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ABSTRACT

Remote Access Trojans (RATs) are a persistent class of malware
that give an attacker direct, interactive access to a victim’s personal
computer, allowing the attacker to steal private data, spy on the
victim in real-time using the camera and microphone, and verbally
harass the victim through the speaker. To date, the users and vic-
tims of this pernicious form of malware have been challenging to
observe in the wild due to the unobtrusive nature of infections.
In this work, we report the results of a longitudinal study of the
DarkComet RAT ecosystem. Using a known method for collecting
victim log databases from DarkComet controllers, we present novel
techniques for tracking RAT controllers across hostname changes
and improve on established techniques for filtering spurious victim
records caused by scanners and sandboxed malware executions.
We downloaded 6,620 DarkComet databases from 1,029 unique con-
trollers spanning over 5 years of operation. Our analysis shows
that there have been at least 57,805 victims of DarkComet over this
period, with 69 new victims infected every day; many of whose
keystrokes have been captured, actions recorded, and webcams
monitored during this time. Our methodologies for more precisely
identifying campaigns and victims could potentially be useful for
improving the efficiency and efficacy of victim cleanup efforts and
prioritization of law enforcement investigations.
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1 INTRODUCTION

Traditional forms of malware generate revenue for a miscreant
through large-scale illicit activity, be it spamming, click fraud, or
ransom extortion. The direct victims of such malware experience
the infection as a theft of CPU cycles, network bandwidth, or money.
While costly in the aggregate, each user’s loss is ultimately limited
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by an attacker’s ability to extract value from such victims at scale.
Remote Access Trojans (RATs) change this arrangement to one
where an attacker interacts with each victim individually, scouring
through the victim’s file system, spying on the victim through
the webcam and microphone, or harassing the victim using the
computer’s speakers and user interface.

In contrast to traditional malware, whose operators have made
millions of dollars through illicit activity [41], the financial gains
of RAT operators are necessarily limited by the small number of
victims they can control. From the victim’s point of view, however, a
RAT infection may incur not only financial loss but also significant
emotional distress due to blackmail and sextortion perpetrated by
RAT operators [14, 19]. Thus, the apparent amateur nature of RAT
operators and the negligible economic losses they cause belie the
greater individual harm they beget. Unfortunately, aside from a
handful of high-profile cases, little is known about the victims, as
published studies of RATs have largely focused on the attackers,
their behavior, practices, and business models [25, 42].

As opposed to most studies of malware, a main focus of this
paper are the victims of RATs. A considerable challenge of studying
RAT victims is our limited visibility into this population. Victims
of RATs are difficult to identify: computers infected with RATs do
not, as a rule, commit click fraud, send spam, participate in DDoS
attacks, or otherwise stand out to an external observer. Thus, unlike
botnets, even measuring the population of such victims poses a
special challenge.

In this paper, we have created a framework for analyzing data
collected from RAT operators that enables us to study the harms
victims of RAT malware experience. It is commonplace for RAT
controller software to maintain a database of each victim infected,
along with data pertaining to that victim (e.g., logs of captured
keystrokes). By treating the victim entries in these databases as
a form of ancestry, we have developed techniques for tracking
RAT controllers across hostname changes and for understanding
their phylogeny with regards to the origin of their controller soft-
ware. Further, we propose improvements to existing spurious victim
records removal techniques [58] which are able to remove an addi-
tional 40% of the likely spurious victims using anonymized victim
metadata from these databases. This allows us to determine, with
high confidence, which records correspond to real victims.

A unique feature of one popular RAT called DarkComet pro-
vided us with an opportunity to collect these victim databases
at scale. Whether added intentionally or by mistake, DarkComet
makes it possible to download its victim database by issuing a
specific command to the controller software over the command-
and-control channel. We used this mechanism to download 6,620
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victim databases from 1,029 distinct controllers, which we discov-
ered while monitoring a set of 69,227 domains from samples from
MalwareConfig, Shodan, VirusTotal, and ReversingLabs.

Using the techniques we developed to track controllers and filter
spurious victim records, and following a strictly-controlled method-
ology of anonymizing private data about victims, we report on a
population of 57,805 victims infected by DarkComet controllers
over a span of five years. While this study is not comprehensive
due to the limitations of our data collection techniques, the sample
set we observed allows us to understand the victims of the Dark-
Comet ecosystem and the harms such as webcam and other forms
of surveillance that they suffer. Our methodologies for more pre-
cisely identifying campaigns and victims could potential be useful
for improving the efficiency and efficacy of victim cleanup efforts
and prioritization of law enforcement investigations.

In summary, the major contributions of this paper are:

< We describe a methodology for tracking controllers of Dark-
Comet, a popular commodity RAT, across hostname changes
based on a phylogenetic analysis of their victims.

2
<

We describe a methodology for identifying real DarkComet
victims in the presence of honeypots, scanners, and VM
execution of malware by researchers.

% We detail the process by which we collect information about
victims of DarkComet at scale and present the results of our
analysis of the victims in the studied ecosystem, the harms
they incur, and their relationship with their attackers.

The rest of this paper is organized as follows. Section 2 provides
the necessary background for the paper. Section 3 describes our
data collection methodology; importantly, Section 3.4 discusses
our ethical and legal considerations. Section 4 describes how
we processed the collected data. Section 5 presents our results.
Section 6 discusses our findings. Section 7 concludes the paper.

2 BACKGROUND

This work aims to report on the victims of DarkComet, a well-
known RAT. In this section, we provide the necessary background
on DarkComet for the rest of our study.

2.1 DarkComet RAT

DarkComet is the quintessential RAT, popular for its functionality,
freely available for download online, and supported by hacking
forum communities and a plethora of tutorial videos on YouTube
[19]. It has been used broadly since 2011 by cybercriminals for
sextortion [2], voyeurism [19], and, in rare cases, attacks by state
actors [24, 42] and trade secret theft [38, 39, 64]. Illustrative of its
diverse usage, DarkComet is most well-known for its uses by a
sextortionist against Miss Teen USA [2, 3, 6, 18] and by the Syrian
government against political dissidents in the Syrian Civil War [27,
42,46,52,59, 61]. Marczak et al. [42] provided a particularly detailed
examination of DarkComet’s usage in the latter campaign.

Such high profile usage has naturally made DarkComet the
focus of analyses by industry and academia alike. Malware re-
searchers have studied individual DarkComet campaigns in depth
[5, 8, 15,37, 62], and have thoroughly analyzed its network protocol
and behavior [9, 10, 17]. Denbow and Hertz [17] and Breen [7-
10] performed the seminal reverse engineering of DarkComet’s
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network protocol handshake and executable configuration, respec-
tively. Most recently, Farinholt et al. [25] studied the behavior of
DarkComet operators themselves in the wild, while Rezaeirad et
al. [58] investigated the DarkComet ecosystem by sinkholing thou-
sands of RAT-related domains.

We use the following terminology throughout this paper:

o Operator: Miscreant interactively controlling a victim’s com-
puter using a RAT.

o Victim: User whose computer is infected with a RAT stub, who
may be a target of a controller’s extortion attempts.

o Controller: Software used by an operator to configure and
build a stub, and to control a victim’s computer. Also, the host
on which it is running.

o Stub: Malware on a victim’s computer that communicates with
a controller, giving an operator control of the computer.

2.1.1  Downloading Victim Databases. DarkComet allows an oper-
ator to configure a stub to automatically download a file from the
controller, for example, to download updates or secondary payloads
from the controller. Denbow and Hertz [17] reverse-engineered the
DarkComet network protocol and discovered that DarkComet al-
lowed a stub connected to a controller to request and download
any file from the controller, without operator notification. Further
described in Section 3.2, we use this feature to glean information
about the victims of DarkComet operations.

DarkComet stores information about every victim ever infected
in an SQLite database file. Researchers have previously investigated
the possibility of obtaining this database from controllers; in par-
ticular, Breen [8-10] proposed using DarkComet’s arbitrary file
download functionality to collect DarkComet controller databases
for research purposes. Breen’s dc-toolkit [7] provides a set of
working Python scripts for downloading DarkComet databases,
which was later incorporated into Metasploit as a module [11, 31].
Breen [8] also examines the contents of a sample database he down-
loaded with the dc-toolkit, highlighting some of its sensitive
contents, such as the keylog table.

2.1.2  Hack Pack Sharing. DarkComet was initially offered freely
for download by its author, DarkCoderSc, from an official site [40].
However, its authors removed DarkComet from the official site
following its widely publicized use by the Syrian government in
a cyber-espionage campaign against dissidents at the onset of the
Syrian Civil War [27, 46, 59]. The official site reads now states,
“DarkComet-RAT development ceased indefinitely in July 2012.
Since the [sic], we do not offer downloads, copies or support.”
Despite this, DarkComet is available for download, packaged as
what is known as hacking packs or hack packs, collections of RATs
and other malware that are sold or freely distributed in hacking
forums online. Many RAT hack packs are bundled and distributed
by RAT operators hoping to improve their reputation in a hacking
forum. These operators package the very RAT software they use
personally for distribution. RAT controller executables, including
DarkComet . exe, run from a directory that contains its supporting
DLLs (e.g., SQLite.d11) that hack pack distributors simply com-
press and ship this entire directory. The same directory also contains
the victim SQLite database, stored in a file called comet .db. Most
hack packs also include this database file, which contains records of



Dark Matter: Uncovering the DarkComet RAT Ecosystem

victims infected by the hack pack creator. We exploit this phenome-
non in Section 4.1.1 to understand the ancestry of victim databases
we obtain from live controllers.

2.2 RAT Controller Discovery

BladeRunner [22] was the first scanning-based system to actively
discover RAT controllers by emulating RAT victims. Since then,
Shodan partnered with Recorded Future [30] to add active probing
and banner identification for numerous RAT families, including
DarkComet, to the Shodan Malware Hunter project [43]. Recorded
Future [33] recently presented on its use of Shodan Malware Hunter
to identify active RAT controllers and corporate infections over
four years of operation, including publishing the IP addresses of
detected controllers [32]. To the best of our knowledge, Shodan
Malware Hunter represents state of the art RAT controller detection
in industry. Marczak et al. [42] created a scanner that was able
to detect stealthy APT controllers by triggering error conditions.
Most recently, Farinholt et al. [25] presented a scanner that used
ZMap [21], Shodan, and a custom port scanner to detect DarkComet
controllers based on their initial handshake challenges. Our scanner
is based on these systems.

2.3 Estimating Infected Population

The accuracy of malware infection size measurements and esti-
mation has long been an issue broached by botnet-focused mea-
surement studies. Ramachandran et al. [54] proposed a method for
estimating botnet infection size based on the frequency of DNS
lookups to C&C domains. A subsequent pair of botnet studies used
DNS lookups [16] and IRC channel monitoring [1] as measurement
vectors but arrived at different estimates due to churn [53]. Recently,
Antonakakis et al. [4] used a variety of techniques to gauge the
size and scope of the Mirai botnet, including active scanning and
running a so-called milker to obtain attack commands.

2.4 Understanding Data Set Pollution

Part of our data processing methodology entails pre-processing our
data to remove records introduced by interfering measurement and
counter-offensive operations. In malware infection size estimation,
this is a particularly significant obstacle due to the prevalence of
such operations by security researchers and anti-malware vendors
alike. A number of botnet measurement studies have expounded
on the issue of data set pollution [23, 29, 47, 51, 60]. Particularly,
Kanich et al. [34] showed that data set pollution caused by interfer-
ing measurement operations and other active participants in the
network could magnify the measured size of the Storm botnet by
10 to 20 times when using a naive estimation approach. Another
common source of measurement pollution is the sandboxed exe-
cution of malware. We attempt to counter this by submitting our
own malware samples to Internet-connected sandbox services to
obtain measurement artifacts about said sandboxes, mimicking part
of the methodology showcased by Yokoyama et al. [63]. Specifically
related to RAT malware, Rezaeirad et al. [58] recently investigated
and enumerated the “stakeholders” in the RAT ecosystem via active
scanning and sinkholing, tailoring their methodology to identify
active participants polluting the RAT ecosystem. We adopt their
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techniques to identify and exclude such pollution in our data, as
described in Section 4.2.

3 DATA COLLECTION

Figure 1 illustrates our methodology for collecting DarkComet
victim databases, which we describe in this section.
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Figure 1: Illustration of our data collection methodology,
from sourcing DarkComet configurations from threat feeds
to downloading databases from detected hosts.

3.1 Controller Discovery

The DarkComet protocol is password-protected, so we cannot ac-
quire targets from which to download victim databases by indis-
criminately scanning the Internet for controllers. Instead, from
December 1, 2016 to July 6, 2019, we collected 146,199 unique Dark-
Comet controller configurations from the malware feeds in Figure 1.
Many configurations use domain names to address their DarkComet
controllers, so we resolve each suspected DarkComet domain name
continuously to augment our list of suspected DarkComet host IP
addresses. Of the sources in Figure 1, only Shodan does not provide
domain names; however, all IP addresses provided by Shodan’s feed
were also either present in configurations from the other sources
or discovered during domain resolution.

We implemented a custom Internet scanner to detect RAT con-
trollers. Our scanner continuously probed this final list of 224,172
target hosts for DarkComet network signatures. From Decem-
ber 5, 2018 to July 6, 2019, we made contact with 6,035 live Dark-
Comet hosts. From 3,518 of these hosts, we successfully downloaded
databases, recording both their hostnames and resolved IP addresses.
During this 213-day observational period, we monitored roughly
500 active DarkComet controllers every week.

3.1.1 Anonymizing Infrastructure Usage. 16.5% of scanned Dark-
Comet hosts use known VPN or VPS services, mainly IPjetable and
Relakks VPN.! Such a relatively small population of hosts using
anonymizing infrastructure suggests that the DarkComet operators
in our data set may lack even basic operational security measures.

1We use MaxMind and Recorded Future to compile a list of anonymized IP ranges.
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Therefore, Internet-wide scanners like ZMap could potentially lo-
cate most of these operators’ actual gateways.

3.1.2  Dynamic DNS Usage. As Dynamic DNS (DDNS) is a popular
tool among DarkComet operators [58], we compare the domain
names found in the RAT configurations in our data set against a
list of 1,193 domains belonging to 119 prominent DDNS providers.
We find that most of the domains used by DarkComet operators
belong to one of two free DDNS providers, No-IP and DuckDNS.
DarkComet’s controller software explicitly interfaces with No-IP’s
update client, a likely source of its popularity in particular.

3.2 Victim Database Acquisition

The central focus of this study is the DarkComet database. In this
section, we describe how we acquire a data set of DarkComet
databases, and what information they contain. In Section 2.1.1,
we described Denbow and Hertz’s discovery of DarkComet’s ar-
bitrary file download functionality [17]. In summary, a network
device impersonating a DarkComet stub can request arbitrary files
from any controller to which it connects. Following this discovery,
Breen released the dc-toolkit [7], a Python tool for blind file
retrieval from DarkComet controllers. We use a modified version
of this tool to collect victim databases and DarkComet configuration
files from DarkComet controllers discovered by our scanner.

3.2.1 DarkComet Victim Database. On execution, the DarkComet
controller executable (DarkComet . exe) creates or loads a file in
its working directory named comet . db. This SQLite database man-
ages victim connections, and is described thoroughly in the follow-
ing Section 3.2.2. We downloaded this file from DarkComet .exe’s
working directory. From December 5, 2018 to July 6, 2019, we down-
loaded 6,620 databases from 3,518 unique IP addresses. Each time we
download a DarkComet database, we append a unique, tainted vic-
tim record (a taint) to its dc_users table (continue to Section 3.2.2
for more details on this table). This tainting happens automatically,
as our downloader registers with the controller as a new victim
each time it downloads a database; we simply taint the victim in-
formation we transmit such that we can identify our downloader’s
records uniquely in the dc_users table.

3.2.2  Victim Database Schema. DarkComet uses a SQLite database,
stored in a file named comet . db, to manage victim connections
and metadata. Table 1 depicts the schemas of each of its tables of
importance, as well as provides examples of each.

dc_users. This table contains a single row for every unique vic-
tim that has connected to the controller. In Table 1, we observe
the contents of a sample row in the dc_users table. As this table
is append-only, the order of its contents indicates the order in
which victims first connected; users whose IP addresses or oper-
ating systems change maintain their original row. Most items in
this row are self-explanatory. userGroup references the groupId
field in dc_groups. UUID is the victim machine’s hardward profile
ID, returned by the function GetCurrentHwProfile, sometimes
appended with a random identifier. Since this table is likely to con-
tain victims’ personally identifiable information (PII), we hash the
userIP and userName fields before storing them. Prior to hashing
victim IP addresses, we resolve their geolocations against a local
MaxMind GeoLite2 City database [45].
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dc_keyloggers. This table stores victim keystrokes. Each row con-
tains the keystokes logged from a victim, denoted by a UUID that ref-
erences dc_users, on a given day. The name field refers to the daily
file on the victim machine where keystrokes are logged. DarkComet
caches victim keystrokes until connected to a controller, at which
point all stored daily logs are uploaded at once. The contents
field stores all captured victim keystrokes, delimited by the victim’s
active window as it changes. As this table is likely to contain PII,
we only store the number of keystrokes captured, and, as of our
methodology update on March 25, 2019, letter distributions and
victim active window matches against 141 regular expressions for
common applications and websites like the Alexa Top 100.
dc_groups. This table allows for attackers to sort and annotate
victims into groups. Each row is an attacker-created group, complete
with a title, subtitle, and footer. These groups tend to reveal an
attacker’s language and motivations.

3.2.3 Databases from Hack Packs. To supplement our data set of
downloaded DarkComet databases, we downloaded DarkComet
hack packs from a combination of hacking forums and VirusTotal.
Recipients of hack packs often upload them to malware scanning
sites like VirusTotal, as the software in hack packs is (ironically)
frequently infected by the packager of said hack packs. From this
source, we collected an additional 29 distinct DarkComet victim
databases. We use these databases in Section 4.1.1 to describe the
phylogeny of DarkComet controller software.

3.24 Database Download Failures. In the first month of operation,
our downloader was disabled by a series of denial-of-service at-
tacks. Since then, we have used SOCKS5 proxying to anonymize
our download requests, impacting our ability to successfully down-
load databases consistently. In the course of the experiment, we
attempted 8,775 database downloads, but 2,155 downloads failed.
Network connectivity problems were the main cause of failure,
due to SOCKS5 proxying during large file downloads. Additionally,
DarkComet allows the operator to cancel downloads while they
are occurring, displaying a pop-up window during a file transfer
offering the operator the ability to abort a file transfer in progress.
Operators sometimes used this to prevent us from downloading
databases. Overall, we failed to extract a single database from 802
controllers; for another 345 controllers, some downloads succeeded.

Of the 6,035 DarkComet hosts detected by our scanner, we only
attempted to download databases from 4,320; the remaining 1,717
were never probed due to two factors. First, per the legal and ethical
framework on which we based our data collection methodology (see
Section 3.4), we do not attempt downloads from hosts which have
active web or email servers running, an aggressive measure to avoid
probing unaware, compromised hosts being used as intermediary
infrastructure by DarkComet campaigns. Second, our downloader is
network-constrained; there are some short-lived DarkComet hosts
from which it never has a chance to download a database.

3.3 DarkComet Configuration File

DarkComet also uses an INI file named config.ini to manage
configuration information internally. As such, we updated our
methodology on March 25, 2019 to collect this file as well. From
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Table Column Format

Example

dc_keyloggers

dc_users UuID <HWID>-<Unique suffix>
userIP <WAN IP>/[<LAN IP>]:<Port>

{846ee340-7039-11de-9d20-806e6£6e6963-12345678}
8.8.8.8 / [10.0.0.5] : 1604

dc_users UuUID
UuID / name

userName <Hostname> / <Username> DESKTOP-432AHT11 / Administrator
user0S <0S> [<Build>] <Arch> (<Drive>) Windows 7 Service Pack 1 [7601] 32 bit ( C:\\ ) userlP content
userGroup <dc_groups:groupld> 0 userName

dc_keyloggers UUID <dc_users:UUID> {846ee340-7039-11de-9d20-806e6£6e6963-12345678} userOS

name <Date>-<Random integer>.dc
content <hexified victim keystrokes>

2015-12-10-5.dc

dc_groups groupld <Sequential integer> 0

groupTitle <Operator-created title> Webcam

userGroup dc_groups
_\b groupld

groupTitle

Table 1: The schemas of the tables of importance in the DarkComet database.

March 25, 2019 to July 6, 2019, we downloaded 2,963 configura-
tion files from 2,345 unique IP addresses. This file encodes addi-
tional, valuable information about operator interactions with vic-
tims; among other things, this file encodes whether an operator
has interacted with a specific victim via the inclusion of a config-
uration section header with the victim’s database UUID. Further,
these victim-specific sections contain keys indicating whether the
operator has accessed or recorded the victim’s webcam or screen.
config.ini also contains automation information, listing the tasks
the operator has configured stubs to execute upon connection, from
controller hostname updates to DDoS targets. It also includes the
operator’s No-IP login information and DDNS hostname(s), as the
controller can automatically issue IP address updates.

3.4 Ethical and Legal Considerations

Part of our data collection methodology emulates DarkComet vic-
tims and uses the well-documented DarkComet file download API
to retrieve a copy of the victim database from controllers. Before
employing this methodology, we consulted with the general legal
counsel at our institution, who confirmed that our methodology
was legal based partly on the fact that we were using existing func-
tionality that is accessible to any DarkComet stub, and that we were
thus not “exceeding authorized access,” part of the Computer Fraud
and Abuse Act (CFAA) U.S. legal statute. In addition to consulting
with our legal general counsel, we also submitted our protocol to
our Institutional Review Board (IRB). As part of our protocol, we
remove or hash all fields from the database that might contain per-
sonally identifiable information (PII), such as the keystroke logs.
We also hash other sensitive fields like the victim IP address or user
name, which is often the computer owner’s name. These redacted
copies of the databases were stored on a server with strict access
controls and an encrypted file system. Our IRB exempted our study
since we neither store nor analyze PII.

Although acceptable from a legal perspective and exempted by
our IRB, one might still argue the ethics of our data collection
methodology. Here, we present our framework for data collection
and analysis within the ethical guidelines described in the Menlo
Report [20], which is in turn based on the 1979 Belmont Report [49],
and is a cornerstone for computer and information security research.
This framework is based on four principles: respect for persons,
beneficence, justice, and respect for law and public interest. Our
framework addresses each of these principles as follows.

Respect for persons. Since “participation” in this study is not
voluntary and cannot be based on informed consent, we take great
care not to analyze victim PII, as they form the most vulnerable
party involved. We only compile aggregate statistics about victims.

Beneficence. We believe that our analysis does not create fur-
ther harm. The method we use to collect our data has been well-
publicized in prior public reports and talks 7, 9, 10, 17, 28]. We feel
the benefits of a better understanding of RAT operators and victims
outweigh the potential harms of publishing aggregate statistics.
Justice. The benefits of this work are distributed to the wider public,
in terms of helping to reduce crime. The study particularly helps
protect persons who are vulnerable to being victimized by RATs.
We see no impact to persons from being included in the study.
Respect for law and public interest. We describe the legal frame-
work for data collection and argue that it is in full compliance
with U.S. laws. In addition, the researchers that participated in this
project have obtained an exemption from their IRB. It is important
to note that, while captured information may point to certain ille-
gal conduct, establishing legal proof of criminal conduct is not the
purpose of this study.

4 DATA ANALYSIS & PROCESSING

We downloaded 6,620 DarkComet databases from 3,518 unique IP
addresses from December 5, 2018 to July 6, 2019. Whenever possi-
ble, we downloaded the database from a given controller multiple
times — no more than once every 24 hours - allowing us to ob-
serve the acquisition of new victims over the course of the 213-day
measurement period.

However, the raw data we have downloaded is far from
ready for analysis. We assert that a single IP address is not syn-
onymous with a single controller; indeed, most controllers use one
or more domain names for addressing rather than hard-coded IP
addresses. So in Section 4.1, we describe a novel technique for iden-
tifying databases from the same controller (potentially downloaded
from different IP addresses) based on constructing a family tree of
database inheritance. Our technique uncovers unexpected operator
behaviors, also detailed in Section 4.1.

We further assert that some of the records in a given database
may not be real victims. Rezaeirad et al. [58] demonstrated that
numerous entities are running DarkComet malware samples in
sandboxes or operating high-fidelity DarkComet network scanners.
These operations pollute the databases we download with fake
victim records. To filter this pollution from the data set, we first
apply the technique described by Rezaeirad et al., and then improve
on their method with novel strategies based on additional metadata
included in our data set. We describe this in Section 4.2.

4.1 Database Attribution

When we download a database from a controller, we record the
hostname used to contact the controller, which may be either a
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domain name or a raw IP address. This hostname is used to uniquely
identify a particular controller over the course of the experiment,
allowing us to track controllers identified by domain names across
multiple IP addresses. Based on our corpus of DarkComet samples,
we know that some controllers use more than one hostname. We
consider any domain names and IP addresses that appear in the
same DarkComet sample to belong to the same controller.

Using this initial technique of hostname-based consolidation,
we condense the 3,518 DarkComet IP addresses from which we
downloaded databases to 1,162 controllers. 667 of these controllers
are identified by domain names, encompassing 86% of the 3,518 IP
addresses (3,023) and 72% of the 6,620 downloaded databases (4,750).
The remaining 495 IP addresses identify controllers with hard-coded
IPs, to which the other 1,870 databases belong. Interestingly, only
15% of our DarkComet samples contain hard-coded IP addresses,
compared to the 41% of active controllers identified by them.

Because a controller may produce stubs with multiple, disjoint
configurations, there may be more than one controller hostname
for each database in our data set. Therefore, 1,162 is an overestimate
of the number of unique controllers we observed. To identify cases
where the same controller’s databases were contacted under a dif-
ferent hostname, we use the records in dc_users to construct an
inheritance tree of DarkComet databases.

4.1.1  DarkComet Database Ancestry. The dc_users table in a
DarkComet database is append-only, meaning that when a con-
troller infects a new victim, the victim’s metadata is appended to
the dc_users table. Returning users are identified by their UUIDs,
so duplicate records are never created for the same victim. Thus,
the order of the records in dc_users describes the order in which
the corresponding victims were infected. Each time we download a
dc_users table from a controller, we expect it to have new victims
appended to the end, so that the previously downloaded dc_users
table is a prefix of the new one.

Furthermore, recall that we add a unique victim record, or taint,
to the dc_users table each time we download it because the pro-
cess of connecting to the controller generates a victim record. A
controller’s dc_users table should, therefore, not only contain a
history of the victims the controller has infected in the order they
were added, but also a special victim record corresponding to each
time we downloaded the database.

Using the monotonic growth property of the dc_users table
described above allows us to identify a controller by its database,
even if we contact it at a different hostname and IP address. Ap-
plying this technique identified 78 controllers using 211 hostnames
or hard-coded IP addresses, reducing the number of distinct con-
trollers from 1,162 (identified by hostname only) to 1,029. Thus,
our ancestry-based technique reduced the controller count by over
70% from a naive (but commonly reported) 3,518 IP addresses.

Having fully consolidated the controllers in our data set, we
find that 71% of controllers used just one IP address; the remainder
traversed multiple IP addresses during the window of observation.
Further, 19% of controllers actively switched domain names during
observation. In these cases, our methodology for controller tracking
is necessary to accurately report on the observed controllers.

4.1.2  Database Divergence. If two controllers start with the same
initial database and then go on to acquire distinct victims, the two
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databases will share a common prefix of user records from the
initial database, followed by distinct sequences of victims acquired
by each controller. This is precisely what happens when two or
more operators start from a common hack pack (Sections 2.1.2
and 3.2.3): their dc_users tables will each contain the set of victims
inherited from the hack pack, followed by each operator’s own
victims. We use the term divergence to describe cases where two
or more databases have a common non-empty prefix of victim
records and different non-empty suffixes of victim records in their
dc_users tables.

If, for two divergent databases in our corpus, there is no database
containing their common prefix, we infer such an ancestor database
and add it to our data set. The collected and inferred databases
can now be arranged into a forest of trees representing database
inheritance. The nodes of the inheritance tree represent databases,
with an edge from a parent to child if the dc_users table of the
parent is a prefix of the dc_users table of the child, that is if the
child is derived from the parent. (Note that there are never points
of convergence in the DarkComet inheritance tree because there is
no mechanism to combine the records from two databases into a
new one, so the inheritance tree is indeed a well-formed tree.)

In addition to hack packs, databases may diverge when a con-
troller reverts to an earlier version of the database. This happens
when an operator runs the RAT controller software in a virtual
machine and periodically restores the virtual machine state to an
earlier snapshot. Unlike cases of database sharing (e.g., via hack
packs), at most one database derived from a common ancestor by
reversion will exist at any given point in time, while there may
be multiple databases derived from the same hack pack active at a
given point in time. In addition, databases related by reversion may
be downloaded from a controller identified by the same hostname,
while two different databases related by sharing should never ap-
pear on the same controller. Only 11% of controllers (116) exhibit
this behavior; they reverted their databases 497 times in total during
the observation period.

Figure 2 shows a fragment with two inheritance trees from our
data set. Open circles represent databases downloaded in the course
of the study. Inferred ancestral databases are shown shaded black:
black circles denote inferred reversion databases and black squares
denote inferred shared databases. Grey squares denote known hack
packs (publicly shared databases). In all, the set of inheritance
trees consists of 6,620 downloaded databases, 164 inferred ancestral
databases related by reversion, 43 inferred shared databases that
are not known hack packs and 17 known hack packs.

4.1.3 Hack Pack Prevalence. Of note is that 68% of controllers’
databases are derived from an inferred hack pack, while 45% are
based on one of the 17 hack packs we possess. This indicates both
the prevalence of hack pack sharing in the DarkComet commu-
nity, as well as the relatively few points of origin for DarkComet
controller software downloads. We find that using a hack pack cor-
responds to both longer operational duration, as well as a higher
number of victims; the median hack pack user accumulates 3 times
as many victims and operates for 13 times as many days. All outlier
attackers in Section 5 acquired DarkComet from hack packs.

4.1.4  Controller Attrition. We managed to download just a single
database from about 44% of all controllers. We only downloaded
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Figure 2: Fragment of the reconstructed DarkComet database inheritance tree. Open circles are sequences of databases down-
loaded from a single controller; grey rectangles are known hack packs; black rectangles are inferred hack packs not part of
our corpus of hack packs; black circles are single-controller reversion points.

10 or more databases from 14% of controllers, and were able to
download a database on each day of the measurement period from
just 3%. Similarly, 55% of all controllers were observed for fewer
than 5 days, calculated as the difference between the first and last
download from a given controller, while just 25% were observed 30
or more days. (Recall that 44% of controllers were only seen once.)

Such high attrition led to sparse data collection from a large por-
tion of controllers. We hypothesize that this phenomenon is a result
of several factors. First, per Section 3.2.4, our downloader is visible
to operators; we suspect that indication of discovery drives opera-
tors to abandon either DarkComet or their current infrastructure
(e.g., domain names). Second, we believe that many DarkComet
operations are inherently short-lived or even experimental, and
that they thus expire quickly, regardless of our intervention; we
explore this further in Section 5.1.

Description Records UUIDs

Invalid UUID field 6,346,794 82.4% 345,373 72.4%
Matches known scanner (dc_toolkit) 5,267,538  68.4% 276,262  57.9%

Invalid userOS field 1,181,572 153% 81,093  17.0%
In hack pack T 453,536 5.9% 15,053 3.2%
Matches suspected scanner 256,821 3.3% 33,080 6.9%
Missing expected keystrokes 161,572 21% 19,199 4.0%
Matches known scanner (ours) 56,612 0.7% 6,482 1.4%
Matches known sandbox 51,392 0.7% 3,755 0.8%
Invalid userIP field 15,729 0.2% 1,308 0.3%
Empty UUID field 1,086 <0.1% 1 <0.1%
Anomalous keystrokes 745  <0.1% 54 <0.1%
Empty userOS field 178 <0.1% 2 <0.1%
Invalid userName field 92 <0.1% 25 <0.1%
Empty userName field 29 <01% 1 <01%
Empty userIP field 29 <0.1% 1 <0.1%

Original anomalous victims 6,582,326  85.4% 385,181  80.7%
New anomalous victims 312,152 4.1% 23,983 5.0%

Total victims in hack packs 303,701 3.9% 10,323 2.2%
Total unique victims 506,407 6.6% 57,805 12.1%

Total records 7,704,586  100.0% 477,292  100.0%

Table 2: Records and UUIDs filtered by our anomaly detec-
tion logic. Many records exhibit more than one anomaly.

4.2 Identifying Victim Pollution

Correctly identifying and enumerating victims is essential to un-
derstanding the scope and severity of the DarkComet campaigns
under observation. DarkComet assigns each victim a universally
unique identifier, or UUID. In Section 5, we will consider this UUID
to be equivalent to a victim; however, since imposter victims can
fabricate their UUIDs to the controller, we first describe our reduc-
tion efforts in terms of records, that is, rows in dc_users tables.
In the 6,620 databases’ dc_users tables, there are 7,704,586 total
records corresponding to 477,292 distinct UUIDs.

4.2.1 Static Anomaly Detection. Rezaeirad et al. [58] indicated that
there are “active participants” in the DarkComet ecosystem that
impersonate victims, including malware sandboxes and network
scanners (like ourselves). We applied the techniques they described
to the victim records in our DarkComet databases’ dc_users tables
in order to detect and filter these entities. Table 2 lists the anomalies
by which we first detect and filter imposter victims, as well as the
number of records filtered by each rule. We find that Rezaeirad’s
rules filter 6,582,326 records corresponding to 385,181 UUIDs. In
all, 85.4% of all records and 80.7% of all UUIDs are considered
anomalous by these rules. Note that anomalies marked with a  are
novel and will be discussed below.

4.2.2  Hack Pack Victim Detection. In Section 4.1.1 we described
the process by which we inferred the existence of hack packs in
addition to those we possess. We consider victims shared in hack
packs separately from victims belonging to individual campaigns.
The hack packs we possess contain 373 victim records, 311 of which
do not have any anomalies. Our inferred hack packs contain 14,930
victim records, 10,247 of which are not anomalous. As there is some
overlap, the total number of UUIDs across all hack packs is 15,053
with 10,323 apparent real victims.

4.2.3 Keylog Validation. Using metadata from the keylog table, we
attempt to filter short-lived, sandboxed executions of DarkComet
and provide a conservative bound on the victim population. The
dc_keyloggers table, described in Section 3.2.2, contains a file per
victim per day that keystrokes were logged. DarkComet’s keylog-
ging functionality cached keystrokes locally on the victim machine
and dumps them, a file per day, to the controller’s dc_keyloggers
table when both machines are online simultaneously. Keylogging
is enabled on all victims by default, so we expect a real victim to
have numerous days of keylogs in the table, while a sandboxed
execution might have one or few. However, this is complicated
by the fact that the operator can configure keylogs to be sent to
an offsite FTP server. However, if configured for offsite FTP, the
database will contain a table for storing FTP credentials. While we
do not collect this table, we do record its presence in the database
schema. Therefore, we bound our victim population based on the
following conditions:

(1) If a victim record has anomalous dates in the keylog table
(e.g. year 2077), it is excluded (54 records).

(2) If the FTP table exists, the database’s victim records are
included in analysis (48,356 records).

(3) If the victim record has more than two days of keylogs, it is
included in analysis (9,449 records).

(4) Otherwise, the victim record is excluded. (19,199 records).

Applying all validation steps (Sections 4.2.1, 4.2.2, and 4.2.3)
leaves a conservative estimate of 57,805 victims. Had we only
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applied the rules described by Rezaeirad et al. [58], we would have
erroneously considered an additional 34,306 victims to be real vic-
tims (10,323 that we determined to be present in hack packs, and
23,983 that we caught using keystroke-based rules). Our new rules
reduced pollution by almost 40% in comparison.

5 OBSERVATIONS & APPLICATIONS

Having applied the previously described techniques to our data set,
consolidating observed controllers and eliminating spurious victim
records, our data set consists of 57,805 victims controlled by 1,029
controllers. With a better understanding of what the ecosystem
under observation actually looks like, we now consider potential
applications of our techniques and derived data set towards the
mitigation of DarkComet and other RAT malware.

5.1 Operator Takedown

Law enforcement agencies worldwide have shown interest in RAT
malware takedown efforts (e.g., the 2012 international takedown of
Blackshades RAT [26, 55-57]) and in arresting authors and distrib-
utors of RAT malware [35, 36, 50]. Just last year, Ukrainian police
arrested a DarkComet operator with over 2,000 victims, an operator
we had also been tracking. In our data set, we find evidence of several
operations we consider even more critical than this. For instance,
10 controllers we observed have more than 1,000 victims; 2 have
over 9,000. Our techniques for DarkComet controller tracking could
help law enforcement agencies prioritize investigations, whether
based on controller longevity, infection rate, or magnitude.
Infection Rate. Over our 213-day measurement period, controllers
added 14,420 new victims between the first database downloaded
from each controller and the last, an aggregate rate of 69 new
victims per day, or a new victim every 20 minutes. Infection rates
vary tremendously by controller. The average daily infection rate
across all controllers is less than one victim a day. 90% of controllers
infected just a single victim over the entire period of observation,
perhaps an indication of a targeted attack. However, 3 controllers
amassed more than 1,000 victims each during this same period, one
of which infected 463 victims in just 23 days at a rate of 20 new
victims per day. Rapidly growing campaigns could be prioritized
for law enforcement investigation while targeted attacks could be
cataloged and used as a resource when investigating personal abuse
like stalking or intimate partner violence cases.

Total Victims. The total number of victims infected per controller
over all time, excluding victims from known or inferred hack packs,
is also dominated by a handful of outliers. In fact, 2 controllers in
our data set have over 9,000 victims each; the next closest has 3,468.
Just 10 controllers have more than 1,000 victims, and only 56 have
more than 100. A full 325 controllers have no real victims at all (at
least, per our conservative filtering), and the median number of
victims per controller is just 2.

Campaign Longevity. We consider the operational age of a con-
troller to be the time between when the first victim keylog was
received by a controller and when its most recent database was
download by our scanner. We only report on the 49% of controllers
(507) that have keylogs, which allows us to effectively decouple our
understanding of campaign longevity from our relatively limited
window of observation. Figure 4 shows the cumulative distribution
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of controller operational longevity for controllers whose database
was derived from a known hack pack and those whose database
was not. The median longevity of controllers derived from hack
packs, 262 days, is about twice that of controllers not using a hack
pack (116 days). Over 40% of controllers in our data set have been
operational for at least a year, and almost 17% have been functional
for over 3 years. The longest lived controller in our data set has
been infecting new victims and collecting keylogs for well over 5
years. The average operational duration was roughly 484 days, and
the median was 228 days.
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Figure 3: CDF of victim infec- Figure 4: CDF of controller
tion duration (n=6,354). age (n=507).

These results are biased towards controllers that have victims and
have thus collected keystrokes (recall that 32% have no victims). In
Section 4.1.4, we previously remarked on the high rate of controller
attrition, that is, controllers disappearing after a small number of
downloads. It may be that our downloader scares off some operators,
or that some observed operations are inherently short-lived or
experimental, but we cannot determine this with a right- and left-
censored window of observation. We nevertheless observed two
populations of controllers, transient and long-lived, the latter of
which could be investigated by law enforcement and potentially
reduce the harm to victims from persistent attackers.

5.2 Infection Duration & Cleanup

We consider the time between a victim’s first and last keylogs in a
database to be its infection duration, excluding those victims with-
out keylogs. Figure 3 plots the cumulative distribution of victim
infection duration, showing the probability of a victim being in-
fected after a given number of days. At the time of our observation,
53% of all victims had been infected for over a month, with a median
infection duration of 36 days. However, there is a small population
of long-lasting infections, the longest of which is over 5 years old.

Cetin et al. [12, 13] have demonstrated the effectiveness of ISP
notification of known victims in malware cleanup efforts. Our ini-
tial IRB proposal did not include a notification component. This
precluded us from considering victim notification as a mitigation to
the observed infections. On October 6, 2019, our IRB approved our
modification request to allow us to report the 57,805 victims in our
data set to their ISPs for notification and cleanup. Our techniques
for determining victim realism reduce wasted resource expendi-
ture in this effort, while the data set we collected provides other
indicators of victim identity that could assist in notification.

For instance, 126 of the 1,029 controllers’ operators annotate
their victims using group names, recorded in the dc_groups data-
base table. 8,411 victims have one such label. Group labels often
reveal operator intent. 77% of labels indicated voyeuristic intentions
(e.g. webcam access). 19% suggest targeting specific individuals;
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15% the deployment of hacking tools; and 6% credential theft. The
voyeuristic motivations and propensity to target individuals (often
by name) align with anecdotes of RAT usage for perverse acts such
as sextortion [18, 19], but can also help identify specific victims of
malware in cleanup efforts.

5.3 Operator and Victim Geography

Controller
Country Count Footprint Victims
Turkey 238 23.1% 7,451 12.9% 7,472 12.9%
Russia 210 204% 5840 10.1% 7,854  13.6%
Ukraine 80 7.8% 362 0.6% 936 1.6%
France 28 27% 10,123 17.5% 1,358 2.3%
Brazil 26 25% 1,147 20% 2,278 3.9%
Italy 19 1.8% 2,678 4.6% 905 1.6%
United States 15 1.5% 256 0.4% 4,045 7.0%
Germany 14 1.4% 38 0.1% 2,936 5.1%
Ivory Coast 4 0.4% 11,306 19.6% 62 0.1%
India 3 0.3% 61 0.1% 1,803 3.1%
Netherlands 3 0.3% 11 0.0% 3,299 5.7%
Philippines 2 0.2% 2 0.0% 3,295 5.7%
Trinidad and Tobago 1 0.1% 3,468 6.0% 67 0.1%
Anonymous VPN 170 16.5% 8,868  15.3% - -
Other 216 21.0% 6,194 10.7% 21495 37.2%
Total 1,029 100.0% 57,805 100.0% 57,805 100.0%

Table 3: Sample of controller locations and victim counts.
Controller footprint is the total number of victims con-
trolled by all controllers from a given country.

Our data set uniquely links victims and operators, allowing us
to understand the geographic relationship between them.? This
information reveals an interesting dichotomy in the behavior of
DarkComet operators: most operators appear to infect one or a few
local victims, while a small number of operators control hundreds
to thousands of victims worldwide.

Table 3 shows the number of controllers in each country together
with their footprint, which is the number of victims whose con-
troller is in that country. Countries are listed in decreasing order of
the number of controllers. About 17% of operators used a known
anonymizing service like a VPN or VPS, making true geo-location
impossible for these controllers; such controllers are counted sep-
arately in the Anonymous VPN row. Controllers whose location
we could not determine are counted in the Other row. Figure 5
shows the number of victims for each combination of controller
country and victim country. The vertical axis enumerates controller
countries (ordered by the controller footprint), while the horizontal
axis enumerates victim countries, in the same ordered as controller
countries. The horizontal axis extends to include additional coun-
tries in order of decreasing number of victims.

Turkey and Russia appear to be hotbeds of DarkComet activity;
however, while these two countries account for 44% of all con-
trollers, their operators control only 23% of all victims. Rather, a
handful of controllers in France and Ivory Coast control 37% of all
victims. This illustrates an important detail: most controllers have
just one or a few victims, while a small population of operators

2We geo-locate IP addresses using MaxMind’s Precision Insights service [44].
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control most of the victims in our data set; indeed, 5 controllers
control half of all victims.

Rezaeirad et al. [58] evince that attackers and victims in the
commodity-grade RAT ecosystem are often co-located, that is, in
the same country or region. The propensity for some RAT operators
to target people they know likely influences this, as do shared
language and culture. As Figure 5 shows, there is also a tendency
for controllers to be in the same country as their victims, although
the majority of victim hosts (77%) are not in the same country
as their controller. The converse, however, is not true. Because
Figure 5 is weighted by victims (each victim contributes 1 count
to the numbers shown), it emphasizes the heavy-hitters with a
global victim population. Viewed from the controller side, a full
74% of attackers are in the same country as the majority of their
victims. Colocation of operator and victim is the norm for operators
with fewer victims. Thus, we find in our data set evidence of two
categories of DarkComet operator; the prolific spreader with many
victims across the world, and the typical operator with one or a
handful of victims, most of whom are geographically co-located.

We find DarkComet campaigns with over 1,000 victims likely
located in jurisdictions where we can reasonably expect law en-
forcement to investigate them, such as France and Italy. We also find
over 2,000 victims in the Netherlands, where their ISPs have previ-
ously launched effective notification campaigns [12, 13]. Just 16%
of operators use VPNs, with the remaining unprotected operators
controlling some 85% of victims. This suggests that law enforce-
ment operations would likely be both successful and high-impact.
The low rate of operator VPN usage (just over 16%) suggests that
such operations would likely be successful.
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Figure 5: Number of victims for each combination of con-
troller and victim country. Rows denote controller countries
and columns victim countries, based on geo-located IP ad-
dress (excluding VPN providers).

5.4 Observed Harm to Victims

Our efforts to notify victims are motivated by troubling abuses
we detected in our data set. We quantify the harm incurred by the
victims in our data set through several vectors: captured keystrokes,
time monitored by attackers, non-consensual webcam accesses, and
direct interaction or communication with attackers.
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By default, DarkComet installs a keylogger on each victim’s ma-
chine. As some RAT operators seek access to victim accounts and
credentials [25], and many are plainly opportunistic [48], victim
keylogs can offer insight into the potential harms victims incur from
DarkComet campaigns. As described in Section 3.2.2, on March 25,
2019 we began collecting additional metadata from the keylog table;
we were able to do so for 2,664 recent victims from 378 controllers.
DarkComet demarcates and timestamps victim keystrokes by the
victim’s active window. For each active window in a victim’s key-
logs, we record the number of keystrokes collected while the victim
interacted with it and the time the victim spent using it. We compare
the active window name to a set of application names containing
common applications and websites. We do not record the name of
the active window, which may contain sensitive information.

The 2,664 victims in this sample set had 210,835,801 keystrokes
captured over 25,315 days, amounting to over 162,098 hours of
keystroke monitoring. On average, DarkComet collected 79,142
keystrokes and recorded 60 hours of activity over 9.6 days from
each victim. The active windows from which keystrokes were stolen
indicate that the DarkComet campaigns in our data set likely ob-
tained victims’ sensitive information like emails, transcripts of
private conversations, login credentials, and credit card numbers,
putting them at risk of blackmail or financial compromise.

Per Section 3.3, DarkComet’s configuration file encodes whether
an operator has issued commands to a victim or accessed the vic-
tim’s webcam. We were able to download the config. ini file from
697 of the 1,029 controllers in our data set, encompassing 50,358
total victims. We find that operators accessed the webcams of 13,269
(26%) victims they actively controlled. Though webcam access sug-
gests a voyeuristic motive, we do not know how much time the
controller spent accessing the webcam and cannot differentiate be-
tween webcam access for machine vetting versus voyeurism. This
suggests the potentially life altering personal harms that some RAT
victims experience from targeted stalking and harassment.

6 DISCUSSION

Campaign Tracking. Our method of obtaining victim databases
from RAT controllers combined with our lineage analysis technique
enables us to identify distinct RAT campaigns across any number of
IP address and domain name changes, assuming a controller repre-
sents a RAT campaign. This allows us to better understand the size
and dynamics of RAT campaigns, including 2 campaigns with over
9,000 real victims. This type of information can help security re-
searchers perform attack attribution, or law enforcement prioritize
investigations. Given that law enforcement appears interested in
combating RAT malware [26, 55-57]), the techniques presented in
this paper could be particularly useful in prioritizing and tracking
operations. As our techniques are also able to determine DarkComet
controller points of origin (i.e. hack packs), they could also help law
enforcement target the distributors of RAT malware [35, 36, 50].

Victim Identification. The pollution reduction heuristics we im-
proved upon enable us to reduce our initial set of 477,292 potential
victims by around 93%, leaving us with 57,805 likely real victims.
Our original IRB protocol did not include plans for victim notifi-
cation, thus we could not do notifications. However, we modified
our IRB protocol to include ISP notification to victims based on our
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findings of longer lived infections and recent work indicating ISP
notifications help speed up desktop victim cleanup [12, 13]. Our
modified protocol which includes a plan to share victim’s IP ad-
dresses with their ISP was approved on Oct 6, 2019. We plan to start
notifying ISPs and monitor the efficacy based on continued data
collection from DarkComet operators. Our improved victim iden-
tification will likely reduce the resources wasted on notifications
to fake victims and allow ISPs to devote resources to assisting real
victims clean up infections. As our data processing methodology
is not dependent on our form of data collection, it could be used
in other scenarios. For instance, law enforcement acting on search
warrants could use this technique to expedite victim notification.
Cetin et al. [12, 13] demonstrated the potential for victim notifi-
cation by ISPs to mitigate malware infections. While our initial
IRB proposal did not allow us to store victim IP addresses, we have
since modified it so that we can begin engaging with ISPs to notify
the victims of DarkComet found in our data set.

Understanding Victim Harm. Understanding the harms incurred
by victims of low-volume malware infections is challenging, partic-
ularly in comparison to the large-scale malware campaigns waged
by spambots and ransomware. Our system’s data collection and
automated analysis methods allow for quantifying these harms at
scale, in terms of disquieting metrics like keystrokes stolen, hours
monitored per application, and webcam accesses made.

Study Limitations & Extensibility. Our data collection method-
ology is currently limited to DarkComet; however, prior work in-
dicates that a number of other RAT families expose the same arbi-
trary file read functionality [28], suggesting that our data collection
methodology scales to other RATs. Further, like DarkComet, most
RATs maintain databases of victim metadata. While they may not
expose the same download capabilities, they are still often shared
in hack packs. If we could scale our collection of hack packs (e.g.,
through more access to malware upload repositories), this could en-
able our analysis methodology to expand to additional RAT families.
Further, as the data processing techniques we debuted in Section 4
are independent of our data collection technique, they can be ap-
plied to data obtained otherwise (e.g., by legal seizure).

7 CONCLUSION

In this work, we presented a broad study on the ecosystem of RAT
malware. To carry out the study, we used a feature of the Dark-
Comet RAT controller software that allows anyone to download
the database of its victims. Using this capability, we collected 6,620
databases from 1,029 unique controllers. To arrive at our data set
for analysis, we developed new methods for tracking controllers
and improved existing methods for identifying real victims. Using
this data, we presented the results of our analysis of controllers,
victims, and the relationship between them. We propose to use our
techniques in DarkComet and other RAT cleanup efforts, and are
engaging ISPs to notify the 57,805 victims in this data set.
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