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Abstract: Advances in machine learning have impacted myriad areas of materials science, ranging 
from the discovery of novel materials to the improvement of molecular simulations, with likely 
many more important developments to come. Given the rapid changes in this field, it is challenging 
to understand both the breadth of opportunities as well as best practices for their use. In this review, 
we address aspects of both problems by providing an overview of the areas where machine learning 
has recently had significant impact in materials science, and then provide a more detailed 
discussion on determining the accuracy and domain of applicability of some common types of 
machine learning models. Finally, we discuss some opportunities and challenges for the materials 
community to fully utilize the capabilities of machine learning. 

1 Introduction	
 Machine learning (ML) is playing an increasing role in our society, and more specifically in 

materials science and engineering (MS&E). This review seeks to provide a brief introduction to 
ML and its growing roles in an array of aspects of MS&E, as well as a more detailed discussion 
of some of the challenges and opportunities associated with using ML for predicting materials 
properties and accelerating the design of new materials. We hope it will therefore be of value for 
both the novice and experienced user. 
ML can be defined as the use of computer systems that do not require explicit programming to 

learn about the task they are completing. ML falls into two major categories, unsupervised and 
supervised learning. Unsupervised ML learns properties of data without any human guidance, for 
example, putting data into groups (clustering) or finding dominant directions of data variation in 
high-dimensional space (principal component and linear discriminant analysis). These 
unsupervised methods have the advantage of being able to analyze data with no need for humans 
to explicitly label the data, which is often a time- and resource-intensive endeavor. In contrast, 
supervised ML uses labeled data to learn a relationship between an output Y and an input X, and is 
supervised in the sense that it must be told the values of Y and the corresponding values of X. This 
type of learning includes traditional regression (e.g., multivariate linear regression (MVLR)), as 
well are more recent methods such as deep learning (to be discussed more later) to find objects in 
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an image. Supervised learning typically requires human input 
to label the data (e.g., labeling objects in an image) although 
sometimes the computer can generate labels itself, e.g., from a 
simulation.  
Tools and applications of ML have undergone an extremely 

rapid growth in approximately the last 20 years, with a series 
of stunning achievements that have been widely reported, 
including ML algorithms exhibiting superhuman capability at 
Chess1, Go2, Poker3,4 and Jeopardy,5 as well as other 
computationally demanding tasks like image recognition, 
autonomous driving, and real-time language translation.  Many 
of these capabilities were until recently thought to be grand 
challenges likely to remain inaccessible for decades.6 A 
detailed discussion of the cause of this transformation is beyond 
the scope of this paper, but likely involves a confluence of ever 
increasing computing power (e.g., GPUs), the exploding scale 
and accessibility of data 
(e.g., cloud resources), and 
multiple significant 
algorithmic advancements 
with quite general 
applicability (e.g., deep 
learning for images and 
natural language 
processing). These 
influences have now become 
self-reinforcing, with 
computing, data, and 
algorithms all taking 
advantage of, and driving 
innovations in, the other 
areas to enable increasingly 
impressive applications. For 
instance, in 2016 Google 
announced it had deployed 
Tensor Processing Unit 
(TPU) chips specifically 
designed to enable fast training of deep neural networks, and demonstrated improved performance 
by a factor of 15-30 compared to leading GPU technology.7 Another example is the development 
of neuromorphic chips (e.g., the True North chip from IBM and the Pohoiki Beach chip from 
Intel), which intrinsically have a neural network-like functionality and, when compared to standard 
CPU and GPU chips, can be dramatically more efficient in terms of power consumption. 
The potential impact of ML, particularly in critical and economically massive areas such as 

high-tech businesses, manufacturing, national defense and healthcare has led to resources being 
committed to develop the ML ecosystem (computing, data, algorithms, and software) on the scale 
of billions of dollars per year in the U.S. and other countries. These resources have created an 

 
Figure 1. Growth of ML in MS&E as seen in overall and review 
(inset) publications. 
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extraordinary opportunity for MS&E researchers to benefit from this ecosystem with only modest 
investment, somewhat analogous to the way computational MS&E has been enabled by 
inexpensive commodity processors developed for other fields. In particular, open source software 
implementing state-of-the-art ML algorithms is widely available, often developed by leading ML 
companies (e.g., Google, Facebook), as are relatively inexpensive computing resources, including 
GPUs for deep learning. These techniques can be integrated with the rapidly increasingly world of 
materials data, which is being generated by new instruments and simulations as well as being 
shared through new cloud-based resources. Worldwide growth of frameworks and initiatives such 
as Integrated Computational Materials Engineering (ICME)8–10, the Materials Genome Initiative 
(MGI),11,12 Novel Materials Discovery (NOMAD), Materials design at the Exascale (MaX), and 
the Materials Genome Engineering (MGE) program in China have helped support a growing 
computation and data infrastructure in the MS&E community which is poised to take advantage 
of the new ML ecosystem. 
The renaissance in computing power, data production and dissemination, and ML tools and 

their availability, is creating very rapid growth in ML in MS&E, particularly since 2014 (Figure 
1)1. An examination of a logarithmic plot for the data in Figure 1 suggests that since 2014 we have 
seen exponential growth of the form A(papers)×exp(t/B(years)), suggesting a doubling about every 
1.6 years. No single review can cover the broad range of areas and methods being pursued in detail, 
and in this review we include both a high-level overview of areas 
and trends and then a more detailed discussion of one specific 
central concern. In particular, in Sec. 3 we provide a brief 
discussion of major ML application areas in MS&E to help 
guide researchers attempting to understand the landscape and 
perhaps take first steps into a given area. In Sec. 4 we focus on 
the supervised learning models for property prediction, which is 
one of the most frequent uses of ML in MS&E, and describe 
some of the best practices for model development and 
assessment. Sec. 5 provides guidance on our summaries of 
useful tools for ML in MS&E. Throughout this review we focus 
on recent results and present opportunities and challenges, and 
then in Sec. 6 we offer some more speculative thoughts on 
longer term future opportunities and challenges. All data associated with this paper that are shared 
online are described, with appropriate links, in Sec. 7. This includes catalogues of recent review 
papers and ML software tools shared via Figshare so they can be easily updated in the future. We 
include in Supporting Information (SI) a summary of useful infrastructure information for ML in 
MS&E, including a detailed list of  more than 70 recent reviews (Sec. S1), software tools for 
general and MS&E specific ML applications (Sec. S2), journals that frequently publish ML MS&E 
applications (Sec. S3), introductory discussion of common ML models used in MS&E and recent 
strategies for working with small datasets (Sec. S4), some useful benchmark tests of model 
performance for comparison with naïve reference points (Sec. S5), and some more in-depth 
comparison of model error estimates (Sec. S6). The catalogues of recent review papers and ML 

 
1 Publications/year in materials informatics (Web of Science search of ("machine learning" or "artificial 

intelligence" or “materials informatics” or “data science”) and (“materials"), scaled by 0.75 to correct for average rate 
of errors. Review publications/year from manual citation search in Google Scholar and Web of Science. 
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software tools are also posted online via Figshare (see link in Data Availability in Sec. 7) so they 
can be easily updated in the future. 

2 Some	notation	
In order to avoid repeating notation in multiple locations we will introduce it here and use it 

consistently in this review. We will frequently consider supervised regression problems where we 
assume our data has the original form (X,Y), where X is matrix of features and Y is a vector of 
target values. Commonly, each row of X corresponds to a system (e.g., a material structure and 
composition) to be modeled and each element in that row is a value describing some feature of the 
system (e.g., amount of Cu), and Y is a vector of target properties to be modeled (e.g., band gap). 
X typically starts in the form of a human-relevant simple description (e.g., just composition and 
structure, or a simplified molecular-input line-entry system (SMILES) string) and corresponding 
features in a numerical form must be generated (this process is sometimes called featurization and 
is discussed in Sec. 4.2). The relationship between X and Y can be written as 𝑌 = 𝐹(𝑋) + 𝜖, where 
𝜖 is a noise term (with mean zero and variance 𝜎*) and we seek to use ML to construct a model 
for 𝐹(𝑋). We write this model as 𝐹+(𝑋) and its predictions as 𝑌+ . Given some new 𝑋∗ one can use 
the ML model to predict a corresponding target value, 𝑌+∗ = 𝐹+(𝑋∗). 
In general, 𝐹+ can be specified by its model type, parameters, and hyperparameters. Model type 

refers to the overall functional forms used, e.g., linear regression or neural networks (NNs). Model 
parameters are the values that define the specific instantiation of the model and are fit during the 
training process, e.g., coefficients of linear terms or weights in a NN. Model parameters can 
generally be fit by some highly efficient method, e.g., matrix inversion for linear models or 
backpropagation for NNs. Model hyperparameters are similar to model parameters but cannot be 
easily optimized through an efficient method, and are therefore typically treated separately from 
the model parameters and searched in a more restricted manner, e.g., with a simple grid search, 
with full optimization of model parameters for each evaluation of model hyperparameters. 
Examples of model hyperparameters include number of terms in a polynomial regression or 
number of layers in a NN. 

3 Where	and	how	is	ML	impacting	MS&E?	
This section provides a high-level summary of some of major areas where ML is being applied 

in the field of MS&E, and some representative examples from recent studies are showcased in 
Figure 2.  
3.1 Property	prediction	and	materials	discovery	and	design	
3.1.1 Property	prediction	
One of the most common and easy to understand uses of ML in MS&E is predicting new 

materials data from existing databases through regressing Y on X followed by prediction of 𝑌+∗ =
𝐹+(𝑋∗) for new data (See Sec. 2 for notation). There is no unique approach to assigning feature 
vectors in X to represent a material and this is a critical challenge we discuss in detail in Sec. 4.2. 
This overall approach can be used to extend almost any database to new systems, allowing 
prediction of new data, rapid exploration of large spaces, and iterative optimization to find new 
materials (sometimes called active learning). The use of ML in MS&E has been applied to predict 
myriad materials properties for many classes of materials. A representative but not exhaustive list 
of recent studies include the prediction of bulk stability of perovskite and garnet oxides and 
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elpasolites,13–16 formability of novel ternary compounds,17,18 superconducting critical temperatures 
of complex oxides,19,20 melting points of unary and binary solids,21 dielectric properties of 
perovskites and polymers,22,23 formability of novel half- and full-Heusler intermetallic 
compounds,24,25 casting size of metallic glass alloys,26 electronic bandgap of different classes of 
inorganic materials such as oxides and covalent semiconductors,27282930 stability and bandgap of 
halide perovskites for solar cells,31–33 dilute metal element solute diffusion barriers in an array of 
metallic hosts,34,35 electromigration of impurity elements in metals,36 scintillator materials,37 and 
piezoelectric materials with high electrostrains,38 among others. Figure 2A shows an example 
heatmap detailing the number of newly discovered ternary oxide materials across chemical space, 
which predictions were obtained by using ML to inform the probability a ternary oxide will form. 
17 When too little data is available for regression, clustering can still provide a tool by grouping 
similar materials based on their features. To the extent that these groups share properties, such a 
clustering can provide powerful predictions, and some uses for finding phase diagrams and 
allotropes are summarized in the review from Ramprasad et al.39 Some effective and widely-used 
regression methods used in the materials data studies listed above include MVLR,36 kernel ridge 
regression (KRR),1432 Gaussian process regression (GPR),2738 ensemble methods such as random 
forest decision trees (RFDTs) and gradient boosted regression,243340 and both basic and deep 
learning neural networks.34131441 We note here that for readers less familiar with these different 
ML methods, we have included more introductory discussion of these different model types in 
Sec. S4 of the Supporting Information, which is also mentioned in Sec. 4.3. In addition, more 
detailed information on these general ML methods are covered in the references 42–45. 
It is worth noting that many present ML approaches for predicting structure-property-

performance relationships of materials in MS&E can be viewed as part of, or emerging from, the 
field of study known as quantitative structure-activity relationships (QSAR) (and the closely 
related field of quantitative structure-property relationships (QSPR)).4647 QSAR/QSPR have used 
data science tools for over 100 years for correlating physical and molecular properties of chemical 
substances and their associated properties, from biological activity to boiling point, and therefore 
present well-established best practices and powerful techniques that can provide excellent 
guidance to the MS&E community. 
3.1.2 Materials	discovery	and	design		
ML has built on its strength in property prediction (Sec. 3.1.1) to enable the discovery, design 

and development of novel materials spanning an array of applications and materials classes by 
providing new understanding of key chemical or physical relationships governing properties of 
interest. As a concrete example, in the field of halide perovskites for solar photovoltaics, the use 
of ML on data has resulted in assessment of chemical trends (e.g. halogen content and alkali vs. 
organic species content) on properties such as the bandgap and stability, and resulted in the 
prediction of new promising halide perovskite materials such as Cs2Au1+Au3+I6 and NH3NH2InBr3, 
the former of which has been investigated in detail as a promising solar material.32334840 In addition, 
materials data predictions from ML on a large space of Br- and Cl-based elpasolite compounds led 
to the discovery of numerous new promising scintillator materials and also reproduced more than 
20 known well-performing scintillators. In this case, insights from ML provided rational material 
composition changes to realize a favorable placement of the Ce3+ 4f and 5d levels within the 
material bandgap, a necessary design criterion for scintillators.37 
In some cases ML is used as an integral guide to the data collection effort, e.g. in active 

learning, where iterative design of experiments (or simulations) is performed using ML property 
models and carefully tuned optimization approaches.38,49–5354 More specifically, active learning is 
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a method which seeks to balance exploitation of information contained in existing data in an ML 
model (i.e. data points with the best predictions) and exploration of less-sampled portions of the 
design space (i.e. data points likely to have high model uncertainties). Active learning is used to 
obtain a target outcome as efficiently as possible by first quickly sampling potential regions of 
interest to construct an initial ML model, followed by adaptive sampling of the exploitation-
exploration tradeoff to maximize the expected improvement of the ML model for finding the 
target, thus optimizing the experimental objective (e.g. finding a new material with highest 
electronic bandgap) with the fewest number of measurements. Active learning methods have 
yielded numerous success stories, e.g., a new Pb-free piezoelectric material with the largest 
measured electrostrain in the BaTiO3 family38 and new polymers with high glass transition 
temperatures, the latter result obtained by starting from only remarkably small training dataset of 
just 5 materials.55   
An exciting and fairly new area for materials discovery using ML is the integration of 

autonomous high-throughput experimentation conducted by robots with on-the-fly decision 
making guided by ML model predictions made using active learning techniques.56–65 This 
integration has the potential to perform guided exploration of large materials spaces with limited 
to no human intervention, greatly accelerating rates of materials discovery as well as potentially 
supporting work with materials or in environments that are inhospitable to humans59 and reducing 
human biases in materials searches.59,63 These approaches have had some notable recent successes. 
Duros et al.63 explored new approaches for the synthesis and crystallization of a new 
polyoxometalate compound, and demonstrated that the purely machine-based search covered 
about 6 times larger parameter space to realize crystallization than that explored by humans with 
a prediction accuracy of whether the compound will crystallize about 5% higher than that obtained 
by humans. Granda et al.56 demonstrated an ML-guided organic synthesis robot which was able to 
predict the outcome of untested chemical reactions with greater than 80% accuracy, and then was 
able to construct prioritized lists of new reactions to attempt based on their evaluated likelihood to 
produce the desired products. A further outcome of this work was the identification of unusual 
reaction mixes, which were later evaluated by human researchers, leading to the discovery of 
previously unknown chemical reactions. Finally, Nikolaev et 
al.60 developed a robot scientist named the Autonomous 
Research System (ARES) that specialized in the autonomous 
growth and characterization of carbon nanotubes, a model 
problem due to its complex coupling of synthesis and processing to resulting structure-property 
relationships (e.g., example nanotube diameter, helicity and the effects of these parameters on the 
nanotube electronic properties). Figure 2B contains a photograph showing the lab setup of the 
ARES instrument. ARES successfully optimized nanotube synthesis in a high dimensional design 
space and determined the correct parameters to maintain accurate growth rate control, thus 
demonstrating the potential utility and possible disruptive potential of ML-guided robot scientists 
in MS&E. 
A particularly interesting area is developing new materials with generative models such as 

variational autoencoders and generative adversarial networks (GANs). These methods are 
particularly well-suited to execute the paradigm of inverse materials design, where the desired 
material characteristics are first enumerated and candidate materials are suggested and evaluated 
on-the-fly.66–69 Inverse design creates the challenge of the exploration of an exceedingly large 
chemical space, which can be partly overcome by the use of GANs to automatically suggest and 
evaluate novel molecules and materials for a desired application.59 Concrete successes have 

GAN: generative adversarial 
network 
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already been demonstrated in this area, for example the CrystalGAN70 model which was used to 
generate, screen and subsequently discover new stable hydride compounds for solid-state 
hydrogen storage applications. The objective-reinforced generative adversarial network for 
inverse-design chemistry (ORGANIC) model was shown to be successful in predicting new high 
melting point organic molecules.71 Figure 2C shows a schematic of the ORGANIC model, which 
consists of separate generator (discriminator) neural networks used to suggest new molecular 
structures (predict desired molecular properties), respectively, where the generation of new 
candidate molecules is informed by the discriminator and the reinforcement algorithm. Finally, the 
Reinforced Adversarial Neural Computer (RANC) was found to outperform ORGANIC and 
function as a valuable tool for discovery of novel molecules for drug design and development.72  
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Figure 2. (A) Heatmap showing number of newly discovered ternary oxide materials across chemical space, 
(reprinted with permission from Ref. 17 copyright 2010 American Chemical Society). (B) photograph of an 
autonomous synthesis and characterization robot, (adapted from Ref. 65). (C) Overview of usage of the 
ORGANIC GAN model for molecular design (adapted from Ref. 71). (D) Scheme to represent the Hohenberg-
Kohn map using machine learning models (adapted from Ref. 127). (E) Machine-learned probability of 
nanotube synthesis (green shades) compared with experimental outcomes from text mining (reprinted with 
permission from Ref. 97 copyright 2017 American Chemical Society. (F) Model-labeled elliptical irradiation 
defects in a characterized steel micrograph (adapted from Ref. 75). 
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3.2 Materials	characterization	
Materials characterization tools are increasingly producing data on scales of quantity and 

complexity which outstrips human ability to manage and interpret, and ML methods are being 
used to process and analyze this data. For example, Voyles recently reviewed a number of 
applications in electron microscopy,73 pointing out uses of ML in image improvement (e.g., 
denoising, drift and distortion correction) and analysis (e.g., spectral demixing and clustering to 
identify features). A number of studies have recently applied deep learning machine vision 
techniques to electron microscopy images, e.g., to cluster materials based on microstructure 
images (see references in 74) and to identify defects in images,7576 in multiple cases with apparently 
human levels of accuracy. For example, Figure 2F shows dislocation loops in electron micrographs 
of a steel alloy identified by a deep learning model, the accuracy of which was as good or better 
than that of domain-specific expert humans.75  ML has also been 
applied to X-ray diffraction data, e.g., using deep learning to 
accurately perform identification of space-group, extinction-
group and crystal-system from X-ray powder diffraction 
patterns.77 Other intriguing examples have shown how machine 
learning could replace more challenging measurements or 
calculations with simpler ones. As an experimental example Stein, et al. demonstrated that a 
variable auto-encoding approach could quite accurately reproduce UV-vis spectra from simple 
images of a thin film generated with a commercial scanner.78 In simulation, Combs, et al. recently 
demonstrated that a MVLR model could correlate low and high fidelity scanning tunneling 
electron microscopy (STEM) image modeling, allowing approximations to full multislice 
simulations of nanoparticles millions of times faster than a full STEM image simulation. ML 
appears likely to provide many paths toward accelerated characterization through simplified 
experiments and computations, and automated analysis, reducing time spent in traditional methods 
and enabling processing of the enormously large data streams coming from newer and next-
generation characterization instruments.  
3.3 Knowledge	extraction	via	text	mining	
Natural language processing (NLP) tools are central to text and speech extraction and 

recognition, enabling AI-related speech tools like Apple’s Siri and Amazon’s Alexa and real-time 
language translation. Numerous open source NLP tools currently exist, for example the 
word2vec79 and Global Vector (GloVe)80 packages, and tools to conduct sentiment analysis using 
deep convolutional neural networks.81 NLP, text extraction and sentiment analysis (i.e. the 
characterization of subjective information such as opinions, communicated through text) have seen 
widespread use, for instance in computational biology and biomedical research,82,83 genetics,84 
healthcare,85 and social science,86 but work has been much more limited in materials. 
A basic NLP analysis in MS&E can be considered in three steps. First, one maps words to real-

valued vectors, a process called embedding, which can be done with unsupervised learning and 
requires significant time and large data sets. However, once completed, such embeddings can be 
reused in many applications, and multiple MS&E specific embeddings are already available.87–89 
Given an embedding, the second step is to train a NLP model to recognize target information using 
embeddings, typically with supervised training on a set of expert-annotated sentences, some of 
which are now being made open-source to encourage democratization of the NLP ML model 
training process.90 The second step treats the sentence as a sequence of words, which are converted 

STEM: scanning tunneling 
electron microscopy 
NLP: natural language 
processing 
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to a sequence of vectors, and the model is trained to predict the correct annotated categories (e.g., 
identify text “Fe” as category “metal”) on the training data. Models are typically recursive, 
convolutions, or transformer NNs.91–93 A common third step then applies grammar rules to 
understand connections between identified words in a dependency parse tree, e.g., allowing one to 
determine if a given value is describing a given property in a sentence.94 
Software packages like ChemDataExtractor95 are being developed to enhance standard NLP 

approaches with the ability to parse unstructured text in complex scientific publications, for 
example chemical formulas or domain-specific words or abbreviations (e.g. the meaning of the 
occurrence “UV-Vis” spectroscopy). One area where text mining is playing an increasingly large 
role in MS&E is synthesis.96 Recent text extraction studies have resulted in useful guidance of key 
experimental parameters needed for optimal materials synthesis, for example in creating TiO2 
nanotubes97 as shown in Figure 2E, synthesis of new perovskite materials,98 and aggregated 
synthesis parameters for 30 different oxide materials systems,89. These studies have also provided 
insights on best writing practices to facilitate efficient transfer of knowledge which is machine-
readable,99 and understanding of best synthesis practices through graph representations.100 As 
opposed to the above examples which conducted NLP using supervised methods with annotated 
studies as training data, Tshitoyan et al.87 demonstrated the successful use of unsupervised 
techniques in extracting structure-property and chemical relationship information, and 
demonstrated these tools can aid in future materials discovery by codifying knowledge contained 
in past publications. Another impressive example is the recent book Lithium-Ion Batteries: A 
Machine-Generated Summary of Current Research, a review extracted from over 150 papers on 
Li-ion batteries which was generated by a machine learning model.101 This work suggests a future 
where information aggregation in topical reviews could be automatically delivered in a very human 
understandable form, significantly accelerating the process of learning new areas.  
3.4 Machine	Learning	for	molecular	simulation	
3.4.1 	Interatomic	potentials	
Atomistic scale simulations of molecules and condensed 

phases typically find the interaction between classically-treated 
nuclei through Hamiltonians that are either based on 
approximate solutions to the Schrödinger equation for electrons 
or that coarse-grain quantum electronic effects into an effective 
interatomic potential. Interatomic potentials are typically about 103-106 times faster than common 
quantum methods (e.g., density functional theory (DFT)) but finding and parametrizing 
appropriate functional forms to treat systems with complex electronic behavior (e.g., with charge 
transfer, bond breaking, multiple types of hybridization, etc.) is very challenging. Replacing 
interatomic potential functional forms and fitting procedures with those from ML offers the 
alluring possibility of both greatly reducing the time and expertise required for developing 
potentials and perhaps enhancing their accuracy. In the past decade, many researchers have used 
ML for generation of interatomic potentials (referred to as a “machine learning potentials” 
(MLPs)) which have enabled studies of larger size and longer time than accessible with direct 
DFT.102–107108 Generating an MLP is fundamentally a complex regression problem to map the 
potential energy surface and/or its derivative, the force field, by fitting an ML model to a large 
training database, typically containing thousands of DFT calculations (often derived from 
individual time steps of Ab Initio Molecular Dynamics (AIMD) simulations).103,109–112 
Constructing input features for the MLP model (sometimes called atomic structure descriptors or 

DFT: density functional theory 
MLP: machine learning potential 
AIMD: ab initio molecular 
dynamics 
CNN: convolutional neural 
network 
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“fingerprints”) is critical and has received a lot of attention over the past decade (see Sec 
4.2).39,105,113,114 As a concrete example of the success of these methods, Botu and Ramprasad 
trained a KRR model to demonstrate a largescale acceleration of AIMD calculations for bulk and 
surface slabs of Al.103 More recently, Bartok et al. have shown using GPR that a MLP can 
accurately capture the energetics of Si surface reconstructions.109 Finally, Artrith et al. 
demonstrated that modeling systems with up to 11 elemental components with neural networks is 
not only computational feasible buy highly accurate.110,111 Despite these and many other notable 
successes, challenges remain, such as the difficulty in obtaining enough high quality DFT data to 
fit a MLP for complex phenomena (such as grain boundaries, surfaces, cluster defects, or other 
extended defects) and multiple alloying elements. An additional challenge of using MLPs is 
similar to that encountered with the construction of empirical potentials: namely how to assess the 
chemical and physical applicability domain of the MLP and understanding when the MLP may 
fail.102,110,115,116 Finally, MLPs are often quite slow compared to many traditional interatomic 
potentials (e.g. about 1 to 2 orders of magnitude slower),113 so approaches that can accelerate their 
evaluation would broaden then utility.  
3.4.2 Improving	and	accelerating	ab	initio	simulations	
Ab initio methods (e.g. DFT and hybrid functionals) use approximate solutions to the quantum 

mechanical equations of electrons to model materials systems and have become some of the most 
widely used tools in materials and chemical science (DFT is today used in at least 30,000 new 
research publications every year).117 However, these methods suffer from limitations of accuracy 
and speed that significantly inhibit their use, and there have been multiple strategies to apply ML 
to improve and accelerate the calculation of ab initio functionals, each showing significant notable 
advances. One strategy has focused on improving the accuracy of DFT methods. For example, the 
work of Nagai et al.118 used a neutral network to numerically calculate the Hartree exchange-
correlation functional in an effort to improve its accuracy, and Bogojeski et al. found that one can 
efficiently learn the energy differences from DFT and coupled cluster simulations, and use ML to 
provide a promising avenue to have coupled-cluster-level accuracy and DFT-level speed for 
physical situations where standard DFT is inadequate.119 Another strategy is to use ML to learn 
the computationally expensive portions of solving the Kohn-Sham equations in a DFT calculation, 
namely contributions to the exchange-correlation energy.120–122 To this end, Snyder et al.120 
modeled the kinetic energy of a one-dimensional system of non-interacting electrons, which 
analysis was then extended to more general cases,121 and Mills et al. showed that a convolutional 
neural network (CNN) can learn the mapping between the potential energy landscape and the 
resulting one-electron ground state and kinetic energies.123124  
The second strategy is to directly learn the electron charge density itself. This strategy has the 

advantage that it allows one to completely bypass solving the Kohn-Sham equations, and instead 
rely on the Hohenberg-Kohn theorems which allow one to obtain the total energy (and other 
properties) directly from the charge density.125–129 Figure 2D shows a representation of using ML 
and charge densities to bypass the calculation of the Kohn-Sham equations. There have been 
diverse methods employed to learn the charge density directly. For example, Kajita et al. proposed 
a method of descriptor generation based on a 3D voxel representation of the electron density for 
use in CNNs.126 In contrast, Brockherde et al.127 and Bogojeski et al.128 formulated KRR models 
to directly learn the charge density using a suite of training data, and a final example from Sinitskiy 
and Pande showed that CNNs trained on low-fidelity charge density data can learn meaningful 
characteristics of the charge density for a variety of organic molecule chemical environments, 
enabling predictions with DFT-level accuracy but orders of magnitude faster.129 Once sufficiently 
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mature, these methods may fundamentally alter the way in which researchers conduct ab initio 
calculations, wherein ML is fundamentally providing quantum mechanical knowledge of complex 
systems without needing to solve the Schrödinger equation. 

4 Some	challenges	and	best	practices	for	ML	in	MS&E	
In this section we discuss issues that occur in many ML modeling projects, focusing on 

supervised regression learning models for property prediction, although many of the issues are 
similar in other applications. The key steps in a ML workflow 
broadly include: (1) data collection and cleaning, (2) feature 
generation and selection (featurization or feature engineering), 
(3) model type selection, fitting, and hyperparameter 
optimization, (4) model uncertainty assessment (e.g. 
performance on test data) and domain applicability, (5) final 
model predictions. The ML workflow has been discussed 
extensively in other reviews and a detailed discussion across all 
parts will not be included here.39,130 However, we do wish to 
discuss some critical aspects associated with steps (2)-(4) that we 
feel are valuable to help the community move toward best practices in ML modeling. 
4.1 Basic	Statistics	of	Accuracy	
In many steps of supervised regression learning, ML models are assessed by some statistic 

related to the differences between the predicted data 𝑌+  and true data 𝑌. The equations for these 
statistics are widely available and will not be given here, but we briefly discuss their effective use. 
The root-mean squared error (RMSE) is a commonly used error metric, and frequently the error 
metric that the ML model seeks to minimize. Mean absolute error (MAE) is also useful to calculate 
and will typically trend with RMSE, but is less sensitive to large errors from outlier predictions 
and is not smoothly differentiable like RMSE, making it harder to use in some optimizations. Mean 
absolute percentage error (MAPE) (often called by many different names, e.g., Average Absolute 
Relative Error (AARD)) is just the absolute error as a percentage of the data point and is also very 
helpful as the importance of an error is often related to the size the quantity being predicted. It is 
also important to give RMSE errors relative to the standard deviation of the data set, which is 
sometimes called the reduced RMSE, as this provides a reasonable representation of the scale of 
the ML errors with respect to which RMSE should be measured. In particular, the reduced RMSE 
value for a well-performing ML model should be significantly less than 1 as simply guessing the 
mean of the predicted data (typically not useful) would yield a reduced RMSE equal to 1.   
Another widely used metric is the coefficient of dependence 𝑅*, which gives the fraction of 

variance in the true value that is predictable from the predicted values (the parity plot, which shows 
predicted vs. actual data, is a very useful plot and gives a graphical feel for 𝑅*).	𝑅* is less than or 
equal to 1, with 1 representing perfect prediction, and can be less than zero for predictions that 
trend with the opposite sign slope as the true values (𝑅* technically has no lower bound). Reduced 
𝑅* (sometimes referred to as adjusted 𝑅*) is given as 𝑅/01* = 1 − [(1 − 𝑅*)(𝑛 − 1) (𝑛 − 𝑘 − 1)⁄ ] 
where n is the number of observations and k is the number of features. 𝑅/01* is less than or equal to 
𝑅* and, since it adjusts for the complexity in the model, it will decrease when terms that have no 
predictive ability are added. 𝑅* gives a useful overall assessment of model quality, and generally 
values > 0.7 are desired for a useful model. However, 𝑅* can be misleading, e.g. a few widely 

RMSE: root mean squared error 
MAE: mean absolute error 
MAPE: mean absolute 
percentage error 
AARD: average absolute relative 
error 
R2: coefficient of linear 
dependence 
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separated regions that are fit on average can give a high 𝑅* even when no predictive ability within 
each region is given by the model. 
Overall, we suggest determining at least RMSE, reduced RMSE, MAE, MAPE, 𝑅* and 𝑅/01*  

and generating a parity plot as standard practice, and using the metrics most relevant for your 
application. RMSE is typically used for choosing the best features and models during ML model 
development. The exact method of choosing data for fitting and assessing a model with RMSE (or 
any metric) can be complicated and is described in Sec. 4.4.1. 
4.2 Feature	Engineering	
Feature engineering is a key component of developing useful supervised ML models. Features 

must be machine readable (i.e., vectors of numbers), practical to obtain for the desired application 
(e.g., they should certainly be significantly easier to obtain than the target property values), capture 
as much of the relevant variables controlling behavior as possible, and ideally contain limited 
additional information that is not useful and which may lead to overfitting data and poor 
predictions. Generally, feature engineering consists of two steps: feature generation and feature 
selection, each of which will be described here.  
 A common set of minimal descriptors may include composition and processing conditions 

(e.g., precursors, annealing temperature or gas pressure), as these can completely specify the final 
material, although perhaps rather indirectly. Additional characterization information can also be 
included, e.g., infrared or X-ray diffraction spectral data. While composition specified by weight 
or atomic percent is useful, it cannot be used to extrapolate to any new elements, since the model 
will have no knowledge of how to predict effects of that element if it has not appeared in the 
training database. One solution to this limitation is to represent each element with a feature vector 
of elemental properties, e.g., melting temperature or electronegativity. These can then be used to 
generate features for alloys by taking arithmetic- or composition-averaged combinations of the 
constituent element features, for example constructing the composition-averaged melting point of 
the elements in a compound. This approach has been codified by the Materials Agnostic Platform 
for Informatics and Exploration (MAGPIE),131 which gives a canonical set of elemental properties 
and arithmetic operations that have proven successful in predicting stable compounds,14 glass 
forming ability,26 and diffusion coefficient, to name a few.34,35 
For cases where some level of atomic structure (by which we mean atom position and element 

type) information can be readily determined (e.g., in atomistic modeling or organic molecule 
descriptions) the atomic structure forms a powerful feature set, as it is likely to play a large or even 
totally controlling role in setting a property of a molecule or crystal. Direct use of the atomic 
coordinate vectors and atom types as a feature is inadvisable as it 
does not satisfy the translational, rotational, and permutation 
(swapping atoms of same types) symmetries of the system under 
study, and thus would need a very large amount of data to be 
trained well enough to reflect these basic symmetries. An array 
of different feature generation methods have therefore been 
developed which do satisfy these symmetry requirements. For 
molecules, these include properties like bond lengths, 
connectivity, and functional groups, and can include relative 
atomic position and electronic structure data computed with 
quantum mechanical atomistic simulations. Such properties have 
been widely used in QSAR/QSPR analysis. Thousands of basic 

MAGPIE: materials agnostic 
platform for informatics and 
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ACSF: atom-centered symmetry 
function 
SOAP: smooth overlap of atomic 
orbitals 
BoB: bag of bonds 
BAML: bonds, angles, and 
machine learning 
MBTR: many-body tensor 
representation 
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QSAR/QSPR features are now available and can be extracted automatically from basic molecular 
formulae (e.g., SMILES strings) (see Ref. 132 for a summary of recent automated tools for 
QSAR/QSPR). A number of tools have also been developed for extended systems (i.e., not just 
molecules) in the context of constructing ML-based potentials (see Sec. 3.4). These features have 
been validated for particular materials systems and benchmarked against key standard databases 
(e.g. the QM9 molecule dataset), including, but not limited to: atom-centered symmetry functions 
(ACSFs),133 the smooth overlap of atomic orbitals (SOAP) method,134 partial radial distribution 
functions,135 bag of bonds (BoB),136 bonds, angles and machine learning (BAML),137 and the 
many-body tensor representation (MBTR).138 The streamlined production of many of these 
features has been implemented in the matminer code package (see Sec. S2 of the SI or the Figshare 
link in Sec. 7).139 Another approach to feature generation is graph-based deep learning methods, 
which first map atomic structure onto a vector of atom descriptors (e.g., type and simple properties, 
like formal charge) and bond distances and connectivity (the graph), and then merge those 
descriptions with weighted averaging to ensure flexible joining of the atomic descriptions with the 
correct bonds. 140–143 These methods work from very basic information and replace the step of 
invoking human intuition and analysis to generate features with a more automated deep learning 
generation of a feature map. Finally, we note that one can work from unsymmetrized data if the 
method itself performs the symmetrization. For example, Nie et al. recently generalized kernel 
regression approaches to include permutation symmetry and showed it could generate effective 
energy fitting directly from atomic pair distances.144  
Once a set of features to represent a dataset have been generated, it is common to select a 

representative set of features that is large enough to result in low model errors and avoid model 
underfitting, yet not so large as to incur penalties to overall model accuracy and extrapolative 
ability due to overfitting. Certain ML models such as polynomial and kernel ridge regression can 
easily become confused or overfit if too many features are used, but other models like random 
forest methods (see Sec. 4.3 and Sec. S4 of the SI for more details) intrinsically function as a form 
of feature selector, as more important features carry heavier weights in the final ensemble of trees 
compared to less pertinent features. A simple approach is to enumerate all possible feature subsets 
and select the one minimizing some model error score (e.g., RMSE of a particular cross-validation 
routine, see Sec. 4.4). For testing up to M features out of N possible features this approach requires 
N choose M model score evaluations, which is computationally prohibitive for large feature sets. 
Similar spirited approaches iteratively test one descriptor at a time and then add it to a growing list 
(forward feature selection) or removes it from a shrinking list (reverse feature selection) based on 
it resulting in the greatest reduction (or least increase) in the model error score. Forward (reverse) 
feature selection methods take N!/(N-M)! model score evaluations to find M (remove M) features, 
which is generally tractable for models that are computationally fast to evaluate.  
Feature selection usually benefits from a consideration of the physical reasonableness of the 

features, and features that make no physical sense are obviously a concern, e.g., cost of elements 
correlating with band gap. Such correlations are likely created by the feature correlating with some 
other more physical feature(s), but the model not having enough data to select the correct features. 
Better models can generally be generated by intentionally replacing such features with physically-
motivated hand-picked features that perform equivalently well (or better) as automatically 
selecting features (note that forward (reverse) feature selection are not global optimization 
methods and can miss optimal feature sets). For example, Liu et al.36 and Lu et al.35 found that 
starting forward selection with an initial physically meaningful feature chosen by human intuition 
(and known physics) resulted in improved model performance compared to using purely 
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automated forward selection. One can consider iterative exploration of two or more features for 
addition/subtraction from the feature list, although we are not aware of any examples where this 
yielded significantly better results and it greatly increases computational cost. In addition to these 
feature selection methods, other popular dimensional reduction methods take linear combinations 
of the features to best explain their behavior with fewer variables, often called latent variables 
(e.g., principal component analysis (PCA), linear discriminant analysis, and factor analysis). 
Including just the most important latent variables generated by these methods can improve some 
fits, although the interpretation of the latent variables can be difficult.  
An important trend to be aware of in ML is the used of deep 

learning to obtain better results from features without extensive 
human guidance in both feature construction and/or feature 
selection (see Sec. 4.3 and Sec. S4 of the SI for more details). 
Deep learning methods can effectively generate their own 
feature set (generally called a feature map), often doing so 
starting from an initially large and rather unstructured set of 
features (e.g., a vector of pixel intensities or graph-based matrix 
of atom and bond properties) that are not effective with 
traditional ML methods. The comparison between more human-crafted vs. machine-learned 
features in machine vision has largely established the latter as superior in that field, leading to a 
revolution in the accuracy of machine vision.145146 While the outcome of this comparison in MS&E 
problems is not yet clear, there is increasing evidence that deep learning will provide significant 
improvements. For example, the deep convolutional individual residual network (IRNet)41 was 
shown to achieve better performance from a long list of initial features than traditional methods 
such as RFDTs and ridge regression. Some graph-based deep learning methods, which build 
feature maps from a very basic initial feature list, have shown comparable or better performance 
in organic molecule studies than human-crafted traditional features in QSAR/QSPR comparisons, 
e.g., Message Passing NN frameworks.147 Similarly, for inorganic materials, the graph-based 
MatErials Graph Network (MEGNet)142, SchNet148 (and SchNetPack149) and crystal-graph 
convolutional neural network (CGCNN)150,151 have shown performance comparable or better than 
non-deep learning approaches. Given the success of deep learning in machine vision and language 
translation, and its already impressive performance compared to more human-crafted features used 
in traditional methods after just a few years, it seems likely that deep learning-based feature maps 
will play a major if not dominant role in the future of feature development in ML for MS&E. 
4.3 Types	of	Machine	Learning	Models	
The large number of ML models and their many technical 

details are well-covered in many texts and reviews42–44,152 and 
would require more space than available here, so we will not attempt any type of general review 
of ML models. However, in Sec. S4 of the Supporting Information we provide a short discussion 
of some of the most commonly used models (with a focus on tools for supervised regression) in 
MS&E with a goal of highlighting the most salient features for an MS&E researcher. 
4.4 Model	Development	and	Model	Assessment		
ML modeling typically has two closely connected but distinct major stages: model 

development and model assessment. In model development (Sec. 4.4.1) we determine model type, 
parameters, hyperparameters, and features (see Sec. 2 for definitions of these terms). In model 
assessment we determine the accuracy of the model for expected use cases, which typically 
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includes assessing the model performance with sampling methods such as cross validation (Sec. 
4.4.2), understanding the domain of applicability where the model is expected to be accurate and 
quantifying error bars in model predicted values to understand expected model uncertainties (Sec. 
4.4.3). To help illustrate these important concepts of model applicability domain and assessing 
model errors more concretely, we provide and discuss an in-depth practical example using ML 
models trained on data of calculated migration energies for solute elements in metallic hosts (Sec. 
4.4.4). 
4.4.1 Best	practices	for	managing	data	in	model	development	and	assessment	
The same model scoring approaches are often used in both model development and model 

assessment, which can lead to overfitting and overestimation of the model accuracy if one is not 
careful. This danger is increased when model development involves many degrees of freedom 
(e.g., many hyperparameters) and where there is limited data to constrain those degrees of freedom. 
The simple rule to avoid model assessment errors from overfitting is that any data used for model 
development should not be used for model assessment. To understand how to apply this rule 
practically it is useful to define three types of data points (where a data point here means a vector 
of corresponding features Xi and target property value(s) Yi):  

• Training data: Data used to determine the optimal model parameters for a given model 
type, hyperparameters, and feature set.  

• Validation data: Data not used in training, which is instead used to assess the error in the 
model with optimal model parameters determined from fitting the training data. This error 
is frequently used determine the optimal model type, hyperparameters, and feature set. 

• Testing data: Completely left out data not used in training or validation, which is instead 
used to assess the error in the final optimized model. 

First consider the process of model development. We start by dividing the data into training, 
validation, and test data in some way (we will discuss how to do this most effectively in the 
practical example in Sec. 4.4.4). A basic fit of the model, with fixed model type, hyperparameters, 
and feature set, uses training data to find the optimal model parameters that give the lowest possible 
value of some scoring metric (typically measured with RMSE, so we will use that here) on the 
training data. This obtained training data RMSE shows how well the model fits the training data, 
but this error is usually not a good estimate of how the model will fit data outside the training data. 
This limitation arises because the model often adjusts its many degrees of freedom to properties 
of the training data that cannot be correctly represented by the model (a process called overfitting), 
either due to limitations of the model form and features or noise in the data that cannot be modeled. 
To obtain a reasonable estimate of the model errors on non-training data we can look at how well 
the model predicts the validation data, for example the validation data RMSE. We can now 
optimize the model type, hyperparameters, and feature set to minimize the validation data RMSE. 
The optimal model type, hyperparameters, and feature set can then be used to refit the parameters 
of this model to the combined training and validation data to get the best possible fitted model 
without using the test data. The use of any information in model development from the test data, 
or more generally from a source that would not be available in a corresponding manner during 
model use, is sometimes called “data leakage”, and can lead to overestimating the quality of your 
model. 
4.4.2 Model	development	and	assessment	with	cross	validation	
Perhaps the most common way to split data into sets for model development and assessment, 

typically called training and validation sets (defined in Sec. 4.4.1), is the method called cross 
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validation (CV). Splits can be done in many ways, and common approaches include leaving out 
(LO) one data point or some randomly chosen X% percent fraction (typically called LO one CV 
or leave out X% CV, respectively), splitting the whole data set into k separate equal-sized groups 
called folds, and iteratively leaving out each fold once (k-fold CV), leaving out targeted groups 
with certain characteristics (LO group CV, sometimes called LO class CV), e.g., all data with a 
specific chemical composition, and time-split cross validation,153 which leaves out select data 
based on the time of their inclusion in the dataset. For LO X% CV and k-fold CV one typically 
chooses which data is in each fold randomly, and this can be done multiple times with different 
random permutations to ensure good sampling. As discussed in Sec. 4.4.1, The errors in prediction 
for validation data from models trained on training data, which we will call CV errors, is typically 
a much better way to assess a model than errors in the training data predictions, as the latter 
typically show overfitting. CV errors are a common method of model assessment and can be used 
to develop a model (e.g., RMSE for all folds in 5-fold CV is a common scoring metric used in 
feature selection, as discussed in Sec. 4.1) and estimate its predictive error, as discussed in more 
detail in Sec. 4.4.3.  
Once an optimized model has been developed, we would like to assess the errors and domain 

of this optimized model. This model error and domain assessment ideally should not be done with 
CV scores already obtained using the validation data since these CV scores can be subject to 
overfitting based on the optimization done in model development. Thus, we need to consider yet 
another left out data set, the test data, to quantify the model error. Specifically, we take the optimal 
model type, hyperparameters, and feature set obtained from optimizing the validation data RMSE, 
and refit the parameters of this model to the combined training and validation data to get the best 
possible fitted model, and then predict the test data to get the test data RMSE. Because the test 
data has not been used in any step of the optimization process, the test data RMSE is a good 
quantification of errors in the final model.  
The above approach is often not practical as it is difficult to simply separate out test data and 

never look at it until the model is finalized. In addition, use of just one training, validation, and 
test data set may introduce large biases associated with the specific data that ends up in those splits, 
leading to suboptimal models and error estimates, particularly for smaller data sets. These 
problems can be avoided by effectively simulating the above steps multiple times with different 
splits in a method called nested CV. First, you must settle on at least a general model development 
approach, which includes the types of models you will consider, hyperparameters you will 
optimize for each model, and features you will explore. Then, you perform CV on all the data, 
considering each excluded set as test data (level 1 CV), and an additional nested CV (level 2 CV) 
on the included training and validation data to determine the best model. Each level 1 left out test 
set then can be considered a true test set in the sense that it was not used in any part of the model 
development. Many authors effectively perform a level 1 CV just once with ~10-20% of the data 
left out at level 1 and perhaps also level 2, as multiple folds at level 1 and level 2 can lead to a lot 
of computation. If the splits are done many times, e.g., with 5-fold CVs for level 1 and 2, it provides 
a strong sampling across all the data, which is recommended for smaller data sets where it may 
also be most practical. The nested CV approach is typically not totally rigorous, as researchers will 
almost inevitably modify aspects of their approach in light of the final results, thereby introducing 
some level of data leakage and potential overfitting, but nested CV is a practical approximation 
for quantifying model errors that avoids most effects of overfitting.  
One subtlety with the nested CV approach is that while using the level 2 CV to optimize model 

type, hyperparameters, and feature set one is potentially overfitting to the level 2 CV score with 
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multiple variables, which could lead to some of them actually being incorrectly optimized for truly 
best performance. A practical example if this, documented in Ref. 154, is that if you optimize 
hyperparameters for two different model types and then choose between them based on the level 
2 CV score, you might choose the less optimal model type simply because it is more overfit. 
Ideally, one would use many nesting levels and optimize just one property at each level, but this 
can quickly become impractical, and one nesting level is all that is typically used. Such nesting 
should be adapted to best meet the specific optimization and assessment needs of your problem. 
4.4.3 Model	domain	of	applicability	and	assessing	uncertainties	in	model	predictions	
Perhaps the most important question one can ask of an ML model is “how accurate is the model 

for the potential applications I have in mind?” Answering this important question typically has two 
coupled components, which are (1) an estimate of the domain where the model can be accurately 
used and (2) an estimate of the uncertainty in the model predicted values (e.g., a standard deviation 
in prediction accuracy). Regarding (1), the model domain of applicability is a region of feature 
space outside of which we simply cannot reliably use the model (e.g. using a model trained only 
on yield strengths of metal alloys to predict yield strengths of polymers). Regarding (2), error 
estimates provide some form of uncertainty quantification on each value predicted by the model, 
thus providing more information on the uncertainty of a prediction than simply using the average 
predicted RMSE of the model from, e.g., a 5-fold CV. In this section, we provide a general 
introduction to understanding model errors. In Sec. 4.4.4, we illustrate how one may assess the 
errors and applicability domain of real ML models using GPR and RFDT models fit to a computed 
database of DFT-calculated dilute impurity diffusion activation energies in a range of metal hosts. 
There is not an exact definition of the domain of applicability of a model. We propose that a 

useful definition which captures what is often desired in defining a domain is the set of data points 
for which uncertainty can be quantified at a desired level (e.g., that the standard deviation is known 
within 20%). One might intuitively want to determine a domain of applicability based on some 
criterion of maximum acceptable errors. However, such screening is only possible if the errors are 
accurately known, so it is necessary to know the domain in the sense defined above before applying 
any further constraints on desired error magnitudes. There are many methods to assess domain of 
applicability based on some measure of distance of the features of a potential data point from those 
in the model training data, e.g. within the convex hull of the feature space (a number of methods 
are summarized in Ref. 155). However, these methods all rely on distance metrics of uncertain 
validity for the specific problem being studied and require somewhat arbitrary cutoffs, and so are 
difficult to apply for more than a qualitative guide on where you might consider the model to be 
at risk of being not applicable. We believe some combination of distances in feature space from 
training data and predicted error values are likely to provide the best guidance on domain and error 
estimates. However, predicted error values are more immediately and obviously useful for 
assessing models, and therefore here we discuss in more detail common methods used to establish 
some type of error bar on the predictions and their use in establishing model domain, each of which 
has certain strengths and limitations.  
To better understand model prediction errors, it is useful to start with the well-known bias-

variance-noise decomposition of the error. Following the definitions in Sec. 2 one can rigorously 
decompose the expected squared error for prediction on a new point 𝑋∗ as 

𝐸 :;𝐹(𝑋) + 𝜖 − 𝐹+(𝑋)<
*
= = ;𝐸>𝐹+(𝑋)? − 𝐹(𝑋)<

*
+ 𝐸 @A𝐹+(𝑋) − 𝐸>𝐹+(𝑋)?B*C + 𝜎*  (1) 
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Here the expectation is the average over all possible training data sets of size n, which we can 
imagine to be randomly sampled from the total possible space of (𝑋D, 𝑌D	)	pairs. The three right-
hand side terms from left to right are the bias squared, variance, and noise variance, respectively. 
The bias is the difference between the expected value of our model averaged over all training set 
samplings 𝐸>𝐹+(𝑋)? and the underlying true function 𝐹(𝑋). The variance is the squared spread in 
𝐹+(𝑋) relative to its average, again taken over all training set samplings. Intuitively, models with 
few parameters that underfit but are very well constrained will minimize variance but have large 
bias, and models with many parameters that overfit will minimize bias but have large variance. 
The lowest overall errors are typically found with a balance between optimizing both the bias and 
the variance. Eq. (1) formally requires exploring every training data set of size n, and we typically 
have a problem with a single data set of size n, so it is not straightforward how to estimate the 
expected squared error in Eq. (1). 
4.4.4 Example	of	assessing	model	errors	and	domain	of	applicability	using	GPR	and	RFDT	

models	on	real	data	
In this section, we consider the errors and domains of some widely used modeling approaches 

on a realistic data set. There are two very common approaches to estimating a distribution on 
model prediction values. The first approach is ensemble methods, where one fits an ensemble of 
models, which can then yield a distribution of predictions for any new data point. The ensembles 
can be generated by resampling data (e.g., bootstrap and CV) or by refitting models (e.g., retraining 
neural networks from different starting weights or with different dropouts), or a combination of 
both (as is done in RFDTs), as will be described further below. The second approach is to use 
Bayesian methods to modify a prior distribution and produce a posterior distribution, e.g., as done 
in GPR. Ensemble methods are very flexible and can be applied to many models. For example, 
resampling can be used to get a predicted distribution for essentially any model if it is 
computationally feasible. Bayesian methods tend to require more specialized methods adapted to 
use a Bayesian approach, but can potentially avoid many iterations and include key information 
through priors.  
In this section, we explore the behavior of error predictions from the very common approaches 

of CV (with GPR), GPR, and RFDTs to better see how these errors behave and might be used. For 
simplicity, we will usually consider just the mean and standard deviation (or RMSE, or just error) 
of predicted distributions, as these represent the prediction and a simple error bar, respectively, but 
the methods discussed here actually give a full distribution for predicted values. All these methods 
for estimating the error of a model result in model predicted errors on any data point. However, 
CV is a resampling method generally only used to predict the left-out validation samples, not 
totally new data, and its results are typically averaged over all predictions to obtain a single CV 
RMSE, as we will do here. For each case below, we illustrate the accuracy of the estimated 
standard deviations by comparing them to actual observed standard deviations on validation and 
test data sets. We will make use of models fitted to a database of DFT-calculated dilute impurity 
diffusion activation energies in a range of metal hosts. The data contains 408 activation energies 
for 15 different hosts, and is described in detail in Ref. 35 (see Sec. 7 for data availability on 
Figshare). All of the models were evaluated using the routines available in the scikit-learn 
package,156 and the model fits and analysis were automated using the Materials Simulation Toolkit 
for Machine Learning (MAST-ML).157,158 
 To help assess the model domain of applicability, we explore a chemistry test where we 
consider Pd-X systems, where Pd is the host element and X is a dilute impurity taken from three 
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sets (set 1 = 3d and 4d transition metals, set 2 = Col VIA elements except O, set 3 = elements from 
the first 2 rows on the periodic table). In this test we train the model with no Pd host data and then 
predict the errors for the 3 sets. While we have DFT data for only some of these predictions, they 
represent data that is very similar to our database (set 1, which has many 3d and 4d metals) and 
from quite to extremely different (sets 2 and 3, respectively), with set 2 sharing related chemistry 
due to being in the same column of the periodic table and set 3 having many dramatically distinct 
chemistries, e.g., Pd-O. Thus, we expect errors to be small in group 1, larger and similar in set 2, 
and larger and often outside the model domain in set 3. 
Perhaps the most widely used approach for estimating model errors are through the use of 

resampling methods, which estimate the uncertainty of predictions by sampling a subset of the 
available data (training data) and predicting remaining data left-out of the subset (validation data). 
The errors on the left-out validation data are then used to estimate a typical error bar for the model. 
These approaches have the advantage of being relatively simple and applicable to any model being 
used. The most common resampling method for error prediction is probably CV (Sec. 4.4.2). 
Another common resampling method is bootstrapping, which differs from CV primarily by 
resampling with replacement and the typical size of the resampled set. We do not discuss bootstrap 

 
Figure 3: Plot of CV RMSE for various leave-out nested CV tests. The top level 1 split was into 
train/validation (left of vertical dashed line) and test data sets (right of vertical dashed line). These level 
1 splits were done in two ways. Green bars signify tests done with 5 test sets chosen randomly with 
replacement, where each test set had 20% of the data and each train/validation set had 80% of the data. 
Blue bars signify tests with 15 test sets (one for each host), where each test set had one host and all 
impurities in that host and each train/validation set had all other data in the database. See Sec. 7 for data 
set availability. Predictions of test data were done with training on the full train/validation sets. The nested 
level 2 splits were done within the train/validation sets (left of vertical dashed line). The level 2 splits 
included leave one out, k-fold CV, and leave out 90% (randomly sampled 5-times, with replacement) 
(green bars) and leave out each host (14 splits) (blue bar). Error bars denote standard errors in the mean 
CV RMSE over level 2 splits (left of vertical dashed line) and level 1 splits (right of vertical dashed line). 
Error bars on the CV RMSE values are one standard error in the mean of the CV RMSE calculated with 
all values from level 2 or level 1 fits, as appropriate. All fits were done with Gaussian process regression 
using features optimized for this method taken from Lu et al.35 
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in detail here due to space limitations and the fact that CV appears to have some advantages versus 
bootstrap for resampling.159 However, bootstrapping is used in the random forest method described 
below. In addition, basic k-fold CV has been shown to give relatively good estimates of errors44 
and is a recommended standard test for any model. Note that for k-fold CV this error will generally 
increase with decreasing k (equivalently, increasing X% LO), particularly for smaller data sets, as 
the smaller and more independent training sets will lead to larger bias and variance. k in the ranges 
3-10 are generally found to be a good compromise and yield good results. We illustrate this 
behavior in Figure 3, which shows a clearly increasing average CV error with k that matches the 
test data error best for k near 10. 
In general, all resampling methods suffer from some significant limitations that are not always 

appreciated. The most severe and difficult to treat is that these methods give an estimate of the 
error for the data you have in your analysis (i.e. data in the training and validation sets), which 
error can only be expected to be accurate for data in some way similar to your database. 
Unfortunately, resampling does not provide a clear guide on how similar new data is to that in the 
database. A related issue is that when you assess an error from a LO validation data point you 
typically don’t know how similar that point is to data in the subset used as training data. While 
duplicate data can be easily removed, the validation data can be very similar to one or more 
elements of the training data, which will typically yield errors much lower than for a prediction on 
a data point less similar to the validation data (this is sometimes called the twin problem, as your 
validation data point has one or more nearly identical twins in the training data). Both of these 
issues are closely related and arise from the fact that resampling yields error estimates potentially 
closely tied to the specific characteristics of the data sampled and predicted and may not represent 
the errors one will obtain for the future predictions to be made by the model. An excellent example 
of this problem can be found in a recent study of superconducting temperatures,20 where models 
fit to just low or just high temperature superconductors both showed good cross validation scores 
within each group, but essentially no ability to predict the other group. This result is easy to 
understand in terms of the known large qualitative differences in the physics governing low and 
high temperature superconductivity, but one cannot rely on such robust physical guidance in 
general. These issues can be somewhat alleviated by careful LO group error bar assessments, 
where one attempts to mimic the types of prediction challenges the model will face in real 
applications.14,20,35,160 For materials systems, good LO group tests might typically include leaving 
out certain elements, alloys, or composition ranges. For example, the LO host error on test data 
shown in Figure 3 is significantly larger than that obtained from the k-fold CV for typical k values 
of 3 or 5, demonstrating that the latter is unreliable for predicting new hosts, but it is well estimated 
by the LO host error determined from the training/validation data. A more direct way to avoid the 
twin problem might be to remove all compositions within some hypersphere around any point in 
the validation data, thereby ensuring the predictions are always being made from significantly 
different compositions. A particularly elegant way to select LO groups that mimics how your 
model will be used is to explicitly test new data based on data from earlier times (time-split cross 
validation153), although this is not always practical or appropriate. Sheridan used QSAR data to 
show that time-split cross validation was quite accurate, while random LO CV tests tended to result 
in an overly optimistic assessment of a model and LO clusters CV (i.e. a variant of LO group CV) 
tended to result in an overly pessimistic assessment of a model.153 In general, we would 
recommend that all model development and error quantification done with resampling, e.g., nested 
CV (Sec. 4.4.2), at least use a CV error determined by combining leave out random folds and leave 
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out physically motivated groups that assess your planned uses for the model and remove twin 
effects.  
As mentioned above, Bayesian methods can provide an error bar without resampling. Perhaps 

the most widely used Bayesian method in MS&E is GPR, discussed in the ML models section in 
Sec. S4 of the SI. GPR distributions for a new point are entirely determined by the feature matrix 
of the training data and the model kernel, and do not depend on the specific values of the training 
data (except for a fit scale factor, smax, that typically closely matches the training data standard 
deviation), making GPR distributions effectively a measure of how similar a new data point to be 
predicted is to the database being used to train the GPR model. Data points very similar to those 
in the training database will have small errors, while those less similar will have larger errors. 
These error bars do have the limitation that they are estimates from a modified prior and are 
therefore expected to get less accurate for data points far from the training data. In fact, GPR error 
bars tend to have the constant value smax for points completely unrelated to the original data set. 
Thus, for a good model and predicted errors significant less than smax the error estimates can 
potentially be taken as reliable, but for predicted errors near to smax the errors cannot be taken as 
quantitative, although they do suggest that the model is not robust for that data. In this way, for 
any prediction, GPR potentially provides either reasonable error bar estimates or a clear warning 
that a particular data point is outside the domain of the model. GPR error estimates can also be 
used to assess where the GPR model is least constrained, suggesting where a new data point might 
be added to best improve the model, making it a powerful guide for iterative optimization with 
active learning (see Sec. 3.1.2).  
Figure 4A shows the standard deviations predicted for the three chemistry groups discussed 

above in this section, and the results are astonishingly close to what we would expect from 
chemical intuition. These results suggest that, at least in this case, the GPR errors are both accurate 
on average in the domain of the model and capable of establishing set 1 (3) as inside (outside) the 
model domain, with set 2 at the border of the model domain. Furthermore, Figure 4C shows, at 
least in this case, that the root mean of the squared residuals (RMS residuals) and GPR predicted 
errors show very limited correlation, suggesting that while in the model domain the GPR errors 
are of the correct average size, they do not appear to be varying by data point in a physically 
meaningful way. The results of Figure 4C suggest that GPR can predict large errors for systems 
well predicted by the model, so GPR may give a fairly conservative estimate for the model domain. 
One of the most widely used ensemble approaches (in addition to CV) in MS&E are RFDTs, 

which are formulated in such a way that they provide an intrinsically powerful tool for estimating 
uncertainties. RFDTs train an ensemble of models and thereby predict a distribution of values for 
new data points, generally providing both good estimates from mean values and uncertainties from 
the spread of the distribution (see the ML model section in Sec. S4 of the SI for more information). 
The ensemble of models comprising RFDTs is traditionally generated by fitting to different data 
samplings (e.g., bootstrap aggregation, or bagging being perhaps the best known approach) or 
iteratively reweighting the fitted data to harder cases (boosting), but can also be generated from 
varying the model used in fitting (e.g., changing dropouts in neural networks or possible split 
criteria in decision trees). A detailed discussion of these approaches across all methods is outside 
the scope of this review but it is useful to be aware of a few important examples.  
A particularly rigorous formulation of RFDT error estimates (which includes correction for the 

sampling and limited ensemble size as well as for missing bias and noise contributions) and an 
assessment showing their accuracy on materials properties is given in Ref. 161, although here we 
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will simply use the standard deviation of the distribution of predicted values to get errors. Similar 
to GPR, these estimates are expected to become less accurate for data far from the original training 
data. For RFDTs that use the mean of the individual decision tree estimators for regression this 
value is bounded at half the range of the training data (since maximally varying predictions will 
match the lowest and highest values half the time each), although it is unlikely to reach that value 
and we here assume that any value approaching the standard deviation of the training data, strain, 
is likely to signify the data is outside the domain of the model. Unlike the GPR case, the RFDT 
error predictions are likely to be sensitive to both the X and Y values in the training data. Figure 
4B shows the analogous chemistry plot for RFDTs as was shown for GPR in Figure 4A. However, 
unlike GPR, the RMS residuals and RFDTs predicted standard deviations show strong correlation, 
as shown in Figure 4D, for predicted standard deviations up to about the standard deviation of the 
total data set, and then show a clear transition to comparatively noisy behavior with little 
correlation. Also, unlike GPR, the Pd-X predictions show no ability to distinguish chemistries. 
These studies suggest that, for the data studied here, GPR errors are good for determining a 
conservative estimate for the model domain and good on average in that domain, but not reliable 
for distinguishing trends between data points in the domain, while RFDT errors are good on 
average and for distinguishing trends between data points in the domain, but not so good at 
estimating true errors when they approach the standard deviation of the data set and not very good 
at determining the model domain itself. We reiterate that these studies were done on just one fairly 
small data set and absolutely cannot be used to make robust broad conclusions, but the results 
suggest some of the opportunities and challenges of using error estimates and show the need for 
further studies to establish how they can be best applied to problems in MS&E. 
Finally, we note that neural networks can also provide their own uncertainty estimates through 

an ensemble of networks approach. This can include simply starting from random weight 
initializations multiple times (which can be time consuming)162, using snapshots taken during a 
typical optimization run162, and exploring multiple fits done with different dropouts (dropouts in 
NNs are removing output of a random and changing subset of nodes).163 
Despite one’s best efforts using methods like above it can be difficult to be sure one has a 

meaningful model in the case of working with small data sets. A few checks against simple naïve 
references are recommended to ensure that the model is adding significant value. These are 
described in SI Sec. S5.   
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5 Machine	learning	tools	and	software	for	materials	
Recently, there has been intense development of open source software packages aimed at 

streamlining and accelerating the adoption of ML in general, and in MS&E in particular. Effective 
software tools are becoming increasingly important in order to maintain community best practices 
and ease-of-use, especially given the rapidly evolving field of ML and its application to MS&E 
more specifically, and especially for users new to the field.68,74,164 We have provided a detailed list 
of these packages with a brief explanation on the types of ML-related analysis enabled by each 

 
Figure 4: Summary of GPR and RFDT chemistry tests. (A) and (B) Chemistry tests showing model errors on 
predicted values for various solutes in a Pd host using the GPR model (A) and RFDT model (B). Comparison of 
root mean square absolute value of the residuals versus the binned model error values for (C) GPR and (D) RFDT 
tests. In (A) and (B), the models were trained on all data except Pd. In (C) and (D), both the x- and y-axes values 
are normalized by the dataset standard deviation, which is 0.4738 eV. The linear fits have intercepts that are forced 
to equal 0. In (D), the linear fit is done only on the blue data points, which have normalized binned RFDT less than 
1. The histograms in (C) and (D) show the counts of the number of mean squared residuals used to obtain the RMS 
residual for a given model error bin. The fits in (C) and (D) were performed using the same 15 grouped datasets as 
described in the caption of Figure 3. These datasets are equivalent to leave out two hosts cross-validation, where 
each training dataset excludes two hosts and the predictions are done on the two excluded hosts. This resampling 
corresponds to 15´14 = 210 training/validation splits, and each data point is predicted 14 times for a total of 408´14 
= 5712 total predictions. See Sec. 7 for dataset availability. 
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package in Sec. S2 of the SI, and posted via Figshare (see link in Sec. 7) to enable updates to this 
evolving list in the future. 

6 Future	opportunities	and	ongoing	challenges	of	ML	in	MS&E		
MS&E is still just beginning to utilize informatics on large databases164,165 but the increasing 

data generation rates from both experiments and simulation increasingly creates opportunities, and 
sometimes necessitates, using ML for analysis. This trend, along with the rapid evolution of ML 
algorithms and supporting hardware and cloud data and computing resources, suggest that 
opportunities for ML in MS&E are still far from being fully realized. Here, we highlight what we 
see as three (of no doubt many) key opportunities and associated challenges for ML in MS&E to 
address in the coming years. 
The first opportunity revolves around the creation of a codified, living materials informatics 

ecosystem which unifies materials data, MS&E-centric ML tools, and the generation, analysis, and 
dissemination of ML models in a democratized fashion. The development and dissemination of 
models in a robust innovation infrastructure is still missing, and would dramatically increase the 
utilization and impact of ML on MS&E. As a testament to the importance of seizing this 
opportunity, the potential impact and need for additional developments in ML across many fields 
of MS&E has been recognized in reports and at workshops hosted by many organizations, for 
example the Department of Energy166, National Institute for Standards and Technology, American 
Society of Mechanical Engineers,167 the National Science Foundation167 and has been reviewed in 
various places.39,68,74,164,165,168–170 As ML tools become ubiquitous in MS&E, we envision this new 
infrastructure would enable materials researchers, particularly the many who are not ML 
specialists, to construct multistep, automated workflows for complex analysis and to experiment 
with various algorithms and approaches to solve a particular problem, all within a consistent 
interface and nomenclature that implements best practices for materials-specific data, and without 
repeated human intervention for data formatting and translation. Such infrastructure is also 
necessary to allow ML models to be disseminated effectively in the broad materials innovation 
ecosystem, which includes ensuring they are discoverable, reproducible, reusable, and 
machine/human accessible, including access via an application programming interface (API) for 
incorporation into more complex workflows.  
In addition to this new infrastructure centered on ML models, there is also a need for open-

data that is curated and hosted, which will prevent data siloing and improve ease of access and 
sharing.68 Consistent materials metadata, for example as implemented by the Citrination 
platform,171 will also enable more informed comparisons between similar datasets, for example 
when comparing materials property data obtained from DFT calculations of different levels of 
fidelity. A long-standing challenge is related to the tradition in the scientific community where 
typically failed or “null” results are rarely reported in the literature. However, such results still 
constitute valuable information, particularly for training ML models, which can be leveraged to 
facilitate new materials advances. For example, recently the exploration of vanadium selenide 
materials synthesis was informed from failed synthesis approaches.172 Information that is often not 
deemed publishable in traditional peer-reviewed scientific studies can improve ML approaches by 
reducing the biases toward particular outcomes of data typically reported in the literature (e.g. data 
on solid-state Li electrolytes may be biased toward systems that are fast 
Li conductors), and thus should still be made publicly available, 
perhaps by way of the codified infrastructure described above or 
through new incentives encouraged by journal publishers. 

API: application 
programming interface 
AI: artificial intelligence 
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In the coming years, the advancements made in the ML and broader field of artificial 
intelligence (AI) will likely change how humans conduct scientific research. Indeed, the advent of 
autonomous robot scientists has already began to shift the role of human scientists in the lab from 
actively conducting individual experiments to instead analyzing vast amounts of automatically 
produced data. These advancements create a large opportunity for more efficient and less error 
prone scientific investigation but will also create challenges related to how human researchers use 
and interact with ML/AI tools in a manner that results in improved outcomes compared to purely 
human- or machine-driven analysis. Human-ML collaboration (also referred to as “centaur 
approaches”, interactive ML or “human-in-the-loop” ML) will likely evolve substantially in the 
near future and play a key role in many domains. For example, while computers equipped with 
ML/AI tools are better than humans on average for many tasks (e.g. image recognition), edge cases 
can still occur which result in incorrect model predictions, which cases could be quickly checked 
and fixed based on human intuition. Thus, human-in-the-loop ML approaches will remain useful 
for error minimization and sanity checks, particularly for situations where data is sparse or the 
edge of the domain of applicability is being reached, and will be of particular importance in 
situations such as the healthcare field where decisions reached using ML tools can result in life or 
death.173 As a concrete example of the power of human-in-the-loop methods in MS&E, the work 
of Duros et al.174 showed that active learning approaches incorporating a machine and human 
hybrid team outperformed both the pure human and pure ML-based prediction of performing the 
chemical reaction of the self-assembly and crystallization of polyoxometalate clusters. As another 
example, the work of Gomez-Bombarelli et al.175 found thousands of promising organic light-
emitting diode molecules in part by leveraging domain expert opinion of which molecules were 
most worth investigating experimentally using an online voting process. While it is currently the 
case that human-machine hybrid teams tend to result in better outcomes than what either humans 
or machines could produce in isolation, we speculate that it is very likely in the future (it is unclear 
when, but perhaps in the coming few decades) that ML/AI approaches will always outperform 
humans at numerous computationally intensive tasks integral to the scientific enterprise. It is also 
possible in the near future that how we perceive of human-in-the-loop ML may change 
dramatically. Instead of the human and ML algorithm being used collectively, but existing 
separately, it is possible that linkage of human and machine via brain-to-machine interfacing, for 
example as being developed by companies such as Neuralink, will fundamentally alter how human 
researchers interact with and use ML/AI approaches to advance the scientific enterprise. 
To conclude, we see many ways in which ML (and AI) is already changing MS&E, but believe 

their interaction are still in the nascent stages, with the full power of their merging still far from 
being fully realized. The impact of their coupling is also expected to evolve quickly through 
building on the rapid evolution of the broader ML ecosystem, providing the opportunity for 
transformative advances to the discovery, design and deployment of new materials impacting 
myriad technologies central to today’s society. 

7 Data	Availability	
The diffusion activation energy dataset used in Sec. 4.4.4 is taken from the work of Lu et al.35 

and is available on Figshare (DOI: https://doi.org//10.6084/m9.figshare.7418492). 
The data subsets used for training, validation and testing used in this study, data used to make 

each original figure, and most up-to-date supporting information document are available on 
Figshare (DOI: 10.6084/m9.figshare.9546305).  
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8 Supplemental Section 1: Recent reviews of ML in MS&E  
Given the explosion of interest and advancement of machine learning (ML) as a whole and 

ML in Materials Science and Engineering (MS&E) in particular, we note here that numerous 
reviews, progress reports, perspectives, and tutorials covering various aspects of the application of 
ML in MS&E have been written in just the past few years. Here we provide a list as a resource for 
interested readers. Note that for the purposes of this review list, we have focused on reviews 
specific to materials science, and thus have not made an effort to include reviews in related fields 
such as cheminformatics. Note that the reviews in this table are listed by year of publication, 
beginning with the earliest. A version of this list is also provided on Figshare (see Data Availability 
in Sec. 7 in the main text for link), which version can be continually updated in the future.  
 
Author Publication Year Reference Title 

Rajan 2015 176 Materials Informatics: The Materials “Gene” 
and Big Data 

Broderick and Rajan 2015 177 Informatics derived materials databases for 
multifunctional properties 

Kalidindi 2015 178 
Data science and cyberinfrastructure: critical 
enablers for accelerated development of 

hierarchical materials 

Mueller et al. 2016 42 Machine learning in materials science: Recent 
progress and emerging applications 

Jain et al. 2016 179 
New opportunities for materials informatics: 
Resources and data mining techniques for 

uncovering hidden relationships 

Hill et al. 2016 164 Materials science with large-scale data and 
informatics: Unlocking new opportunities 

Agrawal and 
Choudhary 2016 169 

Perspective: Materials informatics and big data: 
Realization of the “fourth paradigm” of science 

in materials science 
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Le and Winkler 2016 180 Discovery and Optimization of Materials Using 
Evolutionary Approaches 

Takahasi and 
Tanaka 2016 181 Materials informatics: a journey towards 

material design and synthesis 

Kalidindi et al. 2016 182 Vision for Data and Informatics in the Future 
Materials Innovation Ecosystem 

Sun et al. 2016 183 
Statistics, damned statistics and nanoscience-
using data science to meet the challenge of 

nanomaterial complexity 

Yosipof et al. 2016 184 Materials Informatics: Statistical Modeling in 
Material Science 

Audus and de Pablo 2017 185 Polymer Informatics: Opportunities and 
Challenges 

Voyles 2017 73 Informatics and data science in materials 
microscopy 

Liu et al. 2017 170 Materials discovery and design using machine 
learning 

Ramprasad et al. 2017 186 Machine Learning and Materials Informatics: 
Recent Applications and Prospects 

Ward and 
Wolverton 2017 114 Atomistic calculations and materials 

informatics : A review 

Meredig 2017 187 
Industrial materials informatics: Analyzing 
large-scale data to solve applied problems in 
R&D, manufacturing, and supply chain 

Goh et al. 2017 188 Deep learning for computational chemistry 

Lookman et al. 2017 54 Statistical inference and adaptive design for 
materials discovery 

Lu et al. 2017 189 Data mining-aided materials discovery and 
optimization 

Rupp, von 
Lilienfeld and Burke 2018 190 Guest Editorial: Special Topic on Data-Enabled 

Theoretical Chemistry 

Correa-Baena et al. 2018 191 
Accelerating Materials Development via 
Automation, Machine Learning, and High-

Performance Computing 

Dimiduk et al. 2018 74 

Perspectives on the Impact of Machine 
Learning , Deep Learning , and Artificial 
Intelligence on Materials , Processes , and 

Structures Engineering 

Tabor et al. 2018 59 Accelerating the discovery of materials for 
clean energy in the era of smart automation 

Butler et al. 2018 192 Machine learning for molecular and materials 
science 

Gubernatis and 
Lookman 2018 193 Machine learning in materials design and 

discovery: Examples from the present and 
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suggestions for the future 

Ye et al. 2018 194 Harnessing the Materials Project for machine-
learning and accelerated discovery 

Seko et al. 2018 195 Progress in nanoinformatics and informational 
materials science 

Senderowitz and 
Tropsha 2018 196 Materials Informatics 

Nash et al. 2018 197 A review of deep learning in the study of 
materials degradation 

Ferguson 2018 198 Machine learning and data science in soft 
materials engineering 

Sanchez-Lengeling 
and Aspuru-Guzik 2018 69 

Inverse molecular design using machine 
learning: Generative models for matter 

engineering 

Cao et al. 2018 199 
How to optimize materials and devices via 
design of experiments and machine learning: 
Demonstration using organic photovoltaics 

Jose and 
Ramakrishna 2018 200 Materials 4.0: Materials big data enabled 

materials discovery 

Xu 2018 201 Accomplishment and challenge of materials 
database toward big data 

Schleder et al. 2019 202 From DFT to machine learning: recent 
approaches to materials science–a review 

Wan et al. 2019 203 
Materials Discovery and Properties Prediction 

in Thermal Transport via Materials 
Informatics: A Mini Review 

Rickman et al. 2019 204 Materials informatics: From the atomic-level to 
the continuum 

Balachandran 2019 205 Machine learning guided design of functional 
materials with targeted properties 

Gomes et al. 2019 206 Artificial intelligence for materials discovery 

Ramakrishna, et al. 2019 207 Materials informatics 

Agrawal and 
Choudhary 2019 208 Deep materials informatics: Applications of 

deep learning in materials science 

Himanen et al. 2019 209 Data-driven materials science: status, 
challenges and perspectives 

Reyes and 
Maruyama 2019 210 The machine learning revolution in materials? 

Ong 2019 211 Accelerating materials science with high-
throughput computations and machine learning 

Venkatasubrmanian 2019 212 The promise of artificial intelligence in 
chemical engineering: Is it here, finally? 

Aggour et al. 2019 213 Artificial intelligence/machine learning in 
manufacturing and inspection: A GE 
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perspective 

Schmidt et al. 2019 130 Recent advances and applications of machine 
learning in solid-state materials science 

Arroyave and 
McDowell 2019 67 Systems Approaches to Materials Design: Past, 

Present, and Future 

Peerless, et al. 2019 214 Soft Matter Informatics: Current Progress and 
Challenges 

Gu, et al. 2019 215 Machine learning for renewable energy 
materials 

Chen and Gu 2019 216 Machine learning for composite materials 

Boyce and Uchic 2019 217 Progress toward autonomous experimental 
systems for alloy development 

Barnard, et al. 2019 218 Nanoinformatics, and the big challenges for the 
science of small things 

Wang et al. 2019 219 Symbolic regression in materials science 

Dimitrov et al. 2019 220 Autonomous Molecular Design: Then and Now 

Zhou et al. 2019 221 Information fusion for multi-source material 
data: Progress and challenges 

Childs and 
Washburn 2019 222 Embedding domain knowledge for machine 

learning of complex material systems 

Ceriotti 2019 223 
Unsupervised machine learning in atomistic 
simulations, between predictions and 

understanding 

Lamoureux et al. 2019 224 Machine Learning for Computational 
Heterogeneous Catalysis 

Lookman et al. 2019 225 
Active learning in materials science with 
emphasis on adaptive sampling using 
uncertainties for targeted design 

Chan et al. 2019 108 
Machine Learning Classical Interatomic 

Potentials for Molecular Dynamics from First-
Principles Training Data 

Hase et al. 2019 61 Next-Generation Experimentation with Self-
Driving Laboratories 

McCoy and Auret 2019 226 Machine learning applications in minerals 
processing: A review 

Faber and von 
Lilienfeld 2019 227 Modeling Materials Quantum Properties with 

Machine Learning 

Ball 2019 228 Using artificial intelligence to accelerate 
materials development 

Vasudevan, R., et al. 2019 229 

Materials science in the artificial intelligence 
age: high-throughput library generation, 
machine learning, and a pathway from 
correlations to the underpinning physics 

Wei, J., et al. 2019 230 Machine learning in materials science 
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Zhou et al. 2019 231 

Big Data Creates New Opportunities for 
Materials Research: A Review on Methods and 

Applications of Machine Learning for 
Materials Design 

Ju and Shiomi 2019 232 Materials Informatics for Heat Transfer: Recent 
Progresses and Perspectives 

Jackson et al. 2019 233 Recent advances in machine learning towards 
multiscale soft materials design 

Bock et al. 2019 234 
A review of the application of machine learning 
and data mining approaches in continuum 

materials mechanics 

 

9 Supplemental	Section	2:	Software	tools	to	enable	and	enhance	
ML	in	MS&E		
Recently, there has been intense development of open source 

software packages in ML, and more specifically those aimed at 
streamlining and accelerating the adoption of materials 
informatics research. Software tools, especially given the rapidly 
evolving field of ML and its application to MS&E more specifically, are becoming increasingly 
important in order to maintain community best practices and ease-of-use, especially for users new 
to the field.68,74,164 An extensive list of software packages are listed in this section, along with a 
brief explanation on the types of ML-related analysis enabled by each package. We note that this 
list is not comprehensive and new packages appear frequently, but we believe the list should be 
useful for those trying to make sure they are aware of available tools. Overall, the type of software 
package may be categorized into one of eight groups, where group 1 denotes are ML environments 
with many packages pre-installed, groups 2 and 3 denote general (multidisciplinary) software and 
the remaining groups denote software that is tied more specifically to ML problems in MS&E. 
 

(1) ML-exploration and hosting environments: 
• Google Colab: Free cloud based free Jupyter notebook environment with many ML 
packages preinstalled and free computer resources available.235  

• NVIDIA NGC: Portal for a wide-range of free ML software prepared in containers for 
rapid GPU deployment.236 

• Nanohub: A science and engineering API with many community-contributed resources, 
including ML-centric tools.237 

• DLHub: Online center for hosting, sharing, and publication of data and ML models through 
a user-friendly interface.238 

 
(2) Paid commercial ML-centric software services: 

• Datarobot: Enterprise ML software enabling easy automation of entire ML analysis 
pipeline.239 

• Amazon Sagemaker: Part of Amazon Web Services, Amazon’s Sagemaker provides 
enterprise software to quickly build, train, and deploy ML models.240 

ML: machine learning 
MS&E: materials science and 
engineering 
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• Microsoft Azure: The machine learning studio within Microsoft Azure contains a fully 
managed cloud service providing enterprise machine learning software to quickly build, 
train, and deploy ML models.241 

• IBM Watson: Enterprise ML software web API.5,242 
 

(3) Open source software enabling the use of ML algorithms: 
• Scikit-learn: A Python package with a wide array of algorithms encompassing every 
portion of the ML analysis pipeline.156 

• Waikato Environment for Knowledge Analysis (WEKA): A Java package with a wide 
array of algorithms encompassing every portion of the ML analysis pipeline.243 

• R: A general data science and machine learning package.244 
• TensorFlow: Designed to enable custom, complex, highly flexible neural network 
models.245 

• Keras: A user-friendly front end API for TensorFlow.246 
• PyTorch: A package enabling more widespread use of deep learning, particularly for image 
analysis.247 

• ChainerCV: A library for deep learning with a focus on computer vision.248 
• DeepChem: A library for deep learning with a focus on analysis of chemical characteristics 
of molecules.143 

 
(4) Software consisting of trained models enabling easy prediction of materials properties: 

• AFLOW-ML: Web-hosted ML models with drag-and-drop prediction of numerous 
properties.249 

• ElemNet: A deep learning neural network trained using only elemental compositions 
enabling the prediction of material formation energies.250 

• JARVIS-ML: Web-hosted ML models with drag-and-drop prediction of numerous 
properties.251 

• PhysNet: A deep neural network enabling predictions of energies, forces and dipole 
moments for small molecules.252 

 
(5) Software enabling improved feature engineering for more robust ML model generation: 

• Materials Agnostic Platform for Informatics and Exploration (MAGPIE): methods of 
feature generation using elemental properties.253 

• Materials Simulation Toolkit for Machine Learning (MAST-ML): automation of ML 
pipeline and codifying of best practices of ML in MS&E, including data cleaning, feature 
engineering, model fitting, cross-validation and assessment of many statistics.254 

• matminer: codified set of useful data visualization and structure- and chemistry-based 
feature generation schemes.139  

• DScribe: codified set of structure- and chemistry-based feature generation schemes.255 
 

(6) Software streamlining ML analysis methods and the ML pipeline  
• LoLo: Automated ML model fitting and data analysis, estimates of errors based on random 
forest models.171 
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• matminer: (see above) 
• MAST-ML: (see above) 
• MATcalo: materials knowledge-based assistive software to aid researchers in MS&E using 
ML to conduct improved materials research.256 

• MatErials Graph Network (MEGnet): automated construction and evaluation of graph-
based convolutional neural networks for molecules and crystals.142  

• SchNet: automated construction and evaluation of deep tensor neural networks for 
prediction of molecule and crystal properties.148 

• Veidt: streamlined construction of deep learning neural networks for materials science.257 
• Materials Knowledge Systems in Python project (pyMKS): ML analysis of structure-
property-processing relationships with a focus on microstructure characterization.258 

• Tree-based Pipeline Optimization Tool (TPOT): automation of ML pipeline, particularly 
choice of best ML model.259 

 
(7) Software facilitating the creation of interatomic potentials 

• Atomic Energy Network Package (aenet): fitting neural network-based models for 
interatomic potentials.260  

• Atomistic Machine Learning Package (AMP): construction of MLPs using a variety of 
atomic structure descriptors and machine learning models.261  

• SimpleNN: fitting neural-network-based models for interatomic potentials.262 
• PES-Learn: automated production of neural-network or Gaussian process models for 
constructing interatomic potentials.263 

• DeePMD-kit: construction of MLPs using deep learning neural networks.264 
• Convolutional Neural Networks for Atomistic Systems (CNNAS): creation of deep 
convolutional neural networks for interatomic potentials.265 

• TensorMol-0.1: creation of interatomic potentials consisting of trained neural network 
combined with screened long-range electrostatic and van der Waals physics.266 

• SchNetPack: extends SchNet and aids in creation of machine learning potentials using deep 
learning neural networks (using PyTorch).149 

• sGDML: python package for force-field generation using the symmetric gradient domain 
machine learning (sGDML) model.267 

 
(8) Software facilitating the use of natural language processing  

• Elsevier API: Application Programming Interface (API) to Elsevier published texts to 
support text and data mining.268 

• word2vec: NLP methods to efficiently construct word embeddings (that map words to real 
valued vectors).79 

• Global Vector (GloVe): NLP software that combines global matrix factorization and local 
context window methods.80 

• Materials science embeddings: Word embeddings trained for materials science.87,88 
• Character to Sentence Convolutional Neural Network (CharSCNN): Tools to conduct 
sentiment analysis using deep convolutional neural networks.81 
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10 Supplemental	Section	3:	Journals	publishing	ML	in	MS&E	studies	
As ML in MS&E has greatly expanded in scope in the past several years, there are many 

journals that have or might be expected to publish ML-related studies in MS&E. In particular, 
some journals seem particularly well represented in this area and additionally appear interested in 
publishing papers with a relatively more methodological focus that might contain limited new 
materials insights. These journals include, but are not necessarily limited to (in alphabetical 
order):  Computational Materials Science (Elsevier), Computer Physics Communications 
(Elsevier), Integrating Materials and Manufacturing Innovation (Springer), Journal of Chemical 
Theory and Computation (ACS), Machine Learning: Science and Technology (IOP), Materials 
Today Advances (Elsevier), Molecular Systems Design & Engineering (RSC), MRS 
Communications (MRS), and npj Computational Materials (Nature, open access). There are also 
a number of more chemistry-oriented journals that publish papers in ML and the areas of 
QSAR/QSPR, e.g., Chemometrics and Intelligent Laboratory Systems (Elsevier), Journal of 
Computational Chemistry (Wiley), Journal of Chemical Information and Modeling (ACS), Journal 
of Computer-Aided Molecular Design (Springer), and Molecular Informatics (Wiley). For papers 
where the materials insights are significant any materials journal could, of course, be appropriate. 

11 Supplemental	Section	4:	Types	of	Machine	Learning	Models	
This section primarily describes some standard ML models (with a focus on supervised 

regression) widely used in MS&E with a goal of highlighting the most salient features for an 
MS&E researcher. The discussion touches on basic aspects which are covered in many textbooks 
and general reviews, e.g., Refs. 42–44,152, and we therefore do not provide additional references 
unless addressing a specific feature outside the scope of these broad ML texts. We will use notation 
similar to the main text in that we assume our data has the original form (X,Y), where X is a matrix 
of features where each row corresponds to a system to be predicted and each element in that row 
is a value describing some feature of the system, and Y is a vector of target properties to be 
modeled. The relationship between X and Y can be written as 𝑌 = 𝐹(𝑋) + 𝜖, where 𝜖 is a noise 
term (with mean zero and variance 𝜎*) and we seek a model for 𝐹(𝑋) from ML. We write this 
model as 𝐹+(𝑋) and its predictions as 𝑌+ . 
11.1 Multivariant	Linear	Regression	(MVLR)	
MVLR assumes that the target Y is a linear function of the features X. Note that these are 

generally used with some kind of regularization which penalizes large variations in the fitted 
coefficients, either the L2 or L1 norm, an approach known as ridge regression. These methods are 
notable for being extremely fast, deterministic, and very easy to interpret (e.g., the coefficient of 
each term gives its effect, and magnitudes effectively rank the importance of each variable). 
MVLR is also simple enough that an enormous body of statistical data on the fit can be determined 
essentially analytically. For example, uncertainties in all fitted 
coefficients and their covariance, and uncertainties in any 
predictions, can be readily obtained, and these can include the 
influence of uncertainties in the data being fit. Accurate fitting 
with MVLR does require that the Y values be an approximately 
linear function of the features X, but since X can include arbitrary 
functions of underlying descriptors (e.g., polynomials, 
logarithms, etc.) MVLR does not require linearity with an initial 
set of features. For a given set of features MVLR does not have 

MVLR: multivariate linear 
regression 
KRR: kernel ridge regression 
GPR: gaussian process regression 
CV: cross validation 
DT: decision tree 
RFDT: random forest decision 
tree 
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any hyperparameters (one is introduced by regularization) although the feature engineering to 
introduce nonlinearity can effectively add many adjustable parameters. Because of the powerful 
statistical tools and extremely rapid and robust fitting enabled by MVLR, it is often desirable to 
consider such models first as they provide a useful baseline. However, materials properties are 
generally not expected to behave as a linear function of simple features or simple closed form 
functions of features, which means that MVLR models tend to either poorly represent the data or 
overfit it, leading to inaccurate estimates of values and/or large estimated uncertainties in 
predictions, and serious errors for data even slightly different from the data set. For these reasons 
MVLR is typically not the method of choice for most MS&E ML problems. 
11.2 Kernel	Methods	and	Kernel	Ridge	Regression	(KRR)	
Kernels are an inner product between feature vectors, which effectively define a distance 

between any two data points in terms of their feature vectors. This distance supports a nonlinear 
modeling of the data and can be used as basic input to a wide variety of ML methods, including 
support vector machines, principal component analysis, and spectral clustering. One of the models 
widely used for simple regression is KRR, which effectively predicts a new target output (𝑌+∗) from 
the new input features X* in terms of a linear combination of training data features Xi weighted by 
their kernel-derived distances from X*, and includes ridge regulation of the coefficients. This 
method is fairly fast to fit and often provides a good nonlinear model of 𝑌 = 𝐹(𝑋) + 𝜖. The kernel 
typically introduces at least one hyperparameter. For example, the commonly used Gaussian kernel 
has a length scale that sets the range over which the distance metric decays, a value that must be 
similar to length scales within the problem feature set to obtain a good model. Because all kernels 
go to zero for widely separated points, KRR predicts a value of zero for all points very far from 
the training data (this can be shifted to predict the mean of Y by normalizing Y to mean of zero 
before fitting). It should be noted that even with just two hyperparameters for kernel length scale 
and regularization, one can get strong coupling between them and get families of models where 
similar CV performance is obtained for a wide subspace of values where the two hyperparameters 
are linearly correlated.269 
11.3 Gaussian	Process	Regression	(GPR)	
GPR is a Bayesian approach that assumes a prior multivariate normal distribution for Y values 

with a covariance between Yi and Yj given by the distance between feature vectors Xi and Xj, and 
then modifies this distribution using the training data and Bayes theorem.270 The distance is 
determined by a kernel, described in Sec. S11.2, making its predictions similar to KRR. However, 
GPR predicts a distribution of 𝑌+∗ for any new X*, and the first and second moment of the 
distribution can be used to estimate the predicted value and its variance (see Sec. 4.4.4 of the main 
text for some assessment of GPR predicted standard deviations). 
11.4 Random	Forest	Decision	Trees	(RFDTs)	
RFDTs are often the preferred method to for ML modeling for simple regression problems as 

they are highly accurate, very fast to train and evaluate, effectively perform their own feature 
selection and yield features ordered by importance, and provide intrinsic error estimates on 
predictions. A single DT is created by iterative splitting the data on features (nodes) so as to 
maximize some score metric (e.g., entropy reduction) until 
reaching a the end of the tree (leaf), and a tree classifies any input 
into a leaf. Mean values or linear fits to data within each leaf 
provide regression estimates. Single trees are prone to 
overfitting, a problem solved by the random forest approach, 

NN: neural network 
DNN: deep neural network 
GPU: graphics processing unit 
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which creates an ensemble of DTs through training many DTs on partial samplings of the data 
(using bootstrap aggregating, or bagging) while simultaneously altering the available split criteria 
at nodes.155 RFDTs therefore predict a distribution of values, one from each DT, for any new data 
point, and the first and second moments of this distribution can be used to predict new values and 
their variance. RFDTs have a number of hyperparameters (e.g. maximum depth of tree) but 
sensible defaults can often be chosen such that results depend only weakly on the hyperparameters. 
The accuracy of RFDTs often approaches that of a highly trained NNs but with a fraction of the 
time taken in training and hyperparameter optimization. As an ensemble method, RFDTs produce 
a distribution of predictions, and the first and second moment of the distribution can be used to 
estimate the predicted value and its variance (see Sec. 4.4.4 of the main text for some assessment 
of RFDT predicted standard deviations). 
11.5 Basic	Neural	Networks	(NNs)	
NNs are in many ways the most powerful and versatile ML tools. A node takes input data, 

weights it, and then passes that weight through an activation function, yielding an output value. A 
layer has many nodes, and multiple layers can be connected. We use “basic” neural networks to 
refer ones with up to just a few layers that have no special processing to enable effective training 
of many layers or feature reduction through convolution or pooling. Networks with these 
additional features are called deep NNs and discussed in Sec. S11.6. Basic NNs have many 
adjustable weights and are typically trained by simple steepest descent optimizations, which 
typically yield different final weights for different weight initializations. This is in contrast to the 
MVLR, KRR, and GPR discussed above, which are essentially uniquely determined in a fit.  NNs 
also have a large space of hyperparameters, like number of nodes and layers and activation function 
type, which can significantly impact their results. For these reasons, training an optimized robust 
NN is generally significantly more challenging and time consuming than any of the above methods 
and often yields only modest improvements. These methods are therefore typically tried after those 
discussed above if needed for standard MS&E regression problems.  
11.6 Deep	Neural	Networks	(DNNs)	and	Deep	Learning	
DNNs represent a significant step in ML that we briefly summarize here.152,208 DNNs can be 

most simply thought of as a NN with many layers (hence the terminology “deep”), but to make the 
models effective and trainable new types of layers (e.g., convolution, pooling) and optimizations 
(e.g., residual fitting145) are used. DNNs have a number of distinct features compared to traditional 
methods which we briefly summarize here. Below we will frequently compare to the human brain 
as this makes a helpful analogy, but we do not mean to imply that these DNNs are actually working 
by mechanisms equivalent to our brain or make any it suggestions that they are human in some 
meaningful way. 
1. Dimensional reduction and feature map development: Deep NNs typically involve stages 
that reduce the complexity of the input data, e.g., through convolutions or pooling. These 
allow extremely large and complex initial feature sets to be used, including ones where 
related data (e.g., nearby image pixels or connected atom and bond properties) are not co-
located in the feature vector, and can effectively extract a reduced set of essential features 
without human intervention. Compared to human feature generation this process can be 
much faster, much easier to apply to new situations, and more accurate. Just as your brain 
can identify key features of a picture of a cat without defining them explicitly, so can a 
DNN extract the features without having to write them down in advance.  
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2. Highly flexible weights: Deep NNs can easily have millions of adjustable weights which 
gives and incredibly rich model for connecting inputs and outputs. This richness means 
that model fits are not unique (i.e., two users fitting to the same data with the same tools 
will not get the same weights). However, it also means that weights can be tuned to perform 
many tasks, e.g., to identify multiple properties from an input molecular structure. These 
weights also mean DNNs require extensive training, often done on GPUs and taking 
multiple hours for typical materials problems (e.g., with hundreds to thousands of data 
points or images). 

3. Scalable fitting: The weight fitting typically uses backpropagation to push weights in the 
direction that minimizes a loss function (e.g. RMSE). However, such pushes can be done 
sequentially, allowing training on subsets of the data, generally called batches. In this way 
one can easily train on almost any size data by simply breaking it up into manageable 
batches. Our brains work similarly, learning more about how to identify a cat with each cat 
we see, but not needing to see all cats at once. 

4. Transfer learning: The weights contain such a rich map of key features that they can often 
be very effectively transferred from one problem to another, a method called transfer 
learning. Transfer learning can reduce the size of data set needed for training in images 
from tens of thousands to just hundreds. 

5. Data hungry: DNNs typically require large data sets to fit the large sets of weights, although 
transfer learning can greatly reduce these requirements. 

6. Flexible architecture: DNNs are highly flexible and come 
in many forms. Some are just different types of layers in 
different orders with different connections between them, 
e.g., varying numbers of convolution layers or 
connection their output across many layers to avoid 
fitting problems. However, many DNNs have very 
profound changes compared to a simple multilayered 
NN. A common approach is to have multiple NN active in a single method. The faster 
regional convolutional neural network (Faster-RCNN) uses this approach identify objects 
in images, having one NN trained to propose bounding box regions for objects and another 
to fit the object location. Other important architectures distinct from simple layered 
networks include Generative Adversarial Networks (GANs) and recurrent neural networks 
(in particular, long-short term memory NNs), where the latter are extremely successful for 
data that comes in a series, e.g., time series or games or text. 

7. Generative ability: An exciting area of DNNs for materials are generative models, which 
learn to propose new members of a distribution of samples and can therefore actually 
propose new materials no human has considered. A recent notable development in this area 
are Generative Adversarial Networks (GANs). GANs contain two NNs, one that proposes 
candidates (generator) and one which screens for real candidates (discriminator), and by 
training them together GANs find an optimal joint performance that can generate new 
examples of a class. These have been able to generate extremely realistic images of desired 
types as well new molecules with desired properties.69271 

11.7 Methods	for	small	datasets	
Datasets in MS&E are often small, and techniques adapted to this type of data are particularly 

useful. a simple approach to obtain useful predictions from small datasets is to simplify the physics 
of the target quantity by subtracting a relevant reference, then fitting a model to this shifted target 

RMSE: root mean squared error 
RCNN- regional convolutional 
neural network 
GAN: generative adversarial 
network 



39 
 

quantity.272 A more complex but powerful approach is transfer learning, which uses results from 
ML on a different data set to inform the target modeling effort.273  Transfer learning can be done 
by using ML to create improved features that might not be readily available, or predicting a useful 
reference to shift the target quantity. One can also train the same model on multiple data sets (either 
sequentially or simultaneously), an approach widely used in text mining and machine vision (see 
Sec. S11.6. In materials, pretrained DNNs have been used in a number of microstructure image 
processing tasks.27475 

12 Supplemental	Section	5:	Some	checks	for	model	value	against	a	
naive	model	reference	
In any modeling exercise it is useful at the end to check against some simple baseline reference 

cases to be sure the model has value. Here are a few such tests that are recommended. Note that 
we follow the notation introduced in Sec. S11 and Sec. 2 of the main text. 

• Permuted data: We note a simple way to check if overfitting is playing a major role in the 
model is to permute the Y values randomly so that they have no physical connection with 
the X features (but still have identical properties in terms of sizes, distribution, etc.) and 
repeat the model development strategy (e.g., as done in Ref. 36). One should obtain 
significantly worse performance than the unpermuted model and ideally RMSE/s » 1 and 
R2 » 0. 

• Dummy regressor/classifiers: Perhaps the simplest prediction model is to guess a simple 
value derived from the data (e.g., mean, median, constant, specific quantile). One’s model 
should do much better than this method on all basic metrics (e.g., RMSE, R2, etc.). Scikit-
learn156 implements a number of dummy classifier and regression functions. 

• Nearest neighbor: A simple model for predicting Y* from X* is to take the Yi value from 
the Xi that is closest to X*.20 Closeness can be measured by a simple Euclidean distance or 
some more complex kernel. This type of model may actually work quite well in some cases 
and it is not necessarily a problem for a develop ML model if it has a similar performance 
in some aspects, but it is worth being aware how accurate one can be with such a simple 
approach so one does not use a much more complex model unnecessarily. 

13 Supplemental	Section	6:	Further	comparison	of	assessing	model	
errors	using	GPR	and	RFDT	models	on	real	data	
For additional assessment of model errors, we will make use of the distribution of a statistical 

variable r (called the r-distribution), where  

𝑟D =
(/0GD1HIJ	KL	1IMI	NKDOM	D)

(0GMDPIM01	GMIO1I/1	10QDIMDKO	KL	1IMI	NKDOM		D)
  (S1) 

This variable should follow a normal distribution if the estimated standard deviations are 
accurate and the residuals are normally distributed.16135 We will compare the distribution of r for 
validation data to the normal distribution. We will represent the distributions by their cumulative 
values i.e., plotting the fraction of the magnitudes of r (and a reference normal distribution) that 
are less than a given value, written formally as 𝑥 𝜎⁄ . 
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Figure S1A shows the cumulative r distribution (Eq. (S1)) for the LO group test using GPR 
compared to that for a normal distribution. Only errors ≤ 2 3 × 𝜎M/IDO⁄  (where 𝜎M/IDO is the 
standard deviation of the training data) are included in the r distribution to avoid values likely to 
be outside the model domain. The agreement between both curves is fairly good, supporting the 
qualitative accuracy of the GPR standard deviation estimates. However, the r-distribution does 
show that the standard error values are too large (small) up to (after) about 1.75 times the standard 
deviation for the test data. This effect leads to too many rare events, e.g., about 2% of the errors 
are more than three times the GPR predicted standard deviation, which is much larger than the 
0.3% obtained for an analytical normal distribution. Figure S1B shows the analogous cumulative 
r-distribution (with only errors ≤ 2 3 × 𝜎M/IDO⁄  included in the distribution) this time for RFDTs. 
Again, the r-distribution matches that from the analytical normal distribution reasonably well, 
although generally the error bars from the RFDT appear to be a little too large on average for r < 
2.  

Figure S2 contains plots of all the absolute residuals versus the GPR (A) and RFDT (B) model 
errors, where both the residuals and the model error values have been normalized by the standard 
deviation of the dataset. The data plotted in Figure S2 are the same data used to create the RMS 
average “binned” plot of residuals vs. model errors (Figure 4C and Figure 4D) of the main text. 

 
Figure S1: Cumulative r-statistic plots for LO group tests using GPR (A) and RFDT (B) using grouped datasets.  
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