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Abstract: Advances in machine learning have impacted myriad areas of materials science, ranging
from the discovery of novel materials to the improvement of molecular simulations, with likely
many more important developments to come. Given the rapid changes in this field, it is challenging
to understand both the breadth of opportunities as well as best practices for their use. In this review,
we address aspects of both problems by providing an overview of the areas where machine learning
has recently had significant impact in materials science, and then provide a more detailed
discussion on determining the accuracy and domain of applicability of some common types of
machine learning models. Finally, we discuss some opportunities and challenges for the materials
community to fully utilize the capabilities of machine learning.

1 Introduction

Machine learning (ML) is playing an increasing role in our society, and more specifically in
materials science and engineering (MS&E). This review seeks to provide a brief introduction to
ML and its growing roles in an array of aspects of MS&E, as well as a more detailed discussion
of some of the challenges and opportunities associated with using ML for predicting materials
properties and accelerating the design of new materials. We hope it will therefore be of value for
both the novice and experienced user.

ML can be defined as the use of computer systems that do not require explicit programming to
learn about the task they are completing. ML falls into two major categories, unsupervised and
supervised learning. Unsupervised ML learns properties of data without any human guidance, for
example, putting data into groups (clustering) or finding dominant directions of data variation in
high-dimensional space (principal component and linear discriminant analysis). These
unsupervised methods have the advantage of being able to analyze data with no need for humans
to explicitly label the data, which is often a time- and resource-intensive endeavor. In contrast,
supervised ML uses labeled data to learn a relationship between an output Y and an input X, and is
supervised in the sense that it must be told the values of ¥ and the corresponding values of X. This
type of learning includes traditional regression (e.g., multivariate linear regression (MVLR)), as
well are more recent methods such as deep learning (to be discussed more later) to find objects in



an image. Supervised learning typically requires human input
to 1ab§l the data (e.g., labeling objects in an image) although MS&E: materials science and
spmetlmes the computer can generate labels itself, e.g., from a enginecring
simulation. MVLR:
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(TPU) chips specifically
designed to enable fast training of deep neural networks, and demonstrated improved performance
by a factor of 15-30 compared to leading GPU technology.” Another example is the development
of neuromorphic chips (e.g., the True North chip from IBM and the Pohoiki Beach chip from
Intel), which intrinsically have a neural network-like functionality and, when compared to standard
CPU and GPU chips, can be dramatically more efficient in terms of power consumption.

The potential impact of ML, particularly in critical and economically massive areas such as
high-tech businesses, manufacturing, national defense and healthcare has led to resources being
committed to develop the ML ecosystem (computing, data, algorithms, and software) on the scale
of billions of dollars per year in the U.S. and other countries. These resources have created an
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extraordinary opportunity for MS&E researchers to benefit from this ecosystem with only modest
investment, somewhat analogous to the way computational MS&E has been enabled by
inexpensive commodity processors developed for other fields. In particular, open source software
implementing state-of-the-art ML algorithms is widely available, often developed by leading ML
companies (e.g., Google, Facebook), as are relatively inexpensive computing resources, including
GPUs for deep learning. These techniques can be integrated with the rapidly increasingly world of
materials data, which is being generated by new instruments and simulations as well as being
shared through new cloud-based resources. Worldwide growth of frameworks and initiatives such
as Integrated Computational Materials Engineering (ICME)®!°, the Materials Genome Initiative
(MGI),'"!2 Novel Materials Discovery (NOMAD), Materials design at the Exascale (MaX), and
the Materials Genome Engineering (MGE) program in China have helped support a growing
computation and data infrastructure in the MS&E community which is poised to take advantage
of the new ML ecosystem.

The renaissance in computing power, data production and dissemination, and ML tools and
their availability, is creating very rapid growth in ML in MS&E, particularly since 2014 (Figure
1)!. An examination of a logarithmic plot for the data in Figure 1 suggests that since 2014 we have
seen exponential growth of the form A(papers)xexp(t/B(years)), suggesting a doubling about every
1.6 years. No single review can cover the broad range of areas and methods being pursued in detail,
and in this review we include both a high-level overview of areas

and trends and then a more detailed discussion of one specific
central concern. In particular, in Sec. 3 we provide a brief
discussion of major ML application areas in MS&E to help
guide researchers attempting to understand the landscape and
perhaps take first steps into a given area. In Sec. 4 we focus on
the supervised learning models for property prediction, which is
one of the most frequent uses of ML in MS&E, and describe
some of the best practices for model development and
assessment. Sec. 5 provides guidance on our summaries of
useful tools for ML in MS&E. Throughout this review we focus
on recent results and present opportunities and challenges, and
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then in Sec. 6 we offer some more speculative thoughts on
longer term future opportunities and challenges. All data associated with this paper that are shared
online are described, with appropriate links, in Sec. 7. This includes catalogues of recent review
papers and ML software tools shared via Figshare so they can be easily updated in the future. We
include in Supporting Information (SI) a summary of useful infrastructure information for ML in
MS&E, including a detailed list of more than 70 recent reviews (Sec. S1), software tools for
general and MS&E specific ML applications (Sec. S2), journals that frequently publish ML MS&E
applications (Sec. S3), introductory discussion of common ML models used in MS&E and recent
strategies for working with small datasets (Sec. S4), some useful benchmark tests of model
performance for comparison with naive reference points (Sec. S5), and some more in-depth
comparison of model error estimates (Sec. S6). The catalogues of recent review papers and ML

! Publications/year in materials informatics (Web of Science search of ("machine learning" or "artificial
intelligence" or “materials informatics” or “data science”) and (“materials"), scaled by 0.75 to correct for average rate
of errors. Review publications/year from manual citation search in Google Scholar and Web of Science.
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software tools are also posted online via Figshare (see link in Data Availability in Sec. 7) so they
can be easily updated in the future.

2 Some notation

In order to avoid repeating notation in multiple locations we will introduce it here and use it
consistently in this review. We will frequently consider supervised regression problems where we
assume our data has the original form (X,Y), where X is matrix of features and Y is a vector of
target values. Commonly, each row of X corresponds to a system (e.g., a material structure and
composition) to be modeled and each element in that row is a value describing some feature of the
system (e.g., amount of Cu), and Y is a vector of target properties to be modeled (e.g., band gap).
X typically starts in the form of a human-relevant simple description (e.g., just composition and
structure, or a simplified molecular-input line-entry system (SMILES) string) and corresponding
features in a numerical form must be generated (this process is sometimes called featurization and
is discussed in Sec. 4.2). The relationship between X and Y can be written as Y = F(X) + €, where
€ is a noise term (with mean zero and variance ¢2) and we seek to use ML to construct a model
for F(X). We write this model as F(X) and its predictions as Y. Given some new X* one can use
the ML model to predict a corresponding target value, Y* = F(X*).

In general, F can be specified by its model type, parameters, and hyperparameters. Model type
refers to the overall functional forms used, e.g., linear regression or neural networks (NNs). Model
parameters are the values that define the specific instantiation of the model and are fit during the
training process, e.g., coefficients of linear terms or weights in a NN. Model parameters can
generally be fit by some highly efficient method, e.g., matrix inversion for linear models or
backpropagation for NNs. Model hyperparameters are similar to model parameters but cannot be
easily optimized through an efficient method, and are therefore typically treated separately from
the model parameters and searched in a more restricted manner, e.g., with a simple grid search,
with full optimization of model parameters for each evaluation of model hyperparameters.
Examples of model hyperparameters include number of terms in a polynomial regression or
number of layers in a NN.

3 Where and how is ML impacting MS&E?

This section provides a high-level summary of some of major areas where ML is being applied
in the field of MS&E, and some representative examples from recent studies are showcased in
Figure 2.

3.1 Property prediction and materials discovery and design
3.1.1 Property prediction

One of the most common and easy to understand uses of ML in MS&E is predicting new
materials data from existing databases through regressing ¥ on X followed by prediction of ¥* =
F(X*) for new data (See Sec. 2 for notation). There is no unique approach to assigning feature
vectors in X to represent a material and this is a critical challenge we discuss in detail in Sec. 4.2.
This overall approach can be used to extend almost any database to new systems, allowing
prediction of new data, rapid exploration of large spaces, and iterative optimization to find new
materials (sometimes called active learning). The use of ML in MS&E has been applied to predict
myriad materials properties for many classes of materials. A representative but not exhaustive list
of recent studies include the prediction of bulk stability of perovskite and garnet oxides and
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elpasolites,!31¢ formability of novel ternary compounds,'”-!® superconducting critical temperatures
of complex oxides,'”?° melting points of unary and binary solids,?! dielectric properties of
perovskites and polymers,?>?* formability of novel half- and full-Heusler intermetallic
compounds,?*?* casting size of metallic glass alloys,?® electronic bandgap of different classes of
inorganic materials such as oxides and covalent semiconductors,>’282939 stability and bandgap of
halide perovskites for solar cells,>! 3 dilute metal element solute diffusion barriers in an array of
metallic hosts,>*3> electromigration of impurity elements in metals,* scintillator materials,>” and
piezoelectric materials with high electrostrains,*® among others. Figure 2A shows an example
heatmap detailing the number of newly discovered ternary oxide materials across chemical space,
which predictions were obtained by using ML to inform the probability a ternary oxide will form.
17 When too little data is available for regression, clustering can still provide a tool by grouping
similar materials based on their features. To the extent that these groups share properties, such a
clustering can provide powerful predictions, and some uses for finding phase diagrams and
allotropes are summarized in the review from Ramprasad et al.* Some effective and widely-used
regression methods used in the materials data studies listed above include MVLR,¢ kernel ridge
regression (KRR),!**? Gaussian process regression (GPR),?’*® ensemble methods such as random
forest decision trees (RFDTs) and gradient boosted regression,?*3*** and both basic and deep
learning neural networks.**!131441 ' We note here that for readers less familiar with these different
ML methods, we have included more introductory discussion of these different model types in
Sec. S4 of the Supporting Information, which is also mentioned in Sec. 4.3. In addition, more
detailed information on these general ML methods are covered in the references 4>,

It is worth noting that many present ML approaches for predicting structure-property-
performance relationships of materials in MS&E can be viewed as part of, or emerging from, the
field of study known as quantitative structure-activity relationships (QSAR) (and the closely
related field of quantitative structure-property relationships (QSPR)).4%4” QSAR/QSPR have used
data science tools for over 100 years for correlating physical and molecular properties of chemical
substances and their associated properties, from biological activity to boiling point, and therefore
present well-established best practices and powerful techniques that can provide excellent
guidance to the MS&E community.

3.1.2 Materials discovery and design

ML has built on its strength in property prediction (Sec. 3.1.1) to enable the discovery, design
and development of novel materials spanning an array of applications and materials classes by
providing new understanding of key chemical or physical relationships governing properties of
interest. As a concrete example, in the field of halide perovskites for solar photovoltaics, the use
of ML on data has resulted in assessment of chemical trends (e.g. halogen content and alkali vs.
organic species content) on properties such as the bandgap and stability, and resulted in the
prediction of new promising halide perovskite materials such as Cs;Au'"Au*"Ts and NH3NH,InBrs3,
the former of which has been investigated in detail as a promising solar material 3223484 [n addition,
materials data predictions from ML on a large space of Br- and Cl-based elpasolite compounds led
to the discovery of numerous new promising scintillator materials and also reproduced more than
20 known well-performing scintillators. In this case, insights from ML provided rational material
composition changes to realize a favorable placement of the Ce*" 4f and 5d levels within the
material bandgap, a necessary design criterion for scintillators.?”

In some cases ML is used as an integral guide to the data collection effort, e.g. in active
learning, where iterative design of experiments (or simulations) is performed using ML property
models and carefully tuned optimization approaches.3*4°-333* More specifically, active learning is
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a method which seeks to balance exploitation of information contained in existing data in an ML
model (i.e. data points with the best predictions) and exploration of less-sampled portions of the
design space (i.e. data points likely to have high model uncertainties). Active learning is used to
obtain a target outcome as efficiently as possible by first quickly sampling potential regions of
interest to construct an initial ML model, followed by adaptive sampling of the exploitation-
exploration tradeoff to maximize the expected improvement of the ML model for finding the
target, thus optimizing the experimental objective (e.g. finding a new material with highest
electronic bandgap) with the fewest number of measurements. Active learning methods have
yielded numerous success stories, €.g., a new Pb-free piezoelectric material with the largest
measured electrostrain in the BaTiOs family*® and new polymers with high glass transition
temperatures, the latter result obtained by starting from only remarkably small training dataset of
just 5 materials.>

An exciting and fairly new area for materials discovery using ML is the integration of
autonomous high-throughput experimentation conducted by robots with on-the-fly decision
making guided by ML model predictions made using active learning techniques.’®%> This
integration has the potential to perform guided exploration of large materials spaces with limited
to no human intervention, greatly accelerating rates of materials discovery as well as potentially
supporting work with materials or in environments that are inhospitable to humans® and reducing
human biases in materials searches.’®% These approaches have had some notable recent successes.
Duros et al.®® explored new approaches for the synthesis and crystallization of a new
polyoxometalate compound, and demonstrated that the purely machine-based search covered
about 6 times larger parameter space to realize crystallization than that explored by humans with
a prediction accuracy of whether the compound will crystallize about 5% higher than that obtained
by humans. Granda et al.’® demonstrated an ML-guided organic synthesis robot which was able to
predict the outcome of untested chemical reactions with greater than 80% accuracy, and then was
able to construct prioritized lists of new reactions to attempt based on their evaluated likelihood to
produce the desired products. A further outcome of this work was the identification of unusual
reaction mixes, which were later evaluated by human researchers, leading to the discovery of
previously unknown chemical reactions. Finally, Nikolaev et
al.® developed a robot scientist named the Autonomous | ;,x:
Research System (ARES) that specialized in the autonomous | petwork
growth and characterization of carbon nanotubes, a model
problem due to its complex coupling of synthesis and processing to resulting structure-property
relationships (e.g., example nanotube diameter, helicity and the effects of these parameters on the
nanotube electronic properties). Figure 2B contains a photograph showing the lab setup of the
ARES instrument. ARES successfully optimized nanotube synthesis in a high dimensional design
space and determined the correct parameters to maintain accurate growth rate control, thus
demonstrating the potential utility and possible disruptive potential of ML-guided robot scientists
in MS&E.

A particularly interesting area is developing new materials with generative models such as
variational autoencoders and generative adversarial networks (GANs). These methods are
particularly well-suited to execute the paradigm of inverse materials design, where the desired
material characteristics are first enumerated and candidate materials are suggested and evaluated
on-the-fly %% Inverse design creates the challenge of the exploration of an exceedingly large
chemical space, which can be partly overcome by the use of GANSs to automatically suggest and
evaluate novel molecules and materials for a desired application.’® Concrete successes have

generative  adversarial
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already been demonstrated in this area, for example the Crystal GAN’® model which was used to
generate, screen and subsequently discover new stable hydride compounds for solid-state
hydrogen storage applications. The objective-reinforced generative adversarial network for
inverse-design chemistry (ORGANIC) model was shown to be successful in predicting new high
melting point organic molecules.”! Figure 2C shows a schematic of the ORGANIC model, which
consists of separate generator (discriminator) neural networks used to suggest new molecular
structures (predict desired molecular properties), respectively, where the generation of new
candidate molecules is informed by the discriminator and the reinforcement algorithm. Finally, the
Reinforced Adversarial Neural Computer (RANC) was found to outperform ORGANIC and
function as a valuable tool for discovery of novel molecules for drug design and development.”?



(A)

halides & &
Y
o |
= .|
. |
main o § |
group ¥ |
He
:‘- =
v 3
- Or | ™
transition ;. e
metals X Hey
kil e
Te =
W HH?
u -
S it
Gl
rare-earth o
e i
alkali-earth ioe
.
L

(C) Initial Discrimi New
Distribution — iscriminator Distribution

of Molecules

=

SMILES

of Molecules

-
SMILES

Desired region . NC(C){Br)C(=0)0 '
f . t it NCaH](C)O] =0)0 S]]lft tur‘wards
of interes .. I goal

i .
- Generator I el AN
DA, - Training et aned

property of Procedure property of
interest interest

(D)
=
9 F S [
g = _©_'@ :
=
4 v
Potential Potential as Independent Data-driven and physically Density
Gaussians ML models motivated basis reprasen-

I ot Nanotube
Il Manotube

Accuracy = TE%, 654 Papers
Darker green = more probable tor nanotubes

Hydrothermal Temperature (°C)

Figure 2. (A) Heatmap showing number of newly discovered ternary oxide materials across chemical space,
(reprinted with permission from Ref. 7 copyright 2010 American Chemical Society). (B) photograph of an
autonomous synthesis and characterization robot, (adapted from Ref. ). (C) Overview of usage of the
ORGANIC GAN model for molecular design (adapted from Ref. ’'). (D) Scheme to represent the Hohenberg-
Kohn map using machine learning models (adapted from Ref. '*”). (E) Machine-learned probability of
nanotube synthesis (green shades) compared with experimental outcomes from text mining (reprinted with
permission from Ref. °’ copyright 2017 American Chemical Society. (F) Model-labeled elliptical irradiation
defects in a characterized steel micrograph (adapted from Ref. ).




3.2 Materials characterization

Materials characterization tools are increasingly producing data on scales of quantity and
complexity which outstrips human ability to manage and interpret, and ML methods are being
used to process and analyze this data. For example, Voyles recently reviewed a number of
applications in electron microscopy,’” pointing out uses of ML in image improvement (e.g.,
denoising, drift and distortion correction) and analysis (e.g., spectral demixing and clustering to
identify features). A number of studies have recently applied deep learning machine vision
techniques to electron microscopy images, e.g., to cluster materials based on microstructure
images (see references in ’#) and to identify defects in images,’’® in multiple cases with apparently
human levels of accuracy. For example, Figure 2F shows dislocation loops in electron micrographs
of a steel alloy identified by a deep learning model, the accuracy of which was as good or better
than that of domain-specific expert humans.” ML has also been
applied to X-ray diffraction data, e.g., using deep learning to | STEM:  scanning  tunneling
accurately perform identification of space-group, extinction- | Slectron microscopy
group and crystal-system from X-ray powder diffraction
patterns.”” Other intriguing examples have shown how machine
learning could replace more challenging measurements or
calculations with simpler ones. As an experimental example Stein, et al. demonstrated that a
variable auto-encoding approach could quite accurately reproduce UV-vis spectra from simple
images of a thin film generated with a commercial scanner.’® In simulation, Combs, et al. recently
demonstrated that a MVLR model could correlate low and high fidelity scanning tunneling
electron microscopy (STEM) image modeling, allowing approximations to full multislice
simulations of nanoparticles millions of times faster than a full STEM image simulation. ML
appears likely to provide many paths toward accelerated characterization through simplified
experiments and computations, and automated analysis, reducing time spent in traditional methods
and enabling processing of the enormously large data streams coming from newer and next-
generation characterization instruments.

NLP: natural language
processing

3.3 Knowledge extraction via text mining

Natural language processing (NLP) tools are central to text and speech extraction and
recognition, enabling Al-related speech tools like Apple’s Siri and Amazon’s Alexa and real-time
language translation. Numerous open source NLP tools currently exist, for example the
word2vec’ and Global Vector (GloVe)* packages, and tools to conduct sentiment analysis using
deep convolutional neural networks.®! NLP, text extraction and sentiment analysis (i.e. the
characterization of subjective information such as opinions, communicated through text) have seen
widespread use, for instance in computational biology and biomedical research,®>33 genetics,®*
healthcare,® and social science,®® but work has been much more limited in materials.

A basic NLP analysis in MS&E can be considered in three steps. First, one maps words to real-
valued vectors, a process called embedding, which can be done with unsupervised learning and
requires significant time and large data sets. However, once completed, such embeddings can be
reused in many applications, and multiple MS&E specific embeddings are already available.”-%
Given an embedding, the second step is to train a NLP model to recognize target information using
embeddings, typically with supervised training on a set of expert-annotated sentences, some of
which are now being made open-source to encourage democratization of the NLP ML model
training process.”® The second step treats the sentence as a sequence of words, which are converted
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to a sequence of vectors, and the model is trained to predict the correct annotated categories (e.g.,
identify text “Fe” as category “metal”) on the training data. Models are typically recursive,
convolutions, or transformer NNs.”'"* A common third step then applies grammar rules to
understand connections between identified words in a dependency parse tree, e.g., allowing one to
determine if a given value is describing a given property in a sentence.”*

Software packages like ChemDataExtractor® are being developed to enhance standard NLP
approaches with the ability to parse unstructured text in complex scientific publications, for
example chemical formulas or domain-specific words or abbreviations (e.g. the meaning of the
occurrence “UV-Vis” spectroscopy). One area where text mining is playing an increasingly large
role in MS&E is synthesis.”® Recent text extraction studies have resulted in useful guidance of key
experimental parameters needed for optimal materials synthesis, for example in creating TiO»
nanotubes®” as shown in Figure 2E, synthesis of new perovskite materials,”® and aggregated
synthesis parameters for 30 different oxide materials systems,%’. These studies have also provided
insights on best writing practices to facilitate efficient transfer of knowledge which is machine-
readable,”” and understanding of best synthesis practices through graph representations.!’ As
opposed to the above examples which conducted NLP using supervised methods with annotated
studies as training data, Tshitoyan et al.’’ demonstrated the successful use of unsupervised
techniques in extracting structure-property and chemical relationship information, and
demonstrated these tools can aid in future materials discovery by codifying knowledge contained
in past publications. Another impressive example is the recent book Lithium-Ion Batteries: A
Machine-Generated Summary of Current Research, a review extracted from over 150 papers on
Li-ion batteries which was generated by a machine learning model.!°! This work suggests a future
where information aggregation in topical reviews could be automatically delivered in a very human
understandable form, significantly accelerating the process of learning new areas.

3.4 Machine Learning for molecular simulation . .
DFT: density functional theory

3.4.1 Interatomic potentials MLP: machine learning potential

Atomistic scale simulations of molecules and condensed | AyMD: ab  initio molecular
phases typically find the interaction between classically-treated | dynamics
nuclei through Hamiltonians that are either based on | CNN: convolutional neural
approximate solutions to the Schrodinger equation for electrons | network
or that coarse-grain quantum electronic effects into an effective
interatomic potential. Interatomic potentials are typically about 103-10° times faster than common
quantum methods (e.g., density functional theory (DFT)) but finding and parametrizing
appropriate functional forms to treat systems with complex electronic behavior (e.g., with charge
transfer, bond breaking, multiple types of hybridization, etc.) is very challenging. Replacing
interatomic potential functional forms and fitting procedures with those from ML offers the
alluring possibility of both greatly reducing the time and expertise required for developing
potentials and perhaps enhancing their accuracy. In the past decade, many researchers have used
ML for generation of interatomic potentials (referred to as a “machine learning potentials”
(MLPs)) which have enabled studies of larger size and longer time than accessible with direct
DFT.102-107108 Generating an MLP is fundamentally a complex regression problem to map the
potential energy surface and/or its derivative, the force field, by fitting an ML model to a large
training database, typically containing thousands of DFT calculations (often derived from
individual time steps of Ab Initio Molecular Dynamics (AIMD) simulations).!03-109-112
Constructing input features for the MLP model (sometimes called atomic structure descriptors or
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“fingerprints”) is critical and has received a lot of attention over the past decade (see Sec
4.2) 3105113114 Ag a concrete example of the success of these methods, Botu and Ramprasad
trained a KRR model to demonstrate a largescale acceleration of AIMD calculations for bulk and
surface slabs of Al.!% More recently, Bartok et al. have shown using GPR that a MLP can
accurately capture the energetics of Si surface reconstructions.!® Finally, Artrith et al.
demonstrated that modeling systems with up to 11 elemental components with neural networks is
not only computational feasible buy highly accurate.!!®!!! Despite these and many other notable
successes, challenges remain, such as the difficulty in obtaining enough high quality DFT data to
fit a MLP for complex phenomena (such as grain boundaries, surfaces, cluster defects, or other
extended defects) and multiple alloying elements. An additional challenge of using MLPs is
similar to that encountered with the construction of empirical potentials: namely how to assess the
chemical and physical applicability domain of the MLP and understanding when the MLP may
fail 102:110.115.116 Fina]ly, MLPs are often quite slow compared to many traditional interatomic
potentials (e.g. about 1 to 2 orders of magnitude slower),!!? so approaches that can accelerate their
evaluation would broaden then utility.

3.4.2 Improving and accelerating ab initio simulations

Ab initio methods (e.g. DFT and hybrid functionals) use approximate solutions to the quantum
mechanical equations of electrons to model materials systems and have become some of the most
widely used tools in materials and chemical science (DFT is today used in at least 30,000 new
research publications every year).!!” However, these methods suffer from limitations of accuracy
and speed that significantly inhibit their use, and there have been multiple strategies to apply ML
to improve and accelerate the calculation of ab initio functionals, each showing significant notable
advances. One strategy has focused on improving the accuracy of DFT methods. For example, the
work of Nagai et al.''® used a neutral network to numerically calculate the Hartree exchange-
correlation functional in an effort to improve its accuracy, and Bogojeski et al. found that one can
efficiently learn the energy differences from DFT and coupled cluster simulations, and use ML to
provide a promising avenue to have coupled-cluster-level accuracy and DFT-level speed for
physical situations where standard DFT is inadequate.!!” Another strategy is to use ML to learn
the computationally expensive portions of solving the Kohn-Sham equations in a DFT calculation,
namely contributions to the exchange-correlation energy.'?*'?2 To this end, Snyder et al.!?
modeled the kinetic energy of a one-dimensional system of non-interacting electrons, which
analysis was then extended to more general cases,'?! and Mills et al. showed that a convolutional
neural network (CNN) can learn the mapping between the potential energy landscape and the
resulting one-electron ground state and kinetic energies.!?3124

The second strategy is to directly learn the electron charge density itself. This strategy has the
advantage that it allows one to completely bypass solving the Kohn-Sham equations, and instead
rely on the Hohenberg-Kohn theorems which allow one to obtain the total energy (and other
properties) directly from the charge density.!?>~!2° Figure 2D shows a representation of using ML
and charge densities to bypass the calculation of the Kohn-Sham equations. There have been
diverse methods employed to learn the charge density directly. For example, Kajita et al. proposed
a method of descriptor generation based on a 3D voxel representation of the electron density for
use in CNNs. 26 In contrast, Brockherde et al.!?” and Bogojeski et al.!?® formulated KRR models
to directly learn the charge density using a suite of training data, and a final example from Sinitskiy
and Pande showed that CNNs trained on low-fidelity charge density data can learn meaningful
characteristics of the charge density for a variety of organic molecule chemical environments,
enabling predictions with DFT-level accuracy but orders of magnitude faster.!?° Once sufficiently
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mature, these methods may fundamentally alter the way in which researchers conduct ab initio
calculations, wherein ML is fundamentally providing quantum mechanical knowledge of complex
systems without needing to solve the Schrodinger equation.

4 Some challenges and best practices for ML in MS&E

In this section we discuss issues that occur in many ML modeling projects, focusing on
supervised regression learning models for property prediction, although many of the issues are
similar in other applications. The key steps in a ML workflow
broadly include: (1) data collection and cleaning, (2) feature | RMSE: root mean squared error
generation and selection (featurization or feature engineering), | MAE: mean absolute error
(3) model type selection, fitting, and hyperparameter | MAPE: mean absolute
optimization, (4) model uncertainty assessment (e.g. | Percentage error
performance on test data) and domain applicability, (5) final | AARD: average absolute relative
model predictions. The ML workflow has been discussed | "
extensively in other reviews and a detailed discussion across all
parts will not be included here.**-!3° However, we do wish to
discuss some critical aspects associated with steps (2)-(4) that we
feel are valuable to help the community move toward best practices in ML modeling.

R%*  coefficient of linear
dependence

4.1 Basic Statistics of Accuracy

In many steps of supervised regression learning, ML models are assessed by some statistic
related to the differences between the predicted data ¥ and true data Y. The equations for these
statistics are widely available and will not be given here, but we briefly discuss their effective use.
The root-mean squared error (RMSE) is a commonly used error metric, and frequently the error
metric that the ML model seeks to minimize. Mean absolute error (MAE) is also useful to calculate
and will typically trend with RMSE, but is less sensitive to large errors from outlier predictions
and is not smoothly differentiable like RMSE, making it harder to use in some optimizations. Mean
absolute percentage error (MAPE) (often called by many different names, e.g., Average Absolute
Relative Error (AARD)) is just the absolute error as a percentage of the data point and is also very
helpful as the importance of an error is often related to the size the quantity being predicted. It is
also important to give RMSE errors relative to the standard deviation of the data set, which is
sometimes called the reduced RMSE, as this provides a reasonable representation of the scale of
the ML errors with respect to which RMSE should be measured. In particular, the reduced RMSE
value for a well-performing ML model should be significantly less than 1 as simply guessing the
mean of the predicted data (typically not useful) would yield a reduced RMSE equal to 1.

Another widely used metric is the coefficient of dependence R?, which gives the fraction of
variance in the true value that is predictable from the predicted values (the parity plot, which shows
predicted vs. actual data, is a very useful plot and gives a graphical feel for R?). R? is less than or
equal to 1, with 1 representing perfect prediction, and can be less than zero for predictions that
trend with the opposite sign slope as the true values (R? technically has no lower bound). Reduced
R? (sometimes referred to as adjusted R?)is givenas R%,; = 1 — [(1 = R>)(n — 1)/(n — k — 1)]
where 7 is the number of observations and k is the number of features. RZ,is less than or equal to
R? and, since it adjusts for the complexity in the model, it will decrease when terms that have no
predictive ability are added. R? gives a useful overall assessment of model quality, and generally
values > 0.7 are desired for a useful model. However, R? can be misleading, e.g. a few widely
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separated regions that are fit on average can give a high R? even when no predictive ability within
each region is given by the model.

Overall, we suggest determining at least RMSE, reduced RMSE, MAE, MAPE, R? and RZ,,
and generating a parity plot as standard practice, and using the metrics most relevant for your
application. RMSE is typically used for choosing the best features and models during ML model
development. The exact method of choosing data for fitting and assessing a model with RMSE (or
any metric) can be complicated and is described in Sec. 4.4.1.

4.2 Feature Engineering

Feature engineering is a key component of developing useful supervised ML models. Features
must be machine readable (i.e., vectors of numbers), practical to obtain for the desired application
(e.g., they should certainly be significantly easier to obtain than the target property values), capture
as much of the relevant variables controlling behavior as possible, and ideally contain limited
additional information that is not useful and which may lead to overfitting data and poor
predictions. Generally, feature engineering consists of two steps: feature generation and feature
selection, each of which will be described here.

A common set of minimal descriptors may include composition and processing conditions
(e.g., precursors, annealing temperature or gas pressure), as these can completely specify the final
material, although perhaps rather indirectly. Additional characterization information can also be
included, e.g., infrared or X-ray diffraction spectral data. While composition specified by weight
or atomic percent is useful, it cannot be used to extrapolate to any new elements, since the model
will have no knowledge of how to predict effects of that element if it has not appeared in the
training database. One solution to this limitation is to represent each element with a feature vector
of elemental properties, e.g., melting temperature or electronegativity. These can then be used to
generate features for alloys by taking arithmetic- or composition-averaged combinations of the
constituent element features, for example constructing the composition-averaged melting point of
the elements in a compound. This approach has been codified by the Materials Agnostic Platform
for Informatics and Exploration (MAGPIE),'*! which gives a canonical set of elemental properties
and arithmetic operations that have proven successful in predicting stable compounds,'* glass
forming ability,?® and diffusion coefficient, to name a few.3*%

For cases where some level of atomic structure (by which we mean atom position and element
type) information can be readily determined (e.g., in atomistic modeling or organic molecule
descriptions) the atomic structure forms a powerful feature set, as it is likely to play a large or even
totally controlling role in setting a property of a molecule or crystal. Direct use of the atomic
coordinate vectors and atom types as a feature is inadvisable as it
does not satisfy the translational, rotational, and permutation | MAGPIE: materials agnostic
(swapping atoms of same types) symmetries of the system under | platform for informatics and
study, and thus would need a very large amount of data to be | cxploration
trained well enough to reflect these basic symmetries. An array | ACSF: atom-centered symmetry
of different feature generation methods have therefore been function
developed which do satisfy these symmetry requirements. For
molecules, these include properties like bond lengths,
connectivity, and functional groups, and can include relative
atomic position and electronic structure data computed with
quantum mechanical atomistic simulations. Such properties have
been widely used in QSAR/QSPR analysis. Thousands of basic

SOAP: smooth overlap of atomic
orbitals

BoB: bag of bonds

BAML: bonds, angles, and
machine learning

MBTR:  many-body tensor
representation
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QSAR/QSPR features are now available and can be extracted automatically from basic molecular
formulae (e.g., SMILES strings) (see Ref. '*? for a summary of recent automated tools for
QSAR/QSPR). A number of tools have also been developed for extended systems (i.e., not just
molecules) in the context of constructing ML-based potentials (see Sec. 3.4). These features have
been validated for particular materials systems and benchmarked against key standard databases
(e.g. the QM9 molecule dataset), including, but not limited to: atom-centered symmetry functions
(ACSFs),!3? the smooth overlap of atomic orbitals (SOAP) method,'** partial radial distribution
functions,'* bag of bonds (BoB),!*® bonds, angles and machine learning (BAML),!3” and the
many-body tensor representation (MBTR).!*® The streamlined production of many of these
features has been implemented in the matminer code package (see Sec. S2 of the SI or the Figshare
link in Sec. 7).!% Another approach to feature generation is graph-based deep learning methods,
which first map atomic structure onto a vector of atom descriptors (e.g., type and simple properties,
like formal charge) and bond distances and connectivity (the graph), and then merge those
descriptions with weighted averaging to ensure flexible joining of the atomic descriptions with the
correct bonds. *9-143 These methods work from very basic information and replace the step of
invoking human intuition and analysis to generate features with a more automated deep learning
generation of a feature map. Finally, we note that one can work from unsymmetrized data if the
method itself performs the symmetrization. For example, Nie et al. recently generalized kernel
regression approaches to include permutation symmetry and showed it could generate effective
energy fitting directly from atomic pair distances.!#

Once a set of features to represent a dataset have been generated, it is common to select a
representative set of features that is large enough to result in low model errors and avoid model
underfitting, yet not so large as to incur penalties to overall model accuracy and extrapolative
ability due to overfitting. Certain ML models such as polynomial and kernel ridge regression can
easily become confused or overfit if too many features are used, but other models like random
forest methods (see Sec. 4.3 and Sec. S4 of the SI for more details) intrinsically function as a form
of feature selector, as more important features carry heavier weights in the final ensemble of trees
compared to less pertinent features. A simple approach is to enumerate all possible feature subsets
and select the one minimizing some model error score (e.g., RMSE of a particular cross-validation
routine, see Sec. 4.4). For testing up to M features out of N possible features this approach requires
N choose M model score evaluations, which is computationally prohibitive for large feature sets.
Similar spirited approaches iteratively test one descriptor at a time and then add it to a growing list
(forward feature selection) or removes it from a shrinking list (reverse feature selection) based on
it resulting in the greatest reduction (or least increase) in the model error score. Forward (reverse)
feature selection methods take N!/(N-M)! model score evaluations to find M (remove M) features,
which is generally tractable for models that are computationally fast to evaluate.

Feature selection usually benefits from a consideration of the physical reasonableness of the
features, and features that make no physical sense are obviously a concern, e.g., cost of elements
correlating with band gap. Such correlations are likely created by the feature correlating with some
other more physical feature(s), but the model not having enough data to select the correct features.
Better models can generally be generated by intentionally replacing such features with physically-
motivated hand-picked features that perform equivalently well (or better) as automatically
selecting features (note that forward (reverse) feature selection are not global optimization
methods and can miss optimal feature sets). For example, Liu et al.>¢ and Lu et al.* found that
starting forward selection with an initial physically meaningful feature chosen by human intuition
(and known physics) resulted in improved model performance compared to using purely
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automated forward selection. One can consider iterative exploration of two or more features for
addition/subtraction from the feature list, although we are not aware of any examples where this
yielded significantly better results and it greatly increases computational cost. In addition to these
feature selection methods, other popular dimensional reduction methods take linear combinations
of the features to best explain their behavior with fewer variables, often called latent variables
(e.g., principal component analysis (PCA), linear discriminant analysis, and factor analysis).
Including just the most important latent variables generated by these methods can improve some
fits, although the interpretation of the latent variables can be difficult.

An important trend to be aware of in ML is the used of deep N

. . . . PCA: principal  component
learning to obtain better results from features without extensive analysis
human guidance in both feature construction and/or feature . .

. . IRNet: individual residual
selection (see Sec. 4.3 and Sec. S4 of the SI for more details). | ,otwork
Deep learning methods can effectively generate thei.r OWN | MEGNet:  materials  graph
feature set (generally called a feature map), often doing so | petwork
starting from an initially large and rather unstructured set of | cgonn: crystal graph
features (e.g., a vector of pixel intensities or graph-based matrix | convolutional neural network

of atom and bond properties) that are not effective with
traditional ML methods. The comparison between more human-crafted vs. machine-learned
features in machine vision has largely established the latter as superior in that field, leading to a
revolution in the accuracy of machine vision.!#!46 While the outcome of this comparison in MS&E
problems is not yet clear, there is increasing evidence that deep learning will provide significant
improvements. For example, the deep convolutional individual residual network (IRNet)*' was
shown to achieve better performance from a long list of initial features than traditional methods
such as RFDTs and ridge regression. Some graph-based deep learning methods, which build
feature maps from a very basic initial feature list, have shown comparable or better performance
in organic molecule studies than human-crafted traditional features in QSAR/QSPR comparisons,
e.g., Message Passing NN frameworks.!*’ Similarly, for inorganic materials, the graph-based
MatErials Graph Network (MEGNet)!*?, SchNet!'*® (and SchNetPack'*’) and crystal-graph
convolutional neural network (CGCNN)!>%15! have shown performance comparable or better than
non-deep learning approaches. Given the success of deep learning in machine vision and language
translation, and its already impressive performance compared to more human-crafted features used
in traditional methods after just a few years, it seems likely that deep learning-based feature maps
will play a major if not dominant role in the future of feature development in ML for MS&E.

4.3 Types of Machine Learning Models

. . CV: lidati
The large number of ML models and their many technical cross varaation

details are well-covered in many texts and reviews* #4152 and
would require more space than available here, so we will not attempt any type of general review
of ML models. However, in Sec. S4 of the Supporting Information we provide a short discussion
of some of the most commonly used models (with a focus on tools for supervised regression) in
MS&E with a goal of highlighting the most salient features for an MS&E researcher.

LO: leave out

4.4 Model Development and Model Assessment

ML modeling typically has two closely connected but distinct major stages: model
development and model assessment. In model development (Sec. 4.4.1) we determine model type,
parameters, hyperparameters, and features (see Sec. 2 for definitions of these terms). In model
assessment we determine the accuracy of the model for expected use cases, which typically
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includes assessing the model performance with sampling methods such as cross validation (Sec.
4.4.2), understanding the domain of applicability where the model is expected to be accurate and
quantifying error bars in model predicted values to understand expected model uncertainties (Sec.
4.4.3). To help illustrate these important concepts of model applicability domain and assessing
model errors more concretely, we provide and discuss an in-depth practical example using ML
models trained on data of calculated migration energies for solute elements in metallic hosts (Sec.
4.4.4).

4.4.1 Best practices for managing data in model development and assessment

The same model scoring approaches are often used in both model development and model
assessment, which can lead to overfitting and overestimation of the model accuracy if one is not
careful. This danger is increased when model development involves many degrees of freedom
(e.g., many hyperparameters) and where there is limited data to constrain those degrees of freedom.
The simple rule to avoid model assessment errors from overfitting is that any data used for model
development should not be used for model assessment. To understand how to apply this rule
practically it is useful to define three types of data points (where a data point here means a vector
of corresponding features X; and target property value(s) Y7):

e Training data: Data used to determine the optimal model parameters for a given model
type, hyperparameters, and feature set.

e Validation data: Data not used in training, which is instead used to assess the error in the
model with optimal model parameters determined from fitting the training data. This error
is frequently used determine the optimal model type, hyperparameters, and feature set.

e Testing data: Completely left out data not used in training or validation, which is instead
used to assess the error in the final optimized model.

First consider the process of model development. We start by dividing the data into training,
validation, and test data in some way (we will discuss how to do this most effectively in the
practical example in Sec. 4.4.4). A basic fit of the model, with fixed model type, hyperparameters,
and feature set, uses training data to find the optimal model parameters that give the lowest possible
value of some scoring metric (typically measured with RMSE, so we will use that here) on the
training data. This obtained training data RMSE shows how well the model fits the training data,
but this error is usually not a good estimate of how the model will fit data outside the training data.
This limitation arises because the model often adjusts its many degrees of freedom to properties
of the training data that cannot be correctly represented by the model (a process called overfitting),
either due to limitations of the model form and features or noise in the data that cannot be modeled.
To obtain a reasonable estimate of the model errors on non-training data we can look at how well
the model predicts the validation data, for example the validation data RMSE. We can now
optimize the model type, hyperparameters, and feature set to minimize the validation data RMSE.
The optimal model type, hyperparameters, and feature set can then be used to refit the parameters
of this model to the combined training and validation data to get the best possible fitted model
without using the test data. The use of any information in model development from the test data,
or more generally from a source that would not be available in a corresponding manner during
model use, is sometimes called “data leakage”, and can lead to overestimating the quality of your
model.

4.4.2 Model development and assessment with cross validation

Perhaps the most common way to split data into sets for model development and assessment,
typically called training and validation sets (defined in Sec. 4.4.1), is the method called cross
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validation (CV). Splits can be done in many ways, and common approaches include leaving out
(LO) one data point or some randomly chosen X% percent fraction (typically called LO one CV
or leave out X% CV, respectively), splitting the whole data set into k separate equal-sized groups
called folds, and iteratively leaving out each fold once (k-fold CV), leaving out targeted groups
with certain characteristics (LO group CV, sometimes called LO class CV), e.g., all data with a
specific chemical composition, and time-split cross validation,'>3 which leaves out select data
based on the time of their inclusion in the dataset. For LO X% CV and k-fold CV one typically
chooses which data is in each fold randomly, and this can be done multiple times with different
random permutations to ensure good sampling. As discussed in Sec. 4.4.1, The errors in prediction
for validation data from models trained on training data, which we will call CV errors, is typically
a much better way to assess a model than errors in the training data predictions, as the latter
typically show overfitting. CV errors are a common method of model assessment and can be used
to develop a model (e.g., RMSE for all folds in 5-fold CV is a common scoring metric used in
feature selection, as discussed in Sec. 4.1) and estimate its predictive error, as discussed in more
detail in Sec. 4.4.3.

Once an optimized model has been developed, we would like to assess the errors and domain
of this optimized model. This model error and domain assessment ideally should not be done with
CV scores already obtained using the validation data since these CV scores can be subject to
overfitting based on the optimization done in model development. Thus, we need to consider yet
another left out data set, the test data, to quantify the model error. Specifically, we take the optimal
model type, hyperparameters, and feature set obtained from optimizing the validation data RMSE,
and refit the parameters of this model to the combined training and validation data to get the best
possible fitted model, and then predict the test data to get the test data RMSE. Because the test
data has not been used in any step of the optimization process, the test data RMSE is a good
quantification of errors in the final model.

The above approach is often not practical as it is difficult to simply separate out test data and
never look at it until the model is finalized. In addition, use of just one training, validation, and
test data set may introduce large biases associated with the specific data that ends up in those splits,
leading to suboptimal models and error estimates, particularly for smaller data sets. These
problems can be avoided by effectively simulating the above steps multiple times with different
splits in a method called nested CV. First, you must settle on at least a general model development
approach, which includes the types of models you will consider, hyperparameters you will
optimize for each model, and features you will explore. Then, you perform CV on all the data,
considering each excluded set as test data (level 1 CV), and an additional nested CV (level 2 CV)
on the included training and validation data to determine the best model. Each level 1 left out test
set then can be considered a true test set in the sense that it was not used in any part of the model
development. Many authors effectively perform a level 1 CV just once with ~10-20% of the data
left out at level 1 and perhaps also level 2, as multiple folds at level 1 and level 2 can lead to a lot
of computation. If the splits are done many times, e.g., with 5-fold CVs for level 1 and 2, it provides
a strong sampling across all the data, which is recommended for smaller data sets where it may
also be most practical. The nested CV approach is typically not totally rigorous, as researchers will
almost inevitably modify aspects of their approach in light of the final results, thereby introducing
some level of data leakage and potential overfitting, but nested CV is a practical approximation
for quantifying model errors that avoids most effects of overfitting.

One subtlety with the nested CV approach is that while using the level 2 CV to optimize model
type, hyperparameters, and feature set one is potentially overfitting to the level 2 CV score with
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multiple variables, which could lead to some of them actually being incorrectly optimized for truly
best performance. A practical example if this, documented in Ref. 34, is that if you optimize
hyperparameters for two different model types and then choose between them based on the level
2 CV score, you might choose the less optimal model type simply because it is more overfit.
Ideally, one would use many nesting levels and optimize just one property at each level, but this
can quickly become impractical, and one nesting level is all that is typically used. Such nesting
should be adapted to best meet the specific optimization and assessment needs of your problem.

4.4.3 Model domain of applicability and assessing uncertainties in model predictions

Perhaps the most important question one can ask of an ML model is “how accurate is the model
for the potential applications I have in mind?”” Answering this important question typically has two
coupled components, which are (1) an estimate of the domain where the model can be accurately
used and (2) an estimate of the uncertainty in the model predicted values (e.g., a standard deviation
in prediction accuracy). Regarding (1), the model domain of applicability is a region of feature
space outside of which we simply cannot reliably use the model (e.g. using a model trained only
on yield strengths of metal alloys to predict yield strengths of polymers). Regarding (2), error
estimates provide some form of uncertainty quantification on each value predicted by the model,
thus providing more information on the uncertainty of a prediction than simply using the average
predicted RMSE of the model from, e.g., a 5-fold CV. In this section, we provide a general
introduction to understanding model errors. In Sec. 4.4.4, we illustrate how one may assess the
errors and applicability domain of real ML models using GPR and RFDT models fit to a computed
database of DFT-calculated dilute impurity diffusion activation energies in a range of metal hosts.

There is not an exact definition of the domain of applicability of a model. We propose that a
useful definition which captures what is often desired in defining a domain is the set of data points
for which uncertainty can be quantified at a desired level (e.g., that the standard deviation is known
within 20%). One might intuitively want to determine a domain of applicability based on some
criterion of maximum acceptable errors. However, such screening is only possible if the errors are
accurately known, so it is necessary to know the domain in the sense defined above before applying
any further constraints on desired error magnitudes. There are many methods to assess domain of
applicability based on some measure of distance of the features of a potential data point from those
in the model training data, e.g. within the convex hull of the feature space (a number of methods
are summarized in Ref. %), However, these methods all rely on distance metrics of uncertain
validity for the specific problem being studied and require somewhat arbitrary cutoffs, and so are
difficult to apply for more than a qualitative guide on where you might consider the model to be
at risk of being not applicable. We believe some combination of distances in feature space from
training data and predicted error values are likely to provide the best guidance on domain and error
estimates. However, predicted error values are more immediately and obviously useful for
assessing models, and therefore here we discuss in more detail common methods used to establish
some type of error bar on the predictions and their use in establishing model domain, each of which
has certain strengths and limitations.

To better understand model prediction errors, it is useful to start with the well-known bias-
variance-noise decomposition of the error. Following the definitions in Sec. 2 one can rigorously
decompose the expected squared error for prediction on a new point X* as

E [(F(X) te— F(X))Z] = (E[F(X)] - F(X))2 +E [(F(X) - E[F(X)])Z] +o2 (1)
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Here the expectation is the average over all possible training data sets of size n, which we can
imagine to be randomly sampled from the total possible space of (X;,Y; ) pairs. The three right-
hand side terms from left to right are the bias squared, variance, and noise variance, respectively.
The bias is the difference between the expected value of our model averaged over all training set
samplings E [F X )] and the underlying true function F(X). The variance is the squared spread in

F(X) relative to its average, again taken over all training set samplings. Intuitively, models with
few parameters that underfit but are very well constrained will minimize variance but have large
bias, and models with many parameters that overfit will minimize bias but have large variance.
The lowest overall errors are typically found with a balance between optimizing both the bias and
the variance. Eq. (1) formally requires exploring every training data set of size n, and we typically
have a problem with a single data set of size n, so it is not straightforward how to estimate the
expected squared error in Eq. (1).

4.4.4 Example of assessing model errors and domain of applicability using GPR and RFDT
models on real data

In this section, we consider the errors and domains of some widely used modeling approaches
on a realistic data set. There are two very common approaches to estimating a distribution on
model prediction values. The first approach is ensemble methods, where one fits an ensemble of
models, which can then yield a distribution of predictions for any new data point. The ensembles
can be generated by resampling data (e.g., bootstrap and CV) or by refitting models (e.g., retraining
neural networks from different starting weights or with different dropouts), or a combination of
both (as is done in RFDTs), as will be described further below. The second approach is to use
Bayesian methods to modify a prior distribution and produce a posterior distribution, e.g., as done
in GPR. Ensemble methods are very flexible and can be applied to many models. For example,
resampling can be used to get a predicted distribution for essentially any model if it is
computationally feasible. Bayesian methods tend to require more specialized methods adapted to
use a Bayesian approach, but can potentially avoid many iterations and include key information
through priors.

In this section, we explore the behavior of error predictions from the very common approaches
of CV (with GPR), GPR, and RFDTs to better see how these errors behave and might be used. For
simplicity, we will usually consider just the mean and standard deviation (or RMSE, or just error)
of predicted distributions, as these represent the prediction and a simple error bar, respectively, but
the methods discussed here actually give a full distribution for predicted values. All these methods
for estimating the error of a model result in model predicted errors on any data point. However,
CV is a resampling method generally only used to predict the left-out validation samples, not
totally new data, and its results are typically averaged over all predictions to obtain a single CV
RMSE, as we will do here. For each case below, we illustrate the accuracy of the estimated
standard deviations by comparing them to actual observed standard deviations on validation and
test data sets. We will make use of models fitted to a database of DFT-calculated dilute impurity
diffusion activation energies in a range of metal hosts. The data contains 408 activation energies
for 15 different hosts, and is described in detail in Ref. 3 (see Sec. 7 for data availability on
Figshare). All of the models were evaluated using the routines available in the scikit-learn
package,!*¢ and the model fits and analysis were automated using the Materials Simulation Toolkit
for Machine Learning (MAST-ML).!57:158

To help assess the model domain of applicability, we explore a chemistry test where we
consider Pd-X systems, where Pd is the host element and X is a dilute impurity taken from three
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Figure 3: Plot of CV RMSE for various leave-out nested CV tests. The top level 1 split was into
train/validation (left of vertical dashed line) and test data sets (right of vertical dashed line). These level

splits were done in two ways. Green bars signify tests done with 5 test sets chosen randomly with
replacement, where each test set had 20% of the data and each train/validation set had 80% of the data.
Blue bars signify tests with 15 test sets (one for each host), where each test set had one host and all
impurities in that host and each train/validation set had all other data in the database. See Sec. 7 for data
set availability. Predictions of test data were done with training on the full train/validation sets. The nested
level 2 splits were done within the train/validation sets (left of vertical dashed line). The level 2 splits
included leave one out, k-fold CV, and leave out 90% (randomly sampled 5-times, with replacement)
(green bars) and leave out each host (14 splits) (blue bar). Error bars denote standard errors in the mean
CV RMSE over level 2 splits (left of vertical dashed line) and level 1 splits (right of vertical dashed line).
Error bars on the CV RMSE values are one standard error in the mean of the CV RMSE calculated with
all values from level 2 or level 1 fits, as appropriate. All fits were done with Gaussian process regression
using features optimized for this method taken from Lu et al.*®

sets (set 1 =3d and 4d transition metals, set 2 = Col VIA elements except O, set 3 = elements from
the first 2 rows on the periodic table). In this test we train the model with no Pd host data and then
predict the errors for the 3 sets. While we have DFT data for only some of these predictions, they
represent data that is very similar to our database (set 1, which has many 3d and 4d metals) and
from quite to extremely different (sets 2 and 3, respectively), with set 2 sharing related chemistry
due to being in the same column of the periodic table and set 3 having many dramatically distinct
chemistries, e.g., Pd-O. Thus, we expect errors to be small in group 1, larger and similar in set 2,
and larger and often outside the model domain in set 3.

Perhaps the most widely used approach for estimating model errors are through the use of
resampling methods, which estimate the uncertainty of predictions by sampling a subset of the
available data (training data) and predicting remaining data left-out of the subset (validation data).
The errors on the left-out validation data are then used to estimate a typical error bar for the model.
These approaches have the advantage of being relatively simple and applicable to any model being
used. The most common resampling method for error prediction is probably CV (Sec. 4.4.2).
Another common resampling method is bootstrapping, which differs from CV primarily by
resampling with replacement and the typical size of the resampled set. We do not discuss bootstrap
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in detail here due to space limitations and the fact that CV appears to have some advantages versus
bootstrap for resampling.'>® However, bootstrapping is used in the random forest method described
below. In addition, basic k-fold CV has been shown to give relatively good estimates of errors*
and is a recommended standard test for any model. Note that for &-fold CV this error will generally
increase with decreasing k (equivalently, increasing X% LO), particularly for smaller data sets, as
the smaller and more independent training sets will lead to larger bias and variance. k& in the ranges
3-10 are generally found to be a good compromise and yield good results. We illustrate this
behavior in Figure 3, which shows a clearly increasing average CV error with & that matches the
test data error best for k near 10.

In general, all resampling methods suffer from some significant limitations that are not always
appreciated. The most severe and difficult to treat is that these methods give an estimate of the
error for the data you have in your analysis (i.e. data in the training and validation sets), which
error can only be expected to be accurate for data in some way similar to your database.
Unfortunately, resampling does not provide a clear guide on how similar new data is to that in the
database. A related issue is that when you assess an error from a LO validation data point you
typically don’t know how similar that point is to data in the subset used as training data. While
duplicate data can be easily removed, the validation data can be very similar to one or more
elements of the training data, which will typically yield errors much lower than for a prediction on
a data point less similar to the validation data (this is sometimes called the twin problem, as your
validation data point has one or more nearly identical twins in the training data). Both of these
issues are closely related and arise from the fact that resampling yields error estimates potentially
closely tied to the specific characteristics of the data sampled and predicted and may not represent
the errors one will obtain for the future predictions to be made by the model. An excellent example
of this problem can be found in a recent study of superconducting temperatures,?® where models
fit to just low or just high temperature superconductors both showed good cross validation scores
within each group, but essentially no ability to predict the other group. This result is easy to
understand in terms of the known large qualitative differences in the physics governing low and
high temperature superconductivity, but one cannot rely on such robust physical guidance in
general. These issues can be somewhat alleviated by careful LO group error bar assessments,
where one attempts to mimic the types of prediction challenges the model will face in real
applications.!#2033.160 For materials systems, good LO group tests might typically include leaving
out certain elements, alloys, or composition ranges. For example, the LO host error on test data
shown in Figure 3 is significantly larger than that obtained from the k-fold CV for typical & values
of 3 or 5, demonstrating that the latter is unreliable for predicting new hosts, but it is well estimated
by the LO host error determined from the training/validation data. A more direct way to avoid the
twin problem might be to remove all compositions within some hypersphere around any point in
the validation data, thereby ensuring the predictions are always being made from significantly
different compositions. A particularly elegant way to select LO groups that mimics how your
model will be used is to explicitly test new data based on data from earlier times (time-split cross
validation!®%), although this is not always practical or appropriate. Sheridan used QSAR data to
show that time-split cross validation was quite accurate, while random LO CV tests tended to result
in an overly optimistic assessment of a model and LO clusters CV (i.e. a variant of LO group CV)
tended to result in an overly pessimistic assessment of a model.'>® In general, we would
recommend that all model development and error quantification done with resampling, e.g., nested
CV (Sec. 4.4.2), at least use a CV error determined by combining leave out random folds and leave
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out physically motivated groups that assess your planned uses for the model and remove twin
effects.

As mentioned above, Bayesian methods can provide an error bar without resampling. Perhaps
the most widely used Bayesian method in MS&E is GPR, discussed in the ML models section in
Sec. S4 of the SI. GPR distributions for a new point are entirely determined by the feature matrix
of the training data and the model kernel, and do not depend on the specific values of the training
data (except for a fit scale factor, giax, that typically closely matches the training data standard
deviation), making GPR distributions effectively a measure of how similar a new data point to be
predicted is to the database being used to train the GPR model. Data points very similar to those
in the training database will have small errors, while those less similar will have larger errors.
These error bars do have the limitation that they are estimates from a modified prior and are
therefore expected to get less accurate for data points far from the training data. In fact, GPR error
bars tend to have the constant value ouax for points completely unrelated to the original data set.
Thus, for a good model and predicted errors significant less than gy..x the error estimates can
potentially be taken as reliable, but for predicted errors near to gy the errors cannot be taken as
quantitative, although they do suggest that the model is not robust for that data. In this way, for
any prediction, GPR potentially provides either reasonable error bar estimates or a clear warning
that a particular data point is outside the domain of the model. GPR error estimates can also be
used to assess where the GPR model is least constrained, suggesting where a new data point might
be added to best improve the model, making it a powerful guide for iterative optimization with
active learning (see Sec. 3.1.2).

Figure 4A shows the standard deviations predicted for the three chemistry groups discussed
above in this section, and the results are astonishingly close to what we would expect from
chemical intuition. These results suggest that, at least in this case, the GPR errors are both accurate
on average in the domain of the model and capable of establishing set 1 (3) as inside (outside) the
model domain, with set 2 at the border of the model domain. Furthermore, Figure 4C shows, at
least in this case, that the root mean of the squared residuals (RMS residuals) and GPR predicted
errors show very limited correlation, suggesting that while in the model domain the GPR errors
are of the correct average size, they do not appear to be varying by data point in a physically
meaningful way. The results of Figure 4C suggest that GPR can predict large errors for systems
well predicted by the model, so GPR may give a fairly conservative estimate for the model domain.

One of the most widely used ensemble approaches (in addition to CV) in MS&E are RFDTs,
which are formulated in such a way that they provide an intrinsically powerful tool for estimating
uncertainties. RFDTs train an ensemble of models and thereby predict a distribution of values for
new data points, generally providing both good estimates from mean values and uncertainties from
the spread of the distribution (see the ML model section in Sec. S4 of the SI for more information).
The ensemble of models comprising RFDTs is traditionally generated by fitting to different data
samplings (e.g., bootstrap aggregation, or bagging being perhaps the best known approach) or
iteratively reweighting the fitted data to harder cases (boosting), but can also be generated from
varying the model used in fitting (e.g., changing dropouts in neural networks or possible split
criteria in decision trees). A detailed discussion of these approaches across all methods is outside
the scope of this review but it is useful to be aware of a few important examples.

A particularly rigorous formulation of RFDT error estimates (which includes correction for the
sampling and limited ensemble size as well as for missing bias and noise contributions) and an
assessment showing their accuracy on materials properties is given in Ref. !, although here we
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will simply use the standard deviation of the distribution of predicted values to get errors. Similar
to GPR, these estimates are expected to become less accurate for data far from the original training
data. For RFDTs that use the mean of the individual decision tree estimators for regression this
value is bounded at half the range of the training data (since maximally varying predictions will
match the lowest and highest values half the time each), although it is unlikely to reach that value
and we here assume that any value approaching the standard deviation of the training data, Giain,
is likely to signify the data is outside the domain of the model. Unlike the GPR case, the RFDT
error predictions are likely to be sensitive to both the X and Y values in the training data. Figure
4B shows the analogous chemistry plot for RFDTs as was shown for GPR in Figure 4A. However,
unlike GPR, the RMS residuals and RFDTs predicted standard deviations show strong correlation,
as shown in Figure 4D, for predicted standard deviations up to about the standard deviation of the
total data set, and then show a clear transition to comparatively noisy behavior with little
correlation. Also, unlike GPR, the Pd-X predictions show no ability to distinguish chemistries.
These studies suggest that, for the data studied here, GPR errors are good for determining a
conservative estimate for the model domain and good on average in that domain, but not reliable
for distinguishing trends between data points in the domain, while RFDT errors are good on
average and for distinguishing trends between data points in the domain, but not so good at
estimating true errors when they approach the standard deviation of the data set and not very good
at determining the model domain itself. We reiterate that these studies were done on just one fairly
small data set and absolutely cannot be used to make robust broad conclusions, but the results
suggest some of the opportunities and challenges of using error estimates and show the need for
further studies to establish how they can be best applied to problems in MS&E.

Finally, we note that neural networks can also provide their own uncertainty estimates through
an ensemble of networks approach. This can include simply starting from random weight
initializations multiple times (which can be time consuming)!®?, using snapshots taken during a
typical optimization run'®2, and exploring multiple fits done with different dropouts (dropouts in
NN are removing output of a random and changing subset of nodes).!6

Despite one’s best efforts using methods like above it can be difficult to be sure one has a
meaningful model in the case of working with small data sets. A few checks against simple naive

references are recommended to ensure that the model is adding significant value. These are
described in SI Sec. S5.
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Figure 4: Summary of GPR and RFDT chemistry tests. (A) and (B) Chemistry tests showing model errors on
predicted values for various solutes in a Pd host using the GPR model (A) and RFDT model (B). Comparison of
root mean square absolute value of the residuals versus the binned model error values for (C) GPR and (D) RFDT
tests. In (A) and (B), the models were trained on all data except Pd. In (C) and (D), both the x- and y-axes values
are normalized by the dataset standard deviation, which is 0.4738 eV. The linear fits have intercepts that are forced
to equal 0. In (D), the linear fit is done only on the blue data points, which have normalized binned RFDT less than
1. The histograms in (C) and (D) show the counts of the number of mean squared residuals used to obtain the RMS
residual for a given model error bin. The fits in (C) and (D) were performed using the same 15 grouped datasets as
described in the caption of Figure 3. These datasets are equivalent to leave out two hosts cross-validation, where
each training dataset excludes two hosts and the predictions are done on the two excluded hosts. This resampling
corresponds to 15x14 =210 training/validation splits, and each data point is predicted 14 times for a total of 408x14
= 5712 total predictions. See Sec. 7 for dataset availability.

5 Machine learning tools and software for materials

Recently, there has been intense development of open source software packages aimed at
streamlining and accelerating the adoption of ML in general, and in MS&E in particular. Effective
software tools are becoming increasingly important in order to maintain community best practices
and ease-of-use, especially given the rapidly evolving field of ML and its application to MS&E
more specifically, and especially for users new to the field.®®7416* We have provided a detailed list
of these packages with a brief explanation on the types of ML-related analysis enabled by each
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package in Sec. S2 of the SI, and posted via Figshare (see link in Sec. 7) to enable updates to this
evolving list in the future.

6 Future opportunities and ongoing challenges of ML in MS&E

MS&E is still just beginning to utilize informatics on large databases!®*!9 but the increasing
data generation rates from both experiments and simulation increasingly creates opportunities, and
sometimes necessitates, using ML for analysis. This trend, along with the rapid evolution of ML
algorithms and supporting hardware and cloud data and computing resources, suggest that
opportunities for ML in MS&E are still far from being fully realized. Here, we highlight what we
see as three (of no doubt many) key opportunities and associated challenges for ML in MS&E to
address in the coming years.

The first opportunity revolves around the creation of a codified, living materials informatics
ecosystem which unifies materials data, MS&E-centric ML tools, and the generation, analysis, and
dissemination of ML models in a democratized fashion. The development and dissemination of
models in a robust innovation infrastructure is still missing, and would dramatically increase the
utilization and impact of ML on MS&E. As a testament to the importance of seizing this
opportunity, the potential impact and need for additional developments in ML across many fields
of MS&E has been recognized in reports and at workshops hosted by many organizations, for
example the Department of Energy!®, National Institute for Standards and Technology, American
Society of Mechanical Engineers, !¢ the National Science Foundation'®” and has been reviewed in
various places.3%:68.74.164,165,168-170 Ag M tools become ubiquitous in MS&E, we envision this new
infrastructure would enable materials researchers, particularly the many who are not ML
specialists, to construct multistep, automated workflows for complex analysis and to experiment
with various algorithms and approaches to solve a particular problem, all within a consistent
interface and nomenclature that implements best practices for materials-specific data, and without
repeated human intervention for data formatting and translation. Such infrastructure is also
necessary to allow ML models to be disseminated effectively in the broad materials innovation
ecosystem, which includes ensuring they are discoverable, reproducible, reusable, and
machine/human accessible, including access via an application programming interface (API) for
incorporation into more complex workflows.

In addition to this new infrastructure centered on ML models, there is also a need for open-
data that is curated and hosted, which will prevent data siloing and improve ease of access and
sharing.®® Consistent materials metadata, for example as implemented by the Citrination
platform,'”! will also enable more informed comparisons between similar datasets, for example
when comparing materials property data obtained from DFT calculations of different levels of
fidelity. A long-standing challenge is related to the tradition in the scientific community where
typically failed or “null” results are rarely reported in the literature. However, such results still
constitute valuable information, particularly for training ML models, which can be leveraged to
facilitate new materials advances. For example, recently the exploration of vanadium selenide
materials synthesis was informed from failed synthesis approaches.!”? Information that is often not
deemed publishable in traditional peer-reviewed scientific studies can improve ML approaches by
reducing the biases toward particular outcomes of data typically reported in the literature (e.g. data
on solid-state Li electrolytes may be biased toward systems that are fast

Li conductors), and thus should still be made publicly available, | APL ~ application
perhaps by way of the codified infrastructure described above or | Prostamming mtefface
through new incentives encouraged by journal publishers. Al artificial intelligence
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In the coming years, the advancements made in the ML and broader field of artificial
intelligence (AI) will likely change how humans conduct scientific research. Indeed, the advent of
autonomous robot scientists has already began to shift the role of human scientists in the lab from
actively conducting individual experiments to instead analyzing vast amounts of automatically
produced data. These advancements create a large opportunity for more efficient and less error
prone scientific investigation but will also create challenges related to how human researchers use
and interact with ML/AI tools in a manner that results in improved outcomes compared to purely
human- or machine-driven analysis. Human-ML collaboration (also referred to as “centaur
approaches”, interactive ML or “human-in-the-loop” ML) will likely evolve substantially in the
near future and play a key role in many domains. For example, while computers equipped with
ML/AI tools are better than humans on average for many tasks (e.g. image recognition), edge cases
can still occur which result in incorrect model predictions, which cases could be quickly checked
and fixed based on human intuition. Thus, human-in-the-loop ML approaches will remain useful
for error minimization and sanity checks, particularly for situations where data is sparse or the
edge of the domain of applicability is being reached, and will be of particular importance in
situations such as the healthcare field where decisions reached using ML tools can result in life or
death.!” As a concrete example of the power of human-in-the-loop methods in MS&E, the work
of Duros et al.!”* showed that active learning approaches incorporating a machine and human
hybrid team outperformed both the pure human and pure ML-based prediction of performing the
chemical reaction of the self-assembly and crystallization of polyoxometalate clusters. As another
example, the work of Gomez-Bombarelli et al.!” found thousands of promising organic light-
emitting diode molecules in part by leveraging domain expert opinion of which molecules were
most worth investigating experimentally using an online voting process. While it is currently the
case that human-machine hybrid teams tend to result in better outcomes than what either humans
or machines could produce in isolation, we speculate that it is very likely in the future (it is unclear
when, but perhaps in the coming few decades) that ML/AI approaches will always outperform
humans at numerous computationally intensive tasks integral to the scientific enterprise. It is also
possible in the near future that how we perceive of human-in-the-loop ML may change
dramatically. Instead of the human and ML algorithm being used collectively, but existing
separately, it is possible that linkage of human and machine via brain-to-machine interfacing, for
example as being developed by companies such as Neuralink, will fundamentally alter how human
researchers interact with and use ML/AI approaches to advance the scientific enterprise.

To conclude, we see many ways in which ML (and Al) is already changing MS&E, but believe
their interaction are still in the nascent stages, with the full power of their merging still far from
being fully realized. The impact of their coupling is also expected to evolve quickly through
building on the rapid evolution of the broader ML ecosystem, providing the opportunity for
transformative advances to the discovery, design and deployment of new materials impacting
myriad technologies central to today’s society.

7 Data Availability

The diffusion activation energy dataset used in Sec. 4.4.4 is taken from the work of Lu et al.%
and is available on Figshare (DOI: https://doi.org//10.6084/m9.figshare.7418492).

The data subsets used for training, validation and testing used in this study, data used to make
each original figure, and most up-to-date supporting information document are available on
Figshare (DOI: 10.6084/m9.figshare.9546305).
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8 Supplemental Section 1: Recent reviews of ML in MS&E

Given the explosion of interest and advancement of machine learning (ML) as a whole and
ML in Materials Science and Engineering (MS&E) in particular, we note here that numerous
reviews, progress reports, perspectives, and tutorials covering various aspects of the application of
ML in MS&E have been written in just the past few years. Here we provide a list as a resource for
interested readers. Note that for the purposes of this review list, we have focused on reviews
specific to materials science, and thus have not made an effort to include reviews in related fields
such as cheminformatics. Note that the reviews in this table are listed by year of publication,
beginning with the earliest. A version of this list is also provided on Figshare (see Data Availability
in Sec. 7 in the main text for link), which version can be continually updated in the future.

Author Publication Year | Reference Title

Materials Informatics: The Materials “Gene”

: 176
Rajan 2015 and Big Data

Informatics derived materials databases for

. . 177
Broderick and Rajan 2015 multifunctional properties

Data science and cyberinfrastructure: critical
Kalidindi 2015 178 enablers for accelerated development of
hierarchical materials

Machine learning in materials science: Recent

Mueller et al. 2016 42 . A
progress and emerging applications

New opportunities for materials informatics:
Jain et al. 2016 179 Resources and data mining techniques for
uncovering hidden relationships

Materials science with large-scale data and

: 164
Hill etal. 2016 informatics: Unlocking new opportunities

Acrawal and Perspective: Materials informatics and big data:
Cghou dhary 2016 169 Realization of the “fourth paradigm” of science

in materials science
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Discovery and Optimization of Materials Using

: 180
Le and Winkler 2016 Evolutionary Approaches
Takahasi and 2016 181 Materials informatics: a journey towards
Tanaka material design and synthesis
Kalidindi et al 2016 182 Vision for Data and Informatics in the Future
’ Materials Innovation Ecosystem
Statistics, damned statistics and nanoscience-
Sun et al. 2016 183 using data science to meet the challenge of
nanomaterial complexity
Yosinof et al 2016 184 Materials Informatics: Statistical Modeling in
P ‘ Material Science
Audus and de Pablo 2017 185 Polymer Informatics: Opportunities and
Challenges
Vovles 2017 7 Informatics and data science in materials
y microscopy
Liu et al 2017 170 Materials discovery and design using machine
' learning
Machine Learning and Materials Informatics:
186
Ramprasad et al. 2017 Recent Applications and Prospects
Ward and 2017 114 Atomistic calculations and materials
Wolverton informatics : A review
Industrial materials informatics: Analyzing
Meredig 2017 187 large-scale data to solve applied problems in
R&D, manufacturing, and supply chain
Goh et al. 2017 188 Deep learning for computational chemistry
Lookman et al 2017 s4 Statistical inference and adaptive design for
: materials discovery
Lu et al 2017 189 Data mining-aided materials discovery and
’ optimization
Rupp, von 2018 190 Guest Editorial: Special Topic on Data-Enabled
Lilienfeld and Burke Theoretical Chemistry
Accelerating Materials Development via
Correa-Baena et al. 2018 191 Automation, Machine Learning, and High-
Performance Computing
Perspectives on the Impact of Machine
Dimiduk o al 2018 74 Learning , Deep Learning , and Artificial
’ Intelligence on Materials , Processes , and
Structures Engineering
Tabor ct al 2018 59 Accelerating the discovery of materials for
' clean energy in the era of smart automation
Butler ct al 2018 192 Machine learning for molecular and materials
’ science
Gubernatis and 2018 193 Machine learning in materials design and

Lookman

discovery: Examples from the present and
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suggestions for the future

Harnessing the Materials Project for machine-

194
Yeetal. 2018 learning and accelerated discovery
Progress in nanoinformatics and informational
195
Seko ctal. 2018 materials science
Send;rr(())r\:\;ﬁz and 2018 196 Materials Informatics
A review of deep learning in the study of
197
Nash et al. 2018 materials degradation
Machine learning and data science in soft
198
Ferguson 2018 materials engineering
Sanchez-L I Inverse molecular design using machine
air(lic Aezllrir_lé?l;lf 2018 0 learning: Generative models for matter
Sp engineering
How to optimize materials and devices via
Caoetal. 2018 199 design of experiments and machine learning:
Demonstration using organic photovoltaics
Jose and 2018 200 Materials 4.0: Materials big data enabled
Ramakrishna materials discovery
x 2018 201 Accomplishment and challenge of materials
4 database toward big data
From DFT to machine learning: recent
202
Schleder ctal. 2019 approaches to materials science—a review
Materials Discovery and Properties Prediction
Wan et al. 2019 203 in Thermal Transport via Materials
Informatics: A Mini Review
Materials informatics: From the atomic-level to
: 204
Rickman et al. 2019 the continuum
Machine learning guided design of functional
205
Balachandran 2019 materials with targeted properties
Gomes et al. 2019 206 Artificial intelligence for materials discovery
Ramakrishna, et al. 2019 207 Materials informatics
Agrawal and 2019 208 Deep materials informatics: Applications of
Choudhary deep learning in materials science
Data-driven materials science: status
; 209 )
Himanen et al. 2019 challenges and perspectives
15;};3;:;112 2019 210 The machine learning revolution in materials?
o 2019 11 Accelerating materials science with high-
ne throughput computations and machine learning
. The promise of artificial intelligence in
212
Venkatasubrmanian 2019 chemical engineering: Is it here, finally?
Aggour et al 2019 213 Artificial intelligence/machine learning in

manufacturing and inspection: A GE
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perspective

Recent advances and applications of machine

: 130
Schmidt et al, 2019 learning in solid-state materials science
Arroyave and 2019 67 Systems Approaches to Materials Design: Past,

McDowell Present, and Future
Soft Matter Informatics: Current Progress and
214
Peerless, et al. 2019 Challenges
Machine learning for renewable energy
215
Gu, et al. 2019 materials
Chen and Gu 2019 216 Machine learning for composite materials
. Progress toward autonomous experimental
217
Boyce and Uchic 2019 systems for alloy development
Nanoinformatics, and the big challenges for the
218 )
Barnard, et al. 2019 science of small things
Wang et al. 2019 29 Symbolic regression in materials science
Dimitrov et al. 2019 220 Autonomous Molecular Design: Then and Now
Information fusion for multi-source material
21
Zhou et al. 2019 data: Progress and challenges
Childs and 2019 2 Embedding domain knowledge for machine
Washburn learning of complex material systems
Unsupervised machine learning in atomistic
Ceriotti 2019 223 simulations, between predictions and
understanding
Machine Learning for Computational
224
Lamoureux et al. 2019 Heterogeneous Catalysis
Active learning in materials science with
Lookman et al. 2019 225 emphasis on adaptive sampling using
uncertainties for targeted design
Machine Learning Classical Interatomic
Chan et al. 2019 108 Potentials for Molecular Dynamics from First-
Principles Training Data
Next-Generation Experimentation with Self-
61
Hase et al. 2019 Driving Laboratories
Machine learning applications in minerals
226
MeCoy and Auret 2019 processing: A review
Faber and von 2019 27 Modeling Materials Quantum Properties with
Lilienfeld Machine Learning
Using artificial intelligence to accelerate
228
Ball 2019 materials development
Materials science in the artificial intelligence
229 age: high-throughput library generation,
Vasudevan, R, et al. 2019 machine learning, and a pathway from
correlations to the underpinning physics
Weli, J., et al. 2019 230 Machine learning in materials science
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Zhou et al. 2019 231

Big Data Creates New Opportunities for
Materials Research: A Review on Methods and
Applications of Machine Learning for
Materials Design

Ju and Shiomi 2019 232

Materials Informatics for Heat Transfer: Recent
Progresses and Perspectives

Jackson et al. 2019 233

Recent advances in machine learning towards
multiscale soft materials design

Bock et al. 2019 234 and data mining approaches in continuum

A review of the application of machine learning

materials mechanics

9 Supplemental Section 2: Software tools to enable and enhance
ML in MS&E

Recently, there has been intense development of open source
software packages in ML, and more specifically those aimed at
streamlining and accelerating the adoption of materials
informatics research. Software tools, especially given the rapidly

ML: machine learning

MS&E: materials science and
engineering

evolving field of ML and its application to MS&E more specifically, are becoming increasingly
important in order to maintain community best practices and ease-of-use, especially for users new
to the field.®®7*1%* An extensive list of software packages are listed in this section, along with a
brief explanation on the types of ML-related analysis enabled by each package. We note that this
list is not comprehensive and new packages appear frequently, but we believe the list should be
useful for those trying to make sure they are aware of available tools. Overall, the type of software
package may be categorized into one of eight groups, where group 1 denotes are ML environments
with many packages pre-installed, groups 2 and 3 denote general (multidisciplinary) software and
the remaining groups denote software that is tied more specifically to ML problems in MS&E.

(1

)
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ML-exploration and hosting environments:

Google Colab: Free cloud based free Jupyter notebook environment with many ML
packages preinstalled and free computer resources available.?*

NVIDIA NGC: Portal for a wide-range of free ML software prepared in containers for
rapid GPU deployment.?*¢

Nanohub: A science and engineering API with many community-contributed resources,
including ML-centric tools.?*’

DLHub: Online center for hosting, sharing, and publication of data and ML models through
a user-friendly interface.?3®

Paid commercial ML-centric software services:

Datarobot: Enterprise ML software enabling easy automation of entire ML analysis
pipeline.?’

Amazon Sagemaker: Part of Amazon Web Services, Amazon’s Sagemaker provides
enterprise software to quickly build, train, and deploy ML models.?*°
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Microsoft Azure: The machine learning studio within Microsoft Azure contains a fully
managed cloud service providing enterprise machine learning software to quickly build,
train, and deploy ML models.?*!

IBM Watson: Enterprise ML software web API.>242

Open source software enabling the use of ML algorithms:

Scikit-learn: A Python package with a wide array of algorithms encompassing every
portion of the ML analysis pipeline. !>

Waikato Environment for Knowledge Analysis (WEKA): A Java package with a wide
array of algorithms encompassing every portion of the ML analysis pipeline.?*3

R: A general data science and machine learning package.?**

TensorFlow: Designed to enable custom, complex, highly flexible neural network
models.?*

Keras: A user-friendly front end API for TensorFlow.?4¢

PyTorch: A package enabling more widespread use of deep learning, particularly for image
analysis.?¥

ChainerCV: A library for deep learning with a focus on computer vision.?*8

DeepChem: A library for deep learning with a focus on analysis of chemical characteristics
of molecules.!*

Software consisting of trained models enabling easy prediction of materials properties:
AFLOW-ML: Web-hosted ML models with drag-and-drop prediction of numerous
properties.>#

ElemNet: A deep learning neural network trained using only elemental compositions
enabling the prediction of material formation energies.?>°

JARVIS-ML: Web-hosted ML models with drag-and-drop prediction of numerous
properties.?!

PhysNet: A deep neural network enabling predictions of energies, forces and dipole
moments for small molecules.??

Software enabling improved feature engineering for more robust ML model generation:
Materials Agnostic Platform for Informatics and Exploration (MAGPIE): methods of
feature generation using elemental properties.?>

Materials Simulation Toolkit for Machine Learning (MAST-ML): automation of ML
pipeline and codifying of best practices of ML in MS&E, including data cleaning, feature
engineering, model fitting, cross-validation and assessment of many statistics.?>*
matminer: codified set of useful data visualization and structure- and chemistry-based
feature generation schemes. !’

DScribe: codified set of structure- and chemistry-based feature generation schemes.?>>

Software streamlining ML analysis methods and the ML pipeline
LoLo: Automated ML model fitting and data analysis, estimates of errors based on random
forest models.!”!
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matminer: (see above)

MAST-ML: (see above)

MATecalo: materials knowledge-based assistive software to aid researchers in MS&E using
ML to conduct improved materials research.2>

MatErials Graph Network (MEGnet): automated construction and evaluation of graph-
based convolutional neural networks for molecules and crystals.!*?

SchNet: automated construction and evaluation of deep tensor neural networks for
prediction of molecule and crystal properties.'*®

Veidt: streamlined construction of deep learning neural networks for materials science.?’
Materials Knowledge Systems in Python project (pyMKS): ML analysis of structure-
property-processing relationships with a focus on microstructure characterization.?>®
Tree-based Pipeline Optimization Tool (TPOT): automation of ML pipeline, particularly
choice of best ML model.?*°

Software facilitating the creation of interatomic potentials

Atomic Energy Network Package (aenet): fitting neural network-based models for
interatomic potentials.?®0

Atomistic Machine Learning Package (AMP): construction of MLPs using a variety of
atomic structure descriptors and machine learning models.?®!

SimpleNN: fitting neural-network-based models for interatomic potentials.
PES-Learn: automated production of neural-network or Gaussian process models for
constructing interatomic potentials.?®3

DeePMD-kit: construction of MLPs using deep learning neural networks.
Convolutional Neural Networks for Atomistic Systems (CNNAS): creation of deep
convolutional neural networks for interatomic potentials.?6®

TensorMol-0.1: creation of interatomic potentials consisting of trained neural network
combined with screened long-range electrostatic and van der Waals physics.?6¢
SchNetPack: extends SchNet and aids in creation of machine learning potentials using deep
learning neural networks (using PyTorch).!#

sGDML: python package for force-field generation using the symmetric gradient domain
machine learning (sGDML) model.?¢’
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Software facilitating the use of natural language processing

Elsevier API: Application Programming Interface (API) to Elsevier published texts to
support text and data mining.?%®

word2vec: NLP methods to efficiently construct word embeddings (that map words to real
valued vectors).”

Global Vector (GloVe): NLP software that combines global matrix factorization and local
context window methods.3°

Materials science embeddings: Word embeddings trained for materials science.
Character to Sentence Convolutional Neural Network (CharSCNN): Tools to conduct
sentiment analysis using deep convolutional neural networks.!
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10 Supplemental Section 3: Journals publishing ML in MS&E studies

As ML in MS&E has greatly expanded in scope in the past several years, there are many
journals that have or might be expected to publish ML-related studies in MS&E. In particular,
some journals seem particularly well represented in this area and additionally appear interested in
publishing papers with a relatively more methodological focus that might contain limited new
materials insights. These journals include, but are not necessarily limited to (in alphabetical
order): Computational Materials Science (Elsevier), Computer Physics Communications
(Elsevier), Integrating Materials and Manufacturing Innovation (Springer), Journal of Chemical
Theory and Computation (ACS), Machine Learning: Science and Technology (IOP), Materials
Today Advances (Elsevier), Molecular Systems Design & Engineering (RSC), MRS
Communications (MRS), and npj Computational Materials (Nature, open access). There are also
a number of more chemistry-oriented journals that publish papers in ML and the areas of
QSAR/QSPR, e.g., Chemometrics and Intelligent Laboratory Systems (Elsevier), Journal of
Computational Chemistry (Wiley), Journal of Chemical Information and Modeling (ACS), Journal
of Computer-Aided Molecular Design (Springer), and Molecular Informatics (Wiley). For papers
where the materials insights are significant any materials journal could, of course, be appropriate.

11 Supplemental Section 4: Types of Machine Learning Models

This section primarily describes some standard ML models (with a focus on supervised
regression) widely used in MS&E with a goal of highlighting the most salient features for an
MS&E researcher. The discussion touches on basic aspects which are covered in many textbooks
and general reviews, e.g., Refs. #4152 and we therefore do not provide additional references
unless addressing a specific feature outside the scope of these broad ML texts. We will use notation
similar to the main text in that we assume our data has the original form (X,Y), where X is a matrix
of features where each row corresponds to a system to be predicted and each element in that row
is a value describing some feature of the system, and Y is a vector of target properties to be
modeled. The relationship between X and Y can be written as Y = F(X) + €, where € is a noise
term (with mean zero and variance ¢2) and we seek a model for F(X) from ML. We write this
model as F(X) and its predictions as Y.

11.1 Multivariant Linear Regression (MVLR)

MVLR assumes that the target Y is a linear function of the features X. Note that these are
generally used with some kind of regularization which penalizes large variations in the fitted
coefficients, either the L2 or L/ norm, an approach known as ridge regression. These methods are
notable for being extremely fast, deterministic, and very easy to interpret (e.g., the coefficient of
each term gives its effect, and magnitudes effectively rank the importance of each variable).
MVLR is also simple enough that an enormous body of statistical data on the fit can be determined
essentially analytically. For example, uncertainties in all fitted
coefficients and their covariance, and uncertainties in any | MVLR: multivariate linear
predictions, can be readily obtained, and these can include the | regression
influence of uncertainties in the data being fit. Accurate fitting | KRR:kernel ridge regression
with MVLR does require that the Y values be an approximately | GPR: gaussian process regression
linear function of the features X, but since X can include arbitrary | CV: cross validation
functions of underlying descriptors (e.g., polynomials, | DT: decision tree
logarithms, etc.) MVLR does not require linearity with an initial | RFDT: random forest decision
set of features. For a given set of features MVLR does not have | tree
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any hyperparameters (one is introduced by regularization) although the feature engineering to
introduce nonlinearity can effectively add many adjustable parameters. Because of the powerful
statistical tools and extremely rapid and robust fitting enabled by MVLR, it is often desirable to
consider such models first as they provide a useful baseline. However, materials properties are
generally not expected to behave as a linear function of simple features or simple closed form
functions of features, which means that MVLR models tend to either poorly represent the data or
overfit it, leading to inaccurate estimates of values and/or large estimated uncertainties in
predictions, and serious errors for data even slightly different from the data set. For these reasons
MVLR is typically not the method of choice for most MS&E ML problems.

11.2 Kernel Methods and Kernel Ridge Regression (KRR)

Kernels are an inner product between feature vectors, which effectively define a distance
between any two data points in terms of their feature vectors. This distance supports a nonlinear
modeling of the data and can be used as basic input to a wide variety of ML methods, including
support vector machines, principal component analysis, and spectral clustering. One of the models
widely used for simple regression is KRR, which effectively predicts a new target output (Y*) from
the new input features X* in terms of a linear combination of training data features X; weighted by
their kernel-derived distances from X*, and includes ridge regulation of the coefficients. This
method is fairly fast to fit and often provides a good nonlinear model of Y = F(X) + €. The kernel
typically introduces at least one hyperparameter. For example, the commonly used Gaussian kernel
has a length scale that sets the range over which the distance metric decays, a value that must be
similar to length scales within the problem feature set to obtain a good model. Because all kernels
go to zero for widely separated points, KRR predicts a value of zero for all points very far from
the training data (this can be shifted to predict the mean of ¥ by normalizing Y to mean of zero
before fitting). It should be noted that even with just two hyperparameters for kernel length scale
and regularization, one can get strong coupling between them and get families of models where
similar CV performance is obtained for a wide subspace of values where the two hyperparameters
are linearly correlated.?®

11.3 Gaussian Process Regression (GPR)

GPR is a Bayesian approach that assumes a prior multivariate normal distribution for ¥ values
with a covariance between Y; and Y; given by the distance between feature vectors X; and Xj, and
then modifies this distribution using the training data and Bayes theorem.?’® The distance is
determined by a kernel, described in Sec. S11.2, making its predictions similar to KRR. However,
GPR predicts a distribution of ¥* for any new X* and the first and second moment of the
distribution can be used to estimate the predicted value and its variance (see Sec. 4.4.4 of the main
text for some assessment of GPR predicted standard deviations).

11.4 Random Forest Decision Trees (RFDTs)

RFDTs are often the preferred method to for ML modeling for simple regression problems as
they are highly accurate, very fast to train and evaluate, effectively perform their own feature
selection and yield features ordered by importance, and provide intrinsic error estimates on
predictions. A single DT is created by iterative splitting the data on features (nodes) so as to
maximize some score metric (e.g., entropy reduction) until
reaching a the end of the tree (leaf), and a tree classifies any input
into a leaf. Mean values or linear fits to data within each leaf
provide regression estimates. Single trees are prone to
overfitting, a problem solved by the random forest approach,
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which creates an ensemble of DTs through training many DTs on partial samplings of the data
(using bootstrap aggregating, or bagging) while simultaneously altering the available split criteria
at nodes.'>> RFDTs therefore predict a distribution of values, one from each DT, for any new data
point, and the first and second moments of this distribution can be used to predict new values and
their variance. RFDTs have a number of hyperparameters (e.g. maximum depth of tree) but
sensible defaults can often be chosen such that results depend only weakly on the hyperparameters.
The accuracy of RFDTs often approaches that of a highly trained NNs but with a fraction of the
time taken in training and hyperparameter optimization. As an ensemble method, RFDTs produce
a distribution of predictions, and the first and second moment of the distribution can be used to
estimate the predicted value and its variance (see Sec. 4.4.4 of the main text for some assessment
of RFDT predicted standard deviations).

11.5 Basic Neural Networks (NNs)

NNs are in many ways the most powerful and versatile ML tools. A node takes input data,
weights it, and then passes that weight through an activation function, yielding an output value. A
layer has many nodes, and multiple layers can be connected. We use “basic” neural networks to
refer ones with up to just a few layers that have no special processing to enable effective training
of many layers or feature reduction through convolution or pooling. Networks with these
additional features are called deep NNs and discussed in Sec. S11.6. Basic NNs have many
adjustable weights and are typically trained by simple steepest descent optimizations, which
typically yield different final weights for different weight initializations. This is in contrast to the
MVLR, KRR, and GPR discussed above, which are essentially uniquely determined in a fit. NNs
also have a large space of hyperparameters, like number of nodes and layers and activation function
type, which can significantly impact their results. For these reasons, training an optimized robust
NN is generally significantly more challenging and time consuming than any of the above methods
and often yields only modest improvements. These methods are therefore typically tried after those
discussed above if needed for standard MS&E regression problems.

11.6 Deep Neural Networks (DNNs) and Deep Learning

DNNGs represent a significant step in ML that we briefly summarize here.!>22% DNNs can be
most simply thought of as a NN with many layers (hence the terminology “deep”), but to make the
models effective and trainable new types of layers (e.g., convolution, pooling) and optimizations
(e.g., residual fitting!#®) are used. DNNs have a number of distinct features compared to traditional
methods which we briefly summarize here. Below we will frequently compare to the human brain
as this makes a helpful analogy, but we do not mean to imply that these DNNs are actually working
by mechanisms equivalent to our brain or make any it suggestions that they are human in some
meaningful way.

1. Dimensional reduction and feature map development: Deep NNs typically involve stages
that reduce the complexity of the input data, e.g., through convolutions or pooling. These
allow extremely large and complex initial feature sets to be used, including ones where
related data (e.g., nearby image pixels or connected atom and bond properties) are not co-
located in the feature vector, and can effectively extract a reduced set of essential features
without human intervention. Compared to human feature generation this process can be
much faster, much easier to apply to new situations, and more accurate. Just as your brain
can identify key features of a picture of a cat without defining them explicitly, so can a
DNN extract the features without having to write them down in advance.
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2. Highly flexible weights: Deep NNs can easily have millions of adjustable weights which
gives and incredibly rich model for connecting inputs and outputs. This richness means
that model fits are not unique (i.e., two users fitting to the same data with the same tools
will not get the same weights). However, it also means that weights can be tuned to perform
many tasks, e.g., to identify multiple properties from an input molecular structure. These
weights also mean DNNs require extensive training, often done on GPUs and taking
multiple hours for typical materials problems (e.g., with hundreds to thousands of data
points or images).

3. Scalable fitting: The weight fitting typically uses backpropagation to push weights in the
direction that minimizes a loss function (e.g. RMSE). However, such pushes can be done
sequentially, allowing training on subsets of the data, generally called batches. In this way
one can easily train on almost any size data by simply breaking it up into manageable
batches. Our brains work similarly, learning more about how to identify a cat with each cat
we see, but not needing to see all cats at once.

4. Transfer learning: The weights contain such a rich map of key features that they can often
be very effectively transferred from one problem to another, a method called transfer
learning. Transfer learning can reduce the size of data set needed for training in images
from tens of thousands to just hundreds.

5. Data hungry: DNNs typically require large data sets to fit the large sets of weights, although
transfer learning can greatly reduce these requirements.

6. Flexible architecture: DNNs are highly flexible and come
in many forms. Some are just different types of layers in | RMSE: root mean squared error
different orders with different connections between them, | RCNN- regional convolutional
e.g., varying numbers of convolution layers or | neural network
connection their output across many layers to avoid | GAN: generative adversarial
fitting problems. However, many DNNs have very | network
profound changes compared to a simple multilayered
NN. A common approach is to have multiple NN active in a single method. The faster
regional convolutional neural network (Faster-RCNN) uses this approach identify objects
in images, having one NN trained to propose bounding box regions for objects and another
to fit the object location. Other important architectures distinct from simple layered
networks include Generative Adversarial Networks (GANs) and recurrent neural networks
(in particular, long-short term memory NNs), where the latter are extremely successful for
data that comes in a series, €.g., time series or games or text.

7. Generative ability: An exciting area of DNNs for materials are generative models, which
learn to propose new members of a distribution of samples and can therefore actually
propose new materials no human has considered. A recent notable development in this area
are Generative Adversarial Networks (GANs). GANs contain two NNs, one that proposes
candidates (generator) and one which screens for real candidates (discriminator), and by
training them together GANs find an optimal joint performance that can generate new
examples of a class. These have been able to generate extremely realistic images of desired
types as well new molecules with desired properties.?"!

11.7 Methods for small datasets

Datasets in MS&E are often small, and techniques adapted to this type of data are particularly
useful. a simple approach to obtain useful predictions from small datasets is to simplify the physics
of the target quantity by subtracting a relevant reference, then fitting a model to this shifted target
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quantity.?’? A more complex but powerful approach is transfer learning, which uses results from
ML on a different data set to inform the target modeling effort.?”> Transfer learning can be done
by using ML to create improved features that might not be readily available, or predicting a useful
reference to shift the target quantity. One can also train the same model on multiple data sets (either
sequentially or simultaneously), an approach widely used in text mining and machine vision (see
Sec. S11.6. In materials, pretrained DNNs have been used in a number of microstructure image
processing tasks.?’473

12 Supplemental Section 5: Some checks for model value against a
naive model reference

In any modeling exercise it is useful at the end to check against some simple baseline reference
cases to be sure the model has value. Here are a few such tests that are recommended. Note that
we follow the notation introduced in Sec. S11 and Sec. 2 of the main text.

e Permuted data: We note a simple way to check if overfitting is playing a major role in the
model is to permute the Y values randomly so that they have no physical connection with
the X features (but still have identical properties in terms of sizes, distribution, etc.) and
repeat the model development strategy (e.g., as done in Ref. ¢). One should obtain
significantly worse performance than the unpermuted model and ideally RMSE/c = 1 and
R2? =~ 0.

e Dummy regressor/classifiers: Perhaps the simplest prediction model is to guess a simple
value derived from the data (e.g., mean, median, constant, specific quantile). One’s model
should do much better than this method on all basic metrics (e.g., RMSE, R’, etc.). Scikit-
learn!>® implements a number of dummy classifier and regression functions.

e Nearest neighbor: A simple model for predicting Y* from X* is to take the Y; value from
the X; that is closest to X*.2° Closeness can be measured by a simple Euclidean distance or
some more complex kernel. This type of model may actually work quite well in some cases
and it is not necessarily a problem for a develop ML model if it has a similar performance
in some aspects, but it is worth being aware how accurate one can be with such a simple
approach so one does not use a much more complex model unnecessarily.

13 Supplemental Section 6: Further comparison of assessing model

errors using GPR and RFDT models on real data

For additional assessment of model errors, we will make use of the distribution of a statistical
variable r (called the r-distribution), where
(residual of data point i)

= (S1)

" (estimated standard deviation of data point i)

This variable should follow a normal distribution if the estimated standard deviations are
accurate and the residuals are normally distributed.!®!3> We will compare the distribution of r for
validation data to the normal distribution. We will represent the distributions by their cumulative
values i.e., plotting the fraction of the magnitudes of » (and a reference normal distribution) that
are less than a given value, written formally as x /0.
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Figure S1A shows the cumulative » distribution (Eq. (S1)) for the LO group test using GPR
compared to that for a normal distribution. Only errors < 2/3 X Otpqin (Where Gppqin is the
standard deviation of the training data) are included in the  distribution to avoid values likely to
be outside the model domain. The agreement between both curves is fairly good, supporting the
qualitative accuracy of the GPR standard deviation estimates. However, the r-distribution does
show that the standard error values are too large (small) up to (after) about 1.75 times the standard
deviation for the test data. This effect leads to too many rare events, e.g., about 2% of the errors
are more than three times the GPR predicted standard deviation, which is much larger than the
0.3% obtained for an analytical normal distribution. Figure S1B shows the analogous cumulative
r-distribution (with only errors < 2/3 X 04rqin, included in the distribution) this time for RFDTs.
Again, the r-distribution matches that from the analytical normal distribution reasonably well,
although generally the error bars from the RFDT appear to be a little too large on average for r <
2.
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Figure S1: Cumulative r-statistic plots for LO group tests using GPR (A) and RFDT (B) using grouped datasets.

Figure S2 contains plots of all the absolute residuals versus the GPR (A) and RFDT (B) model
errors, where both the residuals and the model error values have been normalized by the standard
deviation of the dataset. The data plotted in Figure S2 are the same data used to create the RMS
average “binned” plot of residuals vs. model errors (Figure 4C and Figure 4D) of the main text.
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Figure S2: Comparison of absolute residuals versus the corresponding model error values for (A) GPR and (B) random
forest tests. Both the x- and y-axes values are normalized by the dataset standard deviation, which is 0.4738 eV. The
values are taken over leave out group tests on the same grouped datasets used in the analysis presented in the main
text. The dashed lines are not fits to the data, but instead denote slopes of 1 and 2 (with a forced intercept of 0), which
may be helpful to flag potential points which may be outside the domain of the model.
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