
Modeling Human Annotation Errors to Design
Bias-Aware Systems for Social Stream Processing

Rahul Pandey
George Mason University

Fairfax, USA
rpandey4@gmu.edu

Carlos Castillo
Universitat Pompeu Fabra

Barcelona, Spain
carlos.castillo@upf.edu

Hemant Purohit
George Mason University

Fairfax, USA
hpurohit@gmu.edu

Abstract—High-quality human annotations are necessary to
create effective machine learning systems for social media. Low-
quality human annotations indirectly contribute to the creation
of inaccurate or biased learning systems. We show that human
annotation quality is dependent on the ordering of instances
shown to annotators (referred as ‘annotation schedule’), and can
be improved by local changes in the instance ordering provided
to the annotators, yielding a more accurate annotation of the
data stream for efficient real-time social media analytics.

We propose an error-mitigating active learning algorithm
that is robust with respect to some cases of human errors
when deciding an annotation schedule. We validate the human
error model and evaluate the proposed algorithm against strong
baselines by experimenting on classification tasks of relevant
social media posts during crises. According to these experiments,
considering the order in which data instances are presented to
human annotators leads to both an increase in accuracy for
machine learning and awareness toward some potential biases
in human learning that may affect the automated classifier.

Index Terms—Human-centered Computing, Human Bias, Ac-
tive Learning, Annotation Schedule, Human-AI Collaboration

I. INTRODUCTION AND BACKGROUND

Filtering of high-volume, high-velocity social media streams
is a typical task in many domains such as journalism, public
health, and crisis management. In this scenario, an avalanche
of data must be filtered and classified to prevent information
overload. This is challenging as these data streams are often
noisy, sparse, and redundant. They require a substantial cog-
nitive effort to be processed by humans, who cannot scale.
These data streams are also problematic for pure machine
annotation systems, as depending on the task they may have
limited accuracy due to the data challenges such as concept
drifts and domain adaptation. Hence, to achieve high accuracy
the active learning framework is suitable to design hybrid
stream processing systems (HSPS) through a composition of
human annotation and automatic classification [1], [2]. The
scope of this paper is to study a hybrid online classification
setting that categorizes relevant instances from a social stream.
Specifically, we analyze the effect of human forgetting (see
Figure 1) errors in such annotation tasks.
Human challenges in hybrid stream processing. Systems
that rely on some form of crowdsourcing are known to be
affected by the cognitive biases and cognitive load of human
annotators [4]. The first key factor is annotator burnout,
as high workload causes a deterioration of the quality of

Fig. 1. The Ebbinghaus Curve for forgetting behavior of humans, as described
in a 2013 paper [3]. We investigate the effect of forgetting on the human
annotation quality for HSPS and corresponding mitigation approaches.
annotations [5]. To prevent burnout, one can cap the maximum
number of annotation tasks per unit of time that the annotator
must perform, which can reduce workload [6]. The second key
factor is human error in the execution of annotation task. A
popular error taxonomy proposed by Reason [7] suggests that
recurrent error forms may have their origins in psychological
processes. We particularly study two types of errors, mistakes
and slips [7], [8]: Mistakes are errors due to incorrect or
incomplete knowledge [7], and in the annotation context
correspond to annotators who have not yet grasped the concept
to be annotated, or who are annotating new instances for which
they have not acquired a correct representation yet. Slips are
errors in the presence of correct and complete knowledge [7],
i.e., the annotator knows the correct category for an instance
but selects an incorrect one. If this error becomes persistent
after a large number of examples, then it may indicate burnout.

Online active learning. Existing types of online active learn-
ing methods, to the best of our knowledge, address only
possible machine biases and errors. Gama et al. [9] and
Almeida et al. [10] provide extensive surveys of the different
active learning methods. The primary categories for the active
learning methods include the one group focused on the better
sampling of the instance space for querying (e.g., addressing
concept drift [11]), and another group focused on better
learning of a discriminatory model. However, the improvement
of both of the above active learning methods for stream
processing systems requires to account the mitigation for the
potential oracle/human errors during querying as well, to be
efficient and unbiased in the modeling.

Our contribution. We formalize a theoretical-motivated hu-

man error typology of mistakes and slips that covers some
common types of human errors possible in a stream annotation
task. We demonstrate the validity of the error typology using
forgetting error model, which is tested via lab and crowdsourc-
ing annotation experiments for the information filtering task
in crisis datasets. We then present a novel method for human
error-mitigation in active learning for stream processing tasks
against strong baselines (Section III) and novel insights on
automatic approaches to prevent human errors. The application
of the proposed human error framework can be used to de-
sign human-AI collaboration strategies and improve machine
learning performance in hybrid stream processing systems.

Data and task. We define the specific annotation task for
human error testing and mitigation as to classify an instance
from a given sequence/stream of Twitter messages (tweets)
into k classes. We use labeled datasets from prior work in crisis
informatics that contains labeled tweets related to natural dis-
asters [12]. We recrawled the tweet instances from Twitter API
to acquire the metadata such as timestamp and also, to discard
any tweets deleted since the data was originally collected. The
two disaster events include Hurricanes Harvey and Irma. The
labels include four tweet categories: infrastructure and utility
damage (c1) - information about any physical damage on
infrastructure or utilities; rescue, volunteering, and donation
effort (c2) - information about offering help through volun-
teering efforts by a community of users; affected individuals
(c3) - information about the condition of the individuals during
this disaster event, and not relevant or cannot judge (c4). We
considered human labels with confidence score (computed by
the crowdsourcing platform for agreement between multiple
annotators [12]) greater than 65%.

II. LAB-SCALE ANNOTATION ERROR TESTING

We focus on quantifying the forgetting behavior [3], which
underlies the above-mentioned error types and impacts the
performance of both human annotation and machine learning.

A. Forgetting Curve

Psychologists have been studying human forgetting behavior
in the context of learning and acquiring new knowledge for
centuries. The Ebbinghaus Curve – shown in Figure 1 – is
a famous experimental result for forgetting in humans [3].
Inspired by this curve, we hypothesize that the forgetting
behavior of humans can be approximately modeled by a
simple function; we use a sigmoid function given the similar
asymptotic nature of it and forgetting curves. We quantitatively
model the error rate as a function of the time during which a
human annotator has not seen any instance of a given class to
annotate in the stream. We define forgetting score for a class
c over time t lapsed after its last annotated instance as:

forgetting score(c) = γ · 1

1 + e−αt+β
(1)

B. Experimental Validation

For validating the pattern of human forgetting behavior
through the above function, we conducted a small-scale lab

study in a controlled environment with 3 human annotators.
We set up an environment where each user has to classify
a message from an input stream into one of four classes.
Messages included a random amount of irrelevant messages
(noise) between the ground truth messages, to better observe
human forgetting of the class and human errors. Our data
stream contains 800 samples; 3 annotators label a given
instance in the stream one by one, with no ability to go back.
Once we collect the responses from the three annotators, we
calculate the forgetting score for each instance of the 800
samples based on ground truth data for the class labels of
each instance and when the class instance last appeared in the
instance sequence. Thus, we observe the annotator responses
whether or not the annotators actually forget that class.

Our experiment validated the modeling of forgetting be-
havior using the sigmoid function that we hypothesized (plots
omitted for brevity). This motivates us to use sigmoid function
based forgetting model to induce an error in our algorithmic
simulation experiments to mimic the real environment.

III. SIMULATION-BASED ERROR TESTING & MITIGATION

We simulate the annotation task in an active learning
scenario for online streams [11]. We design a novel method
for generating a dynamic annotation schedule for an annotator
(simulated “oracle”) such that the schedule attempts to mini-
mize human errors and maximize the overall performance of
the active learning algorithm.

A. Mitigation Algorithms

Our method first samples a batch of n instances from a
time interval ti by using a conventional uncertainty sampling
algorithm for “oracle” annotation (in our proposed approach,
we also apply constraints to select only m (m < n) instances
that minimize the human forgetting error). We then update the
learning model using the annotated instances for predictions
in the next time interval ti+1. For simulation, we use the
ground truth labels as the oracle annotations. We propose three
types of algorithms (first two are baselines) based on diverse
sampling strategies to select instances at the end of ti:

(Baseline) Algorithm 1: Random Sampling. We randomly
sample a batch of n instances (equal to the number of samples
in the uncertainty region, as described next) at interval ti. We
hypothesize that random sampling can address the issue of
data distribution changes for the concept drift by selecting an
instance from any region in the concept space, although it may
be inefficient to improve the learning performance over time.

(Baseline) Algorithm 2: Uncertainty Sampling. We predict
the classes of incoming batch of instances with the current
active learning model (created at time interval ti−1). After
prediction, we select the classified instances in which the
prediction confidence is in the range of [30%, 70%] as the
uncertainty region (n instances.) We provide these uncertainty
region instances to the oracle and get their annotations. Our
hypothesis is that the model will become more robust if it starts
learning from the cases on the decision boundary region.

(Proposed) Algorithm 3: Error-mitigating Sampling. This
algorithm relies on uncertainty sampling to first select can-
didates from uncertain region. It then discards the instances
whose predicted class (from the model at ti−1) could either
induce performance errors to the new model at ti or tend to be
not forgotten by the oracle (i.e., the bias in the human learning
behavior toward that class).

Specifically, for each instance Xy in the uncertain region,
we predict its class based on our current model and check if it
is not the class to discard. Otherwise, we select that instance
for annotation by the oracle and update our model. We store
the instance, its arrival time, and annotation to vectors that
contain information for all instances of the context window
(the most recent l intervals: (ti−l,ti)), in order to compute
the class to discard next. Likewise, we maintain and append
an error matrix Ea×b where a is the total instances from the
current context window and b is the total number of class pairs
(|C|×(|C|−1)) minus the same class pairs. The error matrix
column corresponds to the class pairs, i.e. (c2, c1), (c3, c2), etc.
and a row corresponds to the information for an instance Xy .
For every new instance Xy annotated with ck that is added to
the error matrix, a matrix cell E(Xy, (cj , ck)) represents the
error in predicting the instances annotated with cj in the past
context window, using the model updated by including current
instance Xy of class ck. All remaining cells of the row Xy

are copied from the previous row (Xy−1) of the error matrix
in the previous state. We use the error matrix E to decide the
classes to discard only after the first three intervals.

We calculate the bias score for each class ck ∈ C using
error matrix rows for all the instances Xy annotated with ck
as:

BiasScore(ck) =
∑
∀Xy

∑
cj∈|C|−ck

E(Xy, (cj , ck)) (2)

We also add forgetting factor to the bias scores for each class
that signifies the time lapsed since the last time an instance of
the class was observed in the stream.

The forgetting factor is quantitatively defined as:

ForgetScore(ck) = e−∆Tk (3)

where ∆Tk = time difference from the last two appearance
of class ck instances in the context window

The final score for each of class ck is defined as:

Score(ck) = ForgetScore(ck)× BiasScore(ck) (4)

Once we calculate the final scores for each class ck, we
determine the class ck with the highest score as the error-
inducing class to discard at current time.

B. Simulation Experiments

We describe the data preparation for the simulated stream
processing task and the active learning environment.

Data Preparation. We split the data into train, test, and warm-
up sets. The 20% of the whole data is used as a test set. From

the remaining 80%, we randomly picked z instances (z = 20)
of each class to create a warm-up set; the rest constitutes the
train set. Since we have a class imbalance in our data, we
use an equal number of instances across classes for creating
our warm-up phase model for robustness. The training data
is sorted based on the arrival time of an instance (tweet) in
the stream. After sorting, we divided the data into equal bins
of size N . At each interval, N instances would arrive for
annotation and get filtered for inclusion in the train set based
on our mitigation algorithms (N > n > m). The N is fixed
and is computed in the beginning as follows:

N =
train set size

(train timemax− train timemin)days
(5)

where train timemin and train timemax are the least and
highest timestamp of instances in the train set (unit: days).

The reason to keep N fixed is due to the fact that our labeled
dataset is not continuous in real-time setting but is distributed
along a long time span, given it was annotated through
crowdsourcing method in prior work. Hence, we cannot fix
N based on time units (such as seconds or minutes).
Active Learning Environment. We implement the active
learning process following previous work [11]. First, we
train the base model with our warm-up set and then, keep
updating. We used pretrained GloVe-Twitter embeddings with
200 dimensions for word-level features and then, averaged
them to represent tweet-level features. We train a linear SVM
model and measure the performance on the fixed test set.

For every interval ti, we receive N instances for seeking
the annotator feedback in order to acquire more labeled data
for retraining the current model. Depending upon the miti-
gation algorithms, i.e., random, uncertain, or error-mitigating
sampling, we filter the n or m instances to get annotations
from the oracle. To mimic human behavior, the label given
by the oracle is not always correct. Based on the lab-scale
experimental results of Section II, the forgetting behavior of
humans follows the sigmoid function from our annotation task.
Thus, we utilize the value of a sigmoid function with different
parameters to find the probability that the oracle generates a
correct or erroneous label due to forgetting the class as given
in the equation 1. We use 3 different parameter settings to
add errors through the forgetting behavior of the oracle: (1)
Slow Forgetting: computes a sigmoid function with parameters
estimated from errors in a human experiment: α = 0.0434,
β = 0.9025, and γ = 0.75. (2) Fast Forgetting: uses a sigmoid
function that converges to 1 faster than the slow forgetting
and induces errors more frequently: α = 0.03, β = 1.00, and
γ = 1.00. (3) No Forgetting: assumes that our oracle always
gives the correct labels and does not forget any class. Hence,
we use the true labels for each annotation.

IV. DISCUSSION AND CONCLUSION
We note that when we try to mimic the real world scenario

by inducing different types of forgetting errors (slow vs. fast
forgetting) in the simulated annotation process, our error-
mitigating sampling algorithm is able to reduce the effect of

Fig. 2. AUC score of mitigation algorithms for hurricane datasets, showing superior performance of error-mitigating sampling in the case of forgetting errors.

human forgetting and improve AUC scores over time across
all the event datasets, despite varying amount of instances
per interval. Also, for the first three intervals, the simple
uncertainty-based and our error-mitigating algorithms perform
similarly. It is possible due to insufficient learning to enable
the decision making for discarding a class that is likely going
to induce errors to other classes. Both these algorithms show a
gradual increment of performance as the new instances arrive,
as compared to the random sampling algorithm with highly
variant behavior of learning. These observations support that
our proposed algorithm could help improve active learning
systems in a real-time setting.

In the case of error-mitigation algorithm, the chances of in-
ducing human error are lower as it accounts for the expectation
of a class forgetting likelihood, which reduces expected errors
in annotating instances of such a class.

The application of this method can help in designing human-
AI collaboration systems for efficient stream processing for
social media and web in general. Such systems would require
not only less human annotations, but also have fewer errors
and less bias from the human annotators.

Limitations and future work. This study does not cover all
types of human error in stream annotation. Instead, it can
provide a foundation to systematically study diverse types of
errors and causes. We designed the annotation task for only
text classification to test the human errors but future work can
explore other types such as image object recognition.

Reproducibility. Human annotations and code implementa-
tions are available upon request for research purposes.

V. ACKNOWLEDGEMENT

Purohit thanks U.S. NSF grant awards 1815459
& 1657379 and Castillo thanks La Caixa project
(LCF/PR/PR16/11110009) for partial support.

REFERENCES

[1] M. Imran, I. Lykourentzou, Y. Naudet, and C. Castillo, “Engineering
crowdsourced stream processing systems,” arXiv:1310.5463, 2013.

[2] C. Lofi and K. El Maarry, “Design patterns for hybrid algorithmic-
crowdsourcing workflows,” in IEEE Business Informatics, 2014, pp. 1–8.

[3] H. Ebbinghaus, “Memory: A contribution to experimental psychology,”
Annals of neurosciences, vol. 20, no. 4, p. 155, 2013.

[4] K. Burghardt, T. Hogg, and K. Lerman, “Quantifying the impact of
cognitive biases in question-answering systems,” in AAAI ICWSM’18,
2018, pp. 568–571.

[5] C. C. Marshall and F. M. Shipman, “Experiences surveying the crowd:
Reflections on methods, participation, and reliability,” in ACM Web-
Sci’13, 2013, pp. 234–243.

[6] H. Purohit, C. Castillo, M. Imran, and R. Pandey, “Ranking of social
media alerts with workload bounds in emergency operation centers,” in
IEEE/WIC/ACM WebIntelligence’18. IEEE, 2018, pp. 206–213.

[7] J. Reason, Human error. Cambridge university press, 1990.
[8] J. Zhang, V. L. Patel, T. R. Johnson, and E. H. Shortliffe, “A cognitive

taxonomy of medical errors,” Journal of biomedical informatics, vol. 37,
no. 3, pp. 193–204, 2004.

[9] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[10] P. R. Almeida, L. S. Oliveira, A. S. Britto Jr, and R. Sabourin, “Adapting
dynamic classifier selection for concept drift,” Expert Systems with
Applications, vol. 104, pp. 67–85, 2018.

[11] I. Žliobaitė, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning
with drifting streaming data,” IEEE transactions on neural networks and
learning systems, vol. 25, no. 1, pp. 27–39, 2014.

[12] F. Alam, F. Ofli, and M. Imran, “Crisismmd: Multimodal twitter datasets
from natural disasters,” in AAAI ICWSM’18, 2018, pp. 465–473.

	Introduction and Background
	Lab-scale Annotation Error Testing
	Forgetting Curve
	Experimental Validation

	Simulation-based Error Testing & Mitigation
	Mitigation Algorithms
	Simulation Experiments

	Discussion and Conclusion
	Acknowledgement
	References

