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The line coverage problem is the task of servicing linear environment features.
This paper considers the single robot version of the problem. The features to
be serviced are modeled as 1D segments; all points along the segments must
be visited. Examples of line coverage tasks include robotic inspection of road

Approximation Algorithms for the Single
Robot Line Coverage Problem

Saurav Agarwal®) and Srinivas Akella

University of North Carolina at Charlotte, Charlotte, NC 28223, USA
{sagarw10,sakella}@uncc.edu

Abstract. The line coverage problem is the task of servicing a given set
of one-dimensional features in an environment. Its applications include
the inspection of road networks, power lines, and oil and gas lines. The
line coverage problem is a generalization of the standard arc routing
problems, and is NP-hard in general. We address the single robot line
coverage problem where the service and deadhead costs are distinct and
asymmetric. We model the problem as an optimization problem that
minimizes the total cost of travel on a given graph. We present approxi-
mation algorithms to obtain bounded solutions efficiently, using the min-
imum cost flow problem. We build the main algorithm in stages by con-
sidering three simpler subproblems. The subproblems are based on the
structure of the required graph, i.e., the graph induced by the features
that require servicing. We first present an optimal algorithm for the case
of Eulerian graphs with only required edges. Next we consider general
graphs, not necessarily Eulerian, with only required edges and present
a 2-approximation algorithm. Finally, we consider the general case with
both required and non-required edges. The approximation algorithm is
dependent on the Asymmetric Traveling Salesperson Problem (ATSP),
and is bounded by «(C) + 2, where «(C) is the approximation factor of
the ATSP algorithm with C' connected components. Our upper bound is
also an improvement over the existing results for the asymmetric rural
postman problem.

Keywords: Line coverage * Arc routing problems - Path planning

Introduction

networks, power lines, and oil and gas lines. See Fig. 1 for an example.

In a coverage application, the robots are required to visit specified features in
the environment. Such features may be a set of 2D regions, 1D line features, or
points. Area coverage, the coverage of 2D regions, has been widely studied [3,10].
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Fig. 1. Line coverage of a road network by a UAV. (left) A region of the UNC Charlotte
campus; red lines show required edges to be serviced. Non-required edges, not shown,
are straight lines between pairs of vertices. (middle) A tour to cover the road network
is shown; dashed segments indicate deadheading travel. (right) An orthomosaic of the
road network, from photos taken by the UAV along required edges of the tour.

Point coverage, the coverage of point features, involves node routing problems,
such as the traveling salesperson problem and the vehicle routing problem [11].
Line coverage, modeled as coverage of all the required edges of an underlying
graph, is related to arc routing problems [5]. This problem has received limited
attention in the robotics community [1,6,7,12,19], and is the focus of this paper.

The line coverage problem is modeled using a graph. The edges are classified
as required and non-required. Required edges correspond to the linear features
to be covered, and the non-required edges can be used to travel from one vertex
to another. The vertices represent the end points of the edges.

There are two modes of travel for the robot. The robot is said to be servicing a
required edge if task-specific actions such as collecting sensor data are performed.
Each required edge needs to be serviced exactly once. The robot may travel from
one vertex to another without performing servicing. This is known as deadheading
and both types of edges may be used any number of times for this purpose. There
is a service cost and a deadhead cost (e.g., travel time) associated with each edge
and they are incurred each time an edge is serviced or deadheaded, respectively.
The sum of the service costs and the deadhead costs of the line coverage problem
is to be minimized. As task-related servicing is not done during deadheading,
deadhead costs are considered to be less than or equal to the service costs. For
example, with travel time costs, a UAV servicing an edge by recording images
may take longer than when deadheading. In standard arc routing problems,
the service and deadhead costs are assumed to be identical, and hence the line
coverage problem generalizes the standard problems.

In many robotics applications, the cost of travel is direction dependent. For
example, for ground robots, the cost of traveling uphill can be significantly higher
than that of traveling downhill. Similarly, for UAVs, the cost of an edge may
differ in the two directions due to wind conditions. Hence, we consider the graph
to have asymmetric edge costs for both servicing and deadheading.
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We now define the single robot line coverage problem as the optimization
problem of finding a tour that minimizes the total cost while ensuring that each
of the required edges is serviced exactly once. The single robot line coverage
problem is a generalization of the Rural Postman Problem (RPP) on asymmet-
ric (or windy) graphs [5], described in Sect. 2. The NP-hardness of the RPP on
asymmetric graphs implies the single robot line coverage problem is NP-hard.
This makes it imperative to develop approximation algorithms. The line cover-
age problem with multiple robots is presented in [1] along with two heuristic
algorithms. The single robot line coverage problem in this paper is a special case
of [1], as we do not consider the robot capacity and the demands of edges.

In this paper we elucidate the single robot line coverage problem and develop
approximation algorithms for it. We develop the analysis in stages from a simpler
problem to the most general version. The contributions of the paper are: (1) We
pose the single robot line coverage problem as an optimization problem, and
develop an integer linear programming (ILP) model. (2) We present an optimal
algorithm for Eulerian graphs with all the edges required to be serviced. (3) A
2-approximation algorithm is presented for general graphs, not necessarily Eule-
rian, with all the edges required to be serviced. (4) An «(C) 4 2 approximation
algorithm is presented for the case with both required and non-required edges,
where C'is the number of connected components, and «(C') is the approximation
factor for an algorithm for the asymmetric traveling salesperson problem.

The practical benefits of our line coverage approach are: (1) The algorithms
ensure that the required edges are covered efliciently, thereby optimizing the
total cost of tours, e.g., operation time. (2) In contrast to using area coverage,
only the relevant features are inspected, thus reducing the inspection time, the
amount of sensor data, and the time for data analysis.

2 Related Work

The line coverage problem belongs to the broad class of Arc Routing Problems
(ARP). A hierarchy of standard arc routing problems and the line coverage
problem for a single vehicle (i.e., a robot in our context), is shown in Fig. 2. The
ARP is usually applied to transportation problems in which servicing is related
to tasks such as delivery and pick up of goods [5]. Hence the travel times are used
as costs, and have the same value whether the edge is serviced or deadheaded.
Separate and asymmetric service costs are typically not considered.

Arc Routing Problems for a Single Vehicle: The Chinese Postman Problem
(CPP) is to find an optimal tour such that every edge in the given undirected
and connected graph is traversed at least once [5]. Edmonds and Johnson [8]
used matching and network flows to solve the CPP on general undirected and
directed graphs, and Eulerian mixed graphs. They also presented an approxima-
tion algorithm for the CPP on mixed graphs that are not necessarily Eulerian.
Frederickson [9] presented a 5/3-approximation algorithm for the CPP on mixed
graphs by using a combination of two approximation algorithms.



Approximation Algorithms for the Single Robot Line Coverage Problem 537

Asymmetric Rural Windy

| Postman Problem "| Postman Problem

Single Robot

Y Y

Rural Chinese
Postman Problem Postman Problem

Line Coverage

Fig. 2. A hierarchy of arc routing problems with single vehicle/robot. An arrow from
problem A to problem B indicates B is a special case of A. The single robot line coverage
problem is the most general problem of which the other problems are special cases.

The Windy Postman Problem (WPP) is the CPP with asymmetric edge
costs, and is NP-hard [5]. Win [18] solved the WPP for Eulerian graphs in poly-
nomial time using minimum cost flow. Win also designed a 2-approximation
algorithm for WPP on general graphs using matching (to make the graph Eule-
rian) and minimum cost network flow. Raghavachari and Veerasamy [15] gave a
3/2-approximation for the CPP on asymmetric graphs.

When the edges to be serviced are a subset of the edges in the graph, we have
the Rural Postman Problem (RPP) [5]. RPP is NP-hard. For RPP, Frederick-
son noted an exact recursive algorithm that is exponential only in the number
of disconnected components. He also mentioned a 3/2-approximation algorithm
similar to Christofides’ TSP algorithm [4]. The asymmetric RPP considers asym-
metric travel costs. van Bevern et al. [2] showed that if the n-vertex Asymmetric
Traveling Salesman Problem (ATSP), subject to the triangle inequality, is a(n)-
approximable in t(n) time, then n-vertex RPP on an asymmetric and mixed
graph is (a(C) + 3)-approximable in O(t(C) + n®logn) time, where C' is the
number of weakly connected components in the subgraph induced by required
arcs and edges. The single robot line coverage problem is closely related to the
asymmetric RPP. However, in asymmetric RPP the costs of deadheading and
servicing a required edge are the same, and a required edge can be traversed
more than once. Any instance of asymmetric RPP can be converted to that of
the line coverage problem by setting the cost of deadheading a required edge to
the cost of the edge. In the other direction, we can add non-required edges for
each required edge with costs equal to the deadhead costs, and then ensure that
each required edge is traversed exactly once in the asymmetric RPP solution.

Asymmetric Traveling Salesman Problem (ATSP): Svensson et al. [16]
were recently the first to present a constant-factor approximation algorithm
for the ATSP with the triangle inequality. Traub and Vygen [17] very recently
improved the approximation ratio to 22 + ¢, € > 0, for the ATSP.

Line Coverage in Robotics: Mixed integer linear programming formulations
and heuristic algorithms have been proposed for coverage of road networks [6,12].
Heuristic algorithms for RPP with k vehicles were proposed for coverage of 2D



538 S. Agarwal and S. Akella

object boundaries in [7] and for street coverage in [19]. These consider neither
asymmetric edge costs nor distinct service and deadhead costs.

3 The Single Robot Line Coverage Problem

We now model the single robot line coverage problem as a graph problem. We are
given a connected graph G(V, E, E,.), where V is the set of vertices, E is the set
of edges, and F,. C F is the set of required edges. Note that the set F can contain
parallel edges between two vertices, i.e., we allow for G to be a multigraph. The
single robot line coverage problem is to find a tour that minimizes the total cost
of travel on the graph, such that all the required edges in F, are serviced. The
service and deadhead costs are given as inputs along with the graph.

For each edge in E we associate two directional arcs e and €, and represent
the edge as (e, €) € E. If a robot services a required edge in E, in the direction e
(or €), then a service cost s.(e) (or s.(€)) is incurred. If a robot traverses an edge
without servicing it, the robot is said to be deadheading; for example, this occurs
when a robot is traveling from a vertex of a required edge to that of another
required edge. Both required and non-required edges may be deadheaded. Dead-
head costs are denoted by d.(e) and d.(€). We use s.(A) and d.(A) to denote
the corresponding sums of the service and deadhead costs for a set of arcs A.
We denote by A the set of arcs oppositely directed to the arcs in A.

We consider the edge costs, for both servicing and deadheading, to be direc-
tion dependent. For example, s.(e) may differ from s.(&). The service and dead-
head costs can be arbitrary positive numbers, with the constraint that the service
cost of an edge is no less than the deadhead cost in the same direction. The costs,
such as travel time, affect the objective function of the problem.

3.1 Preliminaries

Let G(V, E, E,.) be a connected undirected graph for the line coverage problem,
such that E,. C E. The subgraph G,.(V,., E,.) induced by the set of required edges
E,. is called the required graph of G; V,, C V is the set of vertices that have at
least one edge in E, incident on them. The set of non-required edges is denoted
by E, = E\ E,.. We define the set of all arcs to be A = |J{e, &}, V(e,€) € E.
Similarly, A, is defined for the set of required edges. If an arc a represents the
travel direction from vertex u to vertex v, then the vertices u and v are called the
tail t(a) and head h(a), respectively. We denote by H(A,v) all the arcs a € A
that have v as the head. Similarly, T'(A, v) is defined for the tail. The degree of
a vertex v € V is the number of edges incident on v. A walk in a graph G is a
non-empty alternating sequence viejvqes . . . e,k 1 of vertices in V' and edges in
E such that the tail of e; is v; and head of e; is v;41 for all 1 <17 < k. A closed
walk is a walk with the same start and end vertices, i.e., v1 = vg4+1. An Fuler
touris a closed walk such that every edge in the graph is traversed exactly once.
A graph that has an Euler tour is called Fulerian. It is well established that an
undirected graph is Eulerian if and only if every vertex has even degree [14].
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Let D(V,A) be a directed graph (digraph) with V as the set of vertices,
and A as the set of (directed) arcs. The digraph is strongly connected if there
exists a path from any vertex in V' to any other vertex in V. Analogous to the
undirected graph, T'(A,v) and H(A,v) are defined for the arc set A and v € V.
The indegree of a vertex v € V, denoted by indeg(v), is the number of arcs
entering the vertex v. Similarly, the outdegree of a vertex v € V', denoted by
outdeg(v), is the number of arcs going out of the vertex v. A digraph is Eulerian
if and only if the graph is balanced, i.e., indeg(v) = outdeg(v), Vv € V. Imbalance
V(A,v) at a vertex v is given by outdeg(v) — indeg(v) = |T'(A,v)| — |H(A,v)|.
Analogous to the undirected graph, a diwalk is a sequence via1v2as . .. QxVK4+1
of vertices and arcs in a digraph D(V, A) such that the tail of a; is v; and head
of a; is vi11. A closed diwalk is a walk with the same start and end vertices.
An Eulerian tour on an Eulerian digraph is a closed diwalk such that each arc
is traversed exactly once. An Euler tour can be constructed from an Eulerian
graph (or digraph) in O(]A|) computational time, see e.g., [14].

A coverage tour is a closed walk in a graph G such that all the required
edges are serviced exactly once. Note that in a coverage tour, a required or a
non-required edge may be used multiple times for deadheading. We define the
following variables:

Se,85 € {0,1}, and s, + sz =1 V(e €) € E,

do,d; e NU{0} V(e,&) e E (1)

The variables s, and sz represent the two opposite directions of servicing the
edge; exactly one of the two can be equal to 1 for a valid coverage tour. The
variables d. and dz represent the number of times an edge is deadheaded in the
corresponding direction. For a valid coverage tour, we can create an Eulerian
digraph from these variables by adding the corresponding arc as many times as
the value of the variable, and a closed diwalk can be obtained in O(|E|) time.
The cost of a coverage tour 7, to be minimized, is given by:

o(m) =) [sescle) + sesc(€)]  + D [dede(e) + dede(E)] (2)

(e.e)€E, (e,€)EE

4 Graphs with All Required Edges

We first consider a simpler version of the problem where all the edges are
required, i.e., £ = E, and E,, = (), similar to the Windy Postman Problem
(WPP). The single robot line coverage problem is, in fact, a generalization of
the WPP since the WPP [18] assumes the service and deadhead costs are the
same.

4.1 Integer Programming Formulation

We present an integer linear programming (ILP) formulation for the single robot
line coverage problem on a connected graph G(V, E, E,.), with given costs.
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ILP1 (ILP Formulation 1)

Minimize: Z [sesc(e) + SésC(é)] + Z [dedc(e) + dédc(é)] (3)

(e,e)EE, (e,€)€EE
subject to:
Z Say + Z dp, — Z Say — Z dp, =0 YveV
a1 €EH (A, v) bi1€H(A,v) a2€T (A, ,v) bo€T(A,v)
(4)
Set+se=1 Vee) €k, (5)
Se, 86 € {0,1} V(e,e) € E,, de,de e NU{0} V(e,e)eE (6)

The balance (or symmetry) equations (4) state that for each vertex, the number
of arc traversals into a vertex should be equal to the number of arc traversals
out of the vertex. The traversing equations (5) ensure that each required edge is
serviced exactly once and in only one direction.

4.2 An Alternative Formulation

We now present an alternative formulation that has fewer variables, and is closely
related to the minimum cost flow problem. This formulation will be used to
develop efficient algorithms for the single robot line coverage problem. First
generate a digraph D,,(V, A,,), using the algorithm MINCOSTDIGRAPH, which
selects the arc with the minimum service cost for each required edge.

We introduce a new variable r,, for each arc a € A,,, to represent reversal of
service direction of the arc a. If an arc’s service direction is reversed from a to a,
re = 2, the imbalance changes by 2, and the total cost changes by s.(a) — s.(a).

We assign reversal cost r.(a) for each arc a € Ay, and set r.(a) to M

F2 (Formulation 2)

Minimize: s.(4,,) + Zhﬂ"c(a) + Z[dedc(e)—i-dédc(é)] (7)

a€A,, (e,e)€EE
subject to:
St Nt N o Y=Vl eV
a1€H (A ,v) bi€eH(A,v) a2€T (A, ,v) bo€T(A,v)
(8)
re €{0,2} Vae A, (9)

de,dz e NU{0} V(e,e) e FE (10)
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Algorithm 1: MINCOSTDIGRAPH

Input : Graph G(V, E, E,), costs

Output : Minimum cost digraph D,,(V, A,,)
2 for (e,€) € E, do

3 if sc(e) < sc(€) then
4 | A .INSERT(e);

5 else

6 | A, .INSERT(e);

7 end

Equation (7) is the modified objective function. The first term in the objective
function, s.(A,,), is the sum of the service costs of all the arcs in the digraph
D, and is independent of the variables. The conditions (8) ensure that the
digraph corresponding to a feasible solution will be balanced, i.e., the indegree
will be equal to the outdegree at every vertex. The imbalance in the digraph
D,,, at a vertex v is represented by V(A,,,v). The constraint (9) states that the
variable r, can be 0, implying no reversal of service direction, or 2, for reversal
of service direction. When r, = 0, the corresponding ILP1 variable s, = 1, and
when r, = 2, the variable sz = 1.

4.3 A Network Flow Graph Model

Arc routing problems are often solved by modelling them as network flow graphs
and finding a minimum cost flow. Using this approach, algorithms for the Chinese
Postman Problem and the Windy Postman Problem (WPP) were presented
in [8,18]. We now present a network flow graph model for solving the linear
relaxation of the formulation F2 and establish their equivalence.

Let G(V, E, E,.) be the input graph. First generate a minimum cost digraph
D, (V, Ay,) = MINCOSTDIGRAPH(G(V, E)). Now construct a network flow
graph D¢(V, Ay), in O(|V| + |E|) time (Algorithm 2), as follows:

1. For each a € A,,, add three arcs a, @, and o’ in Ay with the costs per unit
flow ¢f(-) and capacities as given in Table 1, which defines the Flow Model.
The direction of arc a is same as that in A,,, whereas the direction of arcs a
and a’ are opposite to that of the corresponding arc in A,,.

Table 1. Flow Model (FM): arc costs and capacities for graphs with F = E..

Arc | Description Unit flow cost cy(+) Capacity
a | Forward deadheading |dc(a) 00

a | Backward deadheading | d.(a) 00

a’ | Service reversal re(a) = (sc(@) — sc(a))/2 |2
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Algorithm 2: CONSTRUCTFLOWDIGRAPH
Input : G(V,E, E,), Digraph D, (V, Ap), flow model (FM)
Output : Flow Digraph Dy (V, Ay)
Ap —;
for a € A,, do
‘ Insert arcs into Ay, with costs and capacities according to FM;
end
for v € V do
| d(v) = V(Am,v);
end

i =R L VU R -

2. For each vertex v € V, assign the following node flow demand:
d(v) = outdeg(v) in D, — indeg(v) in D,, = V (A, v) (11)

3. Let f,, fa, and f, be the flows along the arcs a, a, and a’, respectively, in
Ay, and let the flow vector be £ = [fs | @ € Af]. The cost c(f) of a flow f is:

co(f) = ) cra)fa (12)

acAy

Proposition 1. Let 7 be a coverage tour for a graph G(V,E, E,.). Then there
exists an equivalent network flow graph Dy with a corresponding flow £, such
that:

1. (1) = sc(Am) + c(f), and
2. node flow demand d(v) is satisfied for allv € V.

Proof. The cost of the tour is given by:

o(m) =) [sescle) + sesc(€)]  + D [dede(e) + dede(e)] (13)

(e.0)€E, (e,e)EE

We construct a network flow f on the flow digraph Dy from the coverage tour 7
and the minimum cost digraph D,,. For each arc a in A,,, do the following:

1. if s, = 1 (implying r, = 0), then set foy =0, f, = d,, and f; = dg,
2. if sz = 1 (implying r, = 2), then set f,» =2, fo, = dq, and fz = d;.

Note that s, and sz cannot be both equal to 1 for a feasible coverage tour. For
each arc a in A,, we compute its total cost in the flow graph Dy:

1. if s, =1:
cost = sc(a) + cf(a)dq + cf(a)ds

= SC(a)Sa + Sc(a)sti + dc(a)da + dc(a)da (14)
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2. if s = 1:
cost = sc(a) + 2¢5(a’) + cp(a)d, + cp(a)ds
= sc(a) + sc(a) — sc(a) + ¢r(a)da + cf(a)da (15)
= s.(a)sq + 5.(@)sz + de(a)dy + de(a)ds

Since we have an arc in A4,, for each edge in E, from Eqs. 13, 14, and 15 we have
the first result of the proposition.

As the coverage tour is a closed diwalk, the number of arcs leaving and
entering a vertex are equal, i.e, indeg(i) = outdeg(i), Vi € V. Thus the flow
demands of the vertices in the flow digraph will be satisfied. O

Definition 2. Minimum Cost Flow Problem

Let D¢(V,Ay) be a given digraph, along with costs, capacities, and node flow
demands. Then the minimum cost flow problem is to find a feasible flow £ such
that:

1. the cost of flow ¢(f) is minimized, and
2. demand d(v) is satisfied for allv € V.

We next present algorithms for the single robot line coverage problem for
the special case when all edges in the graph are required, i.e., E = E,.. We first
present an optimal algorithm for Eulerian graphs and then extend the algorithm
to general graphs. The algorithms are based on solving the linear relaxation using
the minimum cost flow problem, as often used in arc routing problems [2,18].

4.4 Eulerian Graphs with All Required Edges

We now consider the case of connected Eulerian graphs with all the edges as
required edges, i.e., £ = F,..

Theorem 3. Let G(V, E) be an Eulerian graph for the line coverage problem,
with minimum cost digraph Dp,(V, Ap,), and flow digraph Dy(V, Ay).

1. The network flow graph Dy models the linear relazation of the formulation
F2 with the following relation:

fa :dzm fa’ = Ta, fﬁ :dﬁ Va € Am (16)

2. The optimal solution for the minimum cost flow gives an optimal and feasible
solution for the formulation F2. In particular f,, = r, € {0,2}, and f,, fa €
Nu{0}.

Proof. Consider the linear relaxation of the formulation F2. The variables are
set to be continuous, and the conditions (9) and (10) are relaxed.

Ta§2; VGJGAm

17
Ta, da7d6 2 07 va S Am ( )
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Algorithm 3: LINECOVERAGEEULERIAN

Input : Eulerian graph G(V, E), costs
Output : Optimal coverage tour 7*
1 Dp,(V, Ap) = MINCOSTDIGRAPH(G(V, E));
Dy (V, Ay) = CONSTRUCTFLOWDIGRAPH(G, Dy, Flow Model in Table 1);
Compute the minimum cost flow f for Dy;
/* Generate Eulerian digraph D.(V, A.) */
A — Anm; /* initial service arcs */
for a € A,, do
if f,» =2 then
‘ Reverse service direction of a to a;
A INSERT(f, copies of a);
Ac.INSERT( fz copies of a);
10 end
11 Generate Eulerian diwalk 7 from D.;

w N

© 0N o T

The network flow model, with the specified relation of the flow variables to the
formulation F2 in Eq. (16), is the exact model of the linear relaxation.

The node flow demand for a vertex v € V is even as the graph D is Eulerian.
The capacities defined in Table 1 are either 2 or co. Hence the optimal flow
is also even for each arc ay € Ay. As the minimum cost flow algorithm gives
integral solutions [14], f, = r, € {0,2}. This result can also be shown using
total unimodularity of the constraint matrix from the balance equations (8). O

Theorem 4. Let G(V, E) be an Eulerian graph with service and deadhead costs.
LINECOVERAGEEULERIAN given in Algorithm 3 generates an optimal coverage
tour 7 for G, and has time complezity O((|E|log |V|)(|E| + |V |log|V])).

Proof. By Theorem 3, the algorithm gives an optimal solution to the formulation
F2. It can be shown that the graph D, in the algorithm is Eulerian, and an
optimal Eulerian diwalk can be generated in O(|E|) computational time. Hence,
the algorithm gives the optimal coverage tour.

MINCOSTDIGRAPH has complexity O(|E,|), the flow graph can be computed
in O(|V]|+|E|), and the Eulerian digraph and diwalk can be computed in O(|E|)
time. The computation time of minimum cost flow [13] is O((|E|log |V |)(|E| +
|V]log [V])), leading to the overall complexity of the algorithm. O

4.5 A 2-Approximation Algorithm for General Graphs with All
Required Edges

For a general graph G(V, E), i.e., not necessarily Eulerian, the created minimum
cost digraph D,,(V, A,,) may have vertices with odd flow demands (11). As a
result, the optimal flow values need not be even. While it is not a problem if d,
or dz is odd, we need to assign service directions to the edges for which r, is 1.
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Algorithm 4: LINECOVERAGE-APPROX
Input : Graph G(V, E), costs
Output : A coverage tour 7
1 Dp,(V, Ap) = MINCOSTDIGRAPH(G(V, E));
Dy (V, Ay) = CONSTRUCTFLOWDIGRAPH(G, Dy, Flow Model in Table 1);
3 Compute the minimum cost flow f for Dy;
/* Generate Eulerian digraph D.(V, A.) */
Ae — Anm; /* initial service arcs */
for a € A,, do
if f,» =2 then
‘ Reverse service direction of a to a;
else if f,» =1 then
if sc(a) +dc(a) < sc(@) + de(a) then
10 | Ac.INSERT(a);
11 else
12 Reverse service direction of a to a;
13 Ac INSERT(a);
14 Ac INSERT(f, copies of a);
15 A INSERT( fz copies of a);
16 end
17 Generate Eulerian diwalk 7 from D.;

N

© 0w N o s

Let the optimal flow be f, and the cost of the optimal tour be ¢*. Then the
optimal value of the linear relaxation z* of the formulation F2 is:

2" =8c(Am) +c(f) < ¢ (18)

Let A, be the set of arcs for which the flow for the arc corresponding to the
reversal of service direction is 1, i.e., A, = {a | ro = for = 1,a € A, }. Let D
denote the set of arcs corresponding to the service direction and deadheading
decided unambiguously by the optimal flow. Then,

e(D) = sc(Am \ Au) + c(f) — re(Ay) (19)
Thus, 2" = sc(Am \ Au) + sc(Ay) + c(f) — re(Ay) + 1e(Ay)
=c¢(D) + s.(Ay) +1c(Ay) (20)

Theorem 5. Given a connected graph G(V,E,E,) with E, = E, and costs,
LINECOVERAGE-APPROX, given in Algorithm 4, generates a coverage tour with
cost at most twice the cost of the optimal coverage tour in polynomial time.

Proof. Let A; be the set of arcs corresponding to A, with final service direc-
tions oriented by the algorithm. The total cost of a solution 7 generated by the
algorithm is:

c(r) = (D) + sc(As) + de(As) (21)
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sc(Ay)—sc(Ay)

Substituting the value of r.(A,) = 5

in (20) and using (18) we have,

2¢(D) + s.(Ay) + sc(Ay) < 2¢*
or, ¢(D) + sc(Ay) + s.(Ay) < 2¢* — ¢(D)

Note that s.(As) + de(As) < s.(Ay) + de(A,) because we selected the service
and deadheading directions to minimize the sum of the costs for individual arcs
in A,. Furthermore, d.(a) < s.(a) for a € A,,. Hence,

o(1) < e(D) + sc(Ay) + de(Ay)

; c(D) + sc(Ay) + 5.(Ay) < 2¢* — ¢(D) < 2¢*

The complexity of the algorithm is determined by the minimum cost flow prob-
lem, which can be solved in O((|E|log [V[)(|E| + [V]log|V])) time [13]. |

5 Rural Graphs

We now consider graphs where all the edges need not be required edges; we call
these rural graphs since they arise in the Rural Postman Problem (RPP). This
version of the single robot line coverage problem corresponds to the RPP on
asymmetric graphs with distinct service and deadhead costs. We first extend the
algorithms in the previous section to the case where the required graph, i.e., the
graph induced by required edges, is connected.

5.1 Rural Graphs with a Single Connected Component

Let G(V,E,E;) be a graph such that F, C E and the required subgraph
G, (V,, E,) induced by the required edges E, consists of a single connected com-
ponent. Similar to the algorithm for graphs with all required edges, we present a
network flow model that is a linear relaxation of the corresponding formulation.
First generate a minimum cost digraph D,,(V, A,,). Now construct a network
flow graph Df(V, Ay) using the algorithm CONSTRUCTFLOWDIGRAPH modified
as follows: For each a € A, add three arcs a, @, and o’ in Ay, and for each edge
(e,€) € E, where E,, = E \ E,, add two arcs b and b, with the costs per unit
flow and capacities in Table 2. LINECOVERAGECONNECTED (Algorithm 5) gives
a coverage tour for G with an approximation factor of 2, the proof for which is
similar to that given in Theorem 5.

5.2 Rural Graphs with Multiple Connected Components

We now consider rural graphs for which the subgraph G, induced by the required
edges may have multiple connected components. For such graphs, Algorithm 5
may output a digraph that is disconnected even though the individual connected
components are Eulerian. We develop an «a(C) + § approximation algorithm
where C' is the number of connected components in G, and [ is the approxima-
tion factor for the single robot line coverage problem on rural graphs with a single
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Table 2. Arc costs and capacities for network flow model for rural graphs.

Arc | Description Unit flow cost cs(-) | Capacity
a | Forward deadheading de(a) 00

@ | Reverse deadheading dc(a) 00

a’ | Service reversal re(a) 2

b | Non-required forward deadheading | d.(b) C)

b | Non-required reverse deadheading | d.(b) 00

connected component. The a approximation factor depends on the approxima-
tion algorithm for the asymmetric traveling salesperson problem (ATSP) [16,17],
and a (§ of 2 was discussed in the previous subsection.

The output digraph D, of Algorithm 5 is processed to find strongly connected
components. We then create an auxiliary graph Go(Vo, Ep) with V, consisting
of one arbitrary vertex from each of the connected components in D.. Gj is a
complete graph with Ey consisting of edges between all pairs of vertices in V.
Each edge in Ey has two weights corresponding to the shortest deadhead cost
paths in the two directions. We can use constant-factor approximation algorithms
for the ATSP to find a tour connecting all the vertices in Gg; see Sect. 2. The
arcs in the ATSP tour are then added to the disconnected diwalk generated from
algorithm LINECOVERAGECONNECTED to obtain a connected coverage tour.

Theorem 6. The single robot line coverage problem can be solved in polynomial
time with an approximation factor of a(C)+ 3, where a(C) is the approzimation
factor for an algorithm for the asymmetric traveling salesperson problem with C
vertices, and ( is the approzimation factor for line coverage on rural graphs with
a single connected component.

Proof. Let the optimal coverage tour be 7%, and 7 be the output of Algorithm
LINECOVERAGECONNECTED with a corresponding digraph D,. Note that 7 need
not be a feasible coverage tour as D, may contain multiple strongly connected
components. However, the number of strongly connected components in the
digraph D, will be no more than the number of connected components C in the
required graph G,.. As we are not considering connectivity constraints between
the components in D., the solution is an approximation result to a relaxation of
the original problem. Hence, ¢(7) < Bc(7*).

Let Vi be a set of vertices such that no two vertices belong to the same
strongly connected component in D.. Then [Vo| < C. The tour 7% will visit
each of the vertices in Vjy because each vertex in Vj is part of a connected
component. For the graph Gy, let T* be the optimal ATSP tour and T be
the ATSP tour returned by the a(C)-approximation algorithm. Then ¢(T) <
a(C)e(T*) < a(C)e(T).

Let 7 be the coverage tour obtained by adding to 7 the arcs from 7. Then
o(r) = e(7) + o(T) < Be(r*) + aC)e(r*) = (a(C) + Be(r"). 0
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Algorithm 5: LINECOVERAGECONNECTED

Input : Rural graph G(V, E, E,.) with connected G, costs
Output : A coverage tour 7, Eulerian digraph D.(V, A.)
1 Dp,(V, Ap,) = MINCOSTDIGRAPH (G, (V, E}));
Dy (V, Ay) = CONSTRUCTFLOWDIGRAPH(G, Dy, Flow Model in Table 2);
Compute the minimum cost flow f for Dy;
/* Generate Eulerian digraph D.(V, A.) */
A — Anm; /* initial service arcs */
for a € A,, do
if f,» =2 then
‘ Reverse service direction of a to a;

else if f,» =1 then

if sc(a) +de(a) < sc(@) + de(a) then
10 | Ac.INSERT(a);
11 else
12 Reverse service direction of a to a;
13 Ac INSERT(a);
14 Ac.INSERT( f, copies of a);
15 A INSERT( fz copies of a);
16 end
17 for (b,b) € E, do
18 A INSERT(fp copies of b);
19 A INSERT(f; copies of b);
20 end
21 Generate Eulerian diwalk 7 from D.;

w N

© 0N o T

Corollary 7. Combining Theorems 5 and 6, and noting that the number of
connected components C' is usually small in practice [2], we observe:

1. The single robot line coverage problem has an «(C)+ 2 approzimation factor.
This also improves the previously best known approzimation result of a(C)+3
for the asymmetric rural postman problem [2].

2. If C € O(logn), a O(C?*2°) dynamic programming algorithm gives the opti-
mal ATSP solution in polynomial time, giving a 3-approzimation algorithm.

6 Conclusion

We considered the line coverage problem for a single robot where the service
and deadhead costs are considered distinct, and are asymmetric. We presented
approximation algorithms to obtain bounded solutions efficiently, using the min-
imum cost flow problem. We built the main algorithm in stages by considering
three simpler subproblems, based on the structure of the required graph, i.e.,
the graph induced by the features that require servicing. We first presented an
optimal algorithm for the case of Eulerian graphs with only required edges. Next
we considered the case of graphs that are not necessarily Eulerian with only
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required edges and presented a 2-approximation algorithm. Finally, we consid-
ered the general case of rural graphs with both required and non-required edges.
The approximation algorithm here is dependent on the asymmetric traveling
salesperson problem (ATSP), and is bounded by a(C) + 2, where «(C) is the
approximation factor of the ATSP algorithm with C' connected components. This
upper bound in also an improvement over the existing results for the asymmetric
rural postman problem.

Future work includes improving the approximation factor of 2 for rural
graphs. Generalizing the analysis to consider robot capacities and edge demands
in order to develop approximation algorithms for the line coverage problem with
multiple robots is another important direction.
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