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Abstract

Magnetic circular dichroism (MCD) spectra are able to provide insights to the geo-

metric, electronic, and magnetic properties of chemical systems. However, they can be

challenging to understand and simulate given the need to simultaneously treat both the

finite magnetic and optical fields. Thus, efficient simulations are desired to understand

the spectra and resolve the molecular electronic states. Real-time dynamics are used

widely in the simulation of electronic spectroscopies such as absorption as well as elec-

tronic circular dichroism, but simulating MCD with real-time dynamics is technically

and theoretically challenging. In this work, we introduce a real-time dynamics based ab

initio method with a non-perturbative treatment of a static magnetic field with London

orbitals for simulating the MCD spectra of closed-shell systems. Effects of a magnetic

field are included variationally in the spin-free non-relativistic Hamiltonian. Real-time

time dependent density functional theory dynamics are then performed, from which

we compute the response function in the presence of the external magnetic field, giving
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the MCD spectrum. The method developed in this paper is applied to simulate the

MCD spectra for pyrimidine, pyrazine, and 1,4-naphthoquinone. Results are discussed

and compared to experiment.

1 Introduction

In magnetic circular dichroism (MCD) experiments, the breaking of degeneracies due to the

application of a magnetic field, which couples the (spin and/or orbital) angular momentum

to the field, giving rise to additional spectroscopic features that are otherwise inaccessible

at zero field.1 There have been many successful developments to compute MCD spectra

with response theory including single residue of the quadratic response function,2 the com-

plex polarization propagator method,3–5 and magnetically perturbed time-dependent density

functional theory (TDDFT).6–8 Configuration interaction (CI) base techniques include trun-

cated CI with a sum-over-states expression and a perturbative treatment of the magnetic field

and spin-orbit coupling,9,10 as well as a multi-configurational self-consistent-field (MC-SCF)

with quasi-degenerate perturbation theory to include Zeeman effects with spin-couplings. 11–13

The technique of using London orbitals at zero magnetic field has been applied in the per-

turbative calculation of MCD at the level of EOM-CC, TDHF, and TDDFT, mitigating the

gauge-origin dependence of finite atom-centered basis sets.14–17 Recently, a new class of ab

initio computational MCD methods using a variational treatment of the magnetic field has

been developed within the linear response complex time-dependent Hartree-Fock (C-TDHF)

framework.18

Compared to response theory based methods, real-time time-dependent theory has many

unique advantages. Real-time approaches can resolve a broad spectra in a single short time

simulation. This is particularly useful for systems with high density of states. For DFT based

methods, real-time dynamics also avoid the implementation of functional second derivatives.

We refer readers to Ref. 19 for a recent review on real-time electronic structure theory.

For absorption spectra and electronic circular dichroism,20,21 real-time approaches only need
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to treat the perturbing electric field. The calculation of MCD spectra, however, requires

the inclusion of both static magnetic and perturbing electric fields. Real-time electronic

dynamics using a real-space local density approximation (LDA) have been applied to simulate

effective A and B terms of MCD spectra.22

Within the density functional theory framework, advanced functional formalisms have

been developed to describe molecules in the presence of a magnetic field. The inclusion of

a magnetic field effect has been represented either by the functional dependence of current

density in current-density-functional theory (CDFT)23–28 or the functional dependence of the

magnetic field in magnetic-field density functional theory (BDFT),29,30 where both of these

methods can be mathematically shown as equivalent.31 When compared to full-configuration

interaction, it has been observed that the exchange-correlation functional does not depend

strongly on the magnetic field.29

In this paper, we introduce a real-time TDDFT approach using the generalized gradient

approximation (GGA) of the magnetic-field density functional theory in an atomic orbital

basis. In the time-dependent variational approach, the treatment of the magnetic perturba-

tion is included non-perturbatively. Effects of a static, uniform magnetic field are included

variationally with London orbitals,18,32–40 which provide the most satisfactory solution to

correct for the gauge-origin problem when an incomplete Gaussian-type basis is used.41–48

2 Methodology

2.1 Computing MCD Spectrum with Real-Time Electronic Struc-

ture Methods

MCD spectrum measures the response of a molecular system perturbed by a static magnetic

field and probed by left and right circularly polarized light. This type of measurement can

be described by a time-dependent Hamiltonian which consists of a time-independent and a

time-dependent component, H = H0 + Vt.
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The magnetic field perturbations can be described by the time-independent Hamilto-

nian, H0 = h0 + W , where W is the two-electron interaction, and h0 is the one-electron

Hamiltonian.18,40

h0 = −1

2
∇2 +

1

2
(−ir×∇) ·B +

1

8
(B× r)2 +

∑
A

ZA
|r−RA|

(1)

The second term in Eq. (1) includes orbital Zeeman contributions, and the third term de-

scribes diamagnetism of a molecular system.

Using the electric-dipole approximation in the length gauge, Vt = −r · EW , for the

interaction between the system and the probing optical field, the MCD spectra (in molar

ellipticity with the conventional unit of Degree(mol/L)−1m−1Gauss−1) can be computed

using the following expression7

[θ]M = Γ
∑
J

RJωf(ω − ωγ0J) (2)

where the rotatory strength RJ is defined as:

RJ = −1

3

∑
αβγ εαβγIm(〈0 |µα| J〉γ 〈J |µβ| 0〉γ)

µB|B|
(3)

〈0 |µα| J〉 is the transition dipole and ωγ0J is the excitation energy from ground state to the

excited state J in the presence of a static magnetic field. f(ω − ωγ0J) is the band shape

function, which for fixed molecular structures we assume infinite excited state lifetime, thus

f(ω − ωγ0J) can be written as a delta function, δ(ω − ωγ0J). εαβγ is Levi-Civita symbol

(εxyz = εyzx = εzxy = 1, εyxz = εxzy = εzyx = −1, otherwise 0). Γ is a collection of physical

constants.49 RJ , ω, and f are in atomic units. We use superscript γ to explicitly denote the

direction of the applied magnetic field. For detailed derivation of this expression, we refer

readers to Reference 18.
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2.1.1 Relating MCD Spectrum to Response Function Formalism

Thus, in order to compute MCD spectra using Eq. (2), one needs to extract the imagi-

nary component of the quantity 〈0 |µα| J〉γ 〈J |µβ| 0〉γ from RT-TDDFT electronic dynamics.

However, this is not a quantity that can be easily obtained from direct analyses of time-

dependent observables, e.g., Fourier transformation of electric dipoles. In this work, we

propose a response function based technique that can be used to resolve MCD spectra from

real-time electronic structure simulations. In the following, we will present derivations that

transform Eq. (2) into a response function formalism of the time-dependent signals.

We start by using the following expression,

∑
J

Im(Aαβ,γ0J )δ(ω − ωγ0J) ≈
∑
J

[Im(Aαβ,γ0J )δ(ω − ωγ0J)− Im(Aβα,γ0J )δ(ω + ωγ0J)] (4)

where

Aαβ,γ0J = 〈0 |µα| J〉γ 〈J |µβ| 0〉γ = (Aβα,γ0J )∗ (5)

The δ function in Eq. (4) can be defined as the following limit,50

δ(ω − ωγ0J) =
1

π
lim
η→0+

η

(ω − ωγ0J)2 + η2
(6)

Using this relationship, Eq. (4) can be written as,

∑
J

Im(Aαβ,γ0J )δ(ω − ωγ0J)

≈ 1

π

∑
J

lim
η→0+

[
Im(Aαβ,γ0J )η

(ω − ωγ0J)2 + η2
− Im(Aβα,γ0J )η

(ω + ωγ0J)2 + η2

]

=
1

π

∑
J

lim
η→0+

[
Im(Aαβ,γ0J )η

(ω − ωγ0J + iη)(ω − ωγ0J − iη)
− Im(Aβα,γ0J )η

(ω + ωγ0J + iη)(ω + ωγ0J − iη)

]
(7)

Recognizing that Re[Aαβ,γ0J − (Aαβ,γ0J )∗] = 0 and Im[Aαβ,γ0J − (Aαβ,γ0J )∗] = 2Im(Aαβ,γ0J ), we can
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rewrite Eq. (7) and factor out ω − ωγ0J − iη and ω + ωγ0J − iη in the denominators,

1

2π

∑
J

lim
η→0+

 Re[Aαβ,γ0J −(Aαβ,γ0J )∗](ω−ωγ0J )+Im[Aαβ,γ0J −(Aαβ,γ0J )∗]η

(ω−ωγ0J+iη)(ω−ω
γ
0J−iη)

−Re[Aβα,γ0J −(Aβα,γ0J )∗](ω+ωγ0J )+Im[Aβα,γ0J −(Aβα,γ0J )∗]η

(ω+ωγ0J+iη)(ω+ω
γ
0J−iη)


=

1

2π

∑
J

lim
η→0+

Re

[
[Aαβ,γ0J − (Aαβ,γ0J )∗](ω − ωγ0J − iη)

(ω − ωγ0J + iη)(ω − ωγ0J − iη)
− [Aβα,γ0J − (Aβα,γ0J )∗](ω + ωγ0J − iη)

(ω + ωγ0J + iη)(ω + ωγ0J − iη)

]

=
1

2π

∑
J

lim
η→0+

Re

[
Aαβ,γ0J − (Aαβ,γ0J )∗

ω − ωγ0J + iη
− Aβα,γ0J − (Aβα,γ0J )∗

ω + ωγ0J + iη

]
(8)

Using the definition of the response function 〈〈µα;µβ〉〉γω,51,52

〈〈µα;µβ〉〉γω = lim
η→0+

〈0 |µα| J〉γ 〈J |µβ| 0〉γ

ω − ω0J + iη
− 〈0 |µβ| J〉

γ 〈J |µα| 0〉γ

ω + ω0J + iη
(9)

it is easy to see that Eq. (4) in the form of Eq. (8) can be simplified to

∑
J

Im(Aαβ,γ0J )δ(ω − ωγ0J) ≈ 1

2π

∑
J

Re(〈〈µα;µβ〉〉rω − 〈〈µβ;µα〉〉rω) (10)

The final working equation for calculating MCD spectra becomes,

[θ]M = − Γ

3µB|B|
∑
αβγ

ωεαβγIm(〈0 |µα|n〉γ 〈n |µβ| 0〉γ)δ(ω − ωγ0J)

= − Γ

6πµB|B|
∑
αβγ

ωεαβγRe(〈〈µα;µβ〉〉γω − 〈〈µβ;µα〉〉γω) (11)

Calculating MCD spectra using the first expression in Eq. (11) requires the computation

of the transition dipole moments and excitation energies in the presence of an external

magnetic field. These quantities can be obtained using the linear response formalism of

the TDHF/TDDFT equation.18 Alternatively, MCD spectra can be evaluated using the

second expression in Eq. (11) which works with real-time time-dependent electronic structure

methods.
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2.1.2 Relating Time-Dependent Signals to Response Function Formalism

In this section, we will derive the relationship between the response function formalism in

Eq. (11) and time-dependent signals obtained from real-time simulations. We will assume

a variational treatment of the static magnetic field applied in the γ ∈ x, y, z direction and

that all time-dependent observables are collected in the presence of the magnetic field.

With an electrical δ-kick of intensity κ applied at t = 0 in direction β ∈ x, y, z, the

perturbation Hamiltonian of the electric field can be expanded in the frequency domain as

V̂t = δ(t)µ̂γβκβ =
µ̂γβκβ

2π

∫ ∞
−∞

e−iωtdω (12)

where all the frequencies have the same amplitude. Such an electric field perturbation will

lead to the time-evolution of the dipole moment of a molecular system.

The time-evolution of the α-component of the dipole moment, µα, can be expressed as51

µγα(t)− µγα(0) = −
∫ t

−∞
i〈0|[µ̂α, eiĤ0(t′−t)V̂t′ e

−iĤ0(t′−t)]|0〉γ dt′ (13)

Substituting Eq. (12) into the Eq. (13) followed by a time-frequency transformation, we

have

µγα(ω) =

∫ ∞
−∞

(µγα(t)− µγα(0))eiωtdt

= −κβ
2π

∫ ∞
−∞

eiωtdt

∫ ∞
−∞

e−iω
′tdω′

∫ t

−∞
i〈0|[µ̂α, eiĤ0(t′−t)µ̂β e

−iĤ0(t′−t)]|0〉γ dt′ (14)

One can show that Eq. (14) can be equivalently written in a response function form, 51,52

µγα(ω) = κβ〈〈µα;µβ〉〉γω (15)

where the response function is defined in Eq. (9). For detailed derivation, we refer readers

to Reference 51.
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Using Eq. (15) in Eq. (11), we can write the final expression for computing the MCD

molar ellipticity in Degree(mol/L)−1m−1Gauss−1 using quantities in atomic units calculated

from real-time electronic dynamics:

[θ]M = −0.0014802× 1

6π|B|
∑
αβγ

ω εαβγRe

(
µγα(ω)

κβ
−
µγβ(ω)

κα

)
(16)

where µγα(ω), ω, |B|, κβ are in atomic units.

Note that the working equation Eq. (16) is similar to that in Reference 22 which was

derived via the perturbation of wave function. The derivation presented here builds a con-

nection between the real-time signal and the response function formalism. This approach is

also generally applicable to other types of spectra. Observables computed using the linear

response function with the non-perturbative treatment of magnetic field derived herein are

similar to those calculated using the quadratic response function2 or the gradient of linear

response.6–8

Since the non-perturbative treatment of magnetic field can account for the splitting of

excited states and perturbation of transition dipole at the orbital level, the response theory

based formalism presented here is able to treat the effects equivalent to A and B terms.

However, the simulation of C term effect of open-shell system requires the inclusion of spin-

orbit coupling, which cannot be simulated directly using the non-relativistic formalism.

2.2 Density-Functional Theory with Complex-Valued Orbitals

The molecular orbitals are expanded in a basis of complex-valued London orbitals.32

φj(r) =
∑
µ

Cµjχ̃µ(r,kA) (17)

χ̃µ(r,kA) = χµ(r−RA)eikA·(r−RA) (18)
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where {χµ(r−RA)} are real atomic orbital (AO) basis functions centered at RA. The

exponential form of the London orbital phase factor defines the local gauge origin at each

nuclear center in the presence of magnetic field with a plane wave vector described by kA =

RA×B
2

, where B is the external magnetic field.

In the presence of an external magnetic field, the Kohn-Sham matrix in the London

orbital basis for a closed-shell system is defined as:28

F′ = T + V + J[P′] + Vxc[P′]− 1

2
cxK[P′]− i

2
L ·B

+
1

8

{
(B2

y +B2
z )qxx + (B2

x +B2
z )qyy + (B2

x +B2
y)qzz

− 2BxByqxy − 2ByBzqyz − 2BxBzqxz
}

(19)

where Lµν = 〈χ̃µ|r×∇|χ̃ν〉 and 〈qnm)µν = (χ̃µ|r̂nr̂m|χ̃ν〉 are the orbital-angular momentum

and electric quadrupole integrals, respectively. We also use a primed notation for the mag-

netic field perturbed Kohn-Sham (F′) and density (P′) matrices. Equation (19) corresponds

to a pure density functional when cx = 0.

The magnetic-field density functional theory formalism29,30 is used in this implemen-

tation, where the functional does not explicitly depend on the magnetic field. Since the

magnetic field perturbs the electron density and its derivatives, the density functional will

implicitly depend on the magnetic field.

The Coulomb (J) and exchange (K) matrix elements are defined as:

Jµν [P
′] =

∑
λκ

(χ̃µχ̃ν |χ̃κχ̃λ)P ′λκ (20)

Kµν [P
′] =

∑
λκ

(χ̃µχ̃λ|χ̃κχ̃ν)P ′λκ (21)

The recursive relationships for evaluating one- and two-electron integrals using complex

valued London orbitals have been presented in Ref. 53.

Using London atomic orbitals in Kohn-Sham DFT also implies that the evaluation of
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matrix elements of Vxc requires a careful scrutiny because the density matrix and atomic

orbitals are complex-valued. For GGA, the following quantities need to be evaluated on a

numerical grid in order to compute the matrix element of V xc
µν

V xc
µν =

∂Exc

∂Pνµ

=
∑
i

wi

[
∂fxc

∂ρ(r)
χ̃∗µ(r)χ̃ν(r)

]
r=ri

+
∑
i

wi

[
∂fxc

∂∇ρ(r)
(∇χ̃∗µ(r)χ̃ν(r) + χ̃∗µ(r)∇χ̃ν(r))

]
r=ri

(22)

where i runs over all the grid points. fxc defines a density functional that depends on density

variables. The expressions for evaluating ∂fxc

∂ρ
and ∂fxc

∂∇ρ are usually obtained through a chain

rule using auxiliary density variables (see Refs. 53,54 for implementation details for both spin

collinear and non-collinear cases.). {wi} are weights of the integration grid points based on

the Becke multi-center numerical integration scheme.55,56 Note that because London orbitals

are complex valued, the Vxc becomes a complex-valued quantity, even though ∂fxc

∂ρ(r)
, and

∂fxc

∂∇ρ(r) are real-valued quantities in the KS formalism and real-time dynamics.

In the evaluation of density and basis set gradients, the derivative of primitive London

atomic orbitals with respect to electronic coordinate rj is needed. The following expression

is derived and used in this work,

∂

∂rj
g̃µ(r−RA;kA; a; ζα)

= −2ζαg̃µ(r−RA;kA; a + 1j; ζα) + aj g̃µ(r−RA;kA; a− 1j; ζα) + i(kA)j g̃µ(r−RA;kA; a; ζα)

(23)

where g is the primitive London atomic orbitals centered at RA with orbital angular mo-

mentum a and Gaussian exponent ζ.
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2.3 Equation-of-Motion of Real-Time TDDFT

The evolvement of the system is by a time-integration of the Liouville-von Neumann equation:

i
∂P

∂t
= [F,P] (24)

with the modified midpoint and unitary transformation (MMUT) approach.19,57–60 See 19

for a recent review on RT-TDDFT.

3 Computational Detail

All molecular geometries were optimized61 in the absence of a magnetic field using the

GAUSSIAN16 computational chemistry software package62 using the B3LYP63–65 functional

and the 6-31G(d) basis.66,67

RT-TDDFT calculations in a magnetic filed with a GIAO basis were carried out with

the CHRONUS QUANTUM open source package68 using the B3LYP63–65 functional and

the London-6-31G(d) basis.66,67 The magnetic field strength is 2.238× 10−5 a.u. (∼5.26 T),

comparable to that used in experiments.69,70 At t < 0, the ground state SCF was converged

with a magnetic field applied in direction γ. The external magnetic field is applied throughout

the RT-TDDFT dynamics. At t = 0, an electrical δ-kick is applied in the direction β. After

the pulse, the system evolves according to Eq. (24). At each timestep, the expectation value

of electric dipole µ(t) is evaluated. In order to obtain a spectral broadening, a damping

factor, Γ, in the Fourier transformation is used:

µγα(ω) =

∫ ∞
−∞

(µγα(t)− µγα(0)) exp
(
− t

Γ

)
eiωtdt (25)

The value of Γ is determined in order to reproduce the experimental linewidth. Six separate

dynamics for each test molecule are carried out with the external magnetic fields applied

in the x, y, and z directions and a pulsed electric field in two directions orthogonal to the
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magnetic field. The simulation stepsize is 0.05 a.u. (∼ 0.0012 fs). The simulation time is

100 fs for pyrimidine, pyrazine and 1,4-naphthoquinone and 500 fs for sodium anion. The

electric field strength is 10−5 a.u.

4 Benchmark and Discussion

4.1 Sodium Anion

Figure 1 compares the MCD spectra of sodium anion in a 5.0× 10−5 a.u. (∼11.75 T) mag-

netic field, computed with the real-time TDHF and the linear response TDHF formalisms,

respectively.18 The MCD spectra computed using these two different methods are indistin-

guishable. An external magnetic field introduces orbital Zeeman interactions that break the

three-fold degeneracy of the p orbitals, giving rise to two peaks of opposite sign which leads

to a derivative shape, shown in Fig. 1. This benchmark shows that the real-time and the

linear response approaches produce equivalent MCD spectra at the weak field limit.

M
CD

850800750700650600
 nm

Figure 1. Simulated MCD spectra of Na− s → p transitions in a 5 × 10−5 a.u.
(∼11.75 T) magnetic field. An arbitrary unit and spectral broadening with a
damping factor of Γ = 500 a.u. are used.

4.2 Pyrimidine and Pyrazine

Pyrimidine and pyrazine are structural isomers of six-membered heterocyclic ring (Fig. 2).

With UV/Vis absorption spectroscopy, these two isomers are not differentiable because they
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(A) (B)

Figure 2. (A) Pyrimidine, (B) Pyrazine

have very similar linear absorption spectra. In this case, MCD can be a powerful experimental

tool to analyze the photochemical properties of structural isomers due to the difference in

their point group symmetry. In addition, since their n → π∗ and π → π∗ transitions give

rise to alternating positive and negative MCD peaks, they are frequently used as benchmark

systems for theoretical simulations.7,14,15,17,69,70

(A) (B) (C) (D)

Figure 3. Main molecular orbital contributions to optical excitations in pyrimi-
dine.

In the C2v point group, pyrimidine has several low-lying allowed optical transitions. The

first peak at 3.5 × 104 cm−1 is the n → π∗ transition, giving rise to the the 1B1 excited

state, with correpsponding molecular orbitals shown in Fig. 3A. The next two excitations

are associated with the 1B2 and 2B1 excited states, with the π → π∗ (Fig. 3B) and n→ π∗

(Fig. 3C) characteristics, located at 4.7×104 cm−1 and 4.9×104 cm−1, respectively. The last,

and strongest, excitation in this simulated spectral range is the π → π∗ excitation (Fig. 3D)

from the ground state to the 1A1 state.

The pyrazine molecule has the D2h symmetry. The first peak at 3.1×104 cm−1 corresponds

to the excitation from the ground state to the B3u state. This transition is dominated by

the n→ π∗ transition, where the electron in the lone pair orbital of N atom is excited to π∗

13



(A) (B) (C)

Figure 4. Main molecular orbital contributions to optical excitations in pyrazine.

orbital (Fig. 4A). The next two excitations in pyrazine both have the π → π∗ character and

give rise to the B2u and B1u states (Fig. 4B and Fig. 4C).

-10

-5

0

5

10

x1
0-2

  [
θ]

M
 

555045403530
x103 cm-1

 simulation
 experiment

0.2

0.1

0.0

-0.1

-0.2

[θ
] M

 

555045403530
x103 cm-1

 simulation
 experiment

(A) (B)

Figure 5. Simulated MCD spectra of pyrimidine (Fig. 5A) and pyrazine (Fig. 5B)
in a 2.238×10−5 a.u. (∼5.26 T) magnetic field, with a damping factor of 150 a.u.
Experimental MCD spectra from Ref. 69 are also plotted in dashed blue curves.

The MCD spectra of pyrimidine and pyrazine computed using the RT-TDDFT method

introduced in this paper are shown in Fig. 5, compared to experiments.69,70 For these closed

shell molecules, the excited states with singlet spins have no degeneracy. Therefore, the

MCD signals is driven by the B term, which is caused by the magnetic perturbation to

the transition dipole. The estimated energies for these characteristic excitations (ω′0J) from

the real-time spectra are summarized in Tab. 1 and compared to absorption peaks (ω0J)

in the absence of the external magnetic field. The computed n → π∗ transitions are in

excellent agreement with experimental measurements. However, the π → π∗ transitions

in both molecules are blue-shifted by 0.6 eV, compared to experiments, although the com-

puted signs and relative magnitudes of all transitions are in agreement with experiments.
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Compared to the absorption spectra of linearly polarized light, although the presence of

an external magnetic field gives rise to a different spectral shape it only slightly shifts the

spectral positions. This comparison suggests that the disagreement with experiments is

likely due to the choice of functional. These results, computed using the time-dependent

variational method, are also consistent with calculations using the excited state gradients. 17

Perturbative calculations overestimate the magnitude of the 1B2 state of pyrimidine and this

work underestimated its intensity compared to the experiment.

Table 1. Excitation energies of pyrimidine and pyrazine molecules in a 2.238×
10−5 a.u. (∼5.26 T) magnetic field. ω′0J is the estimated excitation energy from
the real-time spectra. ω0J is the excitation energy computed using the linear
response formalism of the corresponding TDDFT in the absence of the external
magnetic field.

Pyrimidine ω′0J/cm−1 ω0J/cm−1

1B1 3.512×104 3.506×104

1B2 4.732×104 4.734×104

2B1 4.916×104 4.880×104

1A1 5.452×104 5.440×104

Pyrazine ω′0J/cm−1 ω0J/cm−1

B3u 3.077×104 3.248×104

B2u 4.448×104 4.454×104

B1u 5.385×104 5.376×104

4.3 1,4-Naphthoquinone

O

O
Figure 6. 1,4-naphthoquinone
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The real-time approach is particularly convenient when simulating a broad spectral

range with many excited states. Figure 7 plots the computed MCD spectrum of 1,4-

naphthoquinone using the RT-TDDFT approach. Compared to the available experimental

result71 at the low energy range, the computed MCD spectrum are in good agreement with

experiment. Figure 7B plots a broad energy range (0-30 eV) of the computed MCD spectrum.

In contrast to solving for all excited states in a generalized eigenvalue problem, real-time

approach can produce a broad band MCD spectrum with only three dynamic simulations.

-1.0

-0.5

0.0

0.5

 [
θ]

M
 

765432
eV

 simulation
 experiment

-2

-1

0

1

2

[θ
] M

 

3020100
eV

(A) (B)

Figure 7. Simulated MCD spectrum of 1,4-naphthoquinone in a 2.238 × 10−5

a.u. (∼5.26 T) magnetic field, with a damping factor of 150 a.u. Experimental
MCD spectrum from Ref. 71 is also plotted in a dashed blue curve. Note that the
experimental first ionization energy of 1,4-naphthoquinone is ∼9.4eV.72 Spectral
features above the first ionization threshold correspond to excitations of deeper
valence electrons.

5 Conclusion

In this paper, a real-time time-dependent density functional theory (RT-TDDFT) method,

with a variational treatment of the static magnetic perturbation in London orbital basis,

for simulating MCD spectra is developed and applied to several azaheterocycles. The MCD

spectra can be obtained by the simulation of the linear response function. The Kohn-Sham

formalism with finite magnetic field is extended to the time-dependent case at the level of

hybrid functionals. Due to the use of London orbitals, the exchange-correlation energy and

16



potentials are evaluated with complex atomic orbitals.

RT-TDDFT simulations of pyrimidine and pyrazine predict correct signs of MCD absorp-

tion peaks, although excitation energies of the π → π∗ transitions are blue-shifted compared

to experiment. This work also highlights a unique advantage of the RT-TDDFT approach

through the computation of a broad MCD spectrum of 1,4-Naphthoquinone using six dy-

namic simulations.

The scope of the simulation is limited to the effective A and B terms in MCD. Fu-

ture directions include the development to enable the simulation of open-shell system MCD

spectra and the C term using the time-dependent variational approach.
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