for our analysis because
we are not attempting to validate the examination for the entire
population of test takers.

MODEL QUALITY
Our published work conducted a number of robustness and sensi-
tivity analyses for a variety of models and reported on four models

Miller et al., Sci. Adv. 2020; 6 : eaba4647 5 June 2020

Table 3. Correlation coefficients (Spearman’s rank order correlation)
among the four quantitative admissions metrics within each of
the four analytic samples, averaged across 40 imputations of
missing data.

Sample ug.GPA GRE-Q GRE-V GRE-P
1 0.18 0.18 0.18
All 1 0.23
students GRE-V 1 0.14
GRE-P 1
ug.GPA 1 0.26 0.18 0.28
GRE-Q 1 0.35 0.55
GRE-V 1 0.33
GRE-P 1
ug.GPA 1 0.24 0.16 0.36
GRE-Q 1 0.34 0.54
US.male s s
GRE-V 1
GRE-P
ug.GPA 1 0.26 0.22
U.S.female ... GREQ I L daw
GRE-V 1
GRE-P 1

that included the variables available to and dominantly used by
admissions committees in physics, and were representative of findings
of other models. Our analysis was not intended to identify the best
predictive model with the minimum number of parameters. Here,
we provide additional analyses using the full data to provide further
evidence that our published models are equivalent to or superior to
several alternate models.

In addition to our published models, a few alternate models were
explored: (i) excluding GRE-Q from the four original independent
parameters, (ii) excluding GRE-P from the four original parameters,
(iii) using only GRE-Q, (iv) using only GRE-P, (v) using the average
of GRE-Q and GRE-P along with ug.GPA and GRE-V, and (vi) us-
ing only ug.GPA. We compare the quality of these models using the
Akaike information criteria (corrected for sample size; AICc) (7),
which provides a standard control for different model complexities.
When comparing models, AICc differences of two or less indicate
that models are of equivalent statistical quality. In the section “Relative
quality of models,” we show that the models reported in our paper
either have the minimum AICc or are within two of the minimum
for all the models noted above, with one exception: Using only
ug.GPA for the U.S. women analytic sample is better than the model
we published, and better than all other alternate models.

CONCLUSIONS

Our work shows the GRE-Q and GRE-P have limited reliability in
identifying Ph.D. completers among applicants in our sample of
physics Ph.D. programs, yet these scores can be efficiently used to
eliminate women, underrepresented minorities, and U.S. citizens
from the discipline. In light of this, should programs rely so much
on test scores in pursuit of “the best” when the data show that scores
cannot reliably differentiate between finishers and nonfinishers,
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Table 4. Correlation coefficients (Spearman’s rank order correlation) among the fit parameters within each of the four analytic samples, averaged
across 40 imputations of missing data. Demographic factors (race, citizenship, and gender), tier, and start year fixed effect were also calculated but are not

shown here.

Model

(Intercept)

ug.GPA

GRE-Q

GRE-V

GRE-P

All students

U.S. only

U.S. male

U.S. female

(Intercept)

ug.GPA

GRE-V

GRE-P

ug.GPA

GRE-Q

GRE-V

GRE-P

GRE-Q

GRE-V

GRE-P

ug.GPA

GRE-P

1

(Intercept)

(Intercept)

(Intercept)

-0.71
1

-0.74 -0.37
-0.18

—-0.74 —-0.38
ug.GPA

A ——————

-0.17

0.22

—-0.06

-0.17

0.18
-0.04
-0.42

-0.13

0.20

—-0.06

—-0.41

-0.15

0.15
0.04
-0.43

—-0.06

Table 5. AlCc analysis for the four analytic samples analyzed through a variety of models. The rows for the four analytic samples indicate the difference
between the AlCc for each model relative to the minimum among these models. Models with AlCc differences of two or less are considered equivalent.

Model

Continuous
variables included

Continuous
variables excluded

All students

U.S. only

U.S. male

U.S. female

As published

a

ug.GPA, GRE-Q,

GRE-V, and GRE-P

0.0

1.5

o7

4.5

ug.GPA, GRE-V, and

GRE-P
GRE-V

GRE-Q

GRE-P

GRE-Q

GRE-P

GRE-P

4.1

0.3

2.6

7.9

1.7

2.1

9.8

4.5

4.9

3.0

ug.GPA, GRE-Q, and

29

ug.GPA, GRE-V, and

3.8

ug.GPA, GRE-Q, and

52

GRE-V :

ug.GPA,

(GRE-P + GRE-Q)/2,

and GRE-V

ug.GPA

0.4

0.0

0.0

2.6

GRE-Q, GRE-V, and

GRE-P

7.6

let alone who is “the best”? Might a more rational approach be one
that acknowledges the limitations of selection due to the uncertainties
and biases of both the metrics and gatekeepers and then cultivates
the potential of admitted students that matriculate? Ph.D. student
outcomes are strongly affected by the quality of the mentoring,

Miller et al., Sci. Adv. 2020; 6 : eaba4647 5 June 2020

3.8

0.0

research infrastructure, and other resources available to students.
Substantial research shows that most students leave doctoral pro-
grams for nonacademic reasons (e.g., unwelcoming climates, mentor-
mentee conflicts). Addressing these known issues would be a better
use of human resources and time than conducting a randomized
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Table 6. Data showing the interquartile range (IQR) for different groups of test takers for the indicated tests.

Test Group 25th

Range

75th-25th

50th 75th

Physrcrsts 26

Our sample phy5|crsts 42

Our sample US physmsts 35

EHHE U S. male physrcrsts 21

Our sample U S male physrcrsts 39
u.s. female physicists 13

Our sample: U.S. female

physicists 21

Our sample physrcrsts 81

Unlted States 20

U S phy5|C|sts 62

Our sample US phy5|crsts 79

GRE-Q .
U S male physmsts 66

Our sample U S male physrcrsts 79

U S female 17

U S female physrcrsts 59

Oursample u.s. female
physicists

75

Physrmsts 35
Our sample physrcrsts 57

Uni dS tes 39

U S male 27

51 75 49

65 85 43

55 71 36

37 57 36

83 91 16

Our sample U S physrcrsts 68

GRE-V US ma'e e——

U S male physrcrsts 65

Our sample U S male physrcrsts 68

U S female 35
U S female physmlsts 69

Our sample: U.S. female

physicists 70

control trial of GRE-based admissions, which is likely to admit
nontrivial biases, including collider effects, due to programs’ voluntary
participation. As a practical step in this direction, practitioners should
take into account both the limited utility of test scores and the dis-
parate impact that can accompany programs’ overreliance on scores.

METHODS

Model without tier

To remove tier but not ignore the variability between programs, a
series of generalized linear mixed models were computed using the

Miller et al., Sci. Adv. 2020; 6 : eaba4647 5 June 2020

83 93 23

Ime4 package in R. Multiple imputation was performed on missing
data in the same way as in the published Science Advances models.
The analyses indicate that collider bias did not affect our published
findings.

Our approach began with mean centering the GRE-Q and GRE-P
by program. Mean centering simply shifts the distribution of test
scores for each program relative to its own mean score: Scores above
the program average are positive, while scores below the average are
negative. These shifted scores are then used in a mixed-effect logistic
regression, which has the advantage of allowing us to fit fixed-effect
coefficients for the whole population, while understanding the
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Fig. 3. GRE physics (blue) and GRE quantitative (orange) score distributions for U.S. physicists, plotted as percentile or scaled score. The symbols are bins of width
1 SE error of measure for score differences for each test, decreasing from a perfect score.

program-level variation using random effects. This approach allowed
us to account for variation between programs without including a
parameter related to tier/rank.

A visualization of the GRE-P scores for completers (“Ph.D.”) and
noncompleters (“no Ph.D.”) from the programs in our dataset that
reported GRE-P scores is presented in Fig. 1 by program, while Fig. 2
shows the same data after mean centering.

The most notable feature here is the lack of an obvious difference
between the score means and ranges for completers and noncom-
pleters: Students with above-average scores do not graduate, and
students with below-average scores do graduate. This pattern alone
indicates the limited association between the GRE-P and completion.
Were a strong correlation to exist, the right panel of the figure (and
the individual graphs in the left panel) would have a strong diagonal
character because the “Ph.D.” cluster would be centered at a more
positive value than the “no Ph.D.” cluster. As stated in the main text,
this yielded a fixed-effect slope estimate for GRE-P of 0.0058 +
0.0031 (P = 0.06), which is similar to our reported findings (0.005 +
0.003). We also reiterate that the relationship between GRE-P and
Ph.D. completion weakens when GRE-Q and ug.GPA are included,
and the result has reduced statistical significance.

The full model specification in the Ime4 package was

final.disp ~ GRE.P_cmc + gender + (GRE.P_cmc | program).

The variable final.disp refers to the outcome (completing a Ph.D.
or not), GRE.P_cmc refers to the GRE-P score that has been centered
by the program’s mean score. The term (GRE.P_cmc | program)
allows for correlated random effects between the intercept and the
GRE-P slope. A summary of the fit parameters from the logistic re-
gression is shown in Table 1. The random variance of intercept be-
tween programs (as an SD) was 0.86, the random variance of GRE-P
slope between programs (as a SD) was 0.008, and the covariance
between intercept and GRE-P slope was —0.005.

Variance inflation factors

The VIF was computed using the vif() function within the car pack-
age in R version 3.5.1. See more on the vif() function elsewhere (8).
The standard VIF is computed when each variable represents just

Miller et al., Sci. Adv. 2020; 6 : eaba4647 5 June 2020

one degree of freedom (Df). However, the generalized variance in-
flation factor (GVIF) is automatically used when models include
some categorical variables that have multiple discrete values (e.g.,
tier). The VIF results shown in Table 2 are similar between imputa-
tions, and we, thus, reported just one imputation.

Correlation matrices

Table 3 shows the correlations between the four quantitative admissions
metrics within the dataset. Correlation coefficients are Spearman’s rank
order correlation averaged across 40 imputations of missing data.
Table 4 shows the correlations among the fit parameters resulting
from the indicated models were averaged over 40 imputations.

Relative quality of models

We used the AICc to understand the relative quality of our model
and various alternate models. AICc differences of two or less indi-
cate that two models are of equivalent quality; one model is better
than another if its metric is two to six lower than the other’s metric,
and a model is substantially better than another if its metric is lower
by six or more. Table 5 reports the AICc differences, i.e., the AICc
for one model minus that of the minimum AICc.

It is worth additional note that we used the conventional P value of
0.05 to indicate statistical significance, with a note indicating that
issues with relying on P value are known [e.g., risk of observing type
I errors (i.e., false positives) increases as sample size increases]. The
nebulous nature of the P value is, in part, why we commented through-
out the article on the practical significance of specific parameters
(i.e., reporting both a model’s P value and probabilities predicted by
the model for a range of inputs). The likelihood of finding statistical
significance at a specific level is greater with larger sample sizes, and
our sample sizes are large relative to those used in analyses conducted
by ETS to validate the GRE tests (9): A recent validity study used
508 students in CIP Code 40 to validate the GRE for doctoral students
in the physical sciences. Three of our analytic samples contain four to
eight times as much data, increasing our likelihood of finding statis-
tically significant results, while one contains a comparable amount.
Our study only contains physics students, not a heterogeneous group

70of 8

0202 ‘gz AInr uo /610 Bewasusios saoueApe//:diy Woll papeojumod


http://advances.sciencemag.org/

SCIENCE ADVANCES | TECHNICAL COMMENT

of students from the disciplines comprising CIP Code 40 (astronomy
and astrophysics, atmospheric sciences and meteorology, chemistry,
geological and earth sciences/geosciences, physics, and materials
sciences).

Restriction of range

Table 6 reports the IQRs for groups of GRE test takers and our ana-
lytic sample. In addition, included is the range 75th to 25th; com-
parison of these ranges between the physicist test taker distributions
and our sample for each group gives an idea of range restriction.
The following nomenclature is used: “physicists” = individuals whose
self-identified intended graduate major is physics, as indicated in
ETS database; “U.S.” = individuals identifying as U.S. citizens, as
indicated in the ETS database; “male” = individuals identifying as male,
as indicated in the ETS database; and “female” = individuals identi-
fying as female, as indicated in ETS database (10). Rows without refer-
ence to physicists indicate data for the overall test taker population.
The entries show the overall percentile rank that corresponds to the 25th,
50th, and 75th percentiles within each group. For example, a GRE-P
reported percentile rank of 63 is the 75th percentile for U.S. physicists.

Percentile versus scaled score

The GRE-P and GRE-Q score distributions for physicist test takers are
plotted in Fig. 3 to show the differences between distributions when
using percentile and scaled score. While there are differences, they are
not substantial enough to cause concern about using one over the
other. This may not be the case with the overall test taker population.
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