Downloaded via NORTHWESTERN UNIV on July 28, 2020 at 18:53:36 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JAIC'S

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

Chain-End Functionalized Polymers for the Controlled Synthesis of
Sub-2 nm Particles

Peng-Cheng Chen,|| Yuan Liu,|| Jingshan S. Du, Brian Meckes, Vinayak P. Dravid, and Chad A. Mirkin*

Cite This: J. Am. Chem. Soc. 2020, 142, 7350-7355 I: I Read Online

ACCESS | m Metrics & More | Article Recommendations ‘ @ Supporting Information

ABSTRACT: A novel method for synthesizing arrays of uniform sub-2 nm particles on substrates is described. Such particles are
made by (i) using dip-pen nanolithography to prepare nanoreactors consisting of metal-coordinated polymers; (ii) designing
polymers with only one metal atom attached to each polymer chain; (iii) systematically controlling nanoreactor volume down to the
yoctoliter scale; and (iv) transforming each nanoreactor into a metal nanoparticle through thermal annealing. Polymer design in this
study is crucial, since it allows one to tightly control nanoparticle size by tuning the volume of the polymer reactors, which correlates
with the number of polymer chains and, therefore, metal atoms. Mixtures of different metal-functionalized polymers were used to
synthesize ultrasmall alloy particles. The technique and results described herein point toward a way of using these novel polymers to
systematically explore the properties and uses of this important class of nanomaterials in many fields.

anoparticles that have fewer than 300 atoms and such capabilities could open avenues to a wide variety of
diameters less than 2 nm, commonly referred to as functional devices that take advantage of size- and composi-
nanoclusters, have attracted extensive interest due to their tionally dependent properties uniquely associated with such
properties that differ from single atoms and larger colloidal particles.45’46 Unfortunately, attempts to make sub-2 nm
nanoparticles. " When nanoparticles approach the nano- particles with PEO-b-P2VP nanoreactors by scaling down the

cluster regime, the particles exhibit discrete molecular orbitals,
in contrast with the energy bands characteristic of larger metal
nanoparticles.”” " In addition, the high surface-area-to-volume

ratio of nanoclusters. make.s their geometric structures highly reactor to reactor becomes highly variable due to the
dependent on their environment such as solvents and

4,8 . . nonuniform dispersion of the metal precursor in the PEO-b-
supports.”” These electronic and geometric structural . .

o . . . . 9-16 P2VP ink. Consequently, some nanoreactors produce particles
characteristics give nanoclusters interesting -catalytic,

optical, 7'®* and magnetic properties.'®?° Currently, many larger than 2 nm particles, and some reactors are empty. In an

methods have been established to synthesize ultrasmall attemp’f to circumvent thi.s problem, we designed and
nanoparticles.”' ~** For example, by controlling the nucleation synthesized a novel porphyrin-capped PEO that has a fixed

metal loading, or the volume of the reactors led to very
nonuniform distributions of particles. When the nanoreactors
approach very small volumes, the metal precursor content from

and growth process, bulk solution-based synthesis can be used stoichiometry between metal atoms and polymers and can be
to synthesize nanoclusters with a precise number of deliberately loaded with different metals via the porphyrin
atoms.'' "' 7** Alternatively, nanoclusters can be accessed functionality (Scheme 1). We hypothesized that, by fixing the
utilizing nanoreactor-mediated synthesis,”* > where the number of metal ions per polymer chain, more uniform
nanoreactor (e.g, dendrimers, star-shaped polymers, and nanoreactors could be generated, which in turn would yield
molecular cages) restricts the growth of the particles by ultrasmall nanoparticles with tighter control over size. With
limiting the amount of precursor present. this approach and a Pt**-loaded polymer as the ink,

Recently, we developed a technique, termed scanning probe nanoreactors with deliberately controlled volumes down to
block copolymer lithography, that combines nanoreactor- the yoctoliter scale were printed using dip-pen nanolithography
mediated synthesis and scanning probe lithography to realize (DPN); these nanoreactors were thermally converted into Pt

site-specific synthesis of 2.5—60 nm nanoparticles, some with
as many as seven elements (Au, Ag, Cu, Pd, Nj, Co, and
Sn).**~* This method typically relies on an atomic force
microscope (AFM) tip to print attoliter-scale volumes of
metal-coordinated poly(ethylene oxide)-b-poly(2-vinylpyri-
dine) (PEO-b-P2VP) nanoreactors onto a substrate in a site- Received: February 25, 2020
specific manner. The metal precursors are then thermally Published: April 13, 2020
converted under Ar or H, into a nanoparticle within each
nanoreactor.

Thus far, no methods have been developed to make sub-2
nm particles in a site-isolated manner, yet the realization of

nanoparticles with controlled sizes ranging from 1 to 5 nm.
Moreover, we used the technique to synthesize binary and
ternary ultrasmall particles consisting of combinations of Cu,
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Scheme 1. Scheme for the Polymer Nanoreactor-mediated
Synthesis of Ultrasmall Nanoparticles”

O Ou/\‘éo\/%/o\

M = Pt, Cu, Ni, etc.

“Metalloporphyrin-terminated poly(ethylene oxide) is used as an ink
and deposited onto a substrate at desired locations via DPN. The
substrate is thermally annealed to decompose the polymers to yield a
single nanoparticle in every polymer nanoreactor.

Ni, and Pt by using a mixture of metalloporphyrin-terminated
polymers as the ink.

The targeted polymers were synthesized by coupling
5,10,15-triphenyl-20-(4-carboxyphenyl) porphyrin (with or
without metal, depending on metal choice) with methoxy-
PEOSk amine (M, = 5000) via a hexafluorophosphate
azabenzotriazole tetramethyl uronium (HATU)-mediated
amidation. The 1:1 reaction between the two reactants leads
to the desired porphyrin-capped polymer (metalated or metal-
free tetraphenylporphyrin-PEO, denoted as MTPP-PEOSk and
TPP-PEOSk, respectively). In the case of the metal-free
polymer (TPP-PEOSk), it can be postmetalated with Cu*',
Ni**, Co*", or Zn*" by mixing it with metal acetate salts at 80
°C for 24 h (see Supporting Information). For metal ions that
require harsher loading conditions such as Pt** (~190 °C for
24 h), we coordinated the metals with the porphyrin molecules
first and then coupled the metalloporphyrins to the end of the
PEO chains.

Matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-TOF MS) characterization was
performed on PEOSk and TPP-PEOSk, respectively, to
characterize the capping of a porphyrin to the PEO. As
shown in Figures 1A and S1, the starting material (PEOSk) has
a number-average molecular weight (M,) of 5265 and a
dispersity (D) of 1.00S. After the coupling reaction, the M, of
the polymers increases from 5265 to 5906, while the D (1.004)
remains unaffected. The increase in M, by 641 is consistent
with the expected increase in M, (640.7) that would result
from the addition of a single porphyrin to the PEO. To explore
whether we could use the porphyrin-capped polymer for
synthesizing single-metal atom-coordinated polymers, we
investigated the metal loading process by UV—vis spectrosco-
py. The porphyrin has 18 conjugated and delocalized 7-
electrons that can lead to two types of light absorption bands,
that is, B-band and Q-band.*’ Figures 1B and S2 show the
UV—vis spectra of TPP-PEOSk and different metal-loaded
TPP-PEOSk. TPP-PEOSk exhibits a strong absorption peak at
418 nm (B-band) and four characteristic weak absorption
bands between 500 and 750 nm (Q-band), which is consistent
with the UV—vis spectrum of tetraphenylporphyrin (TPP,
Figure S3). The UV—vis spectrum of the polymer changes
after metal loading. When one compares the UV—vis spectra of
metal-loaded TPP-PEOSk and the spectra of corresponding
metalloporphyrins (Figures 1B, S2, and S3), the shape and
position of both the Q-band and B-band peaks are consistent,
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Figure 1. Characterization of the chain-end functionalized polymers.
(A) MALDI-TOF MS spectra of PEOSk and TPP-PEOSk. (B) UV—
vis absorption spectra of TPP-PEOSk, PtTPP-PEOSk, CuTPP-
PEOSk, and NiTPP-PEOSk in dichloromethane. (inset) Enlarged
absorption spectra of the range of 475—700 nm.

confirming that virtually every porphyrin in the chain-end
functionalized PEO is coordinated to a metal.

Following metal complexation with the porphyrin-capped
polymers, we printed the polymers on a hydrophobic TEM
grid in the form of dome-shaped reactors via DPN.
Experimentally, polymer dots with diameters ranging from
less than 20 to 330 nm were obtained by modulating the DPN
probe-substrate contact time from 1 to 50 ms (Figures S4 and
S5). AFM topographical characterization was used to
determine the volume of each polymer nanoreactor. Since
each PEO chain contains only one metal atom, the total
number of metal atoms in a polymer dot can be estimated from
the volume of the polymer dots (Figures S4C and S6, assuming
that the polymer dots have a similar density to PEO, 1.2 g/
mL). For PtTPP-PEOSk dots with diameters of ~35 nm, the
measured volume is ~2 zL, which corresponds to 295 Pt
atoms. When the diameter of PtTPP-PEOSk dots were further
decreased to less than 20 nm, the volume is less than 400 yL,
and the total number of Pt atoms is less than 50. Therefore, by
printing polymer dots smaller than 35 nm in diameter, we can
create nanoreactors containing fewer than 300 metal atoms.

Next, we annealed the PtTPP-PEOSk dots in a stepwise
fashion at elevated temperatures (160—600 °C) and then
characterized the products using aberration-corrected high-
angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM). Remarkably, single nanopar-
ticles are found in place of each polymer nanoreactor after
annealing (Figures 2, S7, and S8). Energy-dispersive X-ray
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Figure 2. Polymer nanoreactor-mediated synthesis of Pt nanoparticles. (A) HAADF-STEM image of a representative S X S array of polymer
nanoreactors. (B) HAADF-STEM image of nanoparticles obtained after thermally annealing the polymer nanoreactors. Dotted circles indicate the
location of the nanoreactors, prior to annealing. Scale bar in inset: 3 nm. (C) AFM topographical images of polymer nanoreactors with diameters
ranging from 68 to less than 20 nm. (D) HAADF-STEM and BF-STEM images of nanoparticles obtained from polymer nanoreactors of diameters

corresponding to those shown in (C). The nanoparticle diameters range from S to ~1 nm.

spectroscopy (EDS) and X-ray photoelectron spectroscopy
(XPS) analysis confirm that the observed nanoparticles are
composed of Pt (Figures S9—S12). To validate the hypothesis
that molecularly pure inks can improve the control over
particle size, we explored the correlation between nanoparticle
size and polymer nanoreactor size. From these studies, we
found that the sizes of the polymer dots and nanoparticles are
positively correlated. Specifically, when the diameter of the
polymer dots decreased from 65 to 25 nm (Figure 2C), the
average diameter of the nanoparticles decreased accordingly
from 5.2 to 1.3 nm with a standard deviation less than 0.4 nm
(Figures 2D and 3). Importantly, the size of the resulting
nanoparticles is within the theoretical size range (Figure S13).
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Figure 3. Comparison between the size of the deposited nano-
reactors, the size of the resulting nanoparticles, and the theoretical
number of metal atoms in each nanoreactor. The theoretical number
of metal atoms in each nanoreactor is estimated based on nanoreactor
volume (Figures SS and S6). Dashed line is a guide.

For instance, an ~35 nm polymer nanoreactor that contains
~29S Pt atoms should yield either a Pt sphere with a diameter
of 2.0 nm or a Pt hemisphere with a diameter of ~2.5 nm
(Figures 3 and S13), which agrees well with the measured size
of our nanoparticles (2.1 + 0.2 nm). For polymer nanoreactors
less than 20 nm, which contain fewer than 50 Pt atoms, it
becomes challenging to accurately measure the size of the
resulting ultrasmall nanoparticles, because the nanoparticles
are unstable under an electron beam, which results in images
with irregular particle shapes (Figure 4). In addition to
structural instability, single Pt atoms are continuously
dislodged from the Pt nanoparticles when the particles are
irradiated by an electron beam (Figure S14). Since the overall

A B

3.0 nm

-2.0nm

Figure 4. (A) AFM topographical image of a polymer nanoreactor
with a diameter less than 20 nm. (B, C) HAADF-STEM images of Pt
nanoparticles synthesized from ultrasmall nanoreactors (<20 nm).
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number of Pt atoms is less than 50 in this scenario, the
dislodged atoms become non-negligible when evaluating the
particle size.

One attractive feature of nanoreactor-mediated synthesis is
the ability to incorporate diverse metal precursors into a
reactor and then convert such precursors into a single
nanoparticle through the aggregation of all metal species in
the reactor.””*”*! To validate the applicability of our new
polymer system for generating polyelemental nanoparticles, we
added equal amounts of CuTPP-PEOSk (or NiTPP-PEOSk)
to PtTPP-PEOSk and stirred for 24 h. Nanoreactors were
printed via DPN using the mixtures as inks and converted into
nanoparticles via thermal treatment (Figure SA). As shown in

A -PEO5Sk

N TS S
P~~~ M, TPP-PEO5K

(M = Pt, Cu, or Ni)

Figure S. Polymer-mediated synthesis of ultrasmall polyelemental
nanoparticles. (A) Scheme depicting the synthesis of polyelemental
nanoparticles by blending different metal-coordinated polymers. (B—
D) HAADF-STEM images and EDS elemental maps of PtCu
(Ptg41Cupsy), PtNi (PtysoNigs;), and PtCuNi (PtyeCugoNig ;)
nanoparticles synthesized from mixtures of metalloporphyrin-termi-
nated polymers. Scale bars: 2 nm.

Figures 5B,C and S15, PtCu and PtNi alloy nanoparticles were
successfully synthesized from nanoreactors containing blended
metalloporphyrin-terminated polymers. The even contrast of
the HAADF-STEM images of nanoparticles indicates alloying
within each binary system, which is further evidenced by the
overlap of the EDS elemental maps. The observed lattice
spacings are 1.15 and 2.72 A, which match the (311) plane of a
face-centered cubic PtCu alloy and the (100) plane of a face-
centered tetragonal PtNi alloy, respectively. In addition to
bimetallic particles, PtCuNi trimetallic nanoparticles (Figures
SD and S15) can be synthesized by blending PtTPP-PEOSK,
CuTPP-PEOSk, and NiTPP-PEOSk (2:1:1, molar ratio).
Taken together, this study of polyelemental nanoparticles
demonstrates that nanoreactors consisting of mixed metal-
loporphyrin-terminated polymers can be used to access
ultrasmall polyelemental nanoparticles.

In summary, we reported the site-specific synthesis of
ultrasmall nanoparticles using nanoreactors made by single-
metal atom-functionalized polymers. The design of metal-
loporphyrin-terminated polymers fixes the stoichiometry
between metal atoms and polymers. Consequently, sub-2 nm
nanoparticles can be synthesized in polymer nanoreactors in a
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size-controlled and site-specific manner. In addition to
corroborating the general applicability of using polymer
nanoreactors to synthesize nanoparticles, this study also
illustrates that the careful design of polymers provides an
important way to control nanoparticle composition and size,
expanding the library of possibilities available through
nanoreactor-mediated synthesis. Given the vast polymer design
space, this research will open a new route to accessing novel
nanostructures in a site-specific manner. Such nanostructures
may have important applications in catalysis, magnetics, optics,
and many other fields.”*~*
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