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Abstract
We utilize theoretical modeling to explore the physical mechanisms that govern 
the spreading of epigenetic modifications along chromosomal DNA. We focus on 
a particular modification, methylation of lysine 9 of histone H3 (H3K9), which is 
a representative and critical epigenetic mark that affects chromatin structure and 
gene expression. Our model captures transient loop formation in chromosomal 
DNA that enables distal segments to be in close spatial proximity and permits 
methyltransferase to confer methyl marks over a broad range of genomic 
distances. Using our exact results for the statistical behavior of a semiflexible 
polymer, we find the looping rate for a chromosomal segment based on a mean 
first-passage time process on a free-energy landscape. From this treatment, 
looping kinetics are predicted to be the rate-limiting process for methyl spreading 
at large genomic distances, which explains the considerable variability in the 
methyl profile at such scales. We then develop a ‘phase diagram’ for methylation 
spreading versus the methylation rate and the concentration of HP1, which we 
identify as a global regulator of the state of the chromosomal DNA.
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1.  Introduction

Epigenetics refers to variations in gene expression that are caused not by changes in the 
sequence of DNA basepairs but by chemical modifications to the chromosomal DNA and by 
post-translational modifications to DNA-packaging proteins. Epigenetic marks alter the spatial 
organization of the chromosome and the accessibility of genes to transcription factors, thereby 
affecting gene expression. Thus, cellular identity and behavior are not determined solely by 
the DNA sequence, and it is important to recognize that gene expression also depends on the 
physical organization of the DNA. Improving our understanding of gene expression therefore 
requires first gaining insight into the physical mechanisms that govern chromosome organiza-
tion and the conferral of epigenetic marks.

Nucleosome core particles, which consist of DNA wrapped around a set of eight histone 
proteins, give chromosomal DNA its structure. Methylation and acetylation of the tails of 
these histone proteins are among the most important marks that drive changes in the local and 
global compaction of the chromatin fiber. For example, trimethylation of histone H3 lysine 9 
(H3K9me3) is a critical epigenetic modification that interacts with heterochromatin protein 
1 (HP1), which is required for the formation of heterochromatin [1]. When HP1α binds to 
H3K9 tails of adjacent nucleosomes [2–4], it oligomerizes, causing chromatin to condense 
[1, 5]. HP1α also interacts with the methyltransferase SuVar3-9 [6–8], which facilitates the 
conferral of methyl marks to neighboring histones. SuVar3-9 and HP1 coordinate their func-
tion throughout the process of conferral of methyl marks from parent to daughter cell through 
biophysical mechanisms that are currently not understood.

The coordination between SuVar3-9 and HP1 is inferred from experiments that attach an 
HP1 subunit to a genomic site and track the local spreading of H3K9me3 to neighboring 
nucleosomes [9]. Hodges and Crabtree [10] develop a kinetic model for the spreading of 
methyl marks through the interaction between methyltransferase and HP1α. This theoretical 
model provides a fundamental understanding of the dynamics and extent of spreading of the 
methylation profile based on spatial coordination of chromosomal segments. In this treatment, 
methyl marks spread to neighboring nucleosomes or to distal nucleosomes using a distance-
dependent reaction rate.

Similarly, Erdel et  al model loop-driven epigenetic spreading about a nucleation site. 
In their model, histone modifiers can spread epigenetic marks beyond the nearest neighbor 
according to the contact probability for two nucleosomes separated by a given length of DNA. 
They use experimental measurements of contact probabilities in human and Drosophila cells 
and find that their spreading model agrees with experimental results [11].

Foundational models demonstrate that cooperativity and long-range contacts are required 
to establish robust epigenetic domains [12, 13]. Additional modeling efforts incorporate the 
favorable interaction between nucleosomes with the same epigenetic state. For instance, Jost 
et al combine a copolymer model with an epigenetic regulation model and find that coupling 
between 1D epigenomic sequence and 3D compartmentalization is critical for long-range 
spreading of epigenetic marks and the formation of stable antagonistic epigenetic domains 
[14]. Similarly, Michieletto et al show that coupling between 3D folding of a semiflexible 
polymer and 1D epigenetic spreading leads to bistability and epigenetic memory [15]. While 
these models explain how the kinetics of the methyltransferase and the 3D organization of the 
chromatin would contribute to methyl spreading, they do not address the effect of transient 
DNA loops on the spreading process.

Various measurements of in vivo chromosomal dynamics demonstrate that chromosomal 
loci exhibit extremely slow dynamic behavior that can be characterized by significant viscoe-
lastic resistance to their motion [16–21]. Previous work has demonstrated that DNA dynamics 

S H Sandholtz et alJ. Phys. A: Math. Theor. 52 (2019) 434001



3

play a significant role in the kinetics of looping events in Escherichia coli, as mediated by 
the Lac repressor protein [22, 23]. Chromosome capture experiments (e.g. Hi-C) [24–26] 
that map contact between genomically distant chromosomal loci display distinct patterns that 
correlate with epigenetic histone modifications, suggesting a connection between DNA loop-
ing and epigenetic regulation [15, 27–32]. The prominent plaid pattern in Hi-C contact maps 
indicates that DNA is organized into many distinct, self-associated domains. Several polymer-
physics based models recapitulate such experimental observations of phase segregation in 
chromatin and reinforce the idea that the 3D chromatin structure and epigenetic profile are 
interrelated [28, 29, 31, 32]. Chromosomal dynamics are believed to play a critical role in 
the process of organizing the chromosomes into distinct territories that define the intra- and 
inter-chromosomal contacts [28, 33, 34]. The chromosomal organization is likely to exhibit 
considerable heterogeneity from cell to cell, and chromosomal changes throughout the cell 
cycle would further contribute to the heterogeneity of chromosomal contact maps [35] that are 
postulated to influence methyl-mark conferral [10].

In this manuscript, we present a theoretical model of the physical mechanisms that gov-
ern the spreading of epigenetic modifications through transient DNA looping. Our goal is to 
formulate our theory based on our current understanding of chromosomal dynamics [22, 23] 
and kinetics of the methyltransferase. Taking inspiration from the experimental measurements 
by Hathaway et al [9], we focus on a model where the chromosome is assumed to be uncon-
densed, which is a reasonable representation of the chromosome prior to cell differentiation. 
We utilize our exact results for the statistical behavior of a semiflexible polymer [36–39] to 
determine the free energy of the chain throughout the looping process. We use this free-energy 
treatment to formulate the looping rate as a mean first-passage time process. Our model aims 
to incorporate the interplay between HP1α binding and the methyltransferase SuVar3-9 func-
tion, providing a sufficiently detailed treatment that is amenable to experimental assessment 
through perturbation to the HP1α and SuVar3-9 levels. We find that the relative timescales 
of the kinetics of the methyltransferase and the dynamics of transient looping dictate the 
extent of methyl spreading. Chromosomal dynamics are essential for the efficient spreading 
of methyl marks, especially for mid-range inter-chromosomal segment lengths. Our model 
illustrates that the re-establishment of the epigenetic code upon cell division may depend on 
the physical organization of the DNA polymer, a hypothesis which will be further explored 
in future work.

2.  Results and discussion

Our theoretical model for loop-mediated methylation is constructed in three stages. First, we 
develop a theoretical model to describe the dynamics of looping and unlooping processes of 
a section of chromosomal DNA based on polymer physics arguments. Second, we use the 
looping kinetics as a basis for a model for loop-mediated methylation, which predicts the 
spreading of methyl marks along the chromosome via the stochastic processes of looping and 
methylation. Figure 1 shows a schematic representation of the kinetic processes involved in 
the conferral and removal of a methyl mark on a distal nucleosome from a marked nucleo-
some. Third, we develop a master equation treatment to predict the temporal evolution of the 
methylation distribution and the steady-state methylation profile.

2.1.  DNA looping statistics and kinetics

Chromosomal DNA is organized into a structure that is dictated by DNA-associated proteins, 
including histones, CTCF, and HP1. This organization depends on the epigenetic state of the 
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Figure 1.  The top schematic depicts an array of nucleosomes and the interactions 
among methylation of H3K9, HP1α, and the methyltransferase SuVar3-9. The bottom 
schematic represents the kinetic processes that are involved in the conferral and removal 
of a methyl mark on a nucleosome via chromosomal looping and methyltransferase 
function. Each bead represents a nucleosome that is either methylated (red) or 
unmethylated (blue). The rate of looping ku→l and rate of unlooping kl→u for a 
chromosomal segment dictate events in which two genomically distant nucleosomes 
are within a distance a. Upon looping, a methyl mark is conferred to the distant site with 
rate km, and demethylation of the site occurs with rate kd.

S H Sandholtz et alJ. Phys. A: Math. Theor. 52 (2019) 434001
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cell and the stage in the cell cycle. Our current work is inspired by observations of methylation 
spreading in undifferentiated stem cells [9]. Therefore, we assume the chromosomal DNA is 
uncondensed and able to dynamically adopt looped configurations that arise from thermal 
fluctuations that offset the local deformation free energy of the chain. The simplest descrip-
tion of such polymer behavior is the wormlike chain model, which describes an elastic chain 
subjected to thermal fluctuations [40, 41]. Although the local packaging of nucleosomal DNA 
may be better described as a fluctuating zig–zag polymer [42], our current aim is to identify 
the dominant physical effects that dictate the dynamic spreading of methyl marks, and future 
theoretical development will focus on more detailed descriptions of the chromosomal DNA 
enabled by our coarse-graining approaches [42–44].

The wormlike chain model describes the statistical behavior of a fluctuating elastic chain. 
The space curve �r(s) defines the shape of the chain over the arclength parameter s, where s 
runs from 0 at one end to the chain length L at the opposite end. The bending deformation 
energy of the chain is given by

βEbend =
lp
2

∫ L

0
ds

(
∂�u
∂s

)2

,� (1)

where β = 1/(kBT), lp is the persistence length of the chain, and �u = ∂�r
∂s  is the chain tangent 

vector. The wormlike chain is assumed to be inextensible (i.e. |�u| =
∣∣∂�r
∂s

∣∣ = 1 for all s), which 
is strictly enforced in our work.

The end-to-end distance distribution (i.e. the Green function for chain propagation) is for-
mally determined as

G(�R; L)

=

∫ �r(L)=�R

�r(0)=�0
D[�r(s)] exp (−βEbend)

∏
s

δ (|�u(s)| − 1) ,
� (2)

where 
∫
D[�r(s)] indicates a path integral over all configurations �r(s) that begin at the ori-

gin and end at position �r(L) = �R. The delta function constraint ensures inextensibility is not 
violated in the path integration. Our previous work [36–39] provides exact results for the 

Fourier–Laplace-transformed Green function ˆ̃G(�k; p) (i.e. Fourier transformed from �R  to �k  
and Laplace transformed from N = L/(2p) to p ), given by

ˆ̃G(�k; p) =
1

P0 +
a21K

2

P1+
a22K

2

P2+
a23K

2

P3+...

� (3)

where Pn  =  p   +  l(l  +  1), K = 2lp|�k|, and the ellipses indicate an infinite continued fraction. 
Inversions of the Fourier and Laplace transforms are conducted using numerical approaches 
developed in detail in [39].

We define a loop radius a, which determines whether the polymer chain is in the unlooped 
(|�R| > a) or the looped (|�R| ≤ a) state. In this work, we set this quantity to a  =  3.34 nm, which 
results in the near-neighbor nucleosomes being outside the loop radius for all values of inter-
nucleosome spacing explored. Thus, inter-nucleosome communication occurs via looping 
events rather than direct spreading along the chain. The probability that the chain is in the 
looped state Pl(a, L) is given by
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Pl(a, L) = 4π
∫ a

0
dRR2G(R; L).� (4)

The looping probability Pl is determined over a range of N, shown in figure 2. The looping 
probability is dictated by a balance between competing factors: the bending energy, which 
dominates at short length scales, and the conformational entropy, which dominates at long 
length scales. At intermediate length scales, the looping probability increases as the chain 
becomes more flexible. Hence, the looping probability decreases non-monotonically as the 
polymer length increases. In the limit of large N, the wormlike chain behaves like a flexible 
Gaussian chain, and the looping probability scales as N−3/2, reflecting the entropic cost for 
looping a flexible chain in three dimensions. Since the looping probability Pl is very small 
(Pl < 0.0006), nested loops with multiple internal loops are extremely rare. Thus, we assume 
that each looping event within a very long chain can be treated as a separate event that is 
decoupled from other loops that may form within the chain.

The looping probability Pl provides the equilibrium probability of finding the chain ends 
within a distance a. However, the dynamic transitions between the looped and unlooped states 
require a treatment of the stochastic motion of the chain biased by the underlying thermody-
namic driving forces of chain bending energy and conformational entropy. In this work, we 
assume the motion of the chain ends is governed by a pseudo-equilibrium treatment in which 
the chain is able to instantaneously relax throughout the looping process. Based on general 
polymer physics models, the longest wavelength motion of the chain (i.e. relative motion of 
the chain ends) corresponds to the longest time scale of relaxation [45]. However, looping 
processes of very long polymer chains are not adequately predicted by the pseudo-equilibrium 
assumption [46, 47], and internal chain dynamics must be accounted for in the theory.

Figure 2.  Looping probability as a function of polymer length N = L/(2lp) for a 
reaction radius a/(2lp) = 0.094 (a  =  3.34 nm and lp = 17.68 nm). Discrete points 
identify the segment lengths corresponding to a linker length of 45 basepairs between 
nucleosomes. Power-law scaling N−3/2 demonstrates the asymptotic trend towards 
Gaussian-chain behavior as N → ∞.

S H Sandholtz et alJ. Phys. A: Math. Theor. 52 (2019) 434001



7

We determine the mean first-passage time for looping tu→l  (i.e. going from the unlooped state 
to the looped state) based on biased diffusion with the free energy F = −kBT log

[
R2G(R; L)

]
. 

Based on our previous work [22, 23], we write the governing differential equation for tu→l  as

D
(
∂2tu→l

∂R2 +
f

kBT
∂tu→l

∂R

)
= −1� (5)

and boundary conditions

tu→l(R = a) = 0� (6)

∂tu→l

∂R

∣∣∣∣
R=L

= 0,� (7)

where D is the diffusion coefficient for the chain motion (to be discussed below), and the free 

energy F is used to determine the force f = −∂F
∂R = kBT

∂log(R2G)
∂R . Solving this differential 

equation results in the looping time tu→l  from a starting position R, and we find the looping 
time (or the unlooped lifetime) averaged over the starting position to be

〈tu→l〉 =
4π

D(1− Pl)

×
∫ L

a
dR

∫ R

a
dR′

∫ L

R′
dR′′R

2G(R; L)R′′2G(R′′; L)
R′2G(R′; L)

.
� (8)

We assume the looping kinetics are adequately captured by a Poisson process, and we define 
a looping rate as ku→l = 1/〈tu→l〉. For simplicity, we construct the unlooping rate kl→u (i.e. 
going from the looped state to the unlooped state) by ensuring the looping probability Pl is 
given by

Pl =
〈tl→u〉

〈tl→u〉+ 〈tu→l〉
=

ku→l

kl→u + ku→l
,� (9)

resulting in the expression

kl→u = ku→l
1− Pl

Pl
.� (10)

For our pseudo-equilibrium treatment of the looping kinetics, the diffusivity D is determined 
by the Stokes–Einstein relation D = kBT/ξ, where ξ is the drag coefficient on the chain. In 
this work, we assume D is an effective diffusivity that does not exhibit a strong chain-length 
dependence. This assumption is verified using Brownian dynamics simulations (discussed 
below).

Figure 3 shows the looped lifetime 〈tl→u〉 (top plot) and unlooped lifetime 〈tu→l〉 (bottom 
plot) versus the polymer length N = L/(2lp). These lifetimes are non-dimensionalized by the 
time (2lp)2/D, which defines the timescale for the chain end to diffuse a distance comparable 
to a Kuhn length 2lp. The power-law scalings within figure 3 indicate the expected behaviors 
in the large-length limit as that of a Gaussian chain.

To validate our theoretical predictions for the unlooped lifetimes, we perform Brownian 
dynamics simulations of a wormlike chain. Based on our previous work [42–44], the dynamic 
behavior of a wormlike chain is efficiently captured using the discrete stretchable, shearable 
wormlike chain (dssWLC) model. The dssWLC model is defined by a set of beads numbered 
from 0 to M, with positions �ri and a unit tangent vector �ui attached to each bead. The energy 
function for a given chain configuration is given by [43]

S H Sandholtz et alJ. Phys. A: Math. Theor. 52 (2019) 434001
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βE({�Ri,�ui}) =
M∑
i=1

[ εb
2∆

|�ui −�ui−1 − η�R⊥
i |2

+
ε‖

2∆
(�Ri ·�ui−1 −∆γ)2 +

ε⊥
2∆

|�R⊥
i |2

]� (11)

where β = 1/(kBT), kB is the Boltzmann constant, �Ri = �ri −�ri−1 and �R⊥
i = �Ri − (�Ri ·�ui−1)�ui−1. 

Each segment of this discrete model represents a continuous polymer contour length of ∆. 
The model parameters include the bend modulus εb, stretch modulus ε‖, shear modulus ε⊥, 
fractional ground-state length γ , and bend-shear coupling η. These parameters can be found 

Figure 3.  Looped lifetime 〈tl→u〉 (top plot) and unlooped lifetime 〈tu→l〉 (bottom plot) 
versus the polymer length N = L/(2lp). Discrete points (in red) identify our theoretical 
predictions for segment lengths corresponding to a linker length of 45 basepairs between 
nucleosomes. The black points in the bottom plot give the unlooped lifetime calculated 
from simulation data.

S H Sandholtz et alJ. Phys. A: Math. Theor. 52 (2019) 434001
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for a wormlike chain with persistence length �p at any discretization length ∆, as described in 
our previous work [43].

We perform simulations of a dssWLC with a total length N  =  50 and discretization length 
∆ = 0.5 (i.e. the chain is composed of M  =  100 beads). The initial condition is equilibrated 
using Monte Carlo simulations, and a Brownian dynamics simulation is performed until all 
sets of beads form a looped configuration (with a separation distance a/(2lp) = 0.094). The 
recorded time is averaged to determine the unlooped lifetime for each set of inter-bead spac-
ing, resulting in a simulation prediction for the unlooped lifetime versus chain length N. The 
results from our simulations are included as crosses in the bottom plot of figure 3. These 
results exhibit the characteristic scaling of 〈tu→l〉 ∼ N3/2 for N � 1, substantiating the form
ulation of the unlooped lifetime based on the first-passage time process for a wormlike chain.

2.2.  Loop-mediated methylation

We develop a model for the spreading of epigenetic marks along chromosomal DNA. In this 
work, we focus on the methylation of H3K9, but our model is amenable to other epigenetic 
modifications that involve spatial coordination of DNA loci. Furthermore, our treatment of 
DNA looping and reaction kinetics is relevant to the study of protein translocation along DNA 
via a facilitated diffusion mechanism [48–50]. Our model for methyl spreading incorporates 
several basic kinetic events that are involved in the spreading process.

To mimic the presence of HP1α and its subsequent cooperative binding of methyltrans-
ferase (i.e. SuVar3-9), nucleosomes can acquire a methyl mark by coming within a distance 
a of a genomically distant nucleosome to which HP1α is bound. However, a nucleosome is 
assumed to be incapable of self-methylation. As a result, the polymer must form a loop, with 
looping rate ku→l and unlooping rate kl→u (determined in the previous section), in order for a 
mark to be conferred. Once two nucleosomes are looped (i.e. within a distance a), a methyl 

mark can spread with a rate of methylation km = k(0)m f , where f  is the probability that HP1α 
is bound to the site and k(0)m  represents the rate of methyltransferase activity. HP1α bind-
ing depends on whether the nucleosome is methylated or unmethylated, which is discussed 
further below. The methyltransferase rate k(0)m  depends on the amount of SuVar3-9 present in 
the cell and the strength of interaction between SuVar3-9 and the chromoshadow domain of 
a bound HP1α. We combine these factors into the rate constant k(0)m , and further experimental 
and theoretical work is necessary to develop a more detailed treatment. Finally, a methyl 
mark is removed from a nucleosome site with a rate of demethylation kd. Demethylation may 
occur through a number of possible mechanisms, such as nucleosome turnover and chemical 
demethylation, and each of these mechanisms may proceed with a different rate constant. For 
simplicity, we include one effective rate constant for all demethylation in our model. 

We now proceed to describe an effective methylation rate between distant nucleosomes 
that captures the underlying looping fluctuations. We assume at time t  =  0 that the nucleo-
some transitions to the demethylated state and that the polymer begins in either the looped 
or unlooped state based on its equilibrium statistics (with probabilities Pl and 1− Pl , respec-
tively). At some later time t, a methyl mark will be conferred to the nucleosome from a genom-
ically distant site via an arbitrary number of looping and unlooping events.

We define the effective methylation waiting-time distribution weff
m (t) such that weff

m (t)dt 
gives the probability that a methyl mark is conferred to the nucleosome between t and t + dt . 
For ease of calculation, we adopt the Laplace transform from t to s, resulting in the Laplace-
transformed waiting time distribution

S H Sandholtz et alJ. Phys. A: Math. Theor. 52 (2019) 434001
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w̃eff
m (s) =

km
s+ km + kl→u

[
Pl

1
1− kl→u

s+km+kl→u

ku→l
s+ku→l

+(1− Pl)

ku→l
s+ku→l

1− kl→u
s+km+kl→u

ku→l
s+ku→l

]
.

� (12)

We include a detailed derivation of equation (12) in the appendix of this manuscript. We deter-
mine the effective methylation time 〈teffm 〉 using the property

〈teffm 〉 =
∫ ∞

0
dt tweff

m (t) = − lim
s→0

dw̃eff
m (s)
ds

=
1

kmPl
+

1− Pl

ku→l
,

� (13)

and we define the effective methylation rate constant keffm  as

keffm = k(0)m fPl
1

1+ Pl(1− Pl)
k(0)m f
ku→l

,� (14)

where we explicitly write km = k(0)m f . Notably, the condition ku→l � km (looping is much 
faster than methylation) results in an effective methylation rate keffm → k(0)m fPl, giving a rate 
constant weighted by the equilibrium looping probability Pl. Finite looping kinetics will 
always reduce the rate from this limit, and we define the efficiency factor

η =
1

1+ Pl(1− Pl)
k(0)m f
ku→l

,� (15)

such that keffm = k(0)m fPlη . We define the dimensionless parameter αl = k(0)m (2lp)2/D as the rate 
of methylation relative to the characteristic time scale of looping.

Figure 4 shows the effective methylation rate versus the chain length N for values of 
αl = 101 (blue), 102, 103, and 104 (red) and the fraction of HP1α bound f   =  1. The limit of 
αl → 0 coincides with the looping rate being much faster than the methylation rate. This limit 
results in keffm = kmPl, as shown by the dashed curve in figure 4. Finite values of αl result in a 
lower efficiency η, which suppresses the effective methylation rate. The power-law scalings 
for the Gaussian chain model result in the prediction Plη ∼ N−2 and η ∼ N−1/2, as shown in 
the top and bottom plots in figure 4.

The demethylation rate kd gives the rate of losing a methyl mark on the nucleosome through 
periodic turnover. This rate process applies to the methylated state whether the chain is looped 

or unlooped. We define the dimensionless parameter αd = k(0)m /kd as the rate of methylation 
relative to the rate of demethylation. We have now defined all of the rate processes depicted in 
figure 1 for the methylation and demethylation of a single nucleosome. In the next section, we 
demonstrate how these rate processes are incorporated into a general model for the spreading 
of methyl marks within nucleosomes in chromosomal DNA.

2.3. Time-dependent methylation profile

Our kinetic model of looping, methylation, and demethylation forms the basis for model-
ing methylation spreading. In this work, our aim is to focus on the looping processes that 
arise in the methylation process. Thus, we neglect intermediate levels of methylation (i.e. 
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monomethylation and dimethylation). Furthermore, each nucleosome exists in either a meth-
ylated or unmethylated state without consideration of the methylated state of the two tails of 
the histone octamer. Our basic model presented here can be extended to include independent 
tails and the intermediate states, as is captured in previous efforts to model the spreading of 
related epigenetic marks [51].

Linker lengths connecting adjacent nucleosomes range from about 10 to 90 basepairs for 
different species and tissues [52, 53], and there is considerable heterogeneity in linker length 
even within a single genome [54]. Recent modeling work has shown that heterogeneously-
spaced nucleosomes create a chromatin fiber whose looping properties match that of a single 

Figure 4.  Top plot shows the effective methylation rate keffm /km versus the loop length 

N = L/(2lp) for αl = k(0)m (2lp)2/D = Plη ranging from αl = 101 (blue) to αl = 104 
(red) and the fraction of HP1α bound set to unity (i.e. f   =  1). The dashed curve shows 
the behavior for η = 1 (i.e. keffm = kmPl). Bottom plot shows the efficiency η for the 
same parameters as in the top plot. As in previous plots, discrete points identify a linker 
length of 45 basepairs between nucleosomes.
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wormlike chain with a reduced, effective persistence length, which is determined purely by the 
average nucleosome spacing [55]. Based on these results, we consider a string of nucleosomes 
separated by linker lengths of exactly 45 basepairs, the average linker length for our exper
imental system of interest [9]. We incorporate heterogeneity in nucleosome spacing implicitly 
by using the theoretically-predicted persistence length of 17.68 nm for a chain whose average 
linker length is 45 basepairs [55]. Future work will examine the extent to which explicit het-
erogeneity in linker lengths leads to greater local variation in the methylation profile.

We employ a master equation approach that describes the average methylation profile over 
time. This method captures the evolution of the profile but neglects instantaneous fluctuations 
in the local methylation as the spreading occurs. In future work, we will use a kinetic Monte 
Carlo simulation to capture instantaneous fluctuations in the methylation.

The average methylation of the ith nucleosome in the chain is defined by the probability 
p i(t). We assume methylation occurs by the kinetic mechanism defined in figure 1, where a 
nucleosome to which HP1α is bound must loop with an unmethylated nucleosome for the 
methyltransferase to confer methylation to the unmethylated nucleosome. We assume that 
demethylation is independent of the looped state of the nucleosome. Since looping is a rare 
event, we neglect nested loops in our consideration of the looping between any two nucle-
osomes. In other words, all looping events are considered to be independent of all other loop-
ing events.

With these assumptions, the probability distribution p i(t) is governed by the master equation

dpi
dt

=
∑
j�=i

keff,mmij
(1− pi) pj

+
∑
j�=i

keff,umij
(1− pi)(1− pj)

+ keff,nmi
(1− pi)− kdpi.

�

(16)

The methylation rate from an already methylated nucleosome keff,mmij
= keffm (Nij, f = fm), and 

the methylation rate from an unmethylated nucleosome keff,umij
= keffm (Nij, f = fu), where Nij is 

the number of Kuhn lengths between the ith and j th nucleosomes (i.e. Nij = Lij/(2lp)). The 
HP1 binding fraction f m is the average fraction of HP1α molecules bound to a methylated 
nucleosome, and f u is the average fraction of HP1α molecules bound to an unmethylated 
nucleosome. Experimental measurements [9] exist that address the spreading of methylation 
near a chemically linked HP1α protein, dubbed a nucleation site. The methylation rate from 
the nucleation site keff,nmi

= keffm (Nn
i , f = 1), where Nn

i  is the number of Kuhn lengths between 
the ith nucleosome and the nucleation site. Since the nucleation site contains a single chro-
moshadow domain of HP1α, we capture the strength of the HP1α content by setting f   =  1 
within keff,nmi

.

The steady-state profile pssi  is determined by setting dp
ss
i

dt = 0. The governing equation for 
pssi  is given by

0 =
∑
j�=i

keff,mmij
(1− pssi ) p

ss
j

+
∑
j�=i

keff,umij
(1− pssi )(1− pssj )

+ keff,nmi
(1− pssi )− kdpssi .

�

(17)
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To illustrate the general behavior of the steady-state profile, we consider the homogeneous 
solution pssi = p for homogeneous inter-nucleosome spacing in the absence of a nucleation 
site, which is governed by

0 = αdκfmp(1− p) + αdκfu(1− p)2 − p,� (18)

where the connectivity factor κ =
∑

j �=0 Plijηij, and αd = k(0)m /kd. This equation has two solu-
tions, and the physically relevant solution is given by

p =

√
(αdκfm)2 − 2αdκ( fm − 2fu) + 1

2αdκ( fm − fu)

+
αdκ( fm − 2fu)− 1
2αdκ( fm − fu)

.
� (19)

This homogeneous solution is valuable in assessing the general behavior of our model. In 
addition, the inhomogeneous solution p i tends to the homogeneous solution p  at distances suf-
ficiently far from the nucleation site. Thus, the solution for equations (16) and (19) is found 
for a finite number of nucleosomes (200 total in this manuscript), and looping to nucleosomes 
outside the range is approximated by the methylation probability as pi ≈ p. We numerically 
verify that all our solutions are insensitive to the number of nucleosomes modeled.

The HP1α concentration CHP1 determines the values of the constants f m and f u based on the 
binding isotherm produced from experimental data [5]. Notably, the experimental measure-
ments determine the binding of the Schizosaccharomyces pombe HP1 protein, Swi6, rather 
than mammalian HP1α. Further experimental data characterizing mammalian HP1 variants 
would be valuable for a more detailed development of such models for the spreading of epige-
netic marks. Canzio et al measure the average fraction of Swi6 molecules bound to unmethyl-
ated mononucleosomes and to methylated mononucleosomes for various concentrations of 
HP1. Their results indicate that HP1 binds to both methylated and unmethylated nucleosomes 
but binds preferentially to methylated ones. We then use these experimental values of f m and 
f u as input to fit our model that is presented in [56]. In this model, we capture the equilibrium 
binding of HP1 to methylated and unmethylated single nucleosomes. Our statistical mechan-
ics treatment captures the energy of binding to a methylated and unmethylated tail (εm and εu, 
respectively) and the cooperative HP1 interaction energy J when both tails have HP1 bound. 
Figure 5 shows the experimental measurements of HP1 binding to unmethylated (blue dots) 
and methylated (red dots) mononucleosomes versus the HP1 concentration CHP1. We fit the 
experimental data to our binding model [56], resulting in a best-fit model for binding energy to 
a methylated nucleosome relative to an unmethylated nucleosome εm − εu = 1.53 kBT  (posi-
tive is favorable) and a HP1 interaction energy J = 3.92 kBT .

These measurements of f m and f u are for mononucleosomes and may not be accurate for 
nucleosomes that are connected in a chain. In fact, it is likely that the presence of several 
methylated nucleosomes in spatial proximity has a cooperative effect, leading to an enhance-
ment in the binding of HP1α as exhibited in binding assays to dinucleosomes [5]. For now, we 
use the direct experimental measurements of f m and f u and neglect this cooperativity, though 
such an effect will be addressed in future work on methylation in chromosomal DNA that 
exhibits heterochromatin and euchromatin segregation.

Figure 6 provides results for the steady-state probability of methylation. The top plot of fig-
ure 6 shows predictions of the ‘phase diagram’ for methylation spreading based on the homoge-
neous solution. The bottom plot shows the probability of methylation as a function of CHP1 for 
the five values of αd  identified by horizontal lines in the top plot. The smooth transition of the 
fraction methylated p  with increasing HP1 concentration CHP1 indicates an onset of methylation. 
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At low HP1 concentrations, methylation is localized and unable to spread over the entire chain. 
In contrast, at high HP1 concentrations, there are sufficient HP1α molecules bound to proximal 
nucleosomes for transient looping to enable unchecked spreading along the chain. Since HP1α 
binds to unmethylated nucleosomes, our model predicts a basal level of methylation that occurs 
from transient looping events with unmethylated nucleosomes with HP1α bound.

The methylation spreading observed in experiments spans only about 10 kilobases [9], 
and at lengthscales this small, the looping kinetics are relatively fast, as shown in figure 4. 
Therefore, it is reasonable for us to assume maximal efficiency for all loop lengths (i.e. η = 1) 
and to approximate the effective methylation rate as the absolute methylation rate weighted 
by the equilibrium looping probability (i.e. keffm = kmPl). Under this approximation, we allow 
αl → 0 in figure 6 and show the effects of αd  and the concentration of HP1 on the probability 
of methylation. Were αl to take a higher value, the efficiency and effective methylation rate 
would decrease, resulting in a larger region of low methylation probability (shown in black) 
in the ‘phase diagram’. Non-negligible values of the methylation probability could still be 
achieved but would require a higher value of αd  and/or a higher concentration of HP1.

The extent of methyl spreading depends on the combination of parameter values: αd , αl, 
and CHP1. In some regions of the phase diagram, the probability of methylation is essentially 
zero, indicating that methyl marks are incapable of spreading in that parameter regime. In 
contrast, in other regions of the phase diagram, the probability of methylation takes a con-
stant, non-zero value. In these parameter regimes, methyl marks can spread indefinitely along 
the polymer. Because we assume the chromosome is uncondensed, there are no structural 
components to prevent contact between distal parts of the chromosome, and eventually marks 
could spread along the entire chain through a series of looping events. Without higher order 
structural organization, the marks cannot be confined to a particular domain. Upcoming work 
will explore the important role that both local and global chromatin organization play in estab-
lishing and maintaining domains of methylation.

Figure 5.  Fraction of HP1 bound to unmethylated (f u, blue) and tri-methylated (f m, 
red) nucleosomes. The dots provide experimental measurements for the fraction bound 
for Swi6 (an HP1 analog in S. pombe) [5], and the curves show our binding model 
[56]. The model that gives the best fit to the experimental data predicts a favorable 
binding energy to a methylated nucleosome relative to an unmethylated nucleosome to 
be εm − εu = 1.53 kBT  and a HP1 interaction energy J = 3.92 kBT .
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To gain a better sense of which regime in our model most closely aligns with in vivo con-
ditions, we proceed to consider the order of magnitude of our model parameters. Estimates 
suggest that the concentration of HP1α bound to chromatin is on the order of 100 µM in 
vivo [57]. A thermodynamic model of HP1 binding to chromatin, fit to experimental data [5], 
implies that the free concentration of HP1 is much lower than the bound concentration and may 
lie between 10−2 µM and 1 µM [56]. Experimental FCS measurements of GFP-tagged pro-
teins coupled with APD-imaging support this estimate, reporting a concentration of 0.06 µM  
for HP1α in the cytoplasm of mouse fibroblasts [58].

It is difficult to estimate the order of magnitude of αd  and αl for an in vivo system given the 
uncertainty around the bare methylation rate, k(0)m . Mass spectrometry experiments have been 
used to observe histone methylation dynamics in HeLa cells, and fitting a simple mass-action 
model to this data indicates that the order of the methylation rate may be between 10−2/d and 

Figure 6.  Probability of methylation for nucleosomes in a homogeneous chain with a 
linker length of 45 basepairs. The top plot shows the ‘phase diagram’ for a persistence 
length of 17.68 nm. The bottom plot shows the probability of methylation for the five 
values of αd  identified by the horizontal lines in the top plot.
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1/d [59]. In vitro experiments of the kinetics of the murine H3K9 methyltransferase G9a find 
that methylation occurs on the order of hours [60].

Single-molecule optical tracking experiments in mammalian cells find that the diffusion 
coefficient of genetic loci is roughly on the order of 1 µm2 min−1 [61]. Based on these esti-
mates for the methylation rate and diffusion coefficient, αl would be on the order of 10−8–
10−5. This approximate range of values corresponds to a regime in which looping dynamics 
are much faster than methylation dynamics.

Histone labeling experiments in Drosophila cells show that nucleosomes in active genes 
turn over approximately once every 1–2 h [62], which would put αd  (i.e. km/kd ) on the order 
of 10−3 to 100. However, experiments of the dynamics of H3K79 methylation in mouse 
embryonic stem cells reveal that turnover dynamics vary across substrates, suggesting that the 
turnover rate is different at different genomic locations [51]. This result adds to the uncertainty 
in estimating αd . Furthermore, a simple yet foundational model of methyl spreading indicates 
that the relative rate of methylation is around 1 to 1.5. According to this model, a value of 
1.5 for km/kd  is the best fit for experimental H3K9 spreading data in mouse ES cells [9, 10]. 

In our model, we find that relative enrichment pssi /p
ss(0)
i  is fairly insensitive to αd , since αd  

proportionately affects both pssi  and pss(0)i . Interpretation of the absolute value of the fraction 
methylation is not possible from the ChIP-seq data [9], and further experimental analyses 
would be valuable to fully determine the absolute fraction methylation. This would allow a 
more extensive determination of model parameters, including αd .

3.  Conclusions

In this work, we propose a physical mechanism for the spreading of methylation due to 
transient chromosomal looping. This theory extends the foundational work of Hodges and 
Crabtree [10], which addresses how chromosomal contacts would facilitate the spreading of 
methylation marks to distal chromosomal segments based on the probability of these contacts. 
Our treatment aims to address the influence of chromosomal dynamics on the spreading, pro-
viding a basic picture of the competition between the methyltransferase enzymatic rate and the 
chromosomal dynamics. Our theory for the effective methylation rate also provides a major 
advantage for simulation efforts, in that it reproduces the results of more detailed simulations 
for a fraction of the computational cost.

Our model shows that the looping probability acts as an upper bound on the effective 
methylation rate, with maximum rates only possible in the limit that looping dynamics are 
instantaneous (i.e. the DNA can rearrange its configuration much faster than a methyl mark 
can be conferred). Otherwise, the characteristic timescale of looping, which is extremely slow 
based on in vivo measurements, is predicted to result in low methylation efficiency and effec-
tive methylation rate. For a fixed timescale of looping, there are two regimes of spreading 
behavior. A low relative rate of methylation αd  and HP1α concentration CHP1 restricts meth-
ylation spreading, whereas a high relative rate of methylation allows methylation to spread 
along the entire chain. Regardless of the timescale of methylation, the predicted length-scale 
dependence of the effective methylation rate suggests that looping will always be a limiting 
factor for effective methylation for large inter-chromosomal segment lengths. This implies 
that the distal communication between chromosomal loci is essentially dictated by the initial 
organization, which is unable to fully explore the nuclear environment. Thus, the coordination 
of distal segments via dynamic rearrangement of the chromosome is not a viable mechanism 
for robust conferral of methyl marks.
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Epigenetic modifications occur along the entire chromosome, and a better understanding 
of the spreading behavior at longer lengthscales is required. Furthermore, once methylation 
spreads and the epigenetic pattern is established, it must be maintained over generations in 
order to ensure continuity of cellular identity and behavior. Ongoing work seeks to address 
these topics. Given that epigenetic methylation and chromatin condensation are connected 
through the oligomerization of HP1, we are currently extending our model of loop-mediated 
methylation to incorporate the interplay of these two processes and to study their combined 
effect on the methylation profile and chromatin structure.
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Appendix.  Derivation of equation (12)

We define wi→j(t) as the waiting time distribution for the polymer to transition from state i to 
state j , resulting in the expressions

wl→m(t) = km exp[−(km + kl→u)t],
wl→u(t) = kl→u exp[−(km + kl→u)t],
wu→l(t) = ku→l exp[−kl→ut].
� (A.1)

We take the Laplace transform of wi→j(t) to get w̃i→j(s), given by

w̃l→m(s) =
km

s+ km + kl→u
,

w̃l→u(s) =
kl→u

s+ km + kl→u
,

w̃u→l(s) =
ku→l

s+ ku→l
.

�

(A.2)

Next, we find the overall waiting time distribution for going from the looped state to the 
methylated state Wl→m(t). In doing so, we must account for the infinite number of stochastic 
looping and unlooping events that might occur before a methyl mark is conferred. Therefore, 
we take the convolution of the real-space, single-event waiting time distributions and sum the 
number of cycles through the unlooped state to infinity, leading to

Wl→m(t) =
∞∑

n=0, even

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1wl→m(t − tn) · · ·

wu→l(tj+1 − tj)wl→u(tj − tj−1) · · ·wu→l(t2 − t1)wl→u(t1)

=

∞∑
n=0, even

wl→m(t) ∗ [wu→l(t) ∗ wl→u(t)]n/2.

�

(A.3)
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In Laplace space, the convolution results in a product of single-event waiting time distribu-
tions, allowing us to solve for W̃l→m(s) as

W̃l→m(s) =
∞∑

n=0, even

w̃l→m(s)[w̃u→l(s)w̃l→u(s)]n/2

=
w̃l→m(s)

1− w̃u→l(s)w̃l→u(s)

=
km(s+ ku→l)

s2 + s(km + kl→u + ku→l) + kmku→l
.

�

(A.4)

Using the same technique, we find Wu→m(t) and W̃u→m(s).

Wu→m(t) =
∞∑

n=1, odd

∫ t

0
dtn

∫ tn−1

0
dtn−1 · · ·

∫ t1

0
dt1wl→m(t − tn) · · ·

wu→l(tj+1 − tj)wl→u(tj − tj−1) · · ·wu→l(t1)

=
∞∑

n=1, odd

wl→m(t) ∗ [wu→l(t) ∗ wl→u(t)](n−1)/2 ∗ wu→l(t),

�

(A.5)

which results in the Laplace-transformed waiting time distribution

W̃u→m(s) =
∞∑

n=1, odd

w̃l→m(s)[w̃u→l(s)w̃l→u(s)](n−1)/2w̃u→l(s)

=
w̃l→m(s)w̃u→l(s)

1− w̃u→l(s)w̃l→u(s)

=
kmku→l

s2 + s(km + kl→u + ku→l) + kmku→l
.

�

(A.6)

The total effective waiting time distribution for the conferral of a methyl mark w̃eff
m (s) is 

given by the following equation:

w̃eff
m (s) = PlW̃l→m(s) + (1− Pl)W̃u→m(s)

= Pl
km(s+ ku→l)

s2 + s(km + kl→u + ku→l) + kmku→l
+ (1− Pl)

kmku→l

s2 + s(km + kl→u + ku→l) + kmku→l

=
km

s+ km + kl→u

[
Pl

1
1− kl→u

s+km+kl→u

ku→l
s+ku→l

+ (1− Pl)

ku→l
s+ku→l

1− kl→u
s+km+kl→u

ku→l
s+ku→l

]
,

� (A.7)
which provides the basis for equation (12).
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