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S C I E N T I F I C  C O M M U N I T Y

Response to comment on “Typical physics Ph.D. 
admissions criteria limit access to underrepresented 
groups but fail to predict doctoral completion”
Casey W. Miller1*, Benjamin M. Zwickl2, Julie R. Posselt3, Rachel T. Silvestrini4, Theodore Hodapp5

We provide statistical measures and additional analyses showing that our original analyses were sound. We use a 
generalized linear mixed model to account for program-to-program differences with program as a random effect 
without stratifying with tier and found the GRE-P (Graduate Record Examination physics test) effect is not different 
from our previous findings, thereby alleviating concern of collider bias. Variance inflation factors for each variable 
were low, showing that multicollinearity was not a concern. We show that range restriction is not an issue for GRE-P 
or GRE-V (GRE verbal), and only a minor issue for GRE-Q (GRE quantitative). Last, we use statistical measures of 
model quality to show that our published models are better than or equivalent to several alternates.

INTRODUCTION
Here, we present a deeper rationale for our work (1) and additional 
analyses that support the assumptions and interpretations of our 
original analysis. Our response defines terms to ensure shared 
language, and we intentionally connect statistical and conceptual 
rationales for our decisions. This combination of perspectives pro-
vides a broader context on the rigorous use of statistical data for 
informing educational and other public policy decisions. As more 
scientists turn to research evidence to inform their policy and prac-
tice, e.g., in structuring their graduate education programs, statistical 
evidence should be one resource among several that collectively en-
able sound and principled decisions.

Our work used historical data to measure relationships between 
typical admissions criteria and the probability of Ph.D. completion 
in physics. This analysis was a retrospective, observational study, 
which is subject to standard limitations. It was not a designed exper-
iment, which means that it may not identify precise causal relation-
ships. However, causal inference techniques can be used to attempt 
to distinguish causality from spurious correlation. We used causal 
inference techniques when studying these data. We assume that the 
use of grades and test scores as a part of the admissions process 
means that admissions committees believe these variables are useful 
in identifying students that will be successful in their programs. We 
also assume that a “successful” student is one that completes the 
Ph.D. program. In a directed acyclic graph representation of the 
causal relationships we study, we treat the covariates within our 
models as “exposures” that could (given the admissions process) 
influence completion. The data we have do not support the use of 
Graduate Record Examination (GRE) scores as a reliable measure 
of whether a student will successfully complete the Ph.D. in physics. 
In what follows, we provide additional support for this claim and 

our published findings using statistical methods to show that (i) 
collider bias is minimal by reproducing our published findings with 
a model that excludes tier as a categorical variable, (ii) variance 
inflation and range restriction are not problematic, and (iii) our 
model choices were just as good as alternates.

INCLUSION OF PROGRAM TIER
The goal of our analysis was to understand how GRE scores and 
undergraduate grade point average (UGPA) associate with Ph.D. com-
pletion in physics. Data are clustered by program; we therefore in-
cluded a “tier” variable for each Ph.D. program based on its National 
Research Council ranking. Doing so enables more precise estimates 
of the relationships between the input variables and completion by 
grouping programs that are similar. Highly ranked programs, for 
example, may select, fund, mentor, and educate students in differ-
ent ways than lower-ranked programs; our analysis of departments’ 
published admissions criteria documents this difference explicitly 
with respect to admissions. Ignoring these meaningful differences 
in our analysis may lead to an overestimation of the magnitude of 
relationships that other variables have with the outcome. Poststrat-
ification (e.g., the use of tier to create clusters of programs that are 
similar) is a standard practice to mitigate the effects of such selec-
tion bias or omitted variable bias (2).

Poststratification by ranking tier also allows us to prospectively 
address the interests of different groups of readers. When higher 
education leaders turn to research to guide their policy decisions, 
they are typically interested in data about institutions or programs 
like their own. For example, faculty in elite physics Ph.D. programs 
may question the relevance of findings generated on students en-
rolled in less selective programs and vice versa. By stratifying the 
sample, different readers can understand how the results may apply 
to their specific interests.

While it is true that stratification may introduce bias in coeffi-
cient estimates in some cases, whether a variable is a collider is not 
necessarily obvious a priori. We investigated this possibility and 
found little evidence that rank is a collider here. Two alternate anal-
yses, as detailed in the section “Model without tier,” produce similar 
conclusions to those in our published results, indicating that rank is 
unlikely to act as a collider. A first alternate approach including an 
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interaction term between tier and the GRE tests was run: No inter-
action term was associated with Ph.D. completion even at the 0.10 
level of significance. A second alternate analysis using a generalized 
linear mixed model with random effects to account for program-level 
variations (but excluding tier as a parameter) was consistent with 
our published results: physics GRE (GRE-P) was not a statistically 
significant predictor at the 0.05 level in a model that excluded tier 
and all other admissions metrics [quantitative GRE (GRE-Q), verbal 
GRE (GRE-V), and undergraduate GPA (ug.GPA)] but included 
gender and random effects for intercept and slope for GRE-P. This 
analysis yielded a fixed-effect slope estimate for GRE-P of 0.0058 ± 
0.0031 (P = 0.06), which is similar to our reported findings (0.005 ± 
0.003). Although not detailed in this document for brevity, the GRE-P 
has an even weaker relationship with Ph.D. completion, and reduced 
statistical significance, when GRE-Q and ug.GPA are included. These 
findings demonstrate that including tier as a categorical variable did 
not confound our results.

MULTICOLLINEARITY AND VARIANCE INFLATION
When explaining complex outcomes like who does and does not 
finish a Ph.D., a multivariate approach is desirable to enable more 
precise estimates of individual variables’ associations with an out-
come. In our case, such an approach was also important given 
recent evidence that admissions decision makers in most physics 
Ph.D. programs rely on a combination of undergraduate grades 

(ug.GPA), and verbal, quantitative, and physics subject GRE scores 
(i.e., GRE-V, GRE-Q, and GRE-P) (3). While multicollinearity and 
variance inflation can be introduced by using multivariate models, 
these effects were negligible in our analyses.

In addition to these conceptual rationales for multivariate re-
gression, we offer here statistical rationales for our analysis. One of 
our initial steps in assessing the data collected for this work was 
to perform a principal components analysis (PCA) to estimate the 
potential impact of any collinearity among the four admissions 
input metrics (ug.GPA, GRE-V, GRE-Q, and GRE-P). The results 
of the PCA indicated that the correlations between the variables of 
interest were not large enough to cause concern for including them 
as independent variables in a multiparameter regression; this point 
is substantiated in detail below. Given this, we used uncorrelated 
errors in determining the confidence intervals (CIs) in Fig. 2 of the 
original publication. Recalculating the CI using correlated errors 
reduces the CI by about a factor of 3. The magnitude of the CI was 
the same for male and female in the original Fig. 2 because gender 
was a categorical variable in the depicted model, meaning it adds 
only an offset to the model result and does not affect the CI’s size.

The indications derived from the PCA are further supported by 
the variance inflation factors (VIFs) and correlation matrices, both 
of which support our use of multivariate regression analysis with all 
four continuous variables.

Multicollinearity can be measured by a VIF. When two variables 
are independent (i.e., orthogonal and zero correlation), the VIF is 1. 
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Fig. 1. Ph.D. completion for U.S. men and women by program in our dataset as a function of GRE physics percentile score. 
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As the correlation among variables increases, so does the VIF value. 
Statisticians agree that when VIF values are between 1 and 5, it is 
reasonable to include variables together in a multivariate model; when 
the VIF values exceed 10, multicollinearity is an issue that may lead 
to errors in interpretation. For more information, see Silvestrini and 
Burke (4) and O’Brien (5). As reported in the section “Variance infla-
tion factors,” the VIF calculated for each analytic sample was 2 or 
below. Variance inflation was, thus, not an issue in our analysis.

The bivariate Spearman’s correlations among the four continuous 
variables in each of the four analytic samples (“All students,” “U.S. 
only,” “U.S. female,” and “U.S. male”), and the correlations among 
the resultant fit parameters are detailed in the section “Correlation 
matrices.” All correlations are weak to moderate. Some possible 
reasons for the limited correlation between the GRE-Q and GRE-P 
include the following:

1) The GRE-Q has limited relation to physics test performance be-
cause, according to the test maker, it tests “...high school mathemat-
ics and statistics at a level that is generally no higher than a second 
course in algebra; it does not include trigonometry, calculus, or other 
higher-level mathematics” (6). As a result, a high GRE-Q score will 
not imply a high GRE-P score.

2) The timing of the GRE-P may mask individuals’ ability to per-
form in graduate school because many U.S. students take the test 
without completing some of the advanced physics courses whose 
topics appear on the GRE-P. It is noteworthy that the timing of the 
GRE-P poses a particularly difficult barrier for students at liberal 
arts and other small colleges where a full physics curriculum is not 
offered annually; roughly 40% of all physics bachelor’s degrees in the 
United States are granted by such institutions.

3) Undergraduate physics majors’ GRE-Q scores are nearly all 
within just a few standard errors (SEs) of a perfect score. This strong 
range restriction necessarily limits the strength of any correlation 
between GRE-Q and any other variable, including GRE-P.

For these reasons, the data do not indicate a problematic correla-
tion between GRE-Q and GRE-P.

RESTRICTION OF RANGE
Range restriction (i.e., a sample whose dependent variable’s range is 
much narrower than that of the population) is a problem that could 
pose a threat to interpretation in a study using observational data 
like ours. This potential bias would have been applicable if our study 
aimed to use a sample of physics students to validate the GRE’s utility 
across disciplines. Our focus on the subset of test takers that were 
physicists mitigates this possibility. As described above, physicists’ 
GRE-Q scores are restricted relative to the overall test taker popula-
tion: The 10th percentile U.S. physicist scores at about the median 
of all test takers, and the median U.S. physicist scores at about the 
80th percentile of all test takers. Therefore, the subset of physicist 
test takers (i.e., those whose intended graduate major was physics, 
which is a search parameter in the ETS database) is the appropriate 
group to compare with regard to restriction of range, not the tests’ 
available range of scores.

Table 1. Fit parameters from the generalized linear mixed model 
excluding tier as a parameter and using random effects to account 
for program-level variations.  

Parameter Fit coefficient SE P value

Intercept 1.36 0.17 3.00 × 10−15

GRE-P 0.0058 0.0031 0.06

Female −0.32 0.12 0.007

No PhD

PhD

−60 −30 0 30 60
GRE physics, centered by cluster (program) mean

C
om

pl
et

io
n 

ou
tc

om
e

Gender

Male

Female

Fig. 2. Ph.D. completion for U.S. men and women in our dataset as a function of mean-centered GRE physics percentile score. 

 on July 28, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Miller et al., Sci. Adv. 2020; 6 : eaba4647     5 June 2020

S C I E N C E  A D V A N C E S  |  T E C H N I C A L  C O M M E N T

4 of 8

As the section “Restriction of range” shows, the interquartile 
ranges (IQRs) of our analytic samples are comparable to ETS-reported 
ranges of physicist test takers for GRE-P and GRE-V; restriction of 
range is not a concern for those results. The IQR of GRE-Q in our 
sample is about two-thirds that for all physicist test takers. Adjust-
ing for this fact may yield somewhat stronger correlations, but the 
difference is likely to be modest in practice because the distribution’s 
skew means that well above half of physicists’ scores are in the range 
studied. Even so, this pattern is not an issue for our analysis because 
we are not attempting to validate the examination for the entire 
population of test takers.

MODEL QUALITY
Our published work conducted a number of robustness and sensi-
tivity analyses for a variety of models and reported on four models 

that included the variables available to and dominantly used by 
admissions committees in physics, and were representative of findings 
of other models. Our analysis was not intended to identify the best 
predictive model with the minimum number of parameters. Here, 
we provide additional analyses using the full data to provide further 
evidence that our published models are equivalent to or superior to 
several alternate models.

In addition to our published models, a few alternate models were 
explored: (i) excluding GRE-Q from the four original independent 
parameters, (ii) excluding GRE-P from the four original parameters, 
(iii) using only GRE-Q, (iv) using only GRE-P, (v) using the average 
of GRE-Q and GRE-P along with ug.GPA and GRE-V, and (vi) us-
ing only ug.GPA. We compare the quality of these models using the 
Akaike information criteria (corrected for sample size; AICc) (7), 
which provides a standard control for different model complexities. 
When comparing models, AICc differences of two or less indicate 
that models are of equivalent statistical quality. In the section “Relative 
quality of models,” we show that the models reported in our paper 
either have the minimum AICc or are within two of the minimum 
for all the models noted above, with one exception: Using only 
ug.GPA for the U.S. women analytic sample is better than the model 
we published, and better than all other alternate models.

CONCLUSIONS
Our work shows the GRE-Q and GRE-P have limited reliability in 
identifying Ph.D. completers among applicants in our sample of 
physics Ph.D. programs, yet these scores can be efficiently used to 
eliminate women, underrepresented minorities, and U.S. citizens 
from the discipline. In light of this, should programs rely so much 
on test scores in pursuit of “the best” when the data show that scores 
cannot reliably differentiate between finishers and nonfinishers, 

Table 2. Generalized variance inflation factors for each of the models 
in Table 2 of our Science Advances article. 

Model Parameter GVIF Df GVIF^(1/
(2*Df))

All students

ug.GPA 1.14 1 1.07

GRE.Q 1.56 1 1.25

GRE-V 1.30 1 1.14

GRE-P 2.02 1 1.42

Gender 1.07 1 1.03

Tier 1.30 2 1.07

Race 1.93 7 1.05

Start year 1.11 10 1.01

U.S. only

ug.GPA 1.16 1 1.08

GRE-Q 1.56 1 1.25

GRE-V 1.20 1 1.09

GRE-P 1.71 1 1.31

Gender 1.09 1 1.04

Tier 1.55 2 1.12

Race 1.38 6 1.03

Start year 1.12 10 1.01

U.S. male

ug.GPA 1.17 1 1.08

GRE-Q 1.51 1 1.23

GRE-V 1.18 1 1.09

GRE-P 1.65 1 1.28

Tier 1.60 2 1.12

Race 1.40 6 1.03

Start year 1.13 10 1.01

U.S. female

ug.GPA 1.21 1 1.10

GRE-Q 1.81 1 1.35

GRE-V 1.31 1 1.15

GRE-P 1.71 1 1.31

Tier 1.55 2 1.12

Race 1.58 6 1.04

Start year 1.37 10 1.02

Table 3. Correlation coefficients (Spearman’s rank order correlation) 
among the four quantitative admissions metrics within each of 
the four analytic samples, averaged across 40 imputations of 
missing data.  

Sample ug.GPA GRE-Q GRE-V GRE-P

All 
students

ug.GPA 1 0.18 0.18 0.18

GRE-Q 1 0.23 0.55

GRE-V 1 0.14

GRE-P 1

U.S. only

ug.GPA 1 0.26 0.18 0.28

GRE-Q 1 0.35 0.55

GRE-V 1 0.33

GRE-P 1

U.S. male

ug.GPA 1 0.24 0.16 0.36

GRE-Q 1 0.34 0.54

GRE-V 1 0.34

GRE-P 1

U.S. female

ug.GPA 1 0.26 0.22 0.24

GRE-Q 1 0.45 0.61

GRE-V 1 0.42

GRE-P 1
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let alone who is “the best”? Might a more rational approach be one 
that acknowledges the limitations of selection due to the uncertainties 
and biases of both the metrics and gatekeepers and then cultivates 
the potential of admitted students that matriculate? Ph.D. student 
outcomes are strongly affected by the quality of the mentoring, 

research infrastructure, and other resources available to students. 
Substantial research shows that most students leave doctoral pro-
grams for nonacademic reasons (e.g., unwelcoming climates, mentor- 
mentee conflicts). Addressing these known issues would be a better 
use of human resources and time than conducting a randomized 

Table 5. AICc analysis for the four analytic samples analyzed through a variety of models. The rows for the four analytic samples indicate the difference 
between the AICc for each model relative to the minimum among these models. Models with AICc differences of two or less are considered equivalent. 

Model Continuous 
variables included

Continuous 
variables excluded All students U.S. only U.S. male U.S. female

As published ug.GPA, GRE-Q, 
GRE-V, and GRE-P 0.0 1.5 1.7 4.5

a ug.GPA, GRE-V, and 
GRE-P GRE-Q 4.1 1.7 1.1 3.0

b ug.GPA, GRE-Q, and 
GRE-V GRE-P 0.3 2.1 1.7 2.9

c GRE-Q ug.GPA, GRE-V, and 
GRE-P 2.6 9.8 4.5 3.8

d GRE-P ug.GPA, GRE-Q, and 
GRE-V 7.9 11.4 4.9 5.2

e
ug.GPA, 

(GRE-P + GRE-Q)/2, 
and GRE-V

0.4 0.0 0.0 2.6

f ug.GPA GRE-Q, GRE-V, and 
GRE-P 7.6 3.8 1.6 0.0

Table 4. Correlation coefficients (Spearman’s rank order correlation) among the fit parameters within each of the four analytic samples, averaged 
across 40 imputations of missing data. Demographic factors (race, citizenship, and gender), tier, and start year fixed effect were also calculated but are not 
shown here. 

Model (Intercept) ug.GPA GRE-Q GRE-V GRE-P

All students

(Intercept) 1 −0.71 −0.49 −0.03 0.22

ug.GPA 1 −0.14 −0.08 −0.06

GRE-Q 1 −0.16 −0.42

GRE-V 1 −0.17

GRE-P 1

U.S. only

(Intercept) 1 −0.74 −0.37 −0.10 0.18

ug.GPA 1 −0.18 −0.06 −0.04

GRE-Q 1 −0.20 −0.42

GRE-V 1 −0.13

GRE-P 1

U.S. male

(Intercept) 1 −0.74 −0.38 −0.12 0.20

ug.GPA 1 −0.17 −0.05 −0.06

GRE-Q 1 −0.17 −0.41

GRE-V 1 −0.15

GRE-P 1

U.S. female

(Intercept) 1 −0.75 −0.35 −0.04 0.15

ug.GPA 1 −0.19 −0.08 0.04

GRE-Q 1 −0.27 −0.43

GRE-V 1 −0.06

GRE-P 1
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control trial of GRE-based admissions, which is likely to admit 
nontrivial biases, including collider effects, due to programs’ voluntary 
participation. As a practical step in this direction, practitioners should 
take into account both the limited utility of test scores and the dis-
parate impact that can accompany programs’ overreliance on scores.

METHODS
Model without tier
To remove tier but not ignore the variability between programs, a 
series of generalized linear mixed models were computed using the 

lme4 package in R. Multiple imputation was performed on missing 
data in the same way as in the published Science Advances models. 
The analyses indicate that collider bias did not affect our published 
findings.

Our approach began with mean centering the GRE-Q and GRE-P 
by program. Mean centering simply shifts the distribution of test 
scores for each program relative to its own mean score: Scores above 
the program average are positive, while scores below the average are 
negative. These shifted scores are then used in a mixed-effect logistic 
regression, which has the advantage of allowing us to fit fixed-effect 
coefficients for the whole population, while understanding the 

Table 6. Data showing the interquartile range (IQR) for different groups of test takers for the indicated tests.  

Test Group 25th 50th 75th
Range

75th–25th

GRE-P

Physicists 26 51 75 49

Our sample: physicists 42 65 85 43

U.S. physicists 28 40 63 35

Our sample: U.S. physicists 35 55 71 36

U.S. male physicists 21 42 67 46

Our sample: U.S. male physicists 39 57 73 34

U.S. female physicists 13 26 47 34

Our sample: U.S. female 
physicists 21 37 57 36

GRE-Q

Physicists 69 81 91 22

Our sample: physicists 81 89 91 10

United States 20 38 59

U.S. physicists 62 78 87 25

Our sample: U.S. physicists 79 87 91 12

U.S. male 27 51 69

U.S. male physicists 66 78 89 23

Our sample: U.S. male physicists 79 87 91 12

U.S. female 17 30 51

U.S. female physicists 59 73 84 25

Our sample: U.S. female 
physicists 75 83 91 16

GRE-V

Physicists 35 65 86 51

Our sample: physicists 57 77 89 32

United States 39 61 80

U.S. physicists 65 83 93 28

Our sample: U.S. physicists 68 81 91 23

U.S. male 43 69 86

U.S. male physicists 65 80 93 28

Our sample: U.S. male physicists 68 81 91 23

U.S. female 35 56 76

U.S. female physicists 69 83 93 24

Our sample: U.S. female 
physicists 70 83 93 23
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program-level variation using random effects. This approach allowed 
us to account for variation between programs without including a 
parameter related to tier/rank.

A visualization of the GRE-P scores for completers (“Ph.D.”) and 
noncompleters (“no Ph.D.”) from the programs in our dataset that 
reported GRE-P scores is presented in Fig. 1 by program, while Fig. 2 
shows the same data after mean centering.

The most notable feature here is the lack of an obvious difference 
between the score means and ranges for completers and noncom-
pleters: Students with above-average scores do not graduate, and 
students with below-average scores do graduate. This pattern alone 
indicates the limited association between the GRE-P and completion. 
Were a strong correlation to exist, the right panel of the figure (and 
the individual graphs in the left panel) would have a strong diagonal 
character because the “Ph.D.” cluster would be centered at a more 
positive value than the “no Ph.D.” cluster. As stated in the main text, 
this yielded a fixed-effect slope estimate for GRE-P of 0.0058 ± 
0.0031 (P = 0.06), which is similar to our reported findings (0.005 ± 
0.003). We also reiterate that the relationship between GRE-P and 
Ph.D. completion weakens when GRE-Q and ug.GPA are included, 
and the result has reduced statistical significance.

The full model specification in the lme4 package was
final.disp ~ GRE.P_cmc + gender + (GRE.P_cmc | program).
The variable final.disp refers to the outcome (completing a Ph.D. 

or not), GRE.P_cmc refers to the GRE-P score that has been centered 
by the program’s mean score. The term (GRE.P_cmc | program) 
allows for correlated random effects between the intercept and the 
GRE-P slope. A summary of the fit parameters from the logistic re-
gression is shown in Table 1. The random variance of intercept be-
tween programs (as an SD) was 0.86, the random variance of GRE-P 
slope between programs (as a SD) was 0.008, and the covariance 
between intercept and GRE-P slope was −0.005.

Variance inflation factors
The VIF was computed using the vif() function within the car pack-
age in R version 3.5.1. See more on the vif() function elsewhere (8). 
The standard VIF is computed when each variable represents just 

one degree of freedom (Df). However, the generalized variance in-
flation factor (GVIF) is automatically used when models include 
some categorical variables that have multiple discrete values (e.g., 
tier). The VIF results shown in Table 2 are similar between imputa-
tions, and we, thus, reported just one imputation.

Correlation matrices
Table 3 shows the correlations between the four quantitative admissions 
metrics within the dataset. Correlation coefficients are Spearman’s rank 
order correlation averaged across 40 imputations of missing data. 
Table 4 shows the correlations among the fit parameters resulting 
from the indicated models were averaged over 40 imputations.

Relative quality of models
We used the AICc to understand the relative quality of our model 
and various alternate models. AICc differences of two or less indi-
cate that two models are of equivalent quality; one model is better 
than another if its metric is two to six lower than the other’s metric, 
and a model is substantially better than another if its metric is lower 
by six or more. Table 5 reports the AICc differences, i.e., the AICc 
for one model minus that of the minimum AICc.
It is worth additional note that we used the conventional P value of 
0.05 to indicate statistical significance, with a note indicating that 
issues with relying on P value are known [e.g., risk of observing type 
I errors (i.e., false positives) increases as sample size increases]. The 
nebulous nature of the P value is, in part, why we commented through-
out the article on the practical significance of specific parameters 
(i.e., reporting both a model’s P value and probabilities predicted by 
the model for a range of inputs). The likelihood of finding statistical 
significance at a specific level is greater with larger sample sizes, and 
our sample sizes are large relative to those used in analyses conducted 
by ETS to validate the GRE tests (9): A recent validity study used 
508 students in CIP Code 40 to validate the GRE for doctoral students 
in the physical sciences. Three of our analytic samples contain four to 
eight times as much data, increasing our likelihood of finding statis-
tically significant results, while one contains a comparable amount. 
Our study only contains physics students, not a heterogeneous group 

Fig. 3. GRE physics (blue) and GRE quantitative (orange) score distributions for U.S. physicists, plotted as percentile or scaled score. The symbols are bins of width 
1 SE error of measure for score differences for each test, decreasing from a perfect score.
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of students from the disciplines comprising CIP Code 40 (astronomy 
and astrophysics, atmospheric sciences and meteorology, chemistry, 
geological and earth sciences/geosciences, physics, and materials 
sciences).

Restriction of range
Table 6 reports the IQRs for groups of GRE test takers and our ana-
lytic sample. In addition, included is the range 75th to 25th; com-
parison of these ranges between the physicist test taker distributions 
and our sample for each group gives an idea of range restriction. 
The following nomenclature is used: “physicists” = individuals whose 
self-identified intended graduate major is physics, as indicated in 
ETS database; “U.S.” = individuals identifying as U.S. citizens, as 
indicated in the ETS database; “male” = individuals identifying as male, 
as indicated in the ETS database; and “female” = individuals identi-
fying as female, as indicated in ETS database (10). Rows without refer-
ence to physicists indicate data for the overall test taker population. 
The entries show the overall percentile rank that corresponds to the 25th, 
50th, and 75th percentiles within each group. For example, a GRE-P 
reported percentile rank of 63 is the 75th percentile for U.S. physicists.

Percentile versus scaled score
The GRE-P and GRE-Q score distributions for physicist test takers are 
plotted in Fig. 3 to show the differences between distributions when 
using percentile and scaled score. While there are differences, they are 
not substantial enough to cause concern about using one over the 
other. This may not be the case with the overall test taker population.
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