
Computers & Security 87 (2019) 101597 

Contents lists available at ScienceDirect 

Computers & Security 

journal homepage: www.elsevier.com/locate/cose 

Towards a reliable firewall for software-defined networks 

Hongxin Hu 

a , ∗, Wonkyu Han 

b , Sukwha Kyung 

b , Juan Wang 

d , Gail-Joon Ahn 

b , 
Ziming Zhao 

c , Hongda Li a 

a School of Computing, Clemson University, Clemson, SC 29634, USA 
b Center for Cybersecurity and Digital Forensics (CDF), Arizona State University, Tempe, AZ 85287, USA 
c Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA 
d Computer School, Wuhan University, Wuhan 430072, China 

a r t i c l e i n f o 

Article history: 

Received 13 December 2018 

Accepted 2 April 2019 

Available online 31 August 2019 

Keywords: 

Firewalls 

Policy violation 

Software-Defined networking 

Openflow 

Network security 

a b s t r a c t 

Software-Defined Networking (SDN) is an emerging paradigm in networking where network control plane 

is decoupled from forwarding plane through programmable control. OpenFlow – the most popular SDN 

platform – introduces significant granularity, visibility and flexibility to networking, but at the same time 

brings forth new security challenges. One of the fundamental challenges is to build a reliable firewall 

for protecting OpenFlow networks where network states and traffic are frequently changed. To address 

this challenge, we introduce FlowMon , an OpenFlow-based firewall, to support network-wide access con- 

trol by facilitating not only accurate violation detection but also effective violation resolution in dynamic 

OpenFlow networks. FlowMon detects firewall policy violations by checking flow path space against fire- 

wall authorization space when a flow entry or firewall rule is inserted, modified, or deleted. In particular, 

FlowMon conducts automatic and real-time violation resolutions with the help of several innovative res- 

olution strategies applied to diverse network update situations. We also implement a prototype of Flow- 

Mon in Floodlight. Our experimental results demonstrate FlowMon effectively addresses violations in a 

real-world network topology, and produces manageable performance overhead with effective violation 

detection and resolution. 

Published by Elsevier Ltd. 
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. Introduction 

Over the past few years, Software-Defined Networking (SDN)

as evolved from purely an idea ( Casado et al., 20 07; 20 06;

reenberg et al., 2005 ) to a new paradigm that various net-

orking vendors are not only embracing, but also pursuing as

heir model for future enterprise network management. OpenFlow

 McKeown et al., 2008 ), the de-facto standard protocol for SDN, es-

entially separates the control plane and the data plane of a net-

ork device, and enables the network control to become directly

rogrammable as well as the underlying infrastructure to be ab-

tracted for network applications. With OpenFlow, only the data

lane exists in the network device, and all control decisions are

ade on the logically-centralized controller. 

One primary goal of SDN is to enable various network applica-

ions, which are also called network services or functions, to run

n the controller to manage the network directly by configuring
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acket-handling mechanisms in underlying devices. Consequently, 

hen enterprises adopt OpenFlow for their networks, it is virtually

nevitable that legacy security applications such as firewalls and

ntrusion detection and prevention systems (IDS/IPS) have to

e migrated to OpenFlow-based networks by re-designing and

mplementing them as compatible security applications. In this

aper, we focus on addressing the challenges of designing and

mplementing a reliable firewall application for OpenFlow-based

etworks. 

Firewalls are the most widely deployed security mechanism in

any businesses and institutions. A conventional firewall sits on

he border between a private network and the Internet and exam-

nes all incoming and outgoing packets to defend against attacks

nd unauthorized access. However, one key assumption under this

raditional model is that all insiders of the protected network are

rusted, since internal traffic is not monitored and cannot be fil-

ered by the firewall ( Ioannidis et al., 20 0 0 ). The assumption has

een invalid for a long time, because malicious insiders can easily

aunch attacks on others in the network by circumventing security

echanisms ( Schultz, 2002 ). With OpenFlow, such a problem could

e alleviated, since OpenFlow offers finer level of control granular-
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ity so that enforcement can be placed at any entry points of traffic

flows in a network. 

Unfortunately, OpenFlow also brings great challenges for de-

signing firewall applications in emerging SDNs. First, OpenFlow al-

lows various Set-Field actions, which can rewrite the values of

header fields in packets. Such a feature can, in fact, significantly in-

crease the usefulness of an OpenFlow implementation. For exam-

ple, a load balancer application may need to dynamically change

flow paths and destinations. However, adversaries could also take

advantage of this feature to strategically modify flow rules (i.e., en-

tries on the flow tables) that would circumvent network security

mechanisms (for example, firewalls). 1 Second, in an OpenFlow net-

work, network states are dynamically updated and configurations

are frequently changed. Thus, simply checking flow packet violation

by monitoring packet-in behaviors is not effective, because flow

policy violation , which is a violation induced by proactive installa-

tion or modification of flow rules, network states or configurations,

should also be detected and resolved in real time as well. Last but

not least, when a security violation is detected, a firewall cannot

simply reject the new flow rule(s) or remove the already-existing

flow rule(s) that causes the violation. In OpenFlow, multiple traf-

fic flows may match the same rule. Also, OpenFlow allows using

wildcard rules to define a flow. Because of these characteristics of

OpenFlow, if only partial packets violate the firewall policy, elimi-

nating the matching flow rule may drop legal traffic which in turn

could encumber the availability and utility of network services. 

An exemplar firewall application based on OpenFlow is in-

troduced in Floodlight (Floodlight) , a popular open-source SDN

controller, which enforces security rules against traffic flows by

monitoring all packet-in behaviors in the network. Nevertheless,

this preliminary implementation only inspects a traffic flow at its

ingress switch and lacks a capability to actively monitor packet

modifications. In other words, once a flow passes the ingress

switch, dynamic modifications of the flow cannot be further in-

spected by the firewall. Also, it can only examine violations when

a new flow comes in the network, but cannot check any other net-

work updates. 

In this paper, we propose a new firewall application, Flow-

Mon , which is designed to facilitate not only accurate detection

but also effective resolution of firewall policy violations, and

support network-wide access control in dynamic OpenFlow net-

works. FlowMon detects violations by examining flow path space

against firewall authorization space . The violation detection ap-

proach in FlowMon is capable of tracking flow paths in the

entire network and checking rule dependencies in both flow

table ( Kazemian et al., 2013 ) and firewall policies ( Yuan et al.,

2006 ). Besides, FlowMon can detect violations dynamically when

network states or configurations are changed. In addition, we

introduce a flexible violation resolution framework in FlowMon

to enable an automatic and real-time violation resolution, which

have not been addressed by existing approaches for SDNs (For

example, Kazemian et al., 2013; 2012; Khurshid et al., 2013;

Mai et al., 2011 ). More specifically, we introduce four different

resolution strategies, namely dependency breaking, update rejecting,

flow removing , and packet blocking . We demonstrate that these

resolution methods can resolve the detected violations, despite of

diverse update situations in both flow entries and firewall rules. In

order to ensure real-time response in FlowMon , we also address

several optimization considerations in the FlowMon design. 

The major contributions of this paper are summarized as

follows: 

• We present security challenges and design requirements in

building a firewall application for OpenFlow networks with re-
1 We further articulate such scenarios in Section 3.2 . 

h  

r  

r

spect to both packet modifications and rule dependencies in flow

tables and firewall policies. 

• We propose a systematic solution for designing an OpenFlow-

based firewall application that enables network-wide access

control in dynamic OpenFlow networks. Our design addresses

challenges created by the inter-reaction of flow path and fire-

wall authorization space. Our design facilitates not only accu-

rate detection but also automatic and real-time resolution of

firewall policy violations in OpenFlow networks. 

• We provide a prototype implementation of FlowMon in an

open SDN controller. We evaluate FlowMon using a real-world

network topology and emulated OpenFlow network. Our exper-

imental results show that FlowMon has negligible performance

overhead to enable real-time violation detection and resolution.

This paper is organized as follows. We first overview related

ork in Section 2 . Section 3 explains the security challenges and

esign requirements in constructing an OpenFlow-based firewall

pplication. Section 4 presents the design of FlowMon in detail.

e address the implementation and evaluation of FlowMon in

ection 5 . Section 6 describes several important issues related to

he design of firewall for OpenFlow-based networks. Finally, we

onclude this paper in Section 7 . 

. Related work 

Several recent efforts are devoted to address various security

hallenges in SDN, such as topology poisoning prevention ( Hong

t al., 2015; Khan et al., 2017; Sasan and Salehi, 2017 ), DDoS at-

ack detection ( Alshamrani et al., 2017; Jantila and Chaipah, 2016;

ousavi and St-Hilaire, 2015 ), vulnerability assessment ( Benton

t al., 2013; Kreutz et al., 2013; Lee et al., 2017 ), and saturation at-

ack mitigation ( Shin et al., 2013b; Yoon et al., 2017 ), in SDNs. Dif-

erentiating from those work, our work focuses on exploring how

o build reliable firewalls for SDNs. 

Floodlight contains a firewall application (Floodlight) where

ach packet-in behavior triggered by the first packet of a traffic

ow is matched against the set of existing firewall rules that allow

r deny a flow at its ingress switch. However, such a primitive

mplementation of OpenFlow-based firewall application suffers

rom a couple of limitations as mentioned briefly in Section 1 .

yretic ( Monsanto et al., 2013 ) is introduced as a higher-level

anguage in the Frenetic Project (Frenetic) that allows SDN pro-

rammers to write modular network applications, including

rewall application. Pyretic’s sequential composition operators

ould potentially resolve direct policy conflicts by compiling

onflicting policies into a prioritized rule set. However, Pyretic

annot discover and resolve indirect security violations caused by

ynamic packet modifications without a flow tracking mechanism

 Fayazbakhsh et al., 2013 ). FortNOX ( Porras et al., 2012; 2015 )

s proposed as a software extension aiming to provide security

onstraint enforcement for OpenFlow controllers, being able to

dentify indirect security violations. However, we cannot directly

dopt the approach introduced in FortNOX to design our firewall

pplication for several reasons. On one hand, the rule conflict

nalysis algorithm provided by FortNOX records rule relations

n alias sets, which are unable to accurately track all flows. In

articular, the conflict detection algorithm in FortNOX only con-

ucts pairwise conflict analysis between new flow rule(s) and each

ingle security constraint without considering rule dependencies

ithin flow tables ( Kazemian et al., 2013; Khurshid et al., 2013 )

nd among security constraints (represented as a firewall policy in

ur approach) ( Hari et al., 20 0 0; Yuan et al., 20 06 ). On the other

and, when FortNOX detects a security violation caused by new

ule(s) installed by a non-security application, it simply rejects the

ule(s) without offering a fine-grained violation resolution. 
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2 In OpenFlow v1.0, each switch consists of one flow table. However, newer ver- 

sions of OpenFlow allow every switch contains multiple flow tables. 
Our prior work introduces a conceptual framework, FlowGuard,

or building SDN firewalls ( Hu et al., 2014b ). However, several

ractical questions still remain: (1) major challenges caused by the

eature of packet modification in OpenFlow-based networks; (2)

fficient mechanisms to enable real-time violation detection and

esolution in SDN firewall applications; (3) practical benefits of

iolation detection and resolution including performance and scal-

bility concerns. In contrast, FlowMon provides a comprehensive

olution to address bypass threads when designing SDN firewalls

or dynamic OpenFlow-based networks. 

A few verification tools ( Al-Shaer and Al-Haj, 2010; Kazemian

t al., 2013; 2012; Khurshid et al., 2013; Mai et al., 2011 ) for

hecking network invariants and policy correctness in OpenFlow

etworks have been proposed. Anteater ( Mai et al., 2011 ) de-

ects violations of network invariants using a SAT solver through

ransferring the data-plane information to boolean expressions

nd converting network invariants into instances of SAT problem.

lowChecker ( Al-Shaer and Al-Haj, 2010 ) translates network poli-

ies into boolean expressions and uses Binary Decision Diagram

BDD) to model the network state for checking network invariants.

owever, both Anteater and FlowChecker are static in nature and

ould not scale well to dynamic changes in the network. VeriFlow

 Khurshid et al., 2013 ) and NetPlumber ( Kazemian et al., 2013 ) are

apable of checking the compliance of network updates with spec-

fied invariants in real time. VeriFlow uses graph search techniques

o verify network-wide invariants and deals with dynamic changes.

etPlumber utilizes Header Space Analysis (HSA) ( Kazemian et al.,

012 ) in an incremental manner to ensure real-time response for

hecking network policies through building a dependency graph.

ven though these tools can be potentially used to detect firewall

olicy violations, they are only able to simply raise alarms to indi-

ate possible violations to users, but cannot provide an automatic

nd real-time violation resolution. Also, they ignore rule depen-

encies within security constraints, such as firewall policies, for

ompliance checking. 

Policy verification tools discussed above are able to check net-

ork reachability and potentially utilized for tracking flow paths

n OpenFlow networks. However, Anteater ( Mai et al., 2011 ) and

lowChecker ( Al-Shaer and Al-Haj, 2010 ) are indeed offline sys-

ems and cannot be applied for real-time flow tracking. Veri-

low ( Khurshid et al., 2013 ) can perform reachability checking

n real time, but it does not support dynamic packet modi-

cations. Another option for flow tracking would be FlowTags

 Fayazbakhsh et al., 2013 ), which can additionally deal with dy-

amic transformations in the presence of legacy middleboxes (for

xample, proxies). However, FlowTags needs to alter existing Open-

low architecture. In this work, we leverage the mechanism intro-

uced in NetPlumber ( Kazemian et al., 2013 ) to track flow paths

or firewall policy violation detection, because NetPlumber pro-

ides features that fit for our purposes, such as support for arbi-

rary header modifications, automatic rule dependency detection,

nd real-time response. 

Numerous firewall algorithms and tools are designed to assist

ystem administrators in managing and analyzing firewall poli-

ies ( Al-Shaer and Hamed, 2004; Alfaro et al., 2008; Baboescu and

arghese, 2003; Hu et al., 2010; 2012; Yuan et al., 2006 ). Especially,

ome works present policy analysis tools with the goal of detect-

ng firewall policy conflicts. Al-Shaer and Hamed (2004) designed a

ool called Firewall Policy Advisor to detect pairwise anomalies in

rewall rules. Yuan et al. (2006) presented FIREMAN, a toolkit to

heck for misconfiguration in firewall policies through static anal-

sis. Our previous work ( Hu et al., 2010; 2012 ) introduces FAME,

 visualization-based firewall anomaly management environment,

or detection and resolution of firewall anomalies. However, exist-

ng firewall policy analysis tools only detect policy conflicts within

 firewall policy and cannot be directly applied to deal with fire-
all policy violations against flow policies in dynamic OpenFlow

etworks. 

There exist other related works to deal with a set of conflict

esolution strategies for access control, including Fundulaki and

arx (2004) , Jajodia et al. (1997) , and Li et al. (2009) . These ex-

sting solutions mainly focus on resolving rule conflicts in one

ype of policy. However, in OpenFlow networks, conflicts between

wo kinds of policies (i.e., firewall policy and flow policy) must be

esolved. 

. Background technologies and challenges 

Before introducing the design of FlowMon , we describe the

oncepts of flow policy and firewall policy in this section. We then

eview security challenges and design requirements that motivate

he features of FlowMon . 

.1. Overview of flow and firewall policies 

Flow Policy: In an OpenFlow network, flow rules can be added

nto flow tables, both reactively (generating rules in response to the

ackets of new flows) and proactively (installing rules before pack-

ts arrive at the switches) (OpenFlow Switch Specification) . In the

eactive rule generation, if a switch receives a packet for which no

atching rule exists on its flow table, then the switch forwards

he packet to the controller for further inspection. The controller

etermines whether that packet should be allowed and can then

nstall a new flow policy , which is a collection of rules installed at

witches as flow table entries. 2 The installed flow rules are used

or handling future packets of the same type. In the proactive rule

nstallation, the controller or applications are allowed to initiate

ules in the network devices before receiving flow packets. 

While flow policy is a high-level term that defines what should

e done with the entire flow, a flow rule is a specific entry in-

talled on flow table of a switch. Each flow rule specifies a pat-

ern that matches on bits in the packet header, actions that are

erformed on matching packets to describe packet forwarding,

acket modification or packet dropping, a priority that disam-

iguates among overlapping patterns, and timeouts that allow a

witch to delete expired rules. 

Firewall Policy: Similar to flow policy, a firewall policy consists

f a sequence of rules that define the actions performed on packets

hat satisfy certain conditions. The rules are specified in the form

f 〈 condition, action 〉 . A condition in the rule is composed of a set of

elds, which is typically specified in a 5-tuple format that contains

ource IP, source port, destination IP, destination port , and protocol , to

dentify a certain type of packets matched by this rule. The general

ction in a firewall rule is either “allow” or “deny”. 

In a firewall policy, multiple rules may overlap, which means

ne packet may match several rules. Moreover, multiple rules

ithin one policy may conflict, implying that those rules not only

verlap each other but also yield different decisions. To resolve

olicy conflicts, a firewall typically implements a first-match res-

lution mechanism based on the order of rules. In this way, each

acket processed by the firewall is mapped to the decision of first

ule that the packet matches. 

.2. Security challenges 

OpenFlow offers greater flexibility to networking. However, at

he same time, its flexibility comes with security challenges. One

uch challenge is introduced by the feature of packet modification
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Fig. 1. Firewall is bypassed by a single flow. 

Fig. 2. Firewall is bypassed due to rule dependency. 
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allowing various Set-Field actions that can dynamically change

the packet headers. Adversaries can leverage this feature to evade

network security mechanisms, such as firewalls. Another challenge

may arise from rule dependency in flow tables and firewall poli-

cies. Flow rules may overlap each other in a flow table, indicating

intra-table dependency of flow rules ( Kazemian et al., 2013 ). The

rules in a firewall policy may overlap as well ( Hari et al., 20 0 0;

Yuan et al., 2006 ). These rule dependencies could also be leveraged

by malicious OpenFlow applications and may cause severe net-

work breaches. We articulate two hypothetical scenarios to elab-

orate these challenges. To make our discussion concrete, we use

an example network shown in Figs. 1 and 2 with three switches,

four hosts, and one SDN controller on which a simple firewall ap-

plication (for example, the Floodlight built-in firewall application)

and several other applications are running. 

Bypass Scenario 1: The first scenario illustrates firewall rule vi-

olation caused by packet modification (see Fig. 1 ). In this scenario,

the firewall application has a rule to deny network packets from

Host A to Host C . 3 Suppose that another application running on the

controller establishes a new flow policy, which contains three flow

rules installed in flow tables of each switch in the network. The
3 For brevity, we use the host name to represent the source and destination di- 

rectly in the example rules. 

H  

p  

s  
rst rule in the flow policy allows to simply forward packets from

ost A to Host D . The second rule installed in Switch 2 (see Fig. 1 )

ewrites the source address (SRC) of a packet to Host B and the

estination address (DST) of the packet to Host C . The last rule for-

ards packets from Host B to Host C . In this case, if Host A sends a

acket to Host D , the packet will be delivered to Host C , which vi-

lates the firewall rule. However, if the firewall only inspects the

ow at its ingress switch ( Switch 1 ) without tracking the entire

ow in the network, such a violation cannot be observed by the

rewall. 

Bypass Scenario 2: The other bypass scenario, caused by rule de-

endency, is illustrated in Fig. 2 . Same as the first scenario, for-

arding packets from Host A to Host C is denied by the firewall

olicy. Suppose a flow policy for Flow 1 is installed by an appli-

ation in the network. The rule installed in Switch 1 modifies the

ource address of the matched packets to Host A . Since the origi-

al source of this flow is Host B and the final destination is Host C ,

he flow policy does not violate the firewall policy. Now, suppose

nother application installs a new policy, which contains three for-

arding rules, for another flow ( Flow 2 ) in the network. This policy

s allowed by the firewall, since it directly forwards packets from

ost A to Host D and does not violate the firewall policy either. The

roblem occurs at Switch 2 , where the flow rule for Flow 2 is in-

talled with lower priority than the flow rule for Flow 1 . The two
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ules, each of which belonging to different flow policies, overlap

ach other as they both match packets with Host A as the source

ddress and Host D as the destination address. Since the priority

f flow rule for Flow 1 is higher than that for Flow 2 , the header

elds of packets belonging to Flow 2 originally sent from Host A

o Host D are changed and eventually sent to Host C . This situa-

ion rises a violation of the firewall policy. Thus, even though in-

ividual policy defined for different flows (In this case, Flow 1 and

low 2 ) does not violate the firewall policy, the dependency rela-

ions among them may induce violation(s). Moreover, rule depen-

ency could also lead to shadowing over the existing firewall rules

 Yuan et al., 2006 ), where a firewall policy with higher precedence

ullifies the other firewall policies, and thus, no violation related

o the existing firewall policies can be detected. 

The built-in firewall application in Floodlight and Pyretic’s com-

osition operators cannot detect and resolve both bypass scenar-

os discussed above, because they are unable to monitor dynamic

acket modifications. FortNOX has a limitation in identifying the

iolation caused by rule dependency, as the rule conflict analysis

lgorithm in FortNOX ignores rule dependencies in flow tables and

rewall policies. 

.3. Design requirements 

Our goal is to design a reliable firewall application that detects

nd resolves firewall policy violations effectively and efficiently in

ynamic OpenFlow networks. To that end, we present a solution

hat fulfills following design requirements to balance network pro-

ection and system performance. 

1. Accuracy. The firewall application should precisely detect viola-

tions caused by traffic modifications, as well as rule dependen-

cies in both flow tables and firewall policies. Also, the identified

violations should be effectively resolved with respect to differ-

ent violation situations, such as partial or entire violations (See

Section 4.1.4 ). 

2. Flexibility. The firewall application should have the capability

to inspect any network state and configuration updates, which

may potentially incur firewall policy violations. In addition,

flexible resolution strategies should be provided to address var-

ious violations utilizing fine-grained control of SDN. 

3. Efficiency. It is critical that the firewall application works

continuously in a timely fashion, because the state of an

OpenFlow-based network generally evolves rapidly. Thus, it nat-

urally requires that the response time of the firewall application

should be in real-time to fit in the dynamic OpenFlow-based

network. Also, its performance overhead should not affect other

network services. 

. FLOWMON design 

We introduce our design of FlowMon that satisfies the pro-

osed requirements in Section 3.3 . We focus on two key functions

n FlowMon : violation detection and resolution. At high level,

lowMon detects policy violation by verifying the reachability of

odes in the plumbing graph. Based on the type of detected vio-

ation, a resolution method is selected and the respective changes

re made in the flow rules, if deemed necessary. 

.1. Violation detection 

OpenFlow allows the header fields of flow packets to dynam-

cally change when the packets traverse the network. Thus, to

upport accurate violation detection, a firewall needs to check

iolations at the ingress switch of each flow. It should also track

he flow path and then clearly identify both the original source
nd final destination of each flow in the network. In this section,

e first introduce two kinds of flow path classifications and then

rticulate our violation detection method. 

.1.1. Flow path classification 

A flow path is a forwarding path where one or multiple flows

an pass through in the network. It consists of a sequence of

switch, rule) pairs and is denoted by: 

(s 1 , r 1 ) → . . . → (s n −1 , r n −1 ) → (s n , r n ) . 

OpenFlow allows modification of packet headers in a flow when

t passes through the network. For simplifying the calculations in-

olved, we divide flow paths into two categories: direct flow path

nd shifted flow path . In a direct flow path, all rules only per-

orm “forward” action to the matched packets. In a shifted (or indi-

ect) flow path , at least one rule enforces Set-Field action(s) to

hange the header fields (for example, IP source and destination)

f the matched packets. Fig. 3 shows two examples for these paths.

n the direct flow path shown in Fig. 3 (a), Host A sends packets to

ost B without any changes. 

In the shifted path depicted in Fig. 3 (b), the destination of

ackets sent by Host A is changed from Host B to Host C . In our

escription of the security threats in Section 3.2 , the flow rule

iolations are mainly caused by shifted flow path . Therefore, the

ccuracy of FlowMon depends on its abilities to track the flows in

uch flow paths and resolve the detected violations. To track the

ows in those paths, we develop a concept of Shifted Flow Path

raph (SFPG) by leveraging HSA (see Section 4.1.2 ), along with a

low Tagging mechanism (see Section 4.2.1 ). We also evaluate our

mplementation of FlowMon in Section 5.2 by simulating the vio-

ation caused by shifted flow paths to demonstrate the correctness

f SFPG and accuracy of FlowMon. 

.1.2. Flow path space analysis 

Flow Tracking: To support network-wide access control in an

penFlow network, a firewall needs to figure out both the original

ource address and final destination address of each flow in the

etwork through tracking its flow path. Accordingly, we need an

ffective flow tracking mechanism to identify flow paths. Several

xisting network invariant verification tools ( Kazemian et al., 2013;

hurshid et al., 2013 ) check network reachability in real time and

e potentially used to help find flow paths in OpenFlow networks.

e currently leverage NetPlumber ( Kazemian et al., 2013 ) as a

asis for building our flow tracking mechanism, since NetPlumber

ffers several f eatures that can provide flexibility for effective

nd accurate flow tracking: (1) building on HSA ( Kazemian et al.,

012 ), it uses a geometric model ( Header Space ) of packet pro-

essing to provide a uniform and protocol-independent model

f the network; (2) it models networking boxes using a switch

ransfer function, which can transform a received header to a set

f packet headers arbitrarily, supporting dynamic packet modifi-

ations. NetPlumber describes measures to construct a plumbing

raph , which represents all next-hop dependencies and intra-table

ependencies of flow rules. The plumbing graph captures both the

irect and shifted flow paths in the network automatically. Building

n HSA ( Kazemian et al., 2012 ), NetPlumber uses a geometric

odel ( Header Space ) of packet processing to provide a uniform

nd protocol-independent model of the network. NetPlumber also

odels networking boxes using a switch transfer function, which

an transform a received header to a set of packet headers arbi-

rarily, supporting dynamic packets modifications and constructs a

lumbing graph, which represents all next-hop dependencies and

ntra-table dependencies of rules. Through such a plumbing graph,

ll flow paths including both direct and shifted flow paths in the

etwork can be automatically captured. 
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Fig. 3. Examples of direct flow path and shifted flow path. 
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In a direct flow path, the packet headers remain unchanged

when the flow packets pass through it. For checking the firewall

policy violations, it is not necessary to track this kind of direct

flow path. Thus, violations can be simply identified at the ingress

switch. However, for shifted flow paths, the header fields dynam-

ically change while the packets are in route. Violations that can

potentially rise in such paths cannot be identified solely at the

ingress switch. Therefore, we introduce a concept of Shifted Flow

Path Graph (SFPG), which is a sub-graph of the plumbing graph

and contains all the shifted flow paths. We also include partial di-

rect flow paths that have dependency relations with shifted flow

paths as part of the sub-graph, SFPG. Thus, by maintaining and

dealing with an SFPG graph when monitoring an OpenFlow net-

work, FlowMon can significantly reduce the overhead involved in

the flow tracking process. 

Flow Path Space Calculation: The tracked flows represented in

SFPG graph are used to calculate the header spaces of a flow at

different stages while traversing in the network. We only abstract

fields required for checking firewall policy violations from the

pattern expression of a flow rule to represent a flow path space.

Additionally, we reorganize these fields with a ( source address,

destination address ) pair, denoted as [ P s , P d ], to specify a flow path

space . In the context of IP 5-tuple, the source address P s consists

of bit values from three fields – source IP, source port , and protocol

of the flow rule. The destination address P d contains bit values

from the remaining two fields – destination IP and destination port

of the flow rule. Using this organization of header fields, we define

following spaces for representing a flow path space: 

1. Incoming Space ( S P 
i 
): It represents original header spaces of

packets that can pass through the flow path, denoted as [ P s 
i 
, P d 

i 
].

2. Outgoing Space ( S P o ): It represents final header spaces of pack-

ets after the packets pass through the flow path, denoted as

[ P s o , P 
d 
o ]. 

3. Tracked Space ( S P t ): This space represents original source address

and final destination address of header spaces of packets that

can pass through the flow path. Thus, it is a combination of the

source address of the incoming space ( P s 
i 
) and the destination

address of outgoing space ( P d o ), denoted as [ P s 
i 
, P d o ]. 

Fig. 4 (a) depicts the relationships of three kinds of flow path

spaces. The incoming space of a flow path is calculated from the

header spaces of incoming packets of the flow. The outgoing space

of the flow path is computed from the header spaces of outgoing

packets of the flow. Ultimately, the tracked space of the flow path

is then derived from the source address of the incoming space and

the destination address of the outgoing space. An example is given

in Fig. 4 (b), which illustrates the space representation of a wild-

card shifted flow path. The incoming space of this flow path, [( A, B ),

( C, D )], indicates that Host A and Host B can send packets to Host

C and Host D through this flow path, while the outgoing space of

the flow path, [( E, F ), ( M, N )], presents that Host E and Host F can

send packets to Host M and Host N . That is, any packets sent from

Host A and Host B through this flow path will be delivered to Host

M or Host N . Thus, the tracked space of this path is composed of

the source address from its incoming space and the destination ad-

dress from its outgoing space, represented as [( A, B ), ( M, N )]. 
To calculate the flow path spaces, we use a propagation func-

ion as described in Algorithm 1 , which checks for the reach-

Algorithm 1: Packet propagation in SFPG . 

Input : Shifted Flow Path Graph, G s ; source node, s ; target node, t; sample 

packet, pkt 

Output : Tracked flow path space, S v 

1 /*Base case for the recursion*/ 

2 if pkt.node = target then 

3 reached ← − true ; 

4 break ; 

5 /*Match the packet against flow rules in present switch*/ 

6 foreach rule ∈ pkt .node.get Rules () do 

7 /* Match Layer-2,3,4 fields of packet and flow rule */ 

8 if HSA.equals (pkt(l2 , l3 , l4) , rule (l2 , l3 , l4)) then 

9 /*Apply action(s) from the matched flow rule*/ 

10 foreach action ∈ rule.get Act ionSet () do 

11 if action = set − f ield then 

12 pkt = action.appl ySet f iel d(pkt) ; 

13 continue ; 

14 else if action = f orward then 

15 /*Propagate packet from the new node*/s = act ion.get Node () ; 

16 pkt.presentNode = s ; 

17 propagate (G s , s, t, pkt) ; 

18 /*Update the tracked space*/ 

19 S v = S v + pkt(l 2 , l 3 , l 4) ; 

20 if reached then 

21 return ; 

22 else if action = deny then 

23 return ; 

24 return S v ; 

bility of this packet from a source to a target destination. We

everage real time Header Space Analysis ( Kazemian et al., 2013 )

HSA) to compare header fields of a sample packet being propa-

ated in SFPG against the match fields present in the flow rules.

SA is also used implicitly in algorithm to calculate the overlaps

f header spaces (required for wildcarded and masked addresses).

fter a successful match, the corresponding actions present in the

atched flow rules are applied on the sample packet. 

OpenFlow allows multiple actions including modification of

eader fields, forwarding the packet, and dropping the packet. A

ow rule can also contain more than one action to be taken on

 matched packet. Algorithm 1 applies different actions to the

acket being propagated. It uses applySetfield() method for modi-

ying header fields as per the action. Upon receiving a forward ac-

ion, propagate function is called again with the new source node

ddress set as the next hop (as mentioned in the flow rule). We

aintain the history of packet throughout traversal by storing the

ath that the packet takes during the course. If the packet reaches

arget, the algorithm stops and returns the tracked space of the

acket. 

.1.3. Firewall authorization space partition 

In many cases, a system administrator may intentionally intro-

uce certain overlaps in firewall rules by assuming the implicit pri-

rity of these rules (as used by in Linux iptables ). In reality, this is
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Fig. 4. Flow path space classification. 
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 commonly used technique to exclude specific parts from a cer-

ain action, and the proper use of this technique could result in a

ewer number of compact rules ( Yuan et al., 2006 ). Hence, for the

urpose of accurately detecting firewall policy violations in Open-

low networks, the dependency relations between “allow” rules

nd “deny” rules in the firewall policy should be decoupled. 

We first introduce a concept of Firewall Authorization Space ,

hich represents a collection of all packets either allowed or

enied by the firewall rules. Then, we represent rules with

eader space and perform various set operations on rules to con-

ert a list of firewall rules into two disjoint authorization sub-

paces – denied authorization space and allowed authorization space .

lgorithm 2 shows the pseudocode of partitioning authorization

Algorithm 2: Partitioning firewall authorization space. 

Input : A set of rules, R . 

Output : A set of allowed spaces, S F a ; A set of denied spaces, S F 
d 

. 

1 foreach r ∈ R do 

2 s r ← − Header Space (r ) ; 

3 if Action (r) = al l ow then 

4 foreach s ∈ S F 
d 

do 

5 /* s r is overlapping with s */ 

6 s r ← − s r \ s ; 
7 S F a .Append(s r ) ; 

8 if Action (r) = deny then 

9 foreach s 
′ ∈ S F a do 

10 /* s r is overlapping with s 
′ 
*/ 

11 s r ← − s r \ s ′ ; 
12 S F 

d 
.Append(s r ) ; 

13 return S F a , S 
F 
d 
; 
pace for a set of firewall rules R . The algorithm sequentially ex-

mines a header space s r derived from a rule r and adds it to cor-

esponding firewall authorization space sets, S F a or S F 
d 
, based on its

ype. For each r in R , if this rule is an “allow” rule, the header space

 r derived from this rule is compared with existing header spaces

n the denied space set S F 
d 

. If the header space s r is covered by any

xisting header spaces in S F 
d 
, the covered space(s) is removed from

 r and then the modified s r is added into S F a . The similar process is

pplied to a “deny” rule. In this way, we can utilize set operations

o separate the overlapped spaces of a firewall policy into two dis-

oint authorization space sets S F a : { s 
F 
a 1 

, ..., s F a n −1 
, s F a n } and S F 

d 
: { s F 

d 1 
, ...,

 

F 
d m −1 

, s F 
d m 

}. Formally, s F a i ∩ s F 
d j 

= ∅ , where s F a i ∈ S F a , s 
F 
d j 

∈ S F 
d 
, 1 ≤ i ≤ n ,

nd 1 ≤ j ≤ m . Note that it is unnecessary to eliminate overlapping

eader spaces within S F a and S F 
d 
, since those overlapping header

paces could not affect the results of violation detection and keep-

ng them can potentially reduce the number of header spaces in

ach authorization space set. 

An example of firewall authorization space partition is shown in

ig. 5 . For the purposes of brevity and understandability, we em-

loy a two-dimensional geometric representation for each header

pace derived from firewall rules. Note that a firewall rule typi-

ally utilizes five fields to define the rule condition, thus a com-

lete representation of header space should be multi-dimensional.

n Fig. 5 (b), we utilize colored rectangles to denote two kinds of

uthorization spaces: allowed space (in white) and denied space

in pink), respectively. In this example, there is an allowed space

epresenting the first rule and a denied space depicting the sec-

nd rule. Two spaces overlap when there are packets matching

oth rules ( Fig. 5 (b)). Applying Algorithm 2 to the example pol-

cy ( Fig. 5 (a)), the header space of the first rule is added into the
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Fig. 5. Example of firewall authorization space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Violation detection. 
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allowed authorization space set. Then, the overlapped space is re-

moved from the header space of the second rule, and the modified

header space is added to the denied authorization space set. 

4.1.4. Violation discovery 

We use Algorithm 3 to identify violations by checking the

tracked space ( S P t ) of a flow path against the firewall denied au-

thorization space ( S F 
d 

). For every rule in the denied authorization

space, we store the source and destination nodes by using the find-

Dpid() method which returns the combination of switch and node

connector for the corresponding hosts. A sample packet is created

by fetching fields corresponding to the IP 5-tuple set from the fire-

wall rule. 

If the algorithm detects an overlap between the tracked space

and the firewall denied authorization space, we store and return

the overlapping space. We call the returned space as violated

space, S v = S P t ∩ S F 
d 
, denoted by [ P s v , P 

d 
v ], where s and d denote

source and destination addresses, respectively. Depending on the

complexity of an overlap found in violated space, we categorize

the violations as: 

• Entire Violation: If the denied authorization space S F 
d 

includes

the whole tracked space S P t of the flow path, the violated space

S v indicates an entire violation. Formally, S P t ⊆ S F 
d 

. 

• Partial Violation: If the denied authorization space S F 
d 

partially

includes the tracked space S P t of the flow path, the violated

space S v points out a partial violation. Formally, S P t � S F 
d 

and

S P t ∩ S F 
d 

� = ∅ . 

Algorithm 3: Violation detection. 

Input : Denied authorization space, S F 
d 
; Shifted Flow Path Graph, G s . 

Output : A set of violating spaces, V ; 

1 /*Iterate through firewall rules in denied authorization space*/ 

2 foreach r ∈ S F 
d 

do 

3 source = f ind Dpid (r.src) ; 

4 target = f ind Dpid (r.d st) ; 

5 /*Create sample packet with header space from the deny rule*/ 

6 packet = { r.src, r.dst}; 

7 /*Propagate the packet and get the tracked space*/ 

8 S P t = propagate (G s , source, target, packet) ; 

9 S v = S P t ∩ S F d ; 
10 if S v then 

11 V.Append(S v ) 

12 return V 

Fig. 6 shows an example of our violation detection approach.

The tracked space depicts that the original source of the flow is

Host A and Host B , and the final destination of the flow is Host

M and Host N . The firewall authorization space illustrates that all

packets from Host A and Host C to Host M and Host N are denied.

Thus, the violated space, which is depicted in inclined stripes in
ig. 6 , contains a partial tracked flow space represented with the

riginal source of Host A and the final destinations of Host M and

ost N . That is, all packets originally sent from Host A and finally

rrived at Host M or Host N should be denied by the firewall. 

.2. Violation resolution 

An intuition for resolving a firewall policy violation is to simply

isable the violated flow policy. That is, for a new flow policy, the

equest for installing this policy is rejected if the firewall applica-

ion detects this policy is in violation of the firewall policy. Regard-

ng the existing flow policies that violate the firewall policy, they

re removed from the network devices directly. However, such a

olution has several drawbacks. First, a flow policy may only par-

ially violate the firewall policy as we discussed in Section 4.1.4 . In

his case, rejecting/removing the flow policy may affect the utility

f network services. Second, a rule in a flow policy may have de-

endency relations with the rules of other flow policies. Deleting

he rule in a violated policy may impact other flow policies and

ven create new violation(s). Therefore, it is necessary to seek a

ystematic solution to enable a flexible and effective violation reso-

ution. To this end, we introduce a violation resolution framework,

s depicted in Fig. 7 , which demonstrates how FlowMon adopts

our violation resolution strategies to resolve different firewall pol-

cy violations. 

.2.1. Dependency breaking 

Situation: A new flow policy is being added to the network

witches and no flow policy violates the firewall policy. However,

he rules in this new flow policy overlap with the rules of other

ow policies in the flow tables. In addition, as explained the

cenario 2 demonstrated in Section 3.2 , these rule dependencies

ould cause new firewall policy violation(s). This kind of violation

an also be incurred by other changes of network states, such as

odifying flow entries and updating firewall rules. 

Solution: A resolution approach for the issue is to break the

ependencies among flow policies. Then, we can guarantee that
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Fig. 7. FlowMon violation resolution framework. 
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4 A permission system for OpenFlow controller similar to the one discussed in 

Wen et al. (2013) is required to decide the operator’s privileges. 
hen the packets of a flow traverse the network, they are precisely

rocessed as defined by the policy for such a flow. 

The approach introduced in Reitblatt et al. (2012) utilizes tags

o distinguish packets belonging to different policies for ensuring

onsistent network updates. Inspired by the approach, we use flow

agging mechanism to break the rule dependencies in our viola-

ion resolution framework. In this mechanism, the new flow policy

s preprocessed by adding a tag to differentiate the match pattern

ith other policies. The rule of the policy in the ingress switch

ill take additional action on the packets to stamp them with the

ame tag. In other words, each flow rule that causes rule depen-

ency can enforce tagging to the corresponding flows, for example,

sing VLAN tagging to distinguish them from the packets managed

y other flow rules. Similarly, flow rules managing the same flow

tored in intermediate switches (as illustrated in Fig. 2 ) can check

f each packet is tagged. If the packet is not tagged, the action cor-

esponding to the packet can be carried out only after the packet

s tagged. In this way, flows managed by different rules that may

ause the rule dependency can be differentiated from each other

nd processed by the corresponding flow rules only. As the packets

eave the network through egress switch, the corresponding rule of

he policy will strip the tag off the packets. 

.2.2. Update rejecting 

Situation: There are three possible cases in flow rule update that

an apply this strategy: (1) when adding a new flow policy, corre-

ponding flow path is detected as a violation of the firewall policy

nd the violation is an entire violation; (2) changing a flow rule in-

uces new entire violation(s); and (3) deleting a flow rule causes

ew entire violation(s), since some rules of other flows have de-

endency relations with this flow rule. 

Solution: The update operation is rejected directly to resolve the

iolation(s). Note that, this strategy may not be always applied for
ases (2) and (3), since a change or delete operation on a rule may

e mandatory depending on the privileges of the operator. 4 

.2.3. Flow removing 

Situation: There are two cases: (1) when updating (adding,

hanging, or deleting) a rule(s) in the firewall policy, the firewall

xamines the current network state applying the updated firewall

ule(s) and detect new entire violation(s); and (2) a change or

elete operation on a flow rule is allowed, even though it causes

ntire violation(s). 

Solution: All rules associated with a flow path, which en-

irely violates the firewall policy, are removed from the network

witches. 

.2.4. Packet blocking 

Situation: For any partial violation detected by the firewall ap-

lication, this strategy can be applied. 

Solution: There may exist two ways to block packets of a flow:

1) if the flow is a new one, the firewall application only needs

o block it in the ingress switch of the flow; and (2) if the flow

s an old flow, the firewall application blocks the packets in both

ngress and egress switches. In such a case, blocking packets at the

ngress switch can prevent any new packets of the violated flow

ntering the network, while blocking packets at the egress switch

an prevent any inflight packets of the violated flow from going

hrough the network. 

In order to block packets, the firewall application installs new

locking rules at the ingress and/or egress switches. As shown in

ig. 8 , the blocking rules can be derived from the violated space

 S v : [ P s v , P 
d 
v ]). Header space of the blocking rule for the ingress

witch is a combination of the source address of the violated space
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Fig. 8. Violation resolution through packet blocking. 
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F  
( S v ) and the destination address of the incoming space ( S P 
i 
), de-

noted as [ P s v , P 
d 
i 

]. Header space of the blocking rule for the egress

switch is combined from the source address of the outgoing space

( S P o ) and the destination address of the violated space ( S v ), denoted

as [ P s o , P 
d 
v ]. 

4.3. Optimization considerations 

Since an OpenFlow firewall application must perform the vi-

olation detection and resolution in real time, several optimiza-

tion mechanisms should be considered. In this section, we intro-

duce two approaches that can further improve the performance

of FlowMon . Note that the following approaches are currently not

implemented in our FlowMon and will be explored in depth in the

future. 

Incremental Checking: Built on NetPlumber, the flow track mech-

anism in FlowMon is capable of performing incremental checks

when updating flow policies . Similarly, the concept of incremen-

tal firewall policy checks can be applied to FlowMon to increase

its performance. Instead of recomputing the entire firewall autho-

rization space whenever the firewall policy changes, FlowMon can

only incrementally calculate the header spaces that are affected by

these changes. 

Maintaining Partial Flow Graph: As we explain in Section 4.1.2 ,

FlowMon only needs to maintain an SFPG, which is a sub-graph

of the plumbing graph. In addition, FlowMon can check the source

address in the incoming space of each shifted flow path against

the source address of head spaces in its denied space. If these two

source addresses do not overlap each other, FlowMon can guaran-

tee that the shifted flow path will not violate its policy without

tracking the flow path. In this way, shifted flow path can be re-

moved from SFPG. However, this approach is only applicable to de-

tecting direct violation and cannot detect indirect violations caused

by rule dependencies. Thus, shifted flow path should be utilized for

detecting other types of violations. 

5. Implementation and evaluation 

We implement FlowMon 

5 on top of Floodlight to demonstrate

its functionality, performance and scalability. We also demonstrate

that FlowMon can satisfy our design requirements (i.e., accuracy,
5 The source code for FlowMon is available for download at https://github.com/ 

shishkebab/flowguard . 

t  

o  

F  

t  
exibility, and efficiency) for OpenFlow-based firewall applica-

ion. FlowMon adopts NetPlumber data structure (Header Space

ibrary) for building header objects and computing intra-table

ependencies. To that end, FlowMon contains several classes, such

s HeaderObject and RuleNode. HeaderObject collects L2 ∼ L4 flow

eaders to enable bit-level representation of packet headers, while

uleNode collects flow rules for checking rule dependency. For

etrieving network topology information, we implement listeners

o monitor the modules responsible for collecting such informa-

ion. For example, Static Flow Pusher and Memory Storage Source

re the two modules provided by Floodlight controller to retrieve

etwork topology information and flow rules in real time. Our

mplementation of FlowMon retrieves flow rules using the Static

low Pusher module of the controller and build/modify RuleNodes .

n this way, FlowMon can sort the rules by priorities and compute

ntra-table dependencies. FlowMon also obtains the information of

etwork devices including attached switch ID and corresponding

ort number using the Memory Storage Source module, and utilizes

hese information to understand the physical topology of the

etwork. 

FlowMon combines the collected topology information and

ow rules installed in the network to build the flow graph for

racking flow paths. If the tracked spaces of flow paths overlap

ith any denied authorization spaces of a firewall policy, Flow-

on analyzes the root cause of each violation and corresponding

esolution strategy is applied to resolve the identified violation

s illustrated in Fig. 7 . At the same time, FlowMon maintains

pdated flow rules and network topology information so that it

s able to not only re-propagate header objects at any associated

witches to update flow paths, but also track and manipulate

ssociated flow rules regarding shifted flows . In addition, FlowMon

tilizes the Floodlight built-in firewall to generate new blocking

ules and the Static Flow Pusher module to add/modify/delete flow

ules for resolving violations with respect to different violation

esolution strategies. 

.1. Experiment design 

To demonstrate functionality, performance, and scalability of

lowMon we conduct our experiments in two different network

opologies. One of the experiment network topology is a simple

ne as depicted in Fig. 2 to clearly demonstrate the functionality of

lowMon , which includes violation detection and resolution. For

he other topology we used a real-world network (Stanford back-

https://github.com/shishkebab/flowguard
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Table 1 

Detection and resolution elapsed time in ms for different resolution strategies. 

Resolution Strategy Example Topology Stanford Topology without Flow Entries Stanford Topology with Flow Entries 

Detection Resolution Detection Resolution Detection Resolution 

Dependency 

Breaking 

1.70 2.91 3.97 3.98 4.58 4.34 

Update Rejecting 1.83 2.45 3.46 3.57 4.83 3.73 

Flow Removing 1.85 2.17 3.38 3.22 4.39 3.71 

Packet Blocking 1.91 1.33 5.05 2.22 6.48 2.53 
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one network) to show the scalability and performance of Flow-

on . Stanford backbone network Kazemian et al. (2013) consists

f 14 operational zone Cisco routers, 10 Ethernet switches, and 2

ackbone Cisco routers. All of our experiments were performed in

buntu 12.04 virtual machines, each of which has four processors

nd 8GB memory. We run Mininet ver.2.0 (Mininet) in one virtual

achine to simulate the network topologies, while another virtual

achine runs FlowMon on top of Floodlight v0.90. 

The entire configuration of the Stanford backbone network was

etrieved from public header space library (Header Space Library) .

e parse the collected Standford dataset and Cisco access con-

rol list (ACL) files so that they can be used as an input to Flood-

ight. Using the input, corresponding firewall rules are generated

or FlowMon . Total number of 8908 flow entries and 1206 real

rewall rules are used in our experiments. 

.2. FLOWMON violation detection and resolution 

Dependency Breaking: First, we simulate dependency breaking

asued by shifted flow paths (as explained in Bypass Scenario 2 in

ection 3.2 ) to demonstrate the detection functionality of Flow-

on . We also show the effectiveness and performance of Flow-

on in Stanford backbone network by measuring detection and

esolution time in milliseconds (ms). 

For the first part of the experiment (simulating Bypass Sce-

ario 2 ), initial flow table entries for each switch are added as

llustrated in Fig. 9 . There was only one firewall rule specified

n FlowMon , which denied the communications from 10.0.0.1 to

0.0.0.3. As explained in Section 4 , Flow 1 and Flow 2 in Fig. 2 does

ot violate the firewall rule directly. However, the intra-table de-

endency in Switch 2 causes a potential firewall rule violation. In

rder to resolve this issue, FlowMon removes the intra-table de-

endency by isolating Flow 1 from Flow 2 using the VLAN field in

ow entries to set up tags. The action field of the first flow entry

n Switch 1 is updated to add a random VLAN ID 100, which is de-

ided by FlowMon , and the corresponding flow entry in Switch 2

s modified to match the same VLAN ID. And finally in Switch 3,

hich is the egress switch in this case, the VLAN IDs are removed

o restore the original packet. The flow tables of Switches 1, 2, and

 before applying the resolution technique are shown in Figs. 9 (a),

c), and (e). After finding the violation, the flow tables are updated

y FlowMon . The updated table entries are shown in Figs. 9 (b),

d), and (f), respectively. 

We measure the violation detection and resolution time taken

y FlowMon . The time taken for FlowMon to detect the depen-

ency breaking in the experiment explained above is 1.70 ms,

hile the resolution time to resolve the detected issue is 2.91 ms

see Table 1 ). We also carry out the same experiment twice

n the Stanford backbone network, one without any flow en-

ries in the network, and the other with flow entries men-

ioned in Section 5.1 (i.e., 8908 flow entries and 1206 firewall

ules). The detection and resolution time taken in Stanford topol-

gy slightly increases – 3.97 ms for detection and 3.98 ms for

esolution without flow entries, and 4.58 ms for detection and

.34 ms with flow entries (see Table 1 ). The detection and res-
lution time increases with flow entries and firewall rules in-

talled in the network, because FlowMon must go through ev-

ry flow entry and firewall rule to detect violation and isolate re-

ated flows and resolve it. Although both detection and resolution

ime increases by running FlowMon in Stanford backbone net-

ork, it is negligible overhead given the fact that it is run in real-

orld network with realistic number of flow entries and firewall

ules. 

Update Rejecting: We use the scenario explained in Bypass Sce-

ario 1 ( Section 3.2 ) to test update rejecting strategy. We first in-

tall the flow entries in Switch 1 and Switch 3 as illustrated in

ig. 1 . Then, we add two additional flow entries to Switch 2 that

ause firewall rule violation. FlowMon not only detects the viola-

ion successfully but also decides to reject the flow table update

equest (see Fig. 10 ). FlowMon takes 1.83 ms to detect this viola-

ion and 2.45 ms for resolution in the example Mininet topology.

n the Stanford network, FlowMon takes 3.46 ms for detection and

.57 ms for resolution without the flow entries and firewall rules,

hile 4.83 ms for detection and 3.73 ms for resolution are taken

ith the flow entries and firewall rules (See Table 1 ). 

Flow Removing: We utilize Bypass Scenario 1 explained in

ection 3.2 again to evaluate this strategy. We first set up all the

ow entries as shown in Fig. 1 . Then, we enable FlowMon and

pecify the firewall rule to deny packets from the sources A to C

 Fig. 1 ). FlowMon successfully detects the violation and remove

orresponding flow entries that cause this violation in the three

witches, while the built-in Floodlight firewall cannot identify any

iolation. Similar to previous experimental results, FlowMon takes

.85 ms to detect the violation and 2.17 ms to resolve it in our

xample topology. In the Stanford network topology without any

ow entries, FlowMon takes 3.38 ms to detect the violation and

.22 ms to resolve it. In the same topology with the flow entries,

lowMon takes 4.39 ms to detect the violation and 3.71 ms to re-

olve it. 

Packet Blocking: To set up a partial violation, we first installed

 flow policy so that the flow entry in Switch 1 forwards ev-

ry packet whose source IP is in 10.0.0.0/24 and destination IP is

n 10.0.0.0/24. The flow entry in Switch 2 modifies source IP to

0.0.0.6/32 when the incoming packet has source IP 10.0.0.1/32

nd destination IP in 10.0.0.0/24. The flow entry in Switch 3

ewrites destination IP to 10.0.0.4/32 whenever the source IP is in

0.0.0.0/24 and the destination IP is 10.0.0.5/32 (See Fig. 11 ). Then,

e installed a firewall rule that blocks packets from 10.0.0.1 to

0.0.0.4 to create a violation. The built-in Floodlight firewall cannot

etect this violation. However, FlowMon detects the partial viola-

ion, generates two additional flow entries, and installs them in the

ngress switch and egress switch, respectively. 

As shown in Fig. 11 (b), FlowMon installs a new flow en-

ry in Switch 1 that blocks packets with source IP 10.0.0.1/32

nd destination IP 10.0.0.5/32. Since the flow entry in Switch 2

ewrites the source IP of packets from 10.0.0.1/32 to 10.0.0.6/32,

lowMon also installs a new flow entry in Switch 3 that drops

ackets with source IP 10.0.0.6/32 and destination IP 10.0.0.5/32 as

hown in Fig. 11 (b). In addition, FlowMon installs a new firewall

ule that denies the packets from 10.0.0.1 to 10.0.0.5. FlowMon
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Fig. 9. Flow tables before/after FlowMon’s dependency breaking strategy. Every subfigure is a screenshot taken from the Floodlight controller GUI. 
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takes 1.90 ms for detection and 1.33 ms for resolution in the

example Mininet topology. In the Standford network without

flow entries, it takes 5.05 ms and 2.22 ms for detection and

resolution respectively, and 6.48 ms and 2.53 ms with the flow

entries. Our observation shows that the detection time imposes
lightly more overhead than other results. This is because tracking

ow paths for identifying partial violation requires additional

teps involving both ingress and egress switches. Thus, the de-

ection relatively takes more time than detecting other types of

iolation. 
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Fig. 10. Update rejecting result. 

Fig. 11. Flow tables before/after FlowMon’s packet blocking strategy. Every subfigure is a screenshot taken from the Floodlight controller GUI. 
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Fig. 12. Detection and resolution time changes under two different scenarios. 
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5.3. Scalability Analysis of FLOWMON 

We examine the scalability of FlowMon with respect to differ-

ent sizes of flow rules in this Section. Especially, we aim to prove

that our implementation of FlowMon satisfies efficiency , which is

one of the design requirements for OpenFlow-based firewall appli-

cation. To that end, we incrementally increases the number of flow

rules in the Stanford network topology to evaluate the scalability

of FlowMon . We observe detection and resolution time changes

under two different test environments. In the first scenario, by in-

serting 100 ∼ 1000 additional flow rules in each switch, result-

ing in approximately 8.9 k ∼ 35 k rules in total in 26 switches

in the Stanford network. In the second scenario, we increase the

number of flow rules only in the switches associated with the vi-

olated flow paths. We incrementally add flow rules (500 ∼ 1500

rules at interval of 100 rules) at each relevant switch. Then, we

install 8 firewall rules for each violation (i.e, violation due to rule

dependency, flow policy update, firewall policy update, and partial

violation) in FlowMon and measure the time taken by FlowMon

to detect each violation. As shown in Fig. 12 (a) and Fig. 12 (b), the

violation detection time was increased linearly in accordance with

the growing number of flow rules. Note that the violation detection

time decreases even if the number of rules increase in some cases

in the first scenario shown in Fig. 12 (a) due to a random distribu-

tion of rules in different switches. The resolution time changes in

the second scenario, depicted in Figs. 12 (d), indicate that depen-

dency breaking strategy is the resolution mechanism that causes

the highest overhead among the four resolution strategies, which

is consistent with our previous experimental results (See Fig. 1 ).

However, as illustrated in Figs. 12 (c), FlowMon spends less than

25 ms to resolve each violation in the same network with larger

numbers of flow rules. Even though all the rules installed in the

first environment are not installed only in the switches associated
ith the violated flow paths, the number of rules is still consid-

rable amount and indicate that FlowMon is efficient in terms of

calability. 

.4. Performance comparison with floodlight built-in firewall 

In addition to demonstrating functionality and scalability anal-

sis, we also compare the performance of FlowMon with that of

loodlight built-in firewall (FW). We first measure the time Flow-

on and FW spend to initialize themselves in different network

onfigurations. For an empty network where there is no network

ode, FlowMon takes 0.88 ms for initialization, while FW takes

.87 ms. In the Stanford network without any flow entries, Flow-

on takes 3.21 ms for initialization, while FW spends 1.02 ms. In

he Stanford network with all forwarding entries and ACL rules in-

talled, FlowMon takes 740.08 ms, while FW takes 0.97 ms. The

eason why FlowMon takes significantly loner to initialize itself

han FW is because FlowMon needs to analyze the entire flow en-

ries, as well as firewall rules installed in the network to detect

iolation. However, the initialization speed of FlowMon can still

e considered fast (less than one second), given the fact that it is

un in a real-world network. 

We also compare the time both FlowMon and FW take to

pdate new firewall rules to observe if there is any significant per-

ormance overhead imposed by FlowMon . In the Stanford network,

e update 700 random firewall rules to FlowMon and FW, and

ecord the time each of the firewalls takes to process the rules. Us-

ng the output (i.e., the time taken to process the firewall rules up-

ated) we plot an empirical cumulative distribution function (CDF)

raph for each firewall not only to illustrate the results but also to

how the probability distribution ( Fig. 13 ). Overall, both FlowMon

denoted as FG in Fig. 13 ) and FW yield almost identical outputs, in

erms of both actual time taken and probability distribution, with
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Fig. 13. Firewall rule update time in μs. 

Fig. 14. Per packet inspection time in μs. 
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nd without flow entries in the network. The rules updated to both

rewalls are processed in less than 63 μs in the Stanford topology.

Finally, we generate 50 0 0 test packets to measure per-packet

nspection time of FlowMon and FW. We run the experiment in

he Stanford topology with all firewall rules installed (i.e., 1206

ules) to match them against the test packets at per-packet level.

esults show that the inspection time for 90% of test packets with

ow entries takes 0.074 ms, while without flow entries FlowMon

nd FW spend less than 0.051 ms to inspect 90% of the packets.

he results clearly indicate that FlowMon performs as fast as the

uilt-in firewall, generating negligible overhead ( Fig. 14 ). 

. Discussion 

Security Enforcement Kernel: The design goal of FortNOX is to

rovide a security enforcement kernel (SEK) that can be integrated

nto OpenFlow controllers. Other OpenFlow-based security appli-

ations can rely on such an SEK to detect and resolve rule con-

icts that may be introduced by non-security applications. Fort-

OX has been utilized to support FRESCO ( Shin et al., 2013a ), an

penFlow security application development framework. However,
ortNOX has several limitations in rule conflict detection and res-

lution. In contrast, FlowMon provides a new design that facili-

ates not only accurate conflict detection but also flexible and ef-

ective conflict resolution. Thus, we believe the solution provided

y FlowMon could be potentially utilized for building a more ro-

ust SEK for OpenFlow controllers. 

Stateful Monitoring: Currently, OpenFlow only provides very lim-

ted access to packet-level information in the controller ( Shirali-

hahreza and Ganjali, 2013a; 2013b ). In addition, the OpenFlow

orwarding plane is almost stateless and incapable to actively mon-

tor flow status without the involvement of the controller ( Bianchi

t al., 2014; Song, 2013 ). Therefore, as our first step for designing

n OpenFlow-based firewall application, we only implement Flow-

on as a stateless firewall application, which could not perform

tateful packet inspection in OpenFlow networks. However, we also

xplore how FlowMon can be extended to support stateful packet

nspection ( Han et al., 2016; Hu et al., 2014a ). 

Flow Tracking: The flow tracking mechanism used in FlowMon

s built on NetPlumber, which has limitations for dealing with

iddleboxes with dynamic state ( Kazemian et al., 2013 ). FlowTags

 Fayazbakhsh et al., 2013; 2014 ) is recently proposed to handle dy-
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namic traffic modification in the presence of legacy middleboxes.

However, FlowTags needs to extend current OpenFlow architecture

to support flow tracking features. As our further work, we would

like to study more effective flow tracking solution for FlowMon

implementation. 

Network Programming: The current design of FlowMon is built

on top of OpenFlow, which is defined at a low level of network

abstraction. PISCES ( Shahbaz et al., 2016 ) is a derivative of soft-

ware switches such as Open Vswitch ( Pfaff et al., 2015 ), in an at-

tempt to provide more flexibility for configuring how packets are

processed by data plane elements. To that end, PISCES supports

a protocol-independent programming language called P4 that en-

ables the network administrators to re-program switches for cus-

tom packet processing. However, PISCES is specifically designed for

the ease of network programming, and thus, lacks the support for

security features such as flow tracking and detecting the diver-

gence of flow paths. 

The Frenetic Project (Frenetic) introduces a family of languages

providing reusable and high level abstractions for programming

SDNs. In particular, Pyretic ( Monsanto et al., 2013 ), which is one

member of the Frenetic family, enables a program to combine mul-

tiple policies together using policy composition operators to poten-

tially resolve partial policy conflicts including direct firewall policy

violations. However, lacking a policy conflict detection mechanism

in Pyretic, it is obviously inefficient to always compose the fire-

wall policy with flow policies and install them into the network

switches due to several reasons. First, a firewall policy may consist

of over thousands of rules, but commodity SDN switches with lim-

ited TCAM space typically support only a few thousands of rules

( Stephens et al., 2012 ). Second, if flow policies entirely violates the

firewall policy, it is unnecessary to install those violated flow poli-

cies into the network switches. Therefore, we would study for solu-

tions that facilitate more secure and effective policy compositions

in high level abstractions for building security applications in SDNs

( Han et al., 2014 ). 

7. Conclusion 

In this paper, we have presented the design of a new

OpenFlow-based firewall application, FlowMon , for software-

defined networks. FlowMon provides an accurate and efficient

approach to detect firewall policy violations through examining the

flow path space against the firewall authorization space. In addi-

tion, FlowMon supports a flexible and fine-grained conflict resolu-

tion with respect to different update scenarios in flow entries and

firewall rules. We have also implemented FlowMon to demon-

strate its functionalities and performance, along with its capability

to accurately detect the violations in real-time. Our experimental

results show that FlowMon has the manageable performance over-

head to enable real-time monitoring of software-defined networks.

As part of future work, we would like to study the optimization

approaches discussed in Section 4.3 in depth and integrate those

optimization approaches into FlowMon . We will also explore a

more effective flow tracking solution for FlowMon and investigate

how to integrate such a flow tracking mechanism into high-level

SDN languages, such as Pyretic, enabling more secure SDN com-

position. Besides, we will investigate how the solution provided

by FlowMon could be utilized to enhance existing security en-

forcement kernels (SEK), such as SE-Floodlight (SE-Floodlight) , for

OpenFlow controllers. 
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